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ABSTRACT. A viscous incompressible fluid is contained between two parallel disks with
arbitrarily shrinking width #(r). The solution is obtained as a power series in a single
nondimensional parameter (squeeze number) §, for small values of S in contrast to the
“multifold” series solution obtained by Ishizawa in terms of an infinite set of nondimensional
parameters. The gap width h(r) is obtained for different states: when the top disk moves with

constant velocity, constant force or constant power.
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1. INTRODUCTION.

The problem of unsteady squeezing of a viscous incompressible fluid between two parallel
disks in motion normal to their own surfaces independent of each other and arbitrary with
respect to time is a fundamental type of unsteady flow which is met frequently in many
hydrodynamical machines and apparatus. The similarity solution obtained by Wang [1], when a
viscous fluid is squeezed between two parallel disks which are spaced a distance a\/1—¢/T apart,
is restricted to a special time dependent motion, namely, the distance of separation of the disks is
taken to be ay/T—¢/T. It is unlikely that the distance would behave as ay/1—¢/T in reality, since
the pressures are found to approach infinity as t—7. Also, the solution presented by Ishizawa [2]
for the unsteady laminar flow of an incompressible fluid in a narrow gap between two parallel
disks of varying width k() is a “multifold” series of an infinite set of nondimensional time-
dependent parameters % %, 1’:_2 dh B dh

a® B ad
symmetric squeezing of a viscous incompressible fluid from a gap between two parallel disks of

The present paper studies the arbitrary

varying width 2eh(r),r =t/T, which in general, does not lead to similarity solutions and the
solution is obtained as a power series in a single nondimensional parameter (squeeze number)
§ = a?/2uT for small values of S, where v is the kinematic viscosity, 2a is the width of the gap
between the disks at ¢t =0 and T is a characteristic time. The gap width A(r) is obtained when
the top disk moves with constant velocity, constant force or constant power.

2. MATHEMATICAL FORMULATION.

Let the position of the two disks be at Z = + ah(r), where 7 = t/T is a normalized time. We
assume that the length 2L of the channel is much larger than the gap width 2ah(r) at any time
such that the end effects can be neglected. Let u and w be the velocity components in the r and =z
directions respectively. The axisymmetric flow of a viscous incompressible fluid between the
parallel disks is governed by the unsteady Navier-Stokes equations.

ut+uur+wuZ=—%pr+u(urr+%ur+uzz—rl2) (2.1)

Wy + uw, + ww, = —%pz+u(wr,‘+%wr+w”) (2.2)

up+E+w, =0 (2.3)
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The boundary conditions are

u=0,w=7%hon :=ah(r) (2.4)
w=0u,=0onz=0 (2.5)
The use of the transformations
—h,
n =5_Iir—)’ u= 2Th( rfy (nr), w=T by f(n,7) (2.6)
in (2.2) yields "
Py = b () — pato h% Z (" @27
from which it follows that
Ppr =0 (2.8)

Substituting (2.6) in (2.1), we obtain

2
phor 2hh_.f
P (S{ - h:’ D4 2hh fy ~ 202 fpr + 2hhonf gy + hho f 2~ b ffon 04 foon |= — b (2.9)

which along with (2.8) implies o
; ’:' A7) (2.10)
a

Pp= —
so that

2hh_. f
s( _ h‘r‘r my 2hh fy~ 2h2f,,, +2hhonfp, + hhrfn2 - 2hh,.jf,m)+ fomn = A(7) (2.11)

.

From (2.7), (2.8) and (2.10) we obtain the pressure as

ph f h, A

. j paugdy -2 pefhe 2y £ (2 -1 (2.12)
ah

where P, is the pressure at the top edge of the upper disk, p the density, A(r), f(n,7) are functions
to be determined. In terms of the function f(n,r), the boundary conditions are

p(n,7) =

FO,7) = 0,f(1,7) = 1, fyn(0,7) = 0, f(1,7) = 0 (2.13)
When h(r) = /17, the equation (2.11) reduces to the similarity ordinary differential equation
Staf"+3f - ff)=f" (2.14)

given by Wang [1].
3. SERIES SOLUTION FOR SMALL SQUEEZE NUMBERS.

When § < <1, we expand the unknown functions in terms of the squeeze number $ as
fnm) = Foln)+ SFy(nr)+ S2fplnr) 4 - - - (3.1)
A(r) = Ay(r) + 54;(r) + S Ag(1) + - - - - (3:2)
The equation (2.11) yields successively
fo,, = 4Ap(7)

nm
h
_ 2 Brr 2
f1. =A(r)+2h (—_"r fo,, + fﬂqr) - hhr(2f0n +29 fovm + f“n - 2f°f°rm)

7

ofh
Sy = A2(7) ¥ 2h (,,LT’ fi,* flm)— Who2fy +2mfy +2fo 01, =2fof1, —2f1f0, ) (3.3)

The solutions are
fo=1/2)37-n%), 4y = -3
Fr(n,7) = (00 - 2%+ m) - 210(n +211° — 457° + 237)

2
8tx 408 3h°hrr _3
(1') e = = 3., 0= hh
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11 9 7
3n 2n° n° 14 567321 3, 30792
= 2hhr (m(‘—m — S+ R - R S 35T )

2
| 2he, 20 4 16
AW)-( s+ ot (g5 o+ 6)
6571 2047
+2hhr (105555~ 38050 #) (3:4)
Thus, given the motion A(r), we can obtain the velocities and pressure from (2.6), (2.12), (3.1)

and (3.2).
The pressure force exerted by the walls of the disks on the fluid is

ah(r) 4
L
F=2r J JT(P_pO)nzl dr dz:% h—;—A(‘r) (3.5)
—ah(r) 0
and the power imparted by the walls of the disks on the fluid is
ah(t) 9
It b
R=2x I Jr(p—pﬂ)qzl(—w)rl=ldrdz=—%2— —h—TQ—A(T) (3.6)
—ah(r) 0

In what follows, we shall consider the cases: (i) constant velocity squeezing, (ii) constant force
squeezing and (iii) constant power squeezing and obtain inversely the channel width, since many
biological and mechanical devices are mostly limited to any of the three cases mentioned above.
4. CONSTANT VELOCITY SQUEEZING.

Suppose the top disk is moving vertically with constant velocity V. Then the time scale is

T =a/V. Thus, h(r) = 1 ¥ r where the top sign is for squeezing. From equation (3.5), the force is

. .
5o 3mal (ia-2+¥a-1+s2(——294—7— 4 a—2)+0(s3)) (41)

4aT 206100 * 315
where a =157,
5. CONSTANT FORCE SQUEEZING.
Suppose that a constant force F is applied to the top disk. We wish to compute the
unknown gap width h(r). The characteristic time T is defined by
T = (37uL*)/(4a| F|)

The equation (3.5) becomes

+3h% = h_A(r) (5.1)
Since $ is small, we set

h(r) = ho(7) + Shy(7) + SZhg(r) + - - -. (5.2)

and solving the resulting equations, we obtain the solutions as

h() =a i
=7 t—a)
_ 3187607 -7, 712 -5, 9 -3 5585323 -2

hy= 3548000 © t375 ¢t @ 212000 @ (53)

where o = (1 + 1) with top sign for squeezing.
6. CONSTANT POWER SQUEEZING.
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In the case of constant power squeezing, we define the time scale by

_ /37l
T=V=r
and so, from equation (3.6) we obtain

3h2= — A(r)h, 2 h(0) = 1 (6.1)

An expansion similar to (5.2) yields
hy = exp(F 1)
hy = q:%—(lj [exp(F37) —exp(F 7))

hy = — 968676080 exp( F57) + —21;430 exp( F3r) +—2ggggo exp(F ) (6.2)

where the top sign is for squeezing.
7. CONCLUSION.

The highly nonlinear unsteady axisymmetric flow equations (2.1)-(2.3) offer a solution in the
case of arbitrary squeezing of a channel by the use of transformation equations (2.4). The
resulting nonlinear partial differential equation (2.11) in two independent variables  and r is
solved for arbitrary squeezing h(r) by an expansion in terms of a single nondimensional parameter
S, for small values of . When § =0, the solution is

fo=(1/2)3n %)
which is exactly the quasi-steady poiseuille flow between two parallel disks. The higher order
terms are corrections due to inertial effects.

We have obtained the gap width for three different states. The following table compares the
eading terms (S =0) of distance, force of squeezing and power of squeezing. We observe that

these motions are basically different.

Squeezing with Squeezing with Squeezing with
constant velocity constant force constant power
distance between disks (1-7) (1+7)~! e~ T
force on top disk (1-r)~2 1 e’
power on top disk (a-r—2 (1+7)~2 1
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