
Workshop track - ICLR 2017

ARBITRARY STYLE TRANSFER IN REAL-TIME WITH

ADAPTIVE INSTANCE NORMALIZATION

Xun Huang & Serge Belongie
Department of Computer Science
Cornell University
Ithaca, NY 14850, USA
{xh258,sjb344}@cornell.edu

ABSTRACT

Gatys et al. (2015) recently introduced a neural algorithm that renders a content
image in the style of another image, achieving so-called style transfer. How-
ever, their framework requires a slow iterative optimization process, which limits
its practical application. Fast approximations with feed-forward neural networks
have been proposed to speed up neural style transfer. Unfortunately, the speed im-
provement comes at a cost: the network is usually tied to a fixed set of styles and
cannot adapt to arbitrary new styles. In this paper, we present a simple yet effec-
tive approach that for the first time enables arbitrary style transfer in real-time. At
the heart of our method is a novel adaptive instance normalization (AdaIN) layer
that aligns the mean and variance of the content features with those of the style
features. Our method achieves speed comparable to the fastest existing approach,
without the restriction to a pre-defined set of styles.

1 INTRODUCTION

The seminal work of Gatys et al. (2015) showed that deep neural networks encode not only the
content but also the style information of an image. Moreover, the style and content of an image
are somewhat separable: it is possible to change the style of an image while preserving its content.
However, the original style transfer algorithm of Gatys et al. (2015) relies on a prohibitively slow
optimization process, which can take up to several minutes even with modern GPUs.

Significant effort has been devoted to accelerating neural style transfer. Several independent works
have attempted to train a style transfer network that performs fast feed-forward stylization (Johnson
et al., 2016; Ulyanov et al., 2016a; Li & Wand, 2016). Instance normalization (IN), a layer similar
to batch normalization (BN) (Ioffe & Szegedy, 2015) but performing normalization within a single
example instead of a mini-batch, has been found to significantly improve the quality of feed-forward
stylization (Ulyanov et al., 2016b). A major limitation of these feed-forward approaches is that each
network is tied to a fixed style. In practical application scenarios, it becomes impossible to transfer
the input image to an arbitrary user-specified style. Dumoulin et al. (2017) addressed this problem
by introducing a conditional instance normalization layer with which a single network encodes
multiple (32 in their experiments) styles at the same time. Still, the network is constrained to a finite
set of styles and their interpolations. Very recently, Chen & Schmidt (2016) proposed a feed-forward
architecture that can perform arbitrary style transfer thanks to a style swap layer. However, their style
swap layer creates a new computational bottleneck, preventing it from real-time applications.

It seems that normalization layers play a special role in style transfer: (1) replacing batch normaliza-
tion with instance normalization dramatically improves quality and (2) learning different normaliza-
tion parameters enables the network to encode different styles. In this paper, we take a closer look
at the role of instance normalization in style transfer. We conjecture that instance normalization
performs style normalization. Based on this hypothesis, we propose a new normalization scheme
named adaptive instance normalization (AdaIN). AdaIN takes two feature maps as inputs, and sim-
ply adjusts the channel-wise mean and variance of the content feature map to match those of the
style feature map. Through experiments, we find AdaIN effectively transfers the style of the style
feature map to the content feature map. A decoder network is then learned to map the transformed

1



Workshop track - ICLR 2017

feature map back to the image space. Our method is three orders of magnitude faster than Gatys
et al. (2015), without sacrificing the flexibility of transferring inputs to arbitrary new styles.

2 BACKGROUND

2.1 INSTANCE NORMALIZATION

Ulyanov et al. (2016a) recently demonstrated the possibility of training a feed-forward neural net-
work that transforms a given content image to a predefined style. Later, Ulyanov et al. (2016b)
found that significant quality improvement could be achieved simply by replacing batch normaliza-
tion layers with instance normalization layers:

IN(x) = γ

(

x− µ(x)

σ(x)

)

+ β (1)

Different from BN layers, here µ(x) and σ(x) are the mean and standard deviation, computed across
spatial dimensions independently for each channel and each sample. γ and β are scaling and shifting
parameters that are learned from data. Another difference with BN is that IN is also applied at test
time unchanged, while BN usually replaces mini-batch statistics with population statistics.

2.2 CONDITIONAL INSTANCE NORMALIZATION

Instead of learning a single set of scaling and shifting parameters γ and β, Dumoulin et al. (2017)
proposed to learn a different set of parameters γs and βs for each style s:

CIN(x; s) = γs

(

x− µ(x)

σ(x)

)

+ βs (2)

During training, a style image and its index s are randomly chosen from a fixed set of styles s ∈
1, 2, ..., S. A style transfer network then transfers the content image to the chosen style, in which the
corresponding γs and βs are used in the conditional instance normalization layers of the network.
The style loss is computed with respect to the chosen style image.

3 INTERPRETING INSTANCE NORMALIZATION

Despite the great success of (conditional) instance normalization, the reason why they work partic-
ularly well for style transfer remains elusive. Ulyanov et al. (2016b) attribute the success of IN to
its invariance to the contrast of the content image. However, IN takes place in the feature space,
therefore it should have more profound impacts than a simple contrast normalization in the pixel
space. Empirically, we also found that IN remains effective even when all the training images are
normalized to the same contrast. Perhaps even more surprising is the fact that the scaling and shifting
parameters in IN layers could completely change the style of the output image.

It has been known that the feature statistics in convolutional layers of a deep neural network encode
the style information of an image. While Gatys et al. (2015) use the correlation statistics as their
optimization objective, Li et al. (2017) recently showed that matching other statistics, including
per-channel mean and variance, are also effective for style transfer. Motivated by these facts, we
hypothesize that instance normalization performs a form of style normalization by normalizing the
feature statistics (per-channel mean and variance). Our hypothesis could easily explain IN’s effec-
tiveness in style transfer: (1) In Ulyanov et al. (2016b), the shifting and scaling parameters in IN
layers are learned to normalize the feature maps to the (fixed) target style. Training is facilitated be-
cause the rest of the network can focus on content manipulation while discarding the original style
information. (2) In Dumoulin et al. (2017), different IN parameters can be learned to normalize the
input to different styles.

2



Workshop track - ICLR 2017

4 ADAPTIVE INSTANCE NORMALIZATION

Inspired by our interpretation that instance normalization performs style normalization, we propose
an adaptive instance normalization (AdaIN) layer that adaptively normalizes the input to an arbitrar-
ily given style. AdaIN receives a content input x and a style input y. Unlike BN, IN or conditional
IN, AdaIN no longer has any learnable parameters. Instead, it adaptively computes the scaling and
shifting parameters from the style input:

AdaIN(x, y) = σ(y)

(

x− µ(x)

σ(x)

)

+ µ(y) (3)

in which we simply use the standard deviation of style input σ(y) as scaling, and the mean of style
input µ(y) as shifting. Similar to IN, the statistics are computed across spatial locations.

5 EXPERIMENTS

5.1 TRAINING

Our style transfer network takes a content image and an arbitrary style image as inputs, and produces
an output image that recombines the content of the former and the style latter. We adopt an encoder-
decoder architecture, in which the encoder is fixed to the first few layers (up to relu4 1) of a
pre-trained VGG-19 (Simonyan & Zisserman, 2015). After encoding both the content and style
images in feature space, we feed both feature maps to an AdaIN layer which aligns the mean and
variance of the content feature map to those of the style feature map. A randomly initialized decoder
is trained to map the AdaIN output back to the image space. The pre-trained VGG-19 is again used
to compute the content loss and style loss for the decoder. An illustration of our architecture can be
found in Appendix A. Code will be made publicly available.

Interestingly, we found that the decoder could not be successfully trained if it contains IN layers.
This supports our hypothesis: using IN in the decoder will normalize the output to a single style,
preventing the decoder from generating images in different styles. We also experimented with a
baseline method using concatenation instead of AdaIN to combine style and content. However, the
decoder fails to disentangle the style information from the content of the style image

5.2 RESULTS

In Appendix B we show example results generated by our style transfer network. Our model is
able to produce visually appealing results for arbitrary new styles that are never observed during
training. Our method also achieves comparable speed (around 0.02 seconds for a 256×256 image) to
Ulyanov et al. (2016a); Johnson et al. (2016), because our AdaIN layer only introduces a negligible
computation cost. However, the quality of our generated images are competitive to the optimization-
based method (Gatys et al., 2015) and the feed-forward method specific to a single style (Ulyanov
et al., 2017), while in some cases our method is slightly behind in quality.

6 CONCLUSION

In this paper, we revisit the role of instance normalization in style transfer, and present a simple ex-
tension that for the first time allows arbitrary style transfer in real time. Our preliminary experiments
have demonstrated very promising results. We are currently exploring more complicated network
architectures such as a residual architecture (Johnson et al., 2016) or an architecture with additional
skip connections from the encoder. We also plan to investigate whether replacing AdaIN with cor-
relation alignment (Sun et al., 2016) could further improve quality. Another interesting direction
would be applying AdaIN to texture synthesis.

3



Workshop track - ICLR 2017

ACKNOWLEDGMENTS

We thank Facebook for the donation of GPU servers used in our experiments.

A ARCHITECTURE

V
G

G
 

E
n
c
o
d
e
r

AdaIN

D
e
c
o
d
e
r

V
G

G
 

E
n
c
o
d
e
r

L𝑠
L𝑐Style Transfer Network

Figure 1: An overview of our style transfer network.

B EXAMPLES

Style Content Ours Chen & Schmidt (2016) Ulyanov et al. (2017) Gatys et al. (2016)

Figure 2: Example style transfer results. All the tested content and style images are never observed
by our network during training.

4



Workshop track - ICLR 2017

C ADDITIONAL EXPERIMENTS

We run the code of improved texture networks Ulyanov et al. (2017) to perform single-style
transfer, with IN or BN layers. As expected, the model with IN converges faster than the BN
model (Fig. 3 (a)). To test the explanation in Ulyanov et al. (2017), we then normalize all the train-
ing images to the same contrast by performing histogram equalization on the luminance channel. As
shown in Fig. 3 (b), IN remains effective, suggesting the explanation in Ulyanov et al. (2017) to be
incomplete. To verify our hypothesis, we normalize all the training images to the same style (dif-
ferent from the target style) using a pre-trained style transfer network provided by Johnson et al.
(2016). According to Fig. 3 (c), the improvement brought by IN become much smaller when images
are already style normalized. The remaining gap can explained by the fact that the style normaliza-
tion with Johnson et al. (2016) is not perfect. Also, models with BN trained on style normalized
images can converge as fast as models with IN trained on the original images. Our results indicate
that IN does perform a kind of style normalization.

0 1000 2000 3000 4000 5000

Iteration

0

2

4

6

8

10

S
ty

le
L
o
s
s

(×
1
0
5
)

Batch Norm

Instance Norm

(a) Trained with original images.

0 1000 2000 3000 4000 5000

Iteration

0

2

4

6

8

10

S
ty

le
L
o
s
s

(×
1
0
5
)

Batch Norm

Instance Norm

(b) Trained with contrast normal-
ized images.

0 1000 2000 3000 4000 5000

Iteration

0

2

4

6

8

10

S
ty

le
L
o
s
s

(×
1
0
5
)

Batch Norm

Instance Norm

(c) Trained with style normalized
images.

Figure 3: To understand the reason for IN’s effectiveness in style transfer, we train an IN model and
a BN model with (a) original images in MS-COCO Lin et al. (2014), (b) contrast normalized images,
and (c) style normalized images using a pre-trained style transfer network Johnson et al. (2016). The
improvement brought by IN remains significant even when all training images are normalized to the
same contrast, but are much smaller when all images are (approximately) normalized to the same
style. Our results suggest that IN performs a kind of style normalization.

REFERENCES

Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of arbitrary style. arXiv, 2016.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. In ICLR, 2017.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv,
2015.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In CVPR, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In JMLR, 2015.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016.

Chuan Li and Michael Wand. Precomputed real-time texture synthesis with markovian generative
adversarial networks. In ECCV, 2016.

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural style transfer. arXiv,
2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

5



Workshop track - ICLR 2017

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
AAAI, 2016.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. Texture networks: Feed-
forward synthesis of textures and stylized images. In ICML, 2016a.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv, 2016b.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture networks: Maximizing
quality and diversity in feed-forward stylization and texture synthesis. arXiv, 2017.

6


	Introduction
	Background
	Instance Normalization
	Conditional Instance Normalization

	Interpreting Instance Normalization
	Adaptive Instance Normalization
	Experiments
	Training
	Results

	Conclusion
	Architecture
	Examples
	Additional Experiments

