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Arbitrary Throughput Versus Complexity Tradeoffs
in Wireless Networks Using Graph Partitioning

Saswati Sarkar, Member, IEEE, and Saikat Ray

Abstract—Several policies have recently been proposed for at-
taining the maximum throughput region, or a guaranteed fraction
thereof, through dynamic link scheduling. Among these policies,
the ones that attain the maximum throughput region require a
computation time which is linear in the network size, and the ones
that require constant or logarithmic computation time attain only
certain fractions of the maximum throughput region. In contrast,
in this paper we propose policies that can attain any desirable frac-
tion of the maximum throughput region using a computation time
that is largely independent of the network size. First, using a combi-
nation of graph partitioning techniques and Lyapunov arguments,
we propose a simple policy for tree topologies under the primary
interference model that requires each link to exchange only 1 bit in-
formation with its adjacent links and approximates the maximum
throughput region using a computation time that depends only on
the maximum degree of nodes and the approximation factor. Then
we develop a framework for attaining arbitrary close approxima-
tions for the maximum throughput region in arbitrary networks,
and use this framework to obtain any desired tradeoff between
throughput guarantees and computation times for a large class of
networks and interference models. Specifically, given any �,
the maximum throughput region can be approximated in these net-
works within a factor of � using a computation time that de-
pends only on the maximum node degree and .

Index Terms—Tree-partition-mapping (TPM).

I. INTRODUCTION

A TTAINING the maximum throughput region, or a guaran-
teed fraction thereof, through dynamic link scheduling is

a key design goal in multihop wireless networks. The scheduling
problem involves determination of which links should transmit
packets at a given time so as to avoid packet collisions. More-
over, the transmission schedules cannot be precomputed as the
number of packets waiting at nodes as well as the transmission
conditions in the wireless medium vary with time, and the sta-
tistics of these temporal variations are oftentimes not known
a priori. The transmission schedules need to be computed at
every transmission epoch. Thus, the schedule computation time
is a key performance metric for any dynamic scheduling policy.
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The contribution of this paper is to characterize tradeoffs be-
tween throughput guarantees and computation times for sched-
uling policies for different classes of wireless networks.

The lack of a central controller dictates that each link needs to
determine at every transmission epoch whether or not it would
transmit based on its own state and the information it acquires
about the states of other nodes. The state of a node or link com-
prises of attributes that change in the time scale of packet trans-
mission: e.g., queue lengths and scheduling decisions. The time
required for each link (or rather the node which is the source of
the link) to decide whether to transmit or not at any given time
depends on the time required (a) to exchange messages with
other links to learn their states and (b) to compute the decision
based on the information acquired. We refer to the total time re-
quired in both parts as the computation time of each schedule,
or simply the computation time. The throughput guarantees usu-
ally improve with increase in the information each link acquires
about the states of other links, but fetching information about
distant links (nodes) require longer time. Thus, an important
question is how much information a link should acquire about
the states of other links.

The scheduling policies that have been widely investigated
can be classified into two broad classes: the policies that re-
quire each link to know attributes that depend on the states
of (a) all links in the network [4], [27], [28] and (b) only the
links that interfere with it (one-hop interferers) [2], [16], [17],
[23], [29]. We refer to the two classes as INFORMATION

and INFORMATION (1) policies respectively, where refers to
the number of links in the network. By this nomenclature, then,
INFORMATION is the class of policies that require each link to
learn the states of their -hop interferers. A seminal result shows
that the INFORMATION class contains policies that attain the
maximum possible throughput region in arbitrary wireless net-
works while computing each schedule in time [27]. Re-
cently, it has been shown that a policy in INFORMATION (1) class
can attain a guaranteed fraction of the maximum throughput
region using time for computing each schedule
where is the maximum degree, or the maximum number
of neighbors of any given node, in the network [2]. The contri-
bution of this paper is to show that in certain important classes
of wireless networks, for appropriate selection of between 1
and , policies can be designed in INFORMATION class so
as to obtain arbitrary close approximations for the maximum
throughput region, while computing each schedule in an amount
of time that depends only on and the desired approximation
factor and is otherwise independent of the size of the network.

We first consider the primary interference model where any
set of links that contains no two links with a common node can

0018-9286/$25.00 © 2008 IEEE
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be simultaneously scheduled. Under this interference model and
tree network topology, given any positive constant , we ob-
tain a scheduling policy in INFORMATION (1) class that (a) ap-
proximates the throughput region within a factor of and
(b) requires a computation time of for each schedule
(Section IV). This policy requires no actual computation! Each
link with a packet to transmit simply waits until its parent and
older siblings (all of which are adjacent to the link) take sched-
uling decisions, and if all of them decide not to transmit, it trans-
mits. Thus, a link need only communicate its scheduling deci-
sion to its children and younger siblings, and no queue length
information is communicated.

Next we present a general framework for designing
INFORMATION policies for approximating the throughput
region arbitrarily closely (Section V). We subsequently use this
framework for obtaining arbitrary tradeoffs between throughput
guarantees and computation times for large classes of networks:
(i) graphs with limited cyclicity under the primary interference
model (Section V-B) and (ii) geometric and quasi-geometric
graphs under both primary and secondary interference models
(Sections V-C, V-D). For example, for geometric graphs,
given , we obtain a scheduling policy in INFORMATION

class that (a) approximates the throughput region
within a factor of and (b) computes each schedule in

time. We upper bound the expected delays attained
by these policies and prove that the bounds are comparable to
the best known guarantees in these networks. The throughput
and computation time guarantees extend to networks where
sessions traverse multiple links (Section VI).

We now briefly describe the design of the proposed policies
and provide the intuition behind the performance guarantees.
The proposed policies partition the network in a collection of
components; the size of the components depend only on
and . The links in one component that interfere with those in
another component are “shut down” i.e., not scheduled. Hence,
scheduling among the residual links in different components can
now be determined in parallel. Thus, the time required to com-
pute the overall schedule now depends only on the size of each
component and can be determined only by and . The links
that are scheduled in each component maximize the throughput
region of the component; the reduction in the overall throughput
region may happen only because of the “shut down” links. This
reduction in throughput is kept small using different partitioning
schemes at different times that ensure that each link is shut down
only a small fraction of time and the size of the components in
each partition is large enough.

The proofs for the throughput guarantees rely on a combina-
tion of graph-partitioning techniques and Lyapunov arguments.
A major challenge in proving the analytical results has been
that standard results in graph partitioning and approximation of
throughput regions do not apply owing to this combination. For
example, the following result is often used for approximating
the throughput region: if a scheduling policy ensures that the
sum of the queue lengths of the links that transmit packets is
within a factor of the maximum sum of the queue lengths
of the links in any valid schedule, then the throughput region
of the policy is within a factor of the maximum throughput
region [17]. Since a valid schedule in a network with links

can oftentimes be represented as an independent set in a graph
with links, such schedules can be computed if the maximum
weighted independent set in such graphs can be approximated
within a factor of . Existing graph partitioning schemes can be
used for attaining the above in geometric graphs and secondary
interference model for arbitrarily close to 1, and existing
matching algorithms can attain the above in trees under pri-
mary interference model for . But, all such schemes
need a computation time [9], [13], [20]. Thus, such
schemes can not be directly used to obtain arbitrary tradeoffs
between throughput guarantees and computation times for each
schedule. We circumvent this difficulty by proving that in a
large class of networks, given any , simple randomized
partitioning schemes can be used to (a) obtain independent
sets such that the expected weight of such an independent set
is within of the maximum weight of an independent set
for any allocation of non-negative weights, (b) while requiring
a computation time that depends only on and . The
above property may be useful for approximating maximum
weighted independent sets in expected sense in other contexts
as well, and is therefore an interesting result in its own right
(Appendix B). It also turns out that if the scheduling policy
ensures that the expected sum of the queue lengths of the links
that transmit packets is within a factor of the maximum sum
of the queue lengths of the links in any valid schedule, then the
throughput region of the policy is within a factor of the max-
imum throughput region. Together, these results have enabled
the design of scheduling policies that obtain arbitrary tradeoffs
between throughput guarantees and computation times for each
schedule. Finally, note that the simple scheduling scheme we
proposed for trees does not approximate, even in expected
sense, the maximum weighted schedule within any factor in
any slot. The proof in this case relies on an appropriate choice
of a Lyapunov function that captures artifacts introduced by the
policy and the graph partitioning techniques.

II. RELATED LITERATURE

Tassiulas et al. characterized the maximum throughput re-
gion and provided a policy that attains this throughput region
in an arbitrary wireless network [28]. This policy schedules the
maximum weighted independent set of links in each slot, and
hence requires time for computing each schedule unless

. A minor modification of the proof shows that if the
schedule is computed as above once every slots and subse-
quently used for transmitting packets, then the throughput re-
gion does not change as long as is finite. Thus, by using

, the maximum throughput region can be obtained while
devoting fraction of total time in computing the sched-
ules. This infrequent schedule computation is however likely to
substantially increase packet delays and packet loss when nodes
have finite buffers. Schedules can be computed frequently if the
time for computing each schedule is reasonable. Thus, subse-
quent research attempted to maximize the throughput region
subject to constraints on the computation time of each schedule.

Tassiulas [27] provided randomized scheduling schemes
that attain the maximum achievable throughput region while
requiring time to compute each schedule for arbitrary
interference models. In each slot, this policy randomly selects
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an independent set of links, compares its weight with the
weight of the set of links scheduled in the previous slot and
schedules the set that has the larger weight. Modiano et al.
[5] have shown that gossip based algorithms can be used to
implement the above policy for arbitrary interference models
in networks where nodes do not have unique identities and
know only limited information about the global topology such
as path lengths, number of nodes in the network etc. Dimakis
et al. [4] have shown that a greedy maximal weight scheduling,
which requires time to compute each schedule, attains
the maximum throughput region in several different networks.
All the above policies are in the INFORMATION class.

Chaporkar et al. [2] proved that a simple greedy scheduling
scheme, maximal independent set selection, which can be com-
puted in time [10], attains guaranteed fraction
of the maximum throughput region for arbitrary interference
models. The guarantees depend on the interference model, e.g.,
1/2 for primary interference [3], [17], [29], 1/8 for geometric
graphs under secondary interference model [2], etc., and can
not be made arbitrarily close to 1 [2]. Sarkar et al. [23] proved
that for the primary interference model and tree graphs, a
queue length dependent maximal matching attains 2/3 of the
throughput region while using time for
computing each schedule. Lin et al. [16] proved that a random
access scheme, where links access the medium with a proba-
bility that depends on their and their interferers’ queue lengths,
attains 1/3 and the throughput region for arbitrary
networks under primary and secondary interference models,
respectively, while requiring time for computing each
schedule. All these policies are in the INFORMATION (1) class.

Our contribution is to introduce the class of INFORMATION

policies and prove that for appropriate choices of , policies
can be designed in the INFORMATION class so as to obtain
arbitrary tradeoffs between the best throughput guarantees and
the computation times obtained so far.

The design of our policies rely on the use of graph partitioning
techniques. Hunt et al. [9], Kuhn et al. [13], Nieberg et al. [20]
have devised graph partitioning techniques for approximating
maximum weighted independent sets in geometric graphs
within a factor of using policies in INFORMATION

class which have computation times of .
The computation time depends on as the policies consider
several different partitions of the graph, computes the max-
imum weighted independent set for each partition, and selects
the independent set that has the maximum weight among the
above. Thus selecting the links using these approximation
techniques require central control and time
for computing each schedule. The partitioning technique used
in [13] however requires time for computing a max-
imum size independent set which does not depend on , but
this technique approximates a maximum weighted independent
set arbitrarily closely only when the weights are all equal. Since
different links have different queue lengths in a network, this
partitioning technique does not provide throughput guarantees.
Brzezinski et al. [1] and Sharma et al. [24] have recently used
graph partitioning schemes for spectrum allocation and max-
imum weight independent set selection in wireless networks.

For geometric graphs, our framework yields a policy in the
INFORMATION class that computes each schedule
in time using a simpler partitioning technique, and
still attains desired approximation guarantees for the maximum
throughput region. Our design is based on the following re-
sult which may become useful for approximating maximum
weighted independent sets in an expected sense in several
different contexts, and therefore constitutes a contribution of
the paper in its own right. We show that for geometric graphs,
given any and any allocation of non-negative weights,
the expected weight of the maximum weighted independent
set in a randomly selected partition approximates the overall
maximum weighted independent set within a factor of
for appropriate random selection strategies, and the maximum
weighted independent set in any such partition can be com-
puted in time (Appendix B). Thus, if the goal is
to approximate the maximum weighted independent set in an
expected sense, which incidentally suffices for approximating
the maximum throughput region, the computation time need
not depend on given . For trees under the primary in-
terference model, we show that the schedules that approximate
the throughput regions arbitrarily closely need not approximate,
even in the expected sense, the maximum weighted schedule
within any guaranteed factor. Performance guarantees in this
case has been attained by combining similar simple partitioning
schemes with properties of trees and matchings.

Finally, recently, Jung and Shah [11], [12] obtained policies
that attain order optimal expected delays in a class of graphs that
includes geometric graphs with bounded node density. Using
results from [11], [12], we show that many of the policies we
proposed, attain the same result in a similar class of networks.

III. SYSTEM MODEL

We consider scheduling at the MAC layer in a wireless net-
work. We assume that time is slotted and the clocks on network
nodes are kept synchronized, possibly by a separate algorithm,
so that there is a common notion of time among the nodes. The
length of each time slot is the time required to send a packet.
The topology in a wireless network can be modeled as a graph

, where and respectively denote the sets of
nodes and links. Each node in the network has a unique ID which
allows a recipient node to know the sender of a received packet.
A link exists from a node to another node if and only if
both and can receive each others’ signals. We assume that
the graph modeling the network does not change with time. Let

. Each session represents a triplet where is
the identifier associated with the session and and are source
and destinations of the session, and . Note that mul-
tiple sessions may traverse a link. We consider a network with

sessions. Finally, we assume that the nodes have synchro-
nized pseudo-random number generators so that all nodes can
generate the same (random) number at a given time slot.

We now introduce terminologies that we use throughout the
paper. Some of these are well-known in graph theory; we men-
tion them for completeness. A node is a neighbor of a node ,
if there exists a link from to , i.e., . The degree of
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a node is the number of neighbors of . We denote the max-
imum degree of any node in as . Two links (sessions) are
adjacent to each other if they have common nodes. By defini-
tion, a link is adjacent to itself. A link interferes with link if

can not successfully transmit a packet when is transmitting.
A subset of links is said to be independent if no two links in the
subset interfere with each other. Let be the collection of inde-
pendent sets of links. The interference graph
of a network is an undirected graph in which the vertex set

corresponds to the set of links and there is an edge between
two vertices and if either interferes with or interferes
with . The distance between links and is the distance be-
tween the corresponding nodes in the interference graph of the
network, and a -hop neighborhood of a link is the set of links
whose distance from is at most .

We now describe the data packet1 arrival process. We assume
that at most packets arrive for any session in any slot.
Let be the number of packets that session generates in
slot . We assume that a packet arriving in a slot arrives at the end
of the slot, and may not be transmitted in the slot. The arrival
process is independent and identically distributed for
all .

A subset of sessions can transmit packets in a slot if no two
sessions traverse the same link and the links the sessions tra-
verse constitute an independent set , i.e., if . Every
packet has length 1 slot. Thus, if a session is scheduled in a slot,
it transmits a packet in the slot. A scheduling policy is an algo-
rithm that decides in each slot the subset of sessions that would
transmit packets in the slot.

Let be the number of packets that session transmits
in slot , and depends on
the scheduling policy. Let be the queue length before
the arrivals and the transmissions in slot . Then

.
Let be the delay, or the number of slots that elapsed

between the arrival and transmission of the th arriving packet
in the queue of session . Thus, the expected delay for session

is . The expected delays for the
sessions depend on the scheduling policy.

Definition 1: The network is said to be stable if there exists
a finite real number such that with probability ,

(1)

We consider a virtual-queue associated with link that
contains all packets waiting for transmission for all sessions that
traverse . Note that the virtual queue in a link may contain
packets of sessions traversing in both directions. Let and

respectively denote the number of arrivals and departures
in slot in virtual queue . Clearly, the arrival process
is independent and identically distributed for all and for all

where . Let .
The arrival rate of link is . The arrival rate
vector is an -dimensional vector whose components are

1Henceforth, unless otherwise stated, a packet will refer to a data packet.

the arrival rates. Also, , and
(1) holds if and only if is finite.

The throughput region of a scheduling policy is the set
of arrival rate vectors for which the network is stable under

. An arrival rate vector is said to be feasible if it is in the
throughput region of some scheduling policy. The maximum
throughput region is the set of feasible arrival rate vectors.
A scheduling policy is said to approximate the maximum
throughput region within a factor if for each arrival rate
vector , .

We assume that a link knows the instantaneous virtual queue
length of any other link only when communicates it to .
Also, depending on the scheduling policy, may or may not
be able to determine whether is scheduled in a slot if it only
knows the queue length of in the slot, and in the latter case
knows the scheduling decision for only when communicates
it to . A scheduling policy is said to be in INFORMATION( )
class if each link can decide2 whether to schedule itself once
it knows the queue lengths and the scheduling decisions of a
subset of the links in its -hop neighborhood; the subset depends
on ’s -hop neighborhood and the policy, and may be different
for queue lengths and scheduling decisions. Finally, each link
may know limited information about the entire topology; the
amount of this information will depend on the specific policy
and does not determine the INFORMATION class the policy is in.
For a few representative policies, we will specify the informa-
tion each link knows about the topology.

We now relate our assumptions to those in related papers.
The assumption that the graph does not change with time
has been motivated by the fact that queue-length evolution is
much faster than topological changes. This assumption is con-
sistent with several papers in this genre (e.g., [5], [16], [17],
[25], [27], [28]). Note that if the topology changes in the same
time scale as queue lengths, the throughput region must be de-
fined for the case where the graph itself is random and sam-
pled freshly in every slot; approximating the throughput region
of such graphs is an interesting topic for future research. The
assumption that each node has a unique identity may be too re-
strictive in some cases (such as sensor networks), but in net-
works where packets must be directed to specific destinations
(as in an ad hoc network), such unique identities are necessary.
The assumption that the time is slotted and the clocks on net-
work nodes are kept synchronized is justified when clock drifts
are negligible at the time scale of control packet transmission;
similar assumptions have been made in several papers in this
genre (e.g., [5], [16], [17], [25], [27], [28]). Clock synchroniza-
tion, however, is a challenging problem and an area of active
research; addressing the relevant issues is beyond the scope of
this paper. When the above assumptions hold, using one time
set up schemes or periodic set up schemes (in time scales of
topological changes), each node can obtain necessary informa-
tion about the topology, node identities, and can ensure that the
random number generators have the same seed. This justifies
the assumption that the pseudo-random number generators of all

2In an actual implementation, one of the end nodes of a link will determine
whether the link is scheduled, and for an INFORMATION(�) policy it can arrive
at this decision once it knows the queue lengths and the scheduling decisions of
a subset of the �-hop neighborhood of the link.
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nodes are synchronized. Also, in the time scale of queue length
evolutions, only the queue lengths and the scheduling decisions
need to be communicated among the links. This motivates our
notion of INFORMATION( ) policies3. Finally, interference rela-
tions between different links need not always be pairwise in
practice, e.g., transmission in a link may be successful only
when the signal to interference ratio exceeds a threshold, which
may for example allow pairs of neighboring links to transmit
simultaneously but not three neighboring links, etc. Neverthe-
less, pairwise interference relations capture several important
transmission scenarios, and the well-investigated protocol in-
terference model [7] is a special case of pairwise interference
relations.

IV. INFORMATION(1) POLICY FOR APPROXIMATING THE

MAXIMUM THROUGHPUT REGION ARBITRARILY

CLOSELY IN TREE TOPOLOGIES

We assume that is a tree and consider the primary interfer-
ence model. Tree based topologies have been proposed and in-
vestigated for several resource allocation problems in multihop
wireless networks, e.g., [1], [15], [22], [23]. Under the primary
interference model, two links interfere if and only if they have
a common node. A matching is a set of links such that no two
links in the set are adjacent to each other. Thus, a valid schedule
in a slot is a matching in the basic graph , and is the set of
all matchings in . This interference model is encountered in
networks where each node has a single transceiver and a unique
channel (frequency or code) in its neighborhood, e.g., Bluetooth
networks, cognitive radio networks, and has been considered in
several related papers [5], [16], [17], [25], [27].

We now describe the scheduling policy which we refer to as
TREE-PARTITION-MATCHING , and abbreviate as TPM .
Here, is a parameter which determines the throughput region
and the computation time of each schedule.

We first introduce the following notations. The level of a
node in a tree is its distance from the root of the tree.
A link is the parent (child) of a link
if (

). Links are siblings of each other
if . Also, different priorities are associ-
ated with different siblings such that between any two siblings
one is older and the other is younger. Let

. For , let
be the set of links such that levels of and are

and modulo (Fig. 1(a)).

3Note that distributed or local information based policies can be defined in
several ways. The strongest definition is that which characterizes a policy as
distributed only when the policy can be implemented without any entity having
any information about the global topology [5]. To the best of our knowledge,
no policy that attains guaranteed fractions of the throughput region fulfills this
condition. A somewhat weaker definition requires that the policy can be im-
plemented in networks where nodes do not have unique identities. The policies
proposed in [5], [16] are distributed under this notion. The weakest notion is
that which requires the nodes (or links) to base their decision on information
received from their neighbors. By using broadcasts, any policy can be made dis-
tributed under this notion, and designing such a policy is trivial. The notion of
INFORMATION(�) that we put forth is intermediate between the above extremes
and differs from all of the above notions in that it (a) distinguishes between the
attributes (e.g., queue lengths) that change fast and those (e.g., topology) that
change relatively slowly and (b) parameterizes the set of nodes a node can com-
municate with while determining the transmission decisions.

Fig. 1. The figures demonstrate the edge sets � �� under the primary
interference model for (a) a tree and (b) topology with limited cyclicity. In (a),
� � �. In (b), � � �� � � �, and the numbers identify the nodes, e.g., 1 is node
1. The spanning tree � we consider consists of links ��� ���� for � � �� 	 	 	 � 
,
and the level of node � in � is �.

Fig. 2. The figures illustrate the operation of TPM(6) in an example tree.
Fig. 2(a)shows the initial configuration in time slot �. The number on each
link denotes the number of packets waiting on that link, and between any
two sibling links, the one towards the left is the older sibling. Let the random
number ���� selected by the links be 3. The level of nodes 	� 
� �� � is
3. Thus, � consists of the links shown in dashed lines; these links do not
contend. Thus, no parent or older sibling of links ����, ����� and ���� �
contend. Thus, these links schedule themselves first. Thus, links ����,
����, ����, �����, ����� do not schedule themselves. Thus, ���	 �
and ����� schedule themselves. The links scheduled in � are shown in solid
lines in Fig. 2(b). Let no exogenous packet arrive in slot �. Fig. 2(c) shows the
new number of packets waiting on each link at the beginning of slot �� �. Let
the random number ��� � �� selected by the links in � � � be 2. � consists
of the links shown in dashed lines in Fig. 2(c); these links do not contend in
� � �. The links scheduled in � � � are shown in solid lines in Fig. 2(d). Note
that link ���� contends in this slot, but does not schedule itself since it does
not have a packet to transmit.

A formal description of TPM is shown in Fig. 4.
TPM ( ) belongs in the INFORMATION (1) class irrespective

of the value since each link needs to know the scheduling de-
cisions of only its parent and older siblings which are within its
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Fig. 3. The figures demonstrate two grids, grids �� �, and the edge set � for
a geometric graph under (a) Primary and (b) Secondary interference models.

Fig. 4. Illustrates TPM(6) using an example.

1-hop neighborhood; no link needs to know the queue lengths,
or any other function thereof, of any other link.

We now evaluate the time required for computing each
schedule for TPM( ). Note that in any slot the links that con-
tend constitute a forest such that those in a tree of the forest do
not interfere with those in a different tree of the forest. Thus,
the scheduling in different components can be determined in
parallel. The maximum length of a path in any tree in the forest
is . Each link that contends decides whether to schedule itself
immediately after it knows the decisions of its parents and older
siblings that contend. Thus, each link waits for the scheduling
decision of at most links. Thus, the overall computation
time for each schedule is .

Theorem 1: If , then .
The above theorem is somewhat counter-intuitive as TPM( )

does not use queue lengths of the links in the schedule com-
putation. Thus, clearly, TPM( ) does not necessarily schedule

a set of links whose sum of queue lengths is within any
constant factor of the maximum possible sum of queue lengths
of links in a matching. Thus, the proof cannot rely on the
well-known result that a policy that schedules a set of links
whose sum of queue lengths is within a factor of the max-
imum possible sum of queue lengths of links in a matching,
attains a throughput region which is within the factor of the
maximum throughput region [17]. We therefore first outline
the idea behind the proof.

Intuitively a scheduling policy that schedules a link if
and only if (a) it has a packet to transmit and (b) links in do
not schedule themselves, maximizes the throughput region in a
tree. This is because whenever a link has a packet to transmit,

schedules either or a link in ; the optimum policy also
schedules at most one link in in each slot. Clearly, the
computation time of each schedule for is where is
the depth of the tree, and is . Now, by preventing the
contention of a subset of links in each slot , TPM ( )
partitions the graph in a forest where the depth of each tree is
at most , and uses the above scheduling policy in each tree of
the forest. This reduces the schedule computation time of TPM
( ) to . The choice of , and different
selections of in each slot ensures that
a link contends with probability in each slot ; this in
turn ensures that the maximum throughput region reduces only
by a factor of .

Proof: The result clearly holds if Thus, we
assume that . The arrival rate vector is
where . Since and constitutes
of all matchings of the links, [8], [28].

Let .

Clearly, . For a link , denotes the sum of
and the number of older siblings

of . Note that if . This is because if
is either an older sibling of or the parent of . in the first case,
the end nodes of and have the same levels, and has fewer
older siblings as compared to . In the second case, the level of
the source (end) node of is 1 less than that of the source (end)
node of , and may have at most more older siblings
than .

Observe that the queue lengths of the virtual queues constitute
a Markov chain. We consider a Lyapunov function

Note that the use of in the Lyapunov function have been
motivated by the asymmetricity of ( is asymmetric in
the sense that if is in then is not in ). We prove that

for all

sufficiently large , where . Then, from
Foster’s theorem (Theorem 2.2.3 in [6]) the Markov chain rep-
resenting the queue length process is positive recurrent.
Also, for each under the steady
state distribution for the above Markov chain. Thus,
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. The result follows:

� ����� �� � � �����

� � �� ��� ���� ���� �� ��� �� �� ����
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The last inequality follows since if
. From (2), see
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� � � ��


The result follows.
Thus, TPM approximates the maximum throughput

region within a factor of and computes each schedule in
.

Finally, we describe one specific implementation for TPM( )
for any . Since is a tree, it has a root. For any node other
than the root, there exists only one node , denoted as the

parent of , such that (a) there is a link between and
and (b) the level of is less than that of . If there exists
a link between and and is not the parent of , then is
a child of . For each link, one end node is the parent of the
other—the parent node is referred to as the source node. Let the
set of links for which is the source node be and the set
of links for which is an end node be . Note that

, and the links in are siblings. For example,
in Fig. 2(a), , ,

.
We assume that each node knows its level, its parent and

children nodes in the tree and the ordering among the links in
. The source node of a link decides whether to schedule the

link. Consider a node in . In each slot, either , or
links in , or all links in contend; decides which is the
case as per the first step of TPM( ). (a) If links in do not con-
tend in , then takes no scheduling decision. (b) If
does not contend in , schedules the oldest sibling in that
has a packet to transmit, and decides that the rest of the links
in will not be scheduled in . (c) If all links in contend
in waits for to inform it about whether is
scheduled in the slot (note that decides whether to schedule

). If is scheduled in the slot, decides that
none of the links in will be scheduled in the slot; else,
schedules the siblings in as in the case that does
not contend in . In cases (b) and (c), informs each of its chil-
dren about the scheduling decision for the link between it and
the child node.

Clearly, TPM( ) is simple to implement. Also, during the
computation time of a schedule, each node performs no com-
putation, is involved in at most communications (a node
transmits 1 bit, or rather 1 packet of minimum possible size, to
each of its children, and receives at most 1 bit), and waits for the
rest of the time. Clearly, in any scheduling policy that avoids col-
lisions during packet transmissions, in the worst case each node
needs to communicate at least once with each of its neighbors.
Thus, among the policies that avoid collisions, TPM( ) mini-
mizes the communications and computations for each node.

V. INFORMATION POLICIES FOR APPROXIMATING THE

MAXIMUM THROUGHPUT REGION ARBITRARILY CLOSELY

We first provide a general framework for approximating
the maximum throughput region arbitrarily closely using
policies in INFORMATION class (Section V-A). Then we
use this framework to obtain arbitrary tradeoffs between
throughput approximations and schedule computation times in
several important classes of networks and interference models
(Sections V-B–V-D). Specifically, we prove that in a geometric
graph for both primary and secondary interference models the
maximum throughput region can be approximated within a
factor of using a policy in INFORMATION class
that computes each schedule in time (Section V-C).
These results can be extended to arbitrary graphs with lim-
ited cyclicity (Section V-B) and quasi-geometric graphs
(Section V-D). We upper bound the expected delays attained by
these policies and prove that the bounds are comparable to the
best known guarantees in these networks (Section V-E).
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A. General Framework

We describe a policy that approximates the maximum
throughput region arbitrarily closely for appropriate choices of
in arbitrary networks and interference models (the network and
interference models are as described in Section III). We consider

subsets of links such that the links in acompo-
nent of do not interfere with those in other
components of . In every slot , every link selects an integer
in the range ; each integer is selected with probability

and all links select the same integer. In any slot , the weight
of a link is the number of packets waiting for transmission in the
virtual queue associatedwith the link, and the links that constitute
a maximum weighted independent set in the interference graph
of any component of are scheduled. Without loss of gen-
erality, links with zero weight are not scheduled. When a link is
scheduled, the virtual queue associated with transmits a packet.

Note that is completely specified once
are specified. We show that for appropriate choices of

, approximates the maximum throughput
region within an approximation factor that depends only on .
We first introduce the following:

��� ������ � ��� � �� �
� �	���
���� ��� � �� � �	���
���� ��� �

���

Definition 2: A collection of subsets of is said
to be c-approximate if for (a) any given -dimensional vector
of non-negative real numbers and (b)
any collection of subsets of , such that
and

We now present the key technical lemma that allows us to
obtain desired throughput guarantees.

Lemma 1: Let be -approximate. Then,

The intuition behind the result is as follows. The weight of
the links scheduled by differs from the maximum weight
of any schedule in the slot by at most the weight of the maximum
weight independent set among links that do not contend in the
slot. If are approximate, then the expected
weight of the maximum weight independent set in turns
out to be at most times that of the weight of the maximum
weight independent set in the slot. Thus, the expected weight
of the scheduled links is at least times that of the
weight of the maximum weight of any schedule in the slot. The
arguments in this proof can be generalized to obtain an expected
sense approximation for maximum weighted independent sets
in geometric graphs using a computation time that depends only
on the approximation factor and the degree of the graph (Lemma
10); we state and prove this general result in Appendix B.

Proof: Let be the integer selected by links in
slot , and . Now,

.
Now, see

������

������ ������ ��
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Thus,

.
Lemma 2: Let be -approximate. Then, if

and .
We provide the intuition behind the above result. When

are -approximate, from lemma 1 it follows
that schedules links such that the expected weight of the
scheduled links in any slot is at least times the weight
of the maximum weight independent set of links in the slot. The
throughput guarantee now follows using Lyapunov arguments
similar to those in [17], [28]. We prove this lemma towards the
end of this subsection.

Once we prove that the collection is -ap-
proximate for some , irrespective of the value of , Lemma 2 al-
lows us to approximate the maximum throughput region within
a factor of for any using for . Then
the network designer simply chooses an appropriate based on
the desired trade-off between performance and computational
burden (the smaller the , the better the approximation of the op-
timal capacity region, but the higher the computational burden)
and the corresponding guarantees the desired throughput. In
the next subsections we will prove that in large classes of net-
works the collection can be selected so as to
render it -approximate for different constant factors (lemmas
4, 6, 7). The value of may however be different for different
interference models and network topologies, and the constants
in the expressions for the schedule computation times will typ-
ically increase with increase in .

Note that different components in each can schedule
the links in parallel as the links in different components do
not interfere. Thus, can be implemented provided in each
slot and in each component either one, or all links, know the
weights of all links in the component. In either case, is in
INFORMATION class where is the maximum diameter of
any component of for any 4 which is
upper bounded by the number of nodes in any component of

for any . The computation time for each

4The tacit assumption we make here is that two adjacent links always interfere
with each other which usually holds in all wireless networks. Note that we allow
links to interfere even if they are not adjacent.
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schedule will again be determined by the maximum size
(number of links or number of nodes or both) of a component
in for . We will show that for a large
class of networks, the size of each component and therefore the
overall computation time for each schedule depends only on
and .

We now prove lemma 2.
Proof: The result clearly holds when . We now as-

sume that . Let the arrival rate vector be
where . Clearly, under , constitute an
aperiodic irreducible Markov chain. We will consider the Lya-
punov function , and prove that under ,

for all suf-

ficiently large , where . Then, from Foster’s
theorem (Theorem 2.2.3 in [6]) the Markov chain representing
the queue length process is positive recurrent. Also,

for each under the steady state distribution for the above
Markov chain. Thus, . The
result follows.

Let denote the indicator vector for set . Note that
. Then, can be characterized as follows [28]:

(3)

(4)

The inequality follows by using ,
and .

Since

,

and

, we
obtain

Finally, we present a lemma that we will use in analyzing the
expected delay of the policies we develop in this section. Recall
that is the arrival rate for session .

Lemma 3: Let the arrival rate vector be
where and

. Let be -approximate.

Then under

.
The proof uses techniques for bounding first moments devel-

oped in [14], which have subsequently been extensively used in
different contexts, e.g., [11], [19].

Proof: Let the arrival rate vector be
where and be used. Since ,

. Thus, since is
-approximate, the Proof of Lemma 2 shows that the Markov

chain representing the queue length process is positive
recurrent. Thus, ,

and
exist.

Also, using little’s law, and the strong law of large numbers
for i.i.d. arrivals,

. We now
show that
at each . Then, the lemma follows if we can show
that

.
Consider an which is obtained as follows. Ini-

tially, . Now, let link have the maximum queue
length at among the links in . Then all links in are
removed from . The process is repeated until .
Note that .
Now, since ,

.
We now show that

. Similar to the deduction of (4), we

can show that

. Let .
Thus, from lemma 1 and as in the proof of lemma 2,
we can show that

The last inequality follows using a telescopic sum.
The result follows since for all and

if the initial queue lengths
are bounded.
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B. Graphs With Limited Cyclicity

Using the above general framework, we generalize the
tradeoff between throughput and the time required to compute
each schedule to networks with limited cyclicity. Specifically,
we assume that there exists a constant such that the max-
imum length of a cycle in is upper bounded by . We still
consider the primary interference model.

The sets for the scheduling policy, re-
ferred to as -LIMITED-CYCLICITY-PARTITION-MATCHING

and abbreviated as -LCPM , are as follows. Con-
sider a spanning tree of . For -LCPM , is
the set of links such that the levels of and in
are (a) less than or equal to modulo and (b) greater
than modulo respectively (Fig. 1(b)). Intuitively,
for -LIMITED-CYCLICITY-PARTITION-MATCHING , when

, levels , partition the
graph, and consists of the links that cross these levels.
Clearly, the components of are such that the links in a
component do not interfere with those in other components.

We now evaluate the time -LCPM( ) needs to compute
each schedule. Let the set of edges in be . Note that the
maximum length of a path in is . Thus
each component in has nodes. Each component of

consists of several components of . Consider all nodes
that are in a given component of , but are in different com-
ponents of . These nodes have a common ancestor, say ,
in . The subtree of with as the root and the above nodes as
leaves has diameter at most . Thus, the number of leaves of
this tree is at most . Hence, at most components of
can constitute the same component in . Thus, each compo-
nent in has nodes. Now, each independent set

of links in each component of is a matching in the cor-
responding component of . The time needed to compute a
maximum weighted matching in each such component is there-
fore . Thus, the overall computation time of each
schedule is . If is a bipartite graph, the overall
computation time of each schedule is .

The diameter of any component of is . Since a
component of consists of at most components of ,
the diameter of any component of is . Thus,

-LCPM( ) is in INFORMATION class.
We now prove the following key result which will be used in

obtaining throughput guarantees for -LCPM( ).
Lemma 4: is 6- approximate.

Proof: Let be an arbitrary -dimensional vector of
non-negative real numbers, , and

be arbitrary subsets of links such that
(i.e., is a matching) and , .
We need to prove that . For

any link , . Let . Thus,

.

(5)

Hence, we need to show that for each
.

Consider , and let be the parent of in .
There exists a unique such that level of in is in

. Note that is not adjacent to any link in
where or , i.e.,

for the above . Since s are matchings, at most 2
links in is adjacent to for any , i.e., for any .

Thus, for each .

Theorem 2: If and , then
.

Using , , Theorem 2 follows from
Lemmas 4 and 2. Now, -LCPM is in INFORMATION

class and requires time to compute
each schedule. Thus, -LCPM will be useful for small values
of .

Finally, note that under the primary interference model,
. Now, consider any , ,

. Using , , it follows from lemmas
3 and 4 that when the arrival rate vector is
and -LCPM is used, the sum of the expected delays

of the sessions is at most
. In other words, for

an arrival rate vector in the throughput region of -LCPM
, , the above sum is upper bounded by

a quantity that depends on the arrival process (through ,
, and the parameter that determines the distance of

the rate vector from the boundary of the throughput region of
-LCPM ), network (through ) and the policy

parameter (through ).

C. Geometric Graphs

A graph is said to be geometric if nodes are embedded in the
first quadrant of the 2-dimensional plane, and a link exists be-
tween nodes and if and only if the distance between them
is less than a certain value say . The distance is referred
to as the transmission range. Geometric graphs have been ex-
tensively investigated in several different contexts in wireless
networks (e.g., [2], [24]). We consider both the primary inter-
ference model (Section V-C-I) and the secondary interference
model (Section V-C-II).

1) Geometric Graphs With Primary Interference Model: We
consider a geometric graph with primary interference model.
The sets for the policy GEOMETRIC-GRAPH-
PARTITION-MATCHING , which we abbreviate as GGPM ,
are as follows. Consider different grids each of which consists
of a series of horizontal and vertical lines parallel to the and

axes respectively and the distance between any two closest
horizontal (vertical) lines is . Each grid is specified by its first
horizontal and vertical lines. The first horizontal and vertical
lines of grid are given by and respectively
for . Now, is the set of links which either
cross, or have at least one end node on, a vertical or a horizontal
line of grid (Fig. 3(a)). Note that the links in a component of

do not interfere with those in other components.
We first evaluate the time for computing each schedule for

GGPM . The overall computation time for each schedule
is the worst case computation time in a component. Let be
the maximum number of nodes in any component of

for any . We show that is . Thus,
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the time for computing each schedule is the time for computing
a maximum weighted matching in a component with
nodes, which is . Also, GGPM is in INFORMATION

class.
Lemma 5: For any , a component in

has nodes and links.
Proof: Consider some a component in
consists of nodes in a square enclosed by the closest

horizontal and vertical lines of the th grid. The side of such
a square is at most units. Such a square can be filled with

small squares with sides slightly less than . Let
be a maximal independent set of nodes in the component,

i.e., there does not exist an edge between any two nodes in
and every node in the component is either in or has

an edge to some node in . Since the distance between any
two points in any small square is less than , at most one
node in is present in any small square. Therefore, is

. Clearly, . Thus, is . Also, the
maximum number of links in any component of is at
most which is .

We now prove the following key result which will be used in
obtaining throughput guarantees for GGPM .

Lemma 6: is 12-approximate.
Proof: The proof is similar to that for Lemma 4. We point

out the differences. We need to prove that
. Relation (5) holds in this case as well. Hence,

we need to show that for each .
The grids do not share any common line. Let SUPERGRID

consist of all lines of all grids. Then SUPERGRID} is a grid
where the distance between any two closest horizontal (vertical)
lines is .

Clearly, for any . If , is
the number of links in that interferes with . Since these links
are in , they do not interfere with each other. Thus,
since at most 2 links can be adjacent to but are not adjacent to
each other. Thus, for any .

Next, for each we upper-bound the number of
in such that . Now, if either

or but interferes with a link in . Note that
for any , for at most 2 in . This holds
because a link can either cross or have an end node on at most
1 horizontal and vertical line of SUPERGRID. Next, for any ,

but interferes with (i.e., is adjacent to) a link in
for at most 4 in . This holds because if
both end nodes of are inside one square of the SUPERGRID,
say square . But, then can be adjacent to links in if a side
of square is aligned with at least one horizontal or vertical
line of grid , which can happen for at most 4 values of . Thus,
for each , for 6 in . Hence,

for each .

Theorem 3: If and , then
.

Using , , Theorem 3 follows from lemmas
2 and 6. GGPM is in INFORMATION class
and computes each schedule in time. In the next sub-
section, we propose a technique that computes each schedule in

time while approximating the maximum throughput
region within a factor of .

Finally, we upper bound the expected delays of the sessions.
Now, consider any , , . Using

, , and since under the primary interference
model, , it follows from lemmas 3
and 6 that when the arrival rate vector is
and GGPM is used, the sum of the expected delays

of the sessions is at most
.

2) Geometric Graphs With Secondary Interference Model:
We consider a geometric graph and the secondary interfer-
ence model. In this interference model, a link interferes with
link if one end point of is within distance from an end point
of . Note that if two links interfere under the primary interfer-
ence model they also interfere under the secondary interference
model but the converse is not true. This model is an abstrac-
tion of bidirectional wireless links where all transmissions use
a single channel and equal power. Note that an independent set
of links is no longer a matching in .

We now describe for the policy GEOMETRIC-
GRAPH-PARTITION-INDEPENDENT-SET which we abbreviate
as GGPIS . Just as in Section V-C-I, we consider different
grids. Now, is the set of links for which at least one end point
is within a distance of a vertical or horizontal line of grid
(Fig. 3(b)). Note that the links in a component of do not
interfere with those in other components.

We now evaluate the computation time for each schedule
for GGPIS . From lemma 5, each component of has

links. Consider two links that
do not interfere. Then no small square in the proof of lemma
5 can contain both , or both or both or both

. Thus, the maximum size of any independent set of links in
a component of is upper-bounded by the number of such
small squares which again is . Thus, in any component
of , the maximum weighted interference set can be com-
puted in . Thus, each schedule can be computed
is time. Again, like GGPM , GGPIS is in
INFORMATION class.

We make the following observations about :
• (Observation 1) Let . Then,

for any . This holds because the end nodes of a link
can be at a distance of from at most 3 vertical and 3
horizontal lines of SUPERGRID.

• (Observation 2) For any , but interferes with a
link in for at most 8 in . This happens
only if one of the end nodes of is within units of a
horizontal or vertical line of grid . This can happen at most
4 times for vertical lines and 4 more times for horizontal
lines of SUPERGRID.

We now prove the following key result which will be used in
obtaining throughput guarantees for GGPIS .

Lemma 7: is 119-approximate.
Proof: The proof is similar to that for Lemma 6. Like in

Lemma 6, we need to prove that for each

. Now, for any as the number of links
that interfere with but do not interfere with each other is at
most 8 [2]. Next, from observations 1 and 2, for each ,

for 14 in . Hence,
for each .
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Theorem 4: If and , then
.

Using , , Theorem 4 fol-
lows from Lemmas 2 and 7. GGPIS is in
INFORMATION class and computes each schedule
in time. Now, consider any ,

, . Note that under the sec-
ondary interference model, . Using

, , it follows from lemmas 3 and 7
that when the arrival rate vector is and
GGPIS is used, the sum of the expected delays

of the sessions is at most
.

We now present a policy, which we denote as GEOMETRIC-
GRAPH-PARTITION-GRADUAL-IMPROVEMENT and abbre-
viate as GGPGI , that for appropriate choice of at-
tains the same throughput guarantee as GGPIS but
computes each schedule in only time. Note that
GGPGI does not belong in the general class of policies

described in Section V-A. The main difference between
GGPGI and (and hence GGPIS ) is that the
former does not compute the maximum weight independent
set of links in any component but in each component selects
an independent set of links which has a higher weight than
that selected in a previous epoch. Note that Tassiulas [27]
proved that the stability region can be maximized by using a
similar selection strategy in the entire graph. We prove that,
by appropriately partitioning the graph, the stability region
can be approximated arbitrary closely if the above selection
policy is used in each component. This combination of graph
partitioning and improvement based selection schemes reduces
the time required to compute each schedule from at-
tained using only the improvement based selection schemes
in [27] to .

In GGPGI each link is associated with secondary
virtual queues: , where is
the union of and arbitrary elements of

. Whenever a packet arrives in the virtual
queue it is routed to one of the secondary virtual queues with
equal probability. The policy divides the time axis in frames of

slots. In the th slot of each frame, for different links ,
the secondary virtual queues contend. Only the secondary
virtual queues that contend can be scheduled for transmission
and those that are scheduled for transmission transmit their
head of line packets if they are non-empty.

We now describe which contending secondary virtual queues
are scheduled for transmission in the th slot of each frame.
Note that does not exist if as then .
Thus, in the th slot of each frame, no secondary virtual queue
associated with any link contends and at most one
secondary virtual queue associated with each link
contends. A link is said to contend if one secondary virtual
queue associated with it contends. Thus, for each the links that
contend in the th slot of each frame constitute components such
that links in different components do not interfere. Independent
sets can be determined in each component in
time using existing randomized algorithms [18], [21]; such
algorithms select the maximum weighted independent set in

each component with a positive probability. The weight of each
contending link is the number of packets waiting for transmission
in the contending secondary virtual queue associated with it.
The selected links are scheduled in each component if their
total weight exceeds the total weight of the links scheduled
in the same component in the th slot of the previous frame;
otherwise the links scheduled in the same component in the th
slot of the previous frame are scheduled again. The contending
secondary virtual queues associated with the scheduled links
are scheduled.

The time required by GGPGI to compute each schedule
is clearly where is the maximum number of links in any
component of ; hence this computation time is .
Also, GGPGI is in INFORMATION class.

Theorem 5: If and , then
.

Proof: The result clearly holds for . We therefore
assume that .

Consider a fictitious system that consists of only the sec-
ondary virtual queues for all . Let be the maximum
throughput region of this fictitious system. Then [28]

Consider a policy that schedules secondary virtual queues
that satisfy the following properties.

1) constitutes an irreducible aperiodic markov chain.
2) In each slot there is a positive probability associated with

scheduling the secondary virtual queues associated with
links in where

3) If and are the sets of links associated with the sec-
ondary virtual queues scheduled in slots and then

.
Then stabilizes the fictitious system for any arrival rate vector

[5], [27].
Let be the arrival rate vector in the system and

let . Let consist of those components of for
which . From (3), .

We now sample the secondary virtual queues for all at
slots in the actual system. Note that in
the actual system these secondary virtual queues are scheduled
only in these slots. We assume that the number of arrivals in slot

in the secondary virtual queue in the sampled system
is the number of arrivals in in the actual system between
slots ( ) for a positive integer
( ). Note that the expected number of arrivals in secondary
virtual queue in the sampled system in slot is now
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. Thus, the arrival rate vector
for these secondary virtual queues is . Now,
observe that GGPGI satisfies properties (1) to (3) for these
secondary virtual queues in the sampled system, since links that
contend in different components of do not interfere. Thus,
the sampled system is stable for each . The result follows.

Thus, for , a policy GGPGI in INFORMATION

class, approximates the maximum throughput re-
gion within a factor of and computes each schedule in

time. Note that GGPM can be similarly modi-
fied to attain the same throughput guarantee using
and computing each schedule in time. More gener-
ally, for -ary interference models, i.e., when two links interfere
provided an end node of one is within a distance of
of an end node of the other, similar techniques can be used to
approximate the maximum throughput region within a factor of

while computing each schedule in where
increases with increase in .

We now sketch one possible implementation of GGPGI ,
with the goal of elucidating the information each node maintains
about the topology and analyzing the control message exchange
complexity in the time scale of packet transmission. Owing to
space limitations, we omit several details. We assume that each
node knows the grids for which it is within distance of a ver-
tical or horizontal line. Note that a node can determine this if it
knows its location, or it can be informed of this when the net-
work is initialized. Any end node of a link can now determine
the set of virtual queues associated with the link, and the slots
in which each such virtual queue contends, which in turn deter-
mines which slots of the frame the link contends. Note that a link
always contends in the same slots of every frame as this does
not depend on its queue length. During network initialization, a
forest spanning the links that contend in the th slot of each
frame is established for each (depth first search or breadth first
search or their variants can be used to determine such forests).
Again tree traversal policies can be used to inform each node of
its parent and children in each such forest. The resulting control
message exchange occurs in the time scale of topology evolu-
tion, and not in the time scale of packet transmission.

Now, consider the decisions and the control message ex-
changes in the time scale of packet transmission (i.e., the
control messages that are exchanged for determining each
schedule). For each , each node stores the total weight of
the links scheduled in its component in the th slot of the
previous frame, and which, if any, of its incident links were
scheduled in the th slot of the previous frame (we explain
how a node determines these quantities). Consider the th slot
of each frame. An existing randomized policy can be used for
determining an independent set among the links that contend
in time [18], [21]; each node exchanges

messages during this procedure. Such ran-
domized policies requires each node to only know which of
its incident links are contending in a slot, and at the end of the
procedure each node knows which, if any, of its incident links
are selected in the independent set. Each node computes the
sum of the weights of its incident links that have been selected
in the independent set. The root of each tree in the forest
initiates a message where it inserts the number it computed, and
as the message propagates through the tree, each node adds the

sum it computed with the number in the message. The message
is returned to the root after it finishes traversing the entire tree.
When the message returns to the root, it contains twice the total
weight of the newly selected independent set in the component
spanned by the tree. The root broadcasts the message again in
the tree, which informs each node of the weight of the links in
the newly selected independent set in the component. Using
this weight, each node can now determine whether the newly
selected independent set should be scheduled, or the schedule
used in the th slot of the previous frame should be used, and
accordingly updates the weight it stores and the identities of
the incident links scheduled. Each node thereby knows whether
any of its incident links belong to the scheduled independent
set, and participates in the transmission accordingly.

Clearly, each node exchanges control
messages for computing each schedule. The computation
time and the information class of this implementation are as
discussed for the policy. The above implementation is clearly a
naive one, and can be optimized in several different ways, e.g.,
using gossip algorithms as in [5], which constitutes interesting
directions for future research. The policies proposed in the
previous subsections can be implemented similarly.

D. Quasi-Geometric Graphs

A graph is said to be quasi-geometric if nodes are embedded
in the first quadrant of the 2-dimensional plane, and a link (a)
exists between nodes and if the distance between them is
less than where (b) may exist between nodes and

, depending on propagation conditions, receiver sensitivity, an-
tenna orientations, etc., if the distance between them is between

and and (c) does not exist between nodes and if the
distance between them is greater than or equal to . Quasi-geo-
metric graphs generalize the notion of geometric graphs, and
become geometric when and can approximate arbitrary
graphs, as long as the nodes are embedded in a plane, for small

and large (as in this case, (b) applies for most edges and
thus the existence of the edges do not depend on the distance
between the nodes). But, as we discuss next, the schedule com-
putation times for the proposed policies becomes large as be-
comes small.

Under primary interference model, as before, two links
interfere if and only if they are adjacent. Under secondary inter-
ference model, two links interfere if and only if (a) they are
adjacent and (b) there is an edge between at least one end node
of and another end node of . We first consider the secondary
interference model. Now, links are selected as
in the previous subsection, and GGPGI attains a throughput
region which is of the maximum throughput region
as before. However, each component of has
nodes, and links. Thus, GGPGI computes
each schedule in time. Also, GGPGI is in
INFORMATION class. Thus, GGPGI
approximates the maximum throughput region within a factor
of while computing each schedule in time
and is in INFORMATION class. Similarly,
under the primary interference model, a throughput region
of of the maximum throughput region can be attained
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using a policy in INFORMATION class which
computes each schedule in time.

E. Delay Guarantees

Characterizing the tradeoffs between schedule computation
time and other performance attributes such as packet loss in
networks where nodes have finite buffers, and delay constitute
interesting directions for future research. In fact, characteriza-
tion of policies that minimize the expected packet loss in net-
works where nodes have finite buffers, and delay remain open
as well. Recently, Jung and Shah [11], [12] obtained policies
that attain order optimal expected delays in a class of graphs
that includes geometric graphs with bounded node density5. We
now show that the policies we propose attain the same result as
well. The delay guarantees provided after Theorems 2,3,3 show
that for constant , the sum of the ex-
pected delays of the sessions
for H-LCPM, GGPM and GGPIS is . Thus, since ,
the expected delay per session is for these policies. Jung
and Shah [11], [12] provided an example which showed that
if the network satisfies certain characteristics there exists ar-
rival rate vectors such that the sum of the expected delays of
the sessions is (Theorem 5 [12]). Networks with primary
and secondary interference and bounded degree satisfy the
properties needed to construct the above example. Thus, the
sum of the expected delays in networks that satisfy the above
characteristic is . Thus, H-LCPM, GGPM and GGPIS at-
tain order optimal expected delays in their respective topolo-
gies provided the network degrees are bounded. The degrees
are for example bounded in geometric graphs under primary
and secondary interference constraints when the node density
is bounded.

VI. MULTI-HOP SESSIONS

We now allow sessions to traverse multiple hops. We first de-
scribe the modifications required in the system model and per-
formance goals for accommodating this generalization. We sub-
sequently generalize the framework presented in Section V for
attaining arbitrary tradeoffs between throughput guarantees and
schedule computation times.

A. Generalized System Model

We now assume that the network consists of end-to-end
sessions, indexed as . Each end-to-end session can be
viewed as a collection of several hop-by-hop connections, one
for each link it traverses; each of these hop-by-hop connections
is called a session-link of the session considered. Each session-
link is of the form , where and represent the transmitter
and the receiver, respectively, of the session-link. We assume
that there are session-links in the network (over all sessions),
and these are indexed by . The interference relations
are as in Section III.

Each session-link corresponds to a separate virtual queue and
the number of virtual queues associated with each link equals
the number of session-links traversing it; we assume that this

5Node density is the number of nodes per unit area. If the number of nodes in
any circle of a given radius is bounded, node density is bounded.

number is at most . The packet arrival process is the same as
before, and only the first session-link of each session receives
the exogenous arrivals. Thus, the queue-length and departure
vectors, , are -dimensional vectors representing
the queue lengths of the session-links and which session-links
are served in slot .

Let be a dimensional matrix such that (a)
if (b) if and are session-links of the

same session and constitutes the hop after and (c)
otherwise.

The definition for stability is the same except that session-
links are considered instead of sessions. The definitions for the
throughput regions are the same as before.

B. Scheduling Policies for Approximating the Maximum
Throughput Region Arbitrary Closely

We now generalize the policy presented in Section V.
The modified policy, denoted as , differs from , in
only the assignment of link weights. For in any slot ,
the weight of a session-link (or a virtual-queue) of
session , , is (a) the difference between the queue lengths
of session-links and where is the session-link of orig-
inating from , if is not the destination for and (b)
otherwise. The weight of a link is the maximum weight of a
session-link traversing the link. Note that in the special case that
each session traverses one link, for any virtual-queue ,

is the destination of the session and hence its weight
equals as in Section V. Whenever a link is scheduled, the
session-link that has the maximum weight among those that tra-
verse the link is served. The policies and are oth-
erwise the same.

Lemma 8: Let be -approximate. Then, if
and , then .

We prove lemma 8 in appendix.
We now consider the throughput guarantees of for dif-

ferent classes of networks considered in Sections V-B to V-D.
The choice of for different classes of networks
remain the same as in Sections V-B to V-D. Using ,

, Theorem V-B follows from lemmas 2 and 4 for -LCPM
. Using , , Theorem 2 follows from

lemmas 2 and 6 for GGPM . Using , ,
Theorem 3 follows from lemmas 2 and 7 for GGPIS .

Clearly, the schedule computation times in each case increase
only by an additive term of ; this increase is necessary to com-
pute the weight of each link as the maximum of weights of
virtual queues associated with it.

VII. CONCLUSION

The throughput guarantees have been proved under the
assumption that the arrival process for each session is in-
dependent and identically distributed across different slots.
Using a combination of graph-partitioning and the Lyapunov
techniques proposed in [26], the proofs can be generalized
to accommodate Markov modulated arrival processes. Also,
under the weaker notion of rate stability which only ensures
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that input rates equal the output rates, the graph partitioning
techniques may be combined with fluid-limit arguments so as
to obtain similar tradeoffs between throughput and schedule
computation times for all stationary ergodic arrival processes
that satisfy the strong law of large numbers. Rate stability
however does not ensure that the expected queue lengths are
finite which is required in many applications and which is the
notion of stability we consider in this paper. Obtaining provable
throughput guarantees for non-Markovian arrival processes
under the notion of stability that requires that expected queue
lengths be finite remains largely open. In a companion paper,
we obtain a policy in INFORMATION (1) class, that approximates
the maximum throughput region for non-Markovian arrival
processes under the above notion of stability within a factor of
2/3 in tree topologies under primary interference model and
computes each schedule in time. The
results in these papers compliment each other.

APPENDIX

Proof for Lemma 8: We first state and prove lemma 9 for
which will be useful in proving lemma 8.

Lemma 9: Let be -approximate. Then,

Proof: Let . Again,

The result follows.
We now prove lemma 8. This proof follows from lemma 9

using techniques similar to those used by Tassiulas et al. in [28].
Proof: The result clearly holds if . We therefore

assume that . Let the arrival rate vector be
where . Clearly, under , constitutes
an aperiodic irreducible Markov chain. We will consider
the Lyapunov function , and prove that

under ,

for all sufficiently large , where .
Then, from Foster’s theorem (Theorem 2.2.3 in [6]) the
Markov chain representing the queue length process is pos-
itive recurrent. Also, for each under the

steady state distribution for the above Markov chain. Thus,
. The result follows.

Let denote the session of session-link . Let be an
-dimensional vector such that . Then, can

be characterized as follows [28]:

(6)

(7)

Arbitrary Tradeoffs Between Computation Times and Ex-
pected Sense Approximation for Maximum Weighted Indepen-
dent Sets in Geometric Graphs: We now show that the approx-
imation techniques we use can also be used for approximating
maximum weighted independent sets in an expected sense ar-
bitrarily closely in geometric graphs using a computation time
which depends only on the degree of the graph and the desired
approximation factor.

Consider a graph . Let a set of nodes be inde-
pendent if there does not exist links between any two nodes in
the set. Note that this is the usual notion of independence used
in graphs, and is similar to the notion of independence we used
for links. Let be subsets of , and
be the graph obtained by removing from and the links
incident to nodes in from .

Definition 3: Let be the collection of independent sets
of . A collection of subsets of is said to be
-vertex-approximate if for (a) any given -dimensional vector
of non-negative real numbers and (b) any
collection of subsets of , such that and
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In the proof of lemma 1, we have not used any specific prop-
erties of queue lengths and departure vectors, except that (a)
independent sets refer to sets of links rather than vertices (b)
the queue lengths are non-negative, and (c) the departure vector

is such that it constitutes a maximum weighted indepen-
dent set in where is selected uniformly among

and the weight of a link is its queue length. Thus, we have
actually proved a more general result which states that the ex-
pected weight of the maximum weight independent set in
is greater than or equal to times the weight of the max-
imum weight independent set in , if is selected uniformly in

. We state this result next. Note that in this sen-
tence, and henceforth, the term independent set will refer to the
definition introduced in this subsection.

Lemma 10: Let be -vertex-approx-
imate, and be the weight of vertex such that

. Let be selected uniformly among ,
and be a maximum weight independent set in . Then,

.
Consider a geometric graph as defined in the first paragraph

of Section V-C. Consider the grids as described in the first para-
graph of Section V-C-I. Let consist of all nodes that are
within distance of a vertical or a horizontal line of the th
grid. We next state and prove the following lemma.

Lemma 11: are 48-vertex-approximate.
Proof: We use the notation of Lemma 4 mutatis mutandis.

The result follows if we show that for each
. This holds since there can at most be 6 independent

nodes in a given node’s neighborhood, and A Node’s Neigh-
borhood May Contain A Node in for at most 8 different
grids (for 4 vertical and 4 horizontal grid lines).

Now consider the following independent set selection policy.
Select an integer uniformly in the range . If is the
selected integer, then determine the maximum weighted inde-
pendent set in . By lemmas 10 and 11, the expected weight
of this set is at least times that of the maximum
weight of an independent set in provided each vertex has
a non-negative weight. Note that a maximum weight indepen-
dent set in is the union of the maximum weight indepen-
dent sets among the nodes in each square of the th grid, and
the maximum weight independent set among the nodes in the
squares of any grid can be computed in parallel. Each square
of the th grid has nodes for each . Thus, the time
required to compute each of the above maximum independent
sets is , and since these sets can be computed in par-
allel, the overall computation time is as well. Thus,
by selecting , the maximum weighted independent
set can be approximated within a factor of in an expected
sense using computation time.
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