Arbitrating Instructions in an ppu-coded CCM

Georgi Kuzmanov and Stamatis Vassiliadis

Computer Engineering Lab,
Electrical Engineering Dept., EEMCS, TU Delft, The Netherlands
{G.Kuzmanov, S.Vassiliadis}@ET.TUDelft.NL
http://ce.et.tudelft.nl/

Abstract. In this paper, the design aspects of instruction arbitration in
an pu-coded CCM are discussed. Software considerations, architectural
solutions, implementation issues and functional testing of an pu-code ar-
biter are presented. A complete design of such an arbiter is proposed
and its VHDL code is synthesized for the VirtexII Pro platform FPGA
of Xilinx. The functionality of the unit is verified by simulations. A very
low utilization of available reconfigurable resources is achieved after the
design is synthesized. Simulations of an MPEG-4 case study suggest con-
siderable performance speed-up in the range of 2,4-8,8 versus a pure
software PowerPC implementation.

1 Introduction

Numerous design concepts and organizations have been proposed to support the
Custom Computing Machine (CCM) paradigm from different prospectives [6, 7].
An example of a detailed classification of CCMs can be found in [8]. In this paper
we propose a design of a potentially performance limiting unit of the MOLEN
pu-coded CCM: the arbiter [11]. We discuss all design aspects of the arbiter,
including software considerations, architectural solutions, implementation issues
and functional testing. A synthesizable VHDL code of the arbiter has been de-
veloped and simulated. Performance has been evaluated theoretically and by
experimentation using Virtex II Pro technology of Xilinx. Synthesis results and
performance evaluation for an MPEG-4 case study suggest:

— Less than 1% of the reconfigurable hardware resources available on the se-
lected FPGA (xc2vp20) chip are spent for the implementation of the arbiter.
— Considerable speed-ups in the range of 2,4-8,8 of the MPEG-4 encoder are
feasible when the SAD function is implemented in the proposed framework.

The remainder of this paper is organized as follows. The section to follow
contains brief background on the MOLEN ppu-coded processor and describes the
requirements to the design of a general arbiter. In Section 3, software-hardware
considerations for a particular arbiter design for PowerPC and Virtex II Pro
FPGA are presented. Section 4 discusses functional testing, performance analysis
and an MPEG-4 case study with experimental results obtained from a real chip
implementation of the arbiter. Finally, we conclude the paper with Section 5.

2 Background

This section presents the MOLEN pu-coded Custom Computing Machine orga-
nization, introduced in [11] and described in Fig. 1. The ARBITER performs
a partial decoding on the instructions in order to determine where they should
be issued. Instructions implemented in fixed hardware are issued to the core
processor. Instructions for custom execution are redirected to the reconfigurable
unit. The reconfigurable unit consists of a custom computing unit (CCU) and

I Main Memory |
A

Instruction
Fetch

[DATA
ARBITER ™ MEMORY
MUX/DEMUX
[

A
\ v—w—, i

Register File e Core reconfigurable |
Processor ‘

microcode - ccu

unit
Exchange f

Registers Reconfigurable Unit

A
Data Load/
Store

A

Y

Fig. 1. The MOLEN machine organization

the pu-code unit. An operation, executed by the reconfigurable unit, is divided
into two distinct phases: set and execute. The set phase is responsible for re-
configuring the CCU hardware enabling the execution of the operation. This
phase may be divided into two subphases - partial set (pset) and complete set
(cset). In the pset phase the CCU is partially configured to perform common
functions of an application (or group of applications). Later, the cset sub-phase
only reconfigures that blocks in the CCU, which are not covered in the pset
sub-phase in order to complete the functionality of the CCU.

General Requirements to the Arbiter. The arbiter controls the proper
co-processing of the GPP and the reconfigurable units. It is closely connected to
three major units of the CCM, namely the GPP, the memory and the ppu-unit.
Each of these parts of the organization has its own requirements, which should
be considered when an arbiter is designed. Regarding the core processor, the
arbiter should: 1) Preserve the original behavior of the core processor when no
reconfigurable instruction is executed. Create the shortest possible critical path
penalties. 2) Emulate reconfigurable instruction execution behavior on the core
processor using its original instruction set and/or other architectural features.

Regarding the pu-unit the arbiter should: 1) Distribute control signals and
the starting microcode address to the pu-unit. 2) Consume minimal hardware re-
sources if implemented in the same FPGA with the pu-unit. Thus more resources
will be available for the CCU.

For proper memory management the arbiter should be designed to: 1) Ar-
bitrate the data access between the pu-unit and the core processor. 2) Allow
speeds within the capabilities of the utilized memory technology, i.e., not creat-
ing performance bottlenecks in memory transfers.

Reconfigurable instructions should be encoded in consistence with the in-
struction encoding of the targeted general purpose architecture. The arbiter
should also provide proper timing for reconfigurable instruction execution to all
units referred above. In Fig.2, a general view of an Arbiter organization is pre-

Instructions from
End of reconf.

,,,,,,,,,,,,,,,, wemey o opemion [
| Arbiter }
| i Loy
\ ; \
I Emulat_lon Decode [Conirofs Control I
I Instructions 7/ I
| |
| |
| |
| |
\ \

L - J I
Instructions Start

to the Core Processor Memory micro address Ex/Set reconf.
operation

Fig. 2. General Arbiter organization

sented. The operation of such an arbiter is entirely based on decoding the input
instruction flow. The unit either redirects instructions, or generates an instruc-
tion sequence to control the state of the core processor during reconfigurable
operations. In such an organization, the critical path penalty to the original in-
struction flow can be reduced to just one 2-1 multiplexer. Once either of the three
reconfigurable instructions has been decoded, the following actions are initiated:

1. Emulation instructions are multiplexed to the processor instruction bus.
These instructions drive the processor into wait or halt state.

2. Control signals from the decoder are generated to the control block in Fig.2.
Based on these controls, the control block performs the following: a) Redi-
rects the microcode location address of the corresponding reconfigurable
instruction to the pu-unit. b) Generates an internal code signal (Ex/Set)
for the decoded reconfigurable instruction and delivers it to the pp-unit. c)
Initiates reconfigurable operation by generating ’start reconf. operation’ sig-
nal to the pp-unit. d) Reserves the data memory control for the pu-unit by
generating memory occupy signal to the (data) memory controller. e) Enters
a wait state until signal ‘end of reconf. operation’ arrives.

An active ’end of reconf. operation’ signal initiates the following actions: 1)
Data memory control is released back to the core processor. 2) An instruction
sequence is generated to ensure proper exiting of the core processor from the wait
state. 3) After exiting the wait state, the program flow control is transferred to
the instruction immediately after the reconfigurable instruction, executed last.

3 CCM Implementation

The general organization presented in the previous section has been implemented
on Virtex II Pro, a platform FPGA chip of Xilinx.

Software considerations: Because of performance reasons, we decided not
to use PowerPC special operating modes instructions (exiting special operating
modes is usually performed by interrupt). We employed the ‘branch to link reg-
ister’ (blr) to emulate a wait state and “branch to link register and link’ (blrl)
to get the processor out of this state. The difference between these instructions
is that blrl modifies the link register (LR), while blr does not. The next instruc-
tion address is the effective address of the branch target, stored in LR. When
blrl is executed, the new value loaded into LR is the address of the instruction
following the branch instruction. Thus the emulation instructions, stored into
the corresponding block in Fig.2 are reduced to only one instruction for wait
and one for 'wake-up’ emulation.

Let us assume the following mnemonics for the three reconfigurable instruc-
tions: ’pset rm_addr’, ‘cset rm_addr’ and ’exec rm_addr’. To implement the
proposed mechanism, we only need to initialize LR with a proper value, i.e. the
address of the reconfigurable instruction. This should be done by the compiler
with the ’branch and link’ (bl) instruction of PowerPC. In the assembly code of
the application program the ‘complete set’ instruction should look like this:

bl labell — bl — branch to labell ; LR = labell

labell: cset rm_addr — blr — branch to labell ; LR = labell
Obviously, the processor will execute branch instruction to the same address,
because LR remains unchanged and points to an address containing blr instruc-
tion. Thus we drive the processor into an eternal loop. It is the responsibility
of the arbiter to get the processor out of this state. When the reconfigurable
instruction is complete, an ’end_op’ signal is generated by the pu-unit to the
arbiter, which initiates the execution of blrl exactly twice. Thus, the effective
address of the next instruction is loaded into the LR, which points to the ad-
dress of the instruction immediately following the reconfigurable one and the
processor exits the eternal loop. Below, the instructions generated by the arbiter
to finalize a reconfigurable operation are displayed (instruction alignment is at
4 bytes):

labell: cset rm_addr — blrl — branch to labell ; LR = labell+/4

— blrl — branch to labell+4 ; LR = labell+4

labell+/: next instr — — next instruction ; LR = labell+4
This approach allows executions of blocks of reconfigurable instructions (BRI):
We define BRI as any sequence of reconfigurable instructions starting with the
instruction 'bl’ and containing arbitrary number of consecutive reconfigurable
instructions. No other instructions can be utilized within a BRI. Utilizing BRI
saves the necessity to initialize LR every time a reconfigurable instruction is
invoked, thus saving a couple of bl instructions. In this scheme only one bl
instruction is used to initialize LR in the beginning of the BRI. The time spent
for executing a single reconfigurable operation (7},) is estimated to be the time
for the reconfigurable execution (T,g), consumed by the pp-unit, plus the time for

three unconditional taken branch instructions (Iyrg) : T, = 3 X Tyrp + T)E.
Assuming the number of reconfigurable instructions in the BRI to be Npgy,
the execution time of a reconfigurable instruction within a BRI costs: 1), =
2xTyrp+T,r+ %’;Tﬁﬁ In other words, the time penalty for single reconfigurable
instruction execution is 3 X Tyrg and within a BRI execution - between 2 X
Turp and 3 x Tyrp. Optionally, the “nstruction synchronization’ instruction
(isync) can be added before a BRI to avoid out-of-order executions of previous
instructions during reconfigurable operation.

Instruction encoding. To perform the MOLEN processor reconfigurations,
the PowerPC Instruction Set Architecture (ISA) is extended with three instruc-
tions. To encode these three instructions, we have considered the following: 1.)
The encoding scheme should be consistent with the PowerPC instruction format
with opcodes (OPC) encoded in the six most-significant bits of the instruction
word (see Fig.3). 2.) All three instructions have the same OPC field and same
instruction form, which is similar to the I-form. Let us call the new form of the
reconfigurable instructions R-form. 3.) The OPCodes of the instructions are as
close as possible to the OPC of the emulation instructions (shortest Hamming
distance), i.e. blr and blrl. From the free opcodes of the PowerPC architecture,
such is opcode 6’ ("000110;”). 4.) Instruction modifiers are implemented in the
two least-significant fields of the instruction word, to distinguish the three recon-
figurable instructions. 5.) A 24-bit address, embedded into the instruction word,
specifies the location of the microcode in memory. A modifier bit R/P (Resi-
dent/Pageable), assumed to be a part of the address field, specifies where the
microcode is located and how to interpret the address field. If R/P=1 a memory
address is specified, otherwise an address of the on-chip storage in the pu-code
unit is referred. The address always points to the location of the first microcode
instruction. This first address should contain the length or the final address of
the microcode. A microprogram is terminated by an end_op microinstruction.

0 56 29 3031

000110 24-bit microcode address ‘ ‘ ‘

OPC=6 00 - complete set; 10 - partial set; 01 - execute. -1

Fig. 3. Reconfigurable instruction encoding: R-form

Hardware requirements. To implement the instruction bus arbitration, we
have considered the following: 1) Information, related to instruction decoding,
arbitration and timing is obtained only through the instruction bus. 2) PowerPC
instruction bus is 64-bit wide and instructions are fetched in couples. 3) Specula-
tive dummy prefetches should not disturb the correct timing of a reconfigurable
instruction execution. 4) Both the arbiter and the pp-unit strobe input signals
on rising clock edges and generate output controls on falling clock edges.

The pu-code arbiter for PowerPC has been described in synthesizable VHDL
and mapped on the Virtex IT Pro FPGA. Fig. 4 depicts the timing of this im-

plementation. The unit uses the same clock (’sl_mem_clk’) as the instruction

stmem_otk LM LML LU UL L UL U U UL LU

Avrbiter Signals
LS UL) G B SN CUTTT TR S RN B R N ST S SRR S RN S S
instr_out _ f Jer—e [Yo Yoo fewwowo Y fommw] Jeme = Y [feeee XY= L = Y= e
slstan_opt r e I U B e T e I e e I
sl_start_op1_5 M e T e T T e I e e RN
Sl_start_op1 75 m e T e T T T e
end_op il
sl_end_op e
sl_end_op2 |
sl_start_op2] l
sl_busy]
start_op Il
sl_xx 00)00 yio G 6L D o LoD 2B ¢ LR 3 ¢ (D 2D ¢ R 3 ¢ N ()
sl_which_op
setex 3 © 13
mc_addr 000000 {00000B (000000
m_occupy [‘
PPC Registers
exeaddr _J— Jowm: _JFFC000CO [FFC000BE [FFC000CE JFFCO00CE Y=)= FFcooone
Ir Feemom e e |FFCO00CA__FFCO00BC__JFFCO00C {FFCT00CT

cevrrrrecbererenng beccereree becrceeg beccecececbceceeog boererecec bcccoce Locceceo e
9800 ns 9900 ns 10us 10100 ns

Entity:testbench Architecture:behavioral Date: Sun Feb 23 16:43:21 W. Europe Daylight Time 2003 Row: 1 Page: 1

Fig. 4. Reconfigurable instruction execution timing

memory, in this case a fast ZBT RAM. The only inputs of the arbiter are the in-
put instruction bus (“instr_in’) and end of (reconfigurable) operation (‘end_op’).

The decode unit of the arbiter (Fig. 2) decodes both OPCodes of the fetched
instructions. Non-reconfigurable instructions are redirected (via MUX) to output
“instr_out’, directly driving the instruction bus of PowerPC. Alternatively, when
either of the decoded two instructions is reconfigurable, the instruction code
of blr is multiplexed via ’‘instr_out’ from the ’‘emulation instructions’ block.
Obviously, the critical path penalty to the original instruction flow is just one 2-1
multiplexer and the decoding logic for a 6-bit value. The decode block generates
two internal signals to the control block - sl_start_opl (explained later) and
sl_zz. The latter signal indicates the alignment of the fetched instructions with
respect to the reconfigurable ones. A one represents a reconfigurable instruction,
a zero - any other instruction. For example, assuming big endian alignment:
”sl_xx=10" means a reconfigurable instruction at the least-significant and a non-
reconfigurable instruction at the most-significant address.

The control block generates signal start (reconfigurable) operation (’start.op’)
for one clock cycle delayed with two cycles after the moment a reconfigurable
operation is prefetched and decoded, thus filtering short (dummy) prefetches. In
Fig. 4 the rising edge of the internal signal sl_start_op! indicates the moment
a reconfigurable operation is decoded. One can see that signal (’start_op’) is
generated only when the reconfigurable instruction is really fetched, i.e. when
sl_start_op1 takes longer than one clock cycle. Dummy prefetch filtration has
been implemented by two flip-flops, connected in series and clocked by com-

plementary clock edges. The outputs of these flip-flops are denoted by signals
sl_start_op1_5 and sl_start_op1_75. The output control to the pu-unit, sl_start_op
is generated between two falling clock edges.

Synchronously with the decoding of a reconfigurable instruction, the two in-
struction modifier fields (output signal set_ex) and microcode address (24-bit
output mc_addr) are registered on rising clock edge (recall Fig.3). The inter-
nal flip-flop sl_which_op is used only when both of the fetched instructions are
reconfigurable (sl.zz="11") to ensure the proper timely distribution of set_ez,
mec_addr and controls. In addition, two internal signals (flip-flops) are set when
reconfigurable instruction is decoded. These two signals denote that the pu-unit
is performing an operation (sl_start_op2) and that the arbiter is busy (sl_busy)
with such an operation, therefore another reconfigurable execution can not be
executed. To multiplex the data memory ports to the pp-unit during reconfig-
urable operations, signal rm_occupy is driven to the data memory controller.

When a reconfigurable instruction is over, ’end_op’ is generated by the pu-
unit and the sl_start_op2 flip-flop is reset, thus releasing the data memory (via
rm_occupy) for access by other units. Now, the control logic should guarantee
that the blrl instruction is decoded exactly twice. This is done by a counter
issuing active sl_end_op for precisely two blrl cycles, i.e., eight clocks. Instruc-
tion codes of blr and blrl differ only in one bit position. Therefore, redirecting
sl_end_op via the MUX to this exact position of “instr_out’ while blr is issued,
drives blrl to the PowerPC. When ’end_op’ is strobed by the arbiter, another
counter generates the sl_end_op2 signal to prevent other reconfigurable opera-
tions from starting executions before the current reconfigurable operation has
finished properly. The falling edge of signal sl_end_op2 synchronously resets sig-
nal busy, thus enabling the execution of reconfigurable operations coming next.

4 Arbiter Testing, Analysis, and Case Study

Testing. To test the operation of the arbiter, we need a program, strictly aligned
into memory, which tests all possible sequences of instruction couple alignments.
Fig. 5(a) depicts the transition graph of such a test sequence, where a bubble
represents an instruction couple alignment (1=reconfigurable instruction, 0 =
other instruction). Arrows (transitions) fetch the next aligned instruction couple.
Minimum 16 transitions cover all possible situations. The number next to each
arrow indicates its position in the program sequence. An extra transition (arrow
0) tests the dummy prefetch filtration. Fig. 5(b) depicts its assembly code.
Performance analysis. Let us assume T to be the execution time of the
original program (say measured in cycles) and Tsg; - time to execute kernel i
in software, which we would like to speed-up in reconfigurable hardware. With
respect to T}, from Section 3, T},; is the execution time for the reconfigurable
implementation of kernel i. Assuming a; = % and s; = %, the speed-up of
the program with respect to the reconfigurable implementatgon of kernel 7 is:

T 1 (1)

S’i: =
T—Tspi+Tp 1—(a;i— %)

bl labelA

labelB bl labelC
nop

//dummy prefetch here
labelA bl labelB
labelC bl labell

labell: cset rm_addr

(a) Transition graph (b) Dummy prefetch test

Fig. 5. Test program

Identically, assuming a =), a;, all kernels potential candidates for reconfig-
urable implementation would speed-up the program with:

T 1 1
— = — Smaz = lim S= 2
T_ZiTSEi+ZiTpi 1—(0,—2 &) Vs;—00 1—a ()

7;87;

S

Where S,q, is the theoretical maximum speed-up. Parameters a; may be ob-
tained by profiling the targeted program, or along with s;, by running an appli-
cation on the real MOLEN CCM. Further in this Section, we will use (1) and
(2) to compare theoretical to actual experimental speed-up.

Experimental testbench. To prove the benefits of the proposed design we
followed an experimental scenario. First, we use profiling data for the application
to extract computationally demanding kernels. Second, we design hardware en-
gines, which implement these kernels in performance efficient hardware. Further,
we go trough the following steps, to get experimental data for analysis:

1. Describe the MOLEN organization and the hardware kernel designs in VHDL
and synthesize them for the selected target FPGA technology.

2. Simulate the pure software implementations of the kernels on a VHDL model
of the core processor to obtain performance figures.

3. Simulate the hardware implementations of the same kernels, embedded in the
MOLEN organization, and mapped on the target FPGA (i.e.,VirtexIIPro).

4. Estimate the speed-ups of each kernel (s;) and for the entire application
(S, S), based on data from the previous steps and the initial profiling,.

5. Download the FPGA programming stream into a real chip and run the
application, to validate the figures from simulations.

Performance speed-up: an MPEG-4 case study The application do-
main of interest in our experimentations is the visual data compression and

in particular the MPEG-4 standard. For parameter a;, we use profiling data
reported in literature [1-4, 10]. Values of some "global” parameters (a;) regard-
ing overall MPEG-4 performance may be within a standard deviation of 20%
[3], with respect to the particular data. On the other hand, "local” parame-
ters regarding implemented kernels (Tsgi, Tpi, s;) are less data dependent, thus
more predictable (accuracy within 5%). Table 1 contains experimental results
for the implementation of the most demanding function in MPEG-4 encoder,
the Sum-of-Absolute Differences (SAD), utilizing a design, described in [9] and
assuming memory addressing schemes, discussed in [5]. The SAD kernel takes
3404 PowerPC cycles to execute in pure software. For its reconfigurable exe-
cution in MOLEN, we run two scenarios: a)worst case, when SAD execution
microcode address is pagable and not residing in the ppu-unit; and best case,
when the microcode is fixed into the pp-unit. Experimental results in Table 1
strongly suggest that considerable speed-up of MPEG-4 encoders in the range
of 2,41-8,82 is achievable only by implementing the SAD function as CCU in the
MOLEN CCM organization. Both experimental and theoretical results indicate
that for great kernel speed-ups (s; >> 1), the difference in overall performance
(Si) between worst and best case (pageable and fixed p-code) is diminishing.

Table 1. Speed-up for pageable pu-code, Table 2. Synthesis Results for

fixed ppu-code, and theoretical maximum. xc2vp20, Speed Grade -5
MPEG-4 SAD Tsgi = 3404[cyc] Slices 84 of 10304|< 1%
Pag.|Fixed|Theor. Flip Flops 69 of 20608|< 1%
Tpi,|cyc] 87 | 51 - 4 input LUTs|150 of 20608|< 1%
Si 39 | 67 0 Clock period 7.004ns
i , 2,41| 2,45 | 2,50 Frequency 142.776 MHz

)
&
Il

3],[4] |2,80] 2,86 | 2,94
[2],[10]|7,01| 7,51 | 8,33
1] [8,13[882| 10

YRy
PPN
G
S
([
cooo
© 0 D
O 00 Oy~

)
&
Il

FPGA synthesis results. The VHDL code of the arbiter has been simu-
lated with Modeltech’s ModelSim and synthesized with Project Navigator ISE
5.1 S3 of Xilnx. The target FPGA chip was XC2VP20. Hardware costs obtained
by the synthesis tools are reported in Table 2. Post-place-and-route results indi-
cate the total number of slices to be 80 and memory clock frequency of 100 MHz
to be feasible. These results strongly suggest that at trivial hardware costs the
pu-arbiter design can arbitrate the PowerPC instruction bus without causing
severe critical path penalties and frequency decreases. Moreover, virtually all
reconfigurable resources of the FPGA remain available for CCUs. Regarding the
total number of flip-flops in the arbiter design (69), most of them (52) are used
for registering mc_addr and set_ex outputs. Thus only 17 flip-flops are spent for
the control block, including the two embedded counters (2 x 4 flip-flops).

5 Conclusions

In this paper, we proposed an efficient design of a potentially performance limit-
ing unit of an pu-coded CCM: the arbiter. The general pu-coded machine orga-
nization MOLEN was implemented on the platform FPGA Virtex II Pro and the
arbitration between reconfigurable and fixed PowerPC instructions investigated.
All design aspects of the arbiter have been described, including software consid-
erations, architectural solutions, implementation issues and functional testing.
Performance has been evaluated analytically and by experimentation. Synthesis
results indicate trivial hardware costs for an FPGA implementation. Simulations
suggest that considerable speed-ups (in the range of 2,4-8,8) of an MPEG-4 case
study are feasible when the SAD function is implemented in the proposed frame-
work. The presented design will be implemented on an FPGA prototyping board.

Acknowledgements: This research is supported by PROGRESS, the em-
bedded systems research program of the Dutch scientific organization NWO, the
Dutch Ministry of Economic Affairs and the Technology Foundation STW.

References

1. H.-C. Chang, L.-G. Chen, M.-Y. Hsu, and Y.-C. Chang. Performance analysis and
architecture evaluation of MPEG-4 video codec system. In IEEFE International
Symposium on Circuits and Systems, vol. 11, pp. 449-452, 28-31 May 2000.

2. H.-C. Chang, Y.-C. Wang, M.-Y. Hsu, and L.-G. Chen. Efficient algorithms and
architectures for MPEG-4 object-based video coding. In IEEE Workshop on Signal
Processing Systems, pp. 13-22, 11-13 Oct 2000.

3. J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and M. Reissmann. The
MPEG-4 video coding standard - a VLSI point of view. In IEEE Workshop on
Signal Processing Systems, (SIPS98), pp. 43-52, 8-10 Oct. 1998.

4. P. Kuhn and W. Stechele. Complexity analysis of the emerging MPEG-4 standard
as a basis for VLSI implementation. In SPIE Visual Comunications and Image
Processing (VCIP), vol. 3309, pp. 498-509, Jan. 1998.

5. G. Kuzmanov, S. Vassiliadis, and J. van Eijndhoven. A 2D Addressing Mode for
Multimedia Applications. In SAMOS 2001, vol. 2268 of Lecture Notes in Computer
Science, pp. 291-306, July 2001. Springer-Verlag.

6. M.Wazlowski, L.Agarwal, T.Lee, A.Smith, E.Lam, H.Silverman, and S.Ghosh.
PRISM-IT Compiler and Architecture. In Proc.IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 9-16, 5-7 April, 1993.

7. R.W.Hartenstein, R.Kress, and H.Reining. A new FPGA Architecture for Word-
Oriented Datapaths. In FPL 1994, pp. 144-155, 1994.

8. M. Sima, S. Vassiliadis, S. Cotofana, J. T. van Eijndhoven, and K. Vissers. Field-
Programmable Custom Computing Machines. A Taxonomy. In FPL 2002., vol.
2438 of Lecture Notes in Computer Science, pp. 79-88, Sept. 2002. Springer-Verlag.

9. S. Vassiliadis, E. Hakkennes, J. Wong, and G. Pechaneck. The Sum Absolute
Difference Motion Estimation Accelerator. In EUROMICRO 98, vol. 2, Aug. 1998.

10. S. Vassiliadis, G. Kuzmanov, and S. Wong. MPEG-4 and the New Multimedia
Architectural Challenges. In 15th SAER’2001, 21-23 Sept. 2001.

11. S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN pu-coded processor. In
FPL 2001, pp. 275-285, Aug. 2001.

