
Kelsch, J., Temme, G., Schindler, J.: (2013): Arbitration based framework for design of
holistic multimodal human-machine interaction. Contributions to AAET 2013, 6.-7. Feb. 2013,
Braunschweig, Germany, ISBN 978-3-937655-29-1

Arbitration based framework for design of holistic
multimodal human-machine interaction

Johann Kelsch, Gerald Temme, Julian Schindler

German Aerospace Center / Institute of Transportation Systems

Lilienthalplatz 7, 30108 Braunschweig, johann.kelsch@dlr.de

Abstract
Creating dynamic cognitive systems, such as human-machine systems with
the appropriate interaction inside, the system engineer is usually facing a
high overall complexity. For instance, designing a modern driver assistance
system, the developer is dealing with the diversity of drivers’ behavior, the
complexity of the traffic and vehicle dynamics and the heterogeneity of
already designed assistance systems. To deal with this complexity
effectively, the creation of holistic, stable and well-usable cognitive systems
implies the usage of a design framework, which could provide benefit and
orderliness to the creation process. In this contribution, we propose such a
design framework that consists of the theoretically derived generic
cognitive system architecture as well as of the arbitration-based
methodology and tool-based interface for the interaction design. Besides the
theoretical background, we describe the general rules of the framework in a
stepwise manner using an automotive example of a newly developed driver
assistance system for cooperative lane changes in a highway scenario.

Acknowledgements
We thank Matthias Heesen, Raphael Klemm (DLR) and Markus
Zimmermann (TUM) for their fruitful participation in the development of
the interaction design for the exemplary lane change assistance system.

Introduction
The main goal of this paper is to contribute to the structured design process
in the research field of cognitive systems engineering (CSE) [16] by
proposing a correspondent design framework. CSE is an important part of
systems engineering [6], since the designed systems get more complex and

mailto:johann.kelsch@dlr.de

because the human is a crucial part of those systems. During the last three
decades, much effort has been made addressing the CSE research field and
bringing up many useful concepts. One of the achievements (and maybe the
most important) was the definition of the machine as a cognitive agent [16],
although there is criticism from the perspective of human sciences [22]
regarding the inability of the machines to reason. Though, the today’s
machines are able to percept and to comprehend complex situations, for
instance, by data fusion. Machines are able to project situation dynamics,
for example, probabilistically, in order to generate autonomous decisions
and control actions. In other words, today’s machines can be called
cognitive, because they possess already placeholders for all levels of
situation awareness [7] as well as internal knowledge and behavioral
models. However, in this contribution, we use the term cognitive system
‘CS’ as an aggregation for the cognitive multi-agent and human-machine
systems. Further, we use the acronym ‘CA’ for all kinds of cognitive agents:
humans, intelligent machines, automation, assistance etc. Furthermore, the
important keywords and key-phrases will be highlighted by the italic font.

The next important achievement in the field of CSE was the user centered
design approach toward the usability engineering [26], [27], which moved
the consideration of the human user’s cognition further into the CS design
process and balanced it versus technology centered design [13]. After
investigating several design metaphors for highly automated human-
machine systems in the automotive domain [12], [17], it became also more
obvious that the machine design is not forced to be human-like but human-
compatible [11], [19]. Further, the methodology toward cognitive function
and task analysis [3] and, in more general, cognitive work analysis [23],
[41], [45] has to be considered. These approaches allow analyzing CAs and
CS in a holistic way considering the possible cognitive processes and states
within the CAs. During the proposed functional CS decomposition, the
functional CA and CS requirements can be gathered and clarified.

Though, besides the functional requirements in the CS design, there is also a
strong necessity of gathering the structural requirements and thus the
necessity of structural CS decomposition. It is not enough to answer the
questions, for example, when and which tasks should be allocated to which
CA and which goals which CA is supposed to achieve by means of which
resources? To move toward the more concrete system design and
implementation it is also crucial to answer the following two research
questions. 1. How to implement the CS structurally? That means in detail:
How can theoretically known cognitive structure elements be mapped to the
soft- and hardware of the developer? Which structure elements have to be

mapped? What is the appropriate common data representation thereby?
There are many theoretical considerations regarding CA architectures [4],
[30], [32] and several of them regarding CS architectures [31], [39], but
unfortunately, we discovered a lack of structurally applicable propositions
on the CS level as well as on the level of integrated CA interaction design
process. Supposedly, this circumstance is due to the lack of the evident
structural similarities between different kinds of CS both on the system and
on the agent interaction level. What are cognitive structural elements that
could be common for the agent interaction at an office work place, in a
driver-automation system and in a swarm of UAV’s? By means of those
similarity hints, essential structural information could be gathered to
describe a generic CS architecture. Further, a proper design interface to the
generic CS architecture could be derived regarding creation or modification
the functional CS inner life by means of the CA interaction design. That
leads us directly to the second research question. 2. How can the interaction
design process be connected to a generic CS architecture? We will deal
with both research questions in two theoretical parts of this contribution.

After the theoretical parts, we will focus on how to translate the proposed
theory toward a more concrete CS architecture and interaction design for
the automotive domain. We will give a brief and stepwise overview about
the application of the proposed framework for the development of new
cooperative lane change driver assistance system. Besides this, we will
emphasize the advantages for a system engineer, who follows the proposed
framework philosophy using a new interaction design interface tool based
on the presented theoretical basis as well.

Structural similarities toward the generic CS architecture
Let’s address the question about structural similarities between different CS
first. Therefore, we take a look on the definitions: What are a CS and a CA
and what is the dependency between them? The most obvious statement,
that can be made after defining the machine as a CA, is the conclusion that
every CS, either artificial or not, consists of at least two CAs. Surely,
generic CS with only one CA inside is possible as well, but in these brief
theoretical considerations we do not take into account this exceptional case.
However, there are two CAs within a generic human-machine system: a
human and a machine agent and there are at least a driver and an assistance
system agent within a generic driver-automation system in automotive
domain. This initial CS description is well-known and is also identified in
the field of the multi-agent system research, such as distributed artificial
intelligence [15], [30], [32], [39], which, by the way, can be used in CS

design by means of the provided powerful methodology for the agent
modeling. Further, it is important to note that a CS with several CAs inside
is a complex system because of the theoretically assumed emergent origin of
the cognition itself [5], [22]. So in CSE, we have to deal with emergent
effects, highly non-linear dynamics, self-organizing processes etc.

There are several definitions of the term ‘cognitive agent’, for instance [5]
“agent is any entity able to act”, [32], [40], etc. Most definitions claim
nearly the same sub-parts of a CA: beliefs, desires, goals, plans, intentions
and actions and a ‘cognitive kind’ of dealing with these items by a CA. For
instance, a CA can possess declarative and procedural knowledge, mental
models, a CA can be able to learn something, a CA can transform allocated
tasks into activity by means of cognitive functions [3] and a CA can possess
internal situation awareness states with a generic cognitive informational
processing inside: perception, comprehension, projection [7] and (more or
less) independent decision and action performance. Thereby, the cognitive
items, such as beliefs, desires, goals etc., can be regarded as factors
influencing the cognitive process itself as well as products of and
informational links between the processing steps. Though, on the current
abstract level of CS consideration, these cognitive items can be aggregated
as actions. Further, to deal with the similar content on the CS level, it is
reasonable to define the environment within a particular CS as a non-
cognitive (reactive) agent (NCA) like proposed also in [5]. In automotive
domain, we have at least two NCAs: the environment and the vehicle. Thus,
the first structural similarity toward a generic CS architecture is that all (re-
)acting entities within a CS can be represented by (re-)acting agents.

However, in this contribution we will not stress the whole agent modeling
side of the CSE. Rather, we will stress that first: agents are interfering with
each other by means of actions, second: that a system engineer can
influence this interference and third: that a generic CS architecture and
corresponding interaction design interface can be derived using that
information. Because of this and in order to give the system engineer the
freedom to integrate her/his own agents or agent models into the particular
CS design, we use CAs as well as NCAs structurally as black boxes with
corresponding inputs and outputs. Such a ‘black box’ is able to perceive
information from other agents, to process this information changing certain
internal states, making decisions and providing the processed information
toward interference with other agents. An example for the automotive
domain: During the driving, a driver is acting and interacting constantly
with her/his assistance, vehicle and environment and the assistance agent
does so as well. The vehicle is reacting and interacting with the reactive

environment and with the CAs on board. In such a CS model the second
structural similarity is that the informational behavior of agents can be
described by agents’ input and output (re-)actions. In this manner, all
agents can be regarded being in an action space interfering with each other
by means of actions. We speak about interaction between two agents, when
input and output (re-)actions of each agent have both-sided connections.

Every behavior of an agent contains an informational component. “One
cannot not communicate” [43]. And the information itself, provided by an
agent, needs an initial event to be presented and/or to be revealed. Thereby,
events can be regarded as trigger for new actions as well as connections
between agents and actions. Actions themselves can be regarded as
expression of internal agent states and can produce new events. This
relationship between event, (cognitive) agent state and action is the third
structural similarity on the way to the generic CS description. Until now,
we (over-)simplified the CS ontology toward the abstract interaction model
[36] and similar to the ‘quasi thermodynamic’ model of Brownian Agents
[37]. Figure 1 left shows a cooperative lane change traffic scenario and on
the right the corresponding structural CS decomposition.

There are two main vehicles: V1 (NCA1) on the right lane and V2 (NCA2)
on the left lane of a two-lane highway. Both vehicles have human drivers
and lane change assistance systems on board of V1 and V2 (CA1-4). The
third vehicle and the environment are aggregated in the non-cognitive agent
NCA3. In this scenario, a conflict is modeled: V1 has to change its current
right lane because of the dangerous environmental issue in front, but the

Figure 1: Conflict modeling in a cooperative lane change scenario (right) and (left)
structural decomposition of the scenario into the agent and action space based model

aimed left lane is potentially blocked by the fast moving vehicle V2. To
resolve this conflict situation, there is a necessity for cooperation between
V1 and V2. On the Figure 1 right, the agents are shown as circles, their
actions as arrows and events as arrowheads. However, to get more concrete
toward the structural CS and agent interaction description, we need five
further theoretical concepts: action tension [19], agent interference [5],
arbitration [18], multi-resource theory in cognitive informational
processing [44] and the time horizon in CA behavior.

Let’s speak about the action tension first. There are two well-accepted
psychological concepts (Psychological Forces [21] and Affordances [13])
dealing with human’s motivational processes. They operate with terms
being near to physical and technical terms, such as force and tension. Both
concepts can be summarized in a prospective and directed metric action
tension indicating the direction toward certain possible actions to reach the
same system state (Figure 2 left). This provides the opportunity to model
the behavior of CAs and CS both on a higher level and on a common
ground. The complex interaction processes, being highly dependent on CA
behavior (actions) itself, can be modeled in a more simplified manner.

A hypothetical example of using action tensions in CS design is shown as
‘food assistance’ in a sequence diagram on Figure 2 right. The machine
agent communicates relevant interaction signals to the hungry agent in order
to keep her/him in the optimal state ‘full’ and away from the state ‘sick’.
Here is also shown that the action tension can have two opposite directions:
toward get/avoid food (+/++, -/-- AT), or steer left/right as example for
automotive applications. So, the continuous two-directional value separated
in discrete zones would be the common data representation in the proposed
CS architecture. Here, the value itself is the action tension, the zones are
operationalized tension states and the borders between the zones mark the
trigger events for possible cognitive state changes and anchor points for
artificially designed interaction and CS behavior synchronization signals.

Figure 2: Combination of psychological force and affordance to action tension (left)
and action tension based hypothetical example of a food assistance (right)

Thesis: A cognitive system being in a particular state can be described as
controlled by multiple tensions directed toward actions leading to other
system states. Hypotheses: I) Humans are supposed to act toward keeping
the tensions in an optimal state and machines can be designed to do so as
well [19]. II) The particular action tension falls if the CA acts toward the
optimal action tension state and it rises when a) CA acts contrary to the
optimal action tension state or b) CA persists (performs no action) being in
a suboptimal state. Hence, the particular action tension can describe in the
generalized way how urgent the particular action is and which sequence of
interactions is necessary to reach the change of the system state toward
minimizing the action tension by transition into the aimed optimal action
tension state. The consideration of action tensions is the fourth structural
similarity. It describes the ‘missing glue’ between all possible CA actions
within the action space and could be also one of the applicable “pre-
cognitive structures” claimed to be formalized for CSE [5]. Further, action
tensions can be used in CSE to analyze and to redirect the CA actions by
means of explicitly designed interaction signals in the direction favored by
the system engineer. This is indicated on Figure 1 right by parallel drawn
actions influenced by the correspondent (cooperative) action tension.

Using action tensions as universal reference values for the CS design and
control, the system complexity can be reduced and the control processes can
be linearized toward favored design and control issues, such as workload
distribution, attention control, situation awareness [8], safety, efficiency,
comfort improvement etc. Therefore, action tensions can be separated in
time, space or more complex value dependent zones operationalized, for
example, by inductive exploration and/or by theoretical deduction of
possible agent states and subsequently connected agent (re-)actions. The
borders between the zones can be used as events synchronizing the CA
actions by artificially designed signals, which can be distributed within the
whole CS, for example, by machine agents or HMI agents [2]. Thereby, the
important constraint of using the action tensions for the CS and interaction
design is the finding of an appropriate operationalization manner.

The fifth structural similarity can be found in the CA interference, which is
necessary for deriving the generic CS architecture as well as for the
corresponding interaction design interface. Here, we follow Castelfranchi
[5] arguing that all agents (CAs as well as NCAs) are interfering with each
other within a CS by means of actions. This way, the behavior of a CS can
be defined by the CA interference. There are two dual sorts of interference:
positive and negative. The negative interference causes emergent effects
within a CS influencing negatively the objective CS performance during the

CA interference. The negative CA interference is characteristic for
(potential) conflict states. For example, when a driver drives down a road
fork by an intelligent vehicle and the driver and the machine agent on board
have or are going to have different intentions. The driver could aim at
steering to the left and the machine agent to the right. Will the vehicle move
to the left or to the right? Those conflicts or competition situations and
hence the negative interference between CAs can be managed by a concept
of arbitration [18], which is a subset of the overall CA interactions. The
particular arbitration model for the automotive domain is shown on Figure 3
left. The CA arbitration is defined as the finite negotiation between two
CAs by means of proper interaction strategies and signals aimed at reaching
a joint intent, decision and action within the CS and within the available
time. This way, a system engineer can influence strategically and/or
immediately the (joint) action of at least two CAs by explicitly designed
arbitration strategies and signals. Therefore, the complete agents’ actions
must be described within a common frame of reference (CFoR) in order to
manage the CA interference explicitly, for example, by an arbiter [18] or by
another kind of HMI agent. It is important to note, that the CA interference
is present at all steps of the agent informational processing. If we assume,
that CAs possess an internal situation awareness processes, then the agents
are interfering in perception, comprehension, projection, decision and action
states using the corresponding cognitive items: beliefs, desires, goals, plans,
tasks, intentions and actions. The (potential) conflicts on all levels of
situation awareness can be arbitrated by influencing these cognitive items
using action tensions. Therefore, a system engineer can moderate the joint
CA decisions toward the joint CA actions by using additionally injected
interaction signals, which must be defined within the CFoR as well and
which can be triggered by events placed along the action tensions.

The positive interference is dual to the negative one. However, it can be
managed exactly the same way like the negative interference. The positive
interference causes emergent effects within a CS, which influence positively
the objective CS performance during the CA interference. An example for
the positive interference is the agent cooperation [5], [14]. To improve, for
example, the overall effectiveness of the traffic in the proposed scenario
from Figure 1 left, it is reasonable to initiate a cooperation process between
V1 and V2. So, the V2 could decelerate slowly and thus energy efficiently
in order to allow the lane change for V1. Afterwards, V1 could change the
lane fluently and efficiently as well. Therefore, during the functional CS
decomposition, a priori domain purpose and functions [23] must be defined,
such as “the traffic should act energy efficiently” and/or “the dangerousness
of the traffic situations should be minimized”. If those functions or purposes

are in a possible conflict state, for example, the traffic is not yet acting
efficiently, then the system engineer can use this discovered higher level
conflict as the starting point to improve the CS performance. This can be
done, for example, by means of cooperation mechanisms, such as
cooperation modes [14] or design patterns for cooperation [1].

To initiate, moderate and decide within cooperation processes, arbitration
concept can be used, because finite negotiations of cooperative (joint)
decisions and actions within cooperation processes are necessary as well.
For the cooperation, and thus for the positive interference issues, HMI
agents, such as arbiters, can be used. Further, cooperation processes and
cooperative CA actions can be managed by the system engineer on all levels
of cognitive informational processing by using operationalized
(cooperative) action tension within the cooperation design. Following this
line of argumentation, we state that within the proposed CS ontology, it is
possible to address every kind of CA interference by arbitration.

We claim that the starting point for design of CA interference management
and thus the starting point for interaction design should be the analysis and
modeling of (possible) conflicts together with the functional and structural
CS decomposition. Thereby, the system engineer could follow the proved
minimalistic design principles, such as “keep it simple but not simpler” or
“never touch a running system”, because only possibly discovered CS
conflicts would justify the usage of new interaction strategies and signals. If
no (possible) system conflicts are discovered, then no CA interaction design
is necessary! Further, the discovered conflicts allow using design patterns
as proved ‘problem-solution dyads’ [1]. Furthermore, such conflict-centered
design approach allows a balancing between human-centered and
technology-centered CS design, since the relevant usability problems within
a CS arise within the action space between the CAs [28].

The sixth structural similarity can be found considering the time horizon in
CA behavior within a CS. Rasmussen [33] argues, for example, that the
human’s control behavior is separable into three levels: skill-, rule- and
knowledge-based levels. For the interaction design, he proposes using
signals, signs and symbols respectively. The main argumentation thereby is
that for the processing of those interaction signals on the proposed levels of
control more processing time or longer time constants are necessary, when
the informational processing moves from the signal to the symbol
processing and from the skill-based to the knowledge-based level. In the
theory of situation awareness [7], there are three levels as well: perception,
comprehension and projection that are assumed as a sequence of the
cognitive informational processing. Because of necessity of running through

former situation awareness levels (for instance, perception and
comprehension), the next level of situation awareness (for instance,
projection) would take an overall longer time slot and it could be controlled
using longer time constants as well. Other considerations due to the time
horizon in CA behavior we find in [5] and based on it [14], which propose
at the end three levels as well: action-, plan- and meta-level. These levels
can be regarded also with rising time constants on the way from the action-
to the meta-level. Similar triples regarding the time horizon, we find in
economic science and military definitions: operational, tactical and strategic
levels, which have also rising time constants on the way from operational to
the strategic level, e.g., of planning or executing tasks. However, because in
system and interaction design the system engineer is interested in effects
s/he can achieve by the proper interaction strategies and parameterization of
the interaction elements, it is reasonable to cluster all discussed terms after
the time horizon similarity. After doing this, we define also three levels
regarding the expected influence to the agent (re-)actions: long-term, short-
term and immediate effect levels (Figure 3 right). Exemplary for automotive
CS, on the long-term level could be the management of automation levels
[11], cooperation modes [14] and/or maneuver arbitration. On the short-
term level could be trajectory arbitrations (lateral deviation, speed and
distance to other objects etc.) On the immediate level, the management of
control allocations to particular CAs could be placed.

The last seventh structural similarity toward the generic CS architecture can
be found in the parallel consideration of the multi-resource theory (MRT)
[44] and channel structures proposed in technical communication sciences
[38]. MRT argues that humans possess several different cognitive resources,
which can be used simultaneously. When humans percept and process
information toward actions subconsciously, symbolically, linguistically by

Figure 3: Particular arbitration model for automotive domain (left), time horizon/time
constants dependent clustering of cognitive processing models (right)

means of different modalities, such as acoustic, visual or haptic, then we are
able to process the information in parallel with some interference or noise
effects between the particular cognitive resources. For interaction design,
MRT shows the opportunity to use the parallel cognitive processing power
by channeling information separating the designed interaction signals into
former defined multimodal channels and sub-channels.

Every multimodal channel, e.g. haptic channel, can be separated in sub-
channels dealing with different sorts of interaction signals and
correspondent semantics. So, a ‘hint sub-channel’ can be defined providing
hints by discrete haptic signals, such as haptic ticks, or an ‘action guiding
sub-channel’ can be defined providing information by continuous haptic
force feedback. Other modalities, such as visual and acoustic, can be
separated in sub-channels with deterministic semantics as well. This way by
means of sub-channels, different semantics can be channeled to the CAs
simultaneously using the power of CA parallel cognitive informational
processing. Further, the deterministic kind of providing information
semantics allows using technical approaches for managing the informational
flows, such as prioritization, de-conflicting and/or arbitration. Furthermore,
early consideration of semantics brings orderliness, consistency and user
compatibility to the design process as well as to the interaction design itself.

Now, it is possible to set up the generic CS architecture (Figure 4 left). On
the upper (Agent Action and Tension) layer we deal with the first four CS
structural similarities. Here, the inference of agent states and actions as well
as inference of possible events and action tensions can be placed. This can
be done using former definition of CFoR and concepts described above.
Brief summary: All entities in a CS are agents with internal (cognitive)
states. The agent states are getting ‘visible’ by correspondent actions. All
agent actions and thus all agent states can be manipulated on later layers
using synchronization events and correspondent interaction signals placed
along operationalized action tensions. On the next (Agent Interference
Management) layer we deal with the fifth and sixth CS structural
similarities. Here, agent interference management units, such as arbiters or
other sorts of HMI-Agents, can be placed arbitrating discovered system
conflicts and/or managing the agent interference toward cooperation. This
can be done using the appropriate interference management strategies on the
three levels dependent on the expected time horizon of action influence
effects: long-term, short-term or immediate and derived from former
designed informational syntax and semantics.

On the next (Interaction Element and Channel) layer, very concrete
implementation of interference management can be placed in form of
concrete interaction element (and hence multimodal sub-channel) behavior
definition, parameterization, calculation, de-confliction and channeling
toward the last (Agent Interaction Hardware) layer. Thereby, the interaction
hardware implies the human user compatible active multimodal
inceptor/feedback devices as well as the hardware providing interaction to
and between the machine agents. Further, the Semantic Design Layer can be
connected to the proposed generic CS architecture by means of the tool-
based Interference and Element Design Interface. We will deal with this
important interface as well as with the correspondent interaction design
methodology in the next section.

Interaction design process and interface to the CS architecture
On the Figure 4 right a communication path is shown, which describes the
informational flow between a system engineer designing favored interaction
and a human user or other kind of CA receiving the designed information.
First, the system engineer has to decode or to translate the favored
information on the sematic and syntax design layer answering the central
question: “Which information must be communicated to the CAs?” The
answer to this question can be found modeling situation conflicts and using
deductive and/or inductive methods. Deductive methods could be the
cognitive task, function and/or work analysis [3], [34], [41]. Inductive
methods could be the systematic design space definition and/or exploration.
However, the answer to the first central question implies the answers to the
sub-questions: “Are there issues that the system engineer can resolve by a
proper interaction design? What will happen if these issues stay unresolved?

Figure 4: Generic CS architecture with connected interaction design interface (left)
and communication path between the system engineer and the system user (right)

Which issues must be resolved necessarily? When and which information
CAs need therefore? What could be the applicable arbitration strategies?”
Under the assumption that it is possible to linearize and to operationalize the
agent interference process by using action tensions, the output of the
semantic decoder part should be the clearly decomposed and consistent
semantic informational pieces, such as phrases and sentences, preferable in
form of a ‘semantic storyboard’ and/or a sequence diagram dealing with
informational and agent behavioral flows on the semantic level.

Afterwards, the storyboard can be used toward the particular CA interaction
design answering the second central question: “How the identified
information design can be communicated to the CAs?” Therefore, the
favored interaction design should be decomposed structurally answering the
following sub-questions: “Which action tensions can be identified and
operationalized within the gathered semantics and the particular CS
context? Which CA actions must be exhibited (initiated, assisted, gained
etc.) or inhibited (prevented, forbidden, redirected etc.)? Which interference
and/or arbitration strategies and signals can be used to resolve the
discovered issues? Which multimodal channels and sub-channels can be
used therefore?” Thereby, the storyboard can be encoded in action tension
dependent strategies using multimodal elements, which should be separated
into sub-channels and tuned to be presented to the user by means of the
interaction hardware. The aimed CA receives the channeled interaction
information by decoding the multimodal element signals and strategies
encoding them into the overall designed semantic meaning at the end.

Such kind of holistic interaction design often needs the participation of and
the discussion between persons working in various disciplines: Designers,
technicians, human factors professionals or computational scientists. In
order to make the design process easily understandable and usable for all
involved disciplines, it is necessary to present and to design the interaction
in a clearly arranged way. Figure 5 left shows a proposition for a design
interface that can be easily connected between the Agent Interference
Management and the Interaction Element and Channel Layer of the former
proposed generic CS architecture (Figure 4 left). After producing the
semantic storyboard and definition of action tensions it is possible to
describe the interference strategies (syntax) using ternary logic [20], [24]
between the trigger events based on action tensions and the triggered
interaction elements separated in correspondent semantic channels. The
used ternary logic consists of three logical states: enable (+), disable (-) and
don’t care (0). The truth tables of the logic are shown on the Figure 5 right.

The activation of a particular semantic sub-channel and consequently the
enabling of a particular multimodal interaction element can be logically
determined by the ternary AND-relation. The element priority based de-
confliction of the elements placed on the same semantic channel can be
determined by the ternary OR-relation. Elements themselves can be
parameterized by manipulating correspondent element parameters. This
way, using the proposed design interface, a deterministic interaction model
can be produced, which will be integrated into the generic CS architecture.
This model can be tested and tuned within the particular developed CS and
within the particular used simulation environment. Usage of the proposed
design interface and principles, e.g. in a GUI, could provide an easy and
open parameterization and tuning interface for the interaction design, a
quick portability of the interaction models between different CS
environments, a reusability of interaction design models, a well-ordered
dialog between participating professionals from different disciplines and so
guide the whole design process toward holistic cognitive system design.

Application of the interaction design framework
In this section, we deal with the exemplary application of the proposed
interaction design framework. Therefore, we use the cooperative lane
change scenario introduced on Figure 1 left. The initial step toward the
development of new cooperative lane change assistance was the problem
analysis and the conflict modeling. Therefore (1), we defined [23], [41] for
the current domain (land-based cooperative traffic) the domain purpose
(personal and goods transport on highways) and the domain values &
priorities (safety, efficiency and comfort). Then (2), we modeled the former
mentioned scenario that is very common for the domain on the one hand but
conflicts the domain values on the other hand. The modeled CS scenario is
unsafe, inefficient and uncomfortable. The solution for the modeled conflict

Figure 5: Tool-based interaction design interface to the generic CS architecture (left)
and truth tables for AND- and OR-relations in used ternary logic (right)

was expected in the cooperation between the vehicles V1 and V2 initiated
by the assistance systems on board. Therefore in the aimed CS, all possible
CA actions must be influenced toward cooperative actions by an appropriate
interaction design. Following the proposed framework (3), we assumed a
linear cooperative action tension that controls cooperative CA actions
within the aimed CS. That tension must consist of a particular state
sequence describing the syntax of the cooperation process as well as of the
state transitions triggering events for additionally injected signals. Those
signals were supposed to provide the aimed interaction semantics for the
cooperation maintenance and to synchronize the cooperative CS behavior.
Further, the optimal tension was defined using two functional system states:
‘There is no need for cooperation’ and ‘cooperation is done’ (Figure 6 mid).

The next development steps were: (4) functional and structural
decomposition of the origin CS, (5) interaction design and (6) composition
of the aimed CS regarding the operationalized cooperative action tension

Figure 6: Framework based design for cooperative lane change assistance system:
Semantic storyboard and agent interaction signal flow (top), after cognitive function
and task analysis operationalized cooperative action tension (mid), design of the
visual feedback display for both vehicles (down) and overall legend (right)

and the designed interaction. The steps (4), (5) and (6) we will describe in
more detail. Thereby, we will focus on four important design aspects:
initiation of the cooperative process, arbitration by using the cooperation
modes, by the providing distributed situation awareness and by the
cooperative action guiding. Figure 1 right shows the structural
decomposition, where all CAs as well as NCAs were identified. Using the
functional decomposition of the origin CS and working out the semantic
storyboard for aimed interaction design (Figure 6 top) in parallel, it was
possible to identify the functional states and synchronizing events in
between, which operationalize the assumed cooperative action tension
(Figure 6 mid). Four main states (or action tension zones) were identified:
‘Determining of cooperation necessity’, ‘determining of cooperation
acceptance’, ‘guiding of resource producing’ and ‘guiding of resource
usage’. The events between the states were identified as: ‘Cooperation is
necessary’, ‘cooperation is accepted’ and ‘resource is ready’.

During the functional CS decomposition, in particular during the cognitive
task analysis toward the aimed system composition, two cooperation modes
[14] for implementation of the aimed interaction design were defined:
‘Perception mode’ and ‘mutual control: Action suggestion mode’ (Figure 7
bottom right). In perception mode the driver is responsible for the execution
of the complete lane change maneuver. If necessary, the assistance is
responsible for initiation of the cooperation. If cooperation usage is
accepted by the drivers, the cooperation mode changes to the action
suggestion mode. Here, the assistances negotiate opening the gap and
suggesting to the drivers the proper actions, which lead to the successful
completion of cooperation toward opening the gap and changing the lane.

Technically, this behavior is implemented as two HMI-Agents called Mode
Selection and Arbitration Unit (MSAU) and Maneuver Arbitration Unit
(MAU). MSAU manages the cooperation mode selection and interference,
which is a strategic and long-term sort of CS control. The driver can decide
strategically to continue driving, e.g. performing of the next maneuver, with
or without support by the assistance. Internally, the MSAU is a state
machine (Figure 7 top right), which describes the available cooperation
modes and all possible transitions between these modes. Primarily, it uses
the design pattern of interlocked transitions [35] and the operationalized
cooperative action tension. It activates HMI elements in order to arbitrate
the mode selection conflicts and to inform the driver about the current
cooperation mode and mode transition. In action suggestion mode, the
MSAU communicates the current cooperation mode to the MAU that
activates maneuver guiding HMI elements using cooperative action tension.

Composing the aimed CS structurally, both HMI-Agents (MSAU&MAU)
were implemented within an integrated, reusable and model-based C++
software/hardware architecture (Figure 7 left) called InteractionController.
It follows the generic CS architecture from Figure 4 left, automotive
arbitration model from Figure 3 left and is integrated into the DOMINION
implementation platform [25]. For better reusability of software modules,
the InteractionController was implemented using software modeling tool
BOUML 2.7.6 [29]. Human, automation and situation data collectors
together with the CAs (driver and automation) represent the Agent Action
and Tension Inference Layer of the generic CS architecture. MSAU&MAU
are producing long-term effects on the Agent Interference Management
Layer. They provide interaction activation data for the Interaction Element
and Channel Layer, where Interaction Calculator and HMI-Handler are
placed. Interaction Calculator uses the interaction design model and the
object oriented multimodal element collection to produce the requested
HMI signal flow separated in the former defined (sub-) channels. The HMI-

Figure 7: Adaptation of the generic CS architecture for cooperative lane change
assistance system (left). Particular behavior of the Mode Selection/Arbitration Units in
vehicles V1, V2 and definition of the used cooperation modes (right)

Handler arbitrates this flow and produces a deterministic output for the
Agent Interaction Hardware Layer represented by the HMI-hardware.

Designing the CA interaction, the main strategy was to initiate the
cooperation process between the vehicles V1 and V2, to maintain it and to
guide it along the cooperative action tension toward the successful
termination. This was mainly done using the design pattern and the visual
channel of the distributed situation awareness. Figure 6 down sketches the
corresponding visual display in both vehicles with slightly different parts of
the same situation display. The own vehicle is always in the middle.
Further, it shows the interaction sequence (syntax) depending on the
cooperative action tension. Therefore, the defined semantic sub-channels
were: Cooperation initiation and existence feedback (dashed and solid
dyads), intention and action suggestion feedback (hollow and full triangles)
and gap availability feedback (hollow and full rectangles). Using dyads was
supposed to prevent the diffusion of responsibility [42] and to maintain the
cooperation process. Intention and gap availability feedback was supposed
to improve the distributed situation awareness. Action suggestion feedback
was supposed to initiate and to guide the cooperative actions. According to
the concept presented on Figure 5, the model of the presented interaction
was developed in a GUI-based interaction design tool (Figure 8). The tool
itself was developed in a straightforward way using the FLTK graphical
toolkit [10]. This design tool is arranged in different layers grouping and
logically linking different types of relevant interaction data. The data shown
in the GUI is represented internally in eXtensible Markup Language (XML)
[9] as a human readable hierarchical format. This makes it possible to reuse
interaction design models and use them without or with other GUIs as well.

Figure 8: GUI-based Interaction design tool with exemplary interaction implementation

Summary and Outlook
In this contribution, we presented the theoretical background to the
arbitration based framework for design of holistic multimodal human-
machine interaction. Based on seven CS structural similarities and ternary
logic, it consists of a vertical generic CS architecture and a horizontal tool-
supported interaction design interface and methodology. Further, we
showed an exemplary application of the proposed framework toward
development of a cooperative lane change assistance system for the
automotive domain. The work on the presented framework as well as on the
cooperative lane change assistance is still in progress. It is planned to
formalize the framework toward verifiable CA interaction modeling and the
correspondent usability testing methodology. The presented exemplary
interaction design and the developed cooperative assistance system will be
verified next in a usability study and a usability experiment as well.

References
[1] Baumann, M., Cao, Y., Cauchard, F., Corradini, P., Dehais, F., Fonda, S., Heers, R.,

Heesen, M., Kelsch, J., Losi, G., Magnaudet, M., Montanari, R., Müller, H., Neujahr, H.,
Rister, F., Tango, F, Temmos, J.-M., Tesauri, F., Zimmermann, M. (2012): Reference
Designs and Design Patterns for Cooperation & DCoS State Inference and Adaptation.
D3-03 public deliverable for EU-D3CoS

[2] Boy, G. (1994): Interface Agents for handling fuzzy descriptors in information retrieval.
5th Int. Conference on Processing and Management of Uncertainty in Knowledge-Based
Systems, Paris, France, July 4-8, 1998

[3] Boy, G. (1998): Cognitive Function Analysis for Human-Centered Automation of Safety-
Critical Systems. Conference on Human Factors in Computing Systems, Los Angeles,
California, USA, Apr. 18-23, pp. 265-272

[4] Byrne, M. D., (2001). ACT-R/PM and menu selection: Applying a cognitive architecture
to HCI. International Journal of Human-Computer Studies, 55, pp. 41-84

[5] Castelfranchi, C. (1998). Modeling Social Action for AI Agents. Journal Artificial
Intelligence - Special issue: artificial intelligence 40 years later archive Volume 103
Issue, Aug. 1-2, 1998

[6] Elm, W. C., Gualtieri, J. W., McKenna, B. P., Tittle, J. S., Peffer, J. E., Szymczak, S. S.,
Grossman, J. B. (2008): Integrating Cognitive Systems Engineering Throughout the
Systems Engineering Process. Journal of cognitive Engineering and Decision Making,
Vol. 2, Num. 3, Fall 2008, pp. 249-273

[7] Endsley, M. R. (1995): Toward a theory of situation awareness in dynamic systems.
Human Factors 37, pp. 32-64

[8] Endsley, M. R. (2003): Designing for Situation Awareness: An Approach to User-
Centered Design. Taylor & Francis

[9] Extensible Markup Language (XML) 1.0 (Fifth Edition): http://www.w3.org/TR/REC-
xml, last visited Jan. 2013

[10] Fast Light Toolkit (FLTK): http://www.fltk.org, last visited Dec. 2012
[11] Flemisch F., Kelsch J., Löper C., Schieben A., Schindler J. (2008): Automation

spectrum, inner/outer compatibility and other potentially useful human factors concepts
for assistance and automation. de Wart, D. (Ed). Human Factors for Assistance and
Automation, Shaker Publishing

[12] Flemisch, F. (2000): The horse metaphor as a guideline for vehicle automation.
Proposal to the National Research Council, Munich

[13] Gibson, J. J. (1977): The Theory of Affordances. In Perceiving, Acting, and Knowing,
Shaw, R. & Bransford, J. (Eds.), ISBN 0470990147

[14] Hoc, J. M. (2001): Towards a cognitive approach to human-machine cooperation in
dynamic situations. International Journal of Human-Computer Studies, 54, pp. 509-540

[15] Hollan, J., Hutchins, E., Kirsh, D. (2000): Distributed Cognition: Toward a New
Foundation for Human-Computer Interaction Research. ACM Transactions on
Computer-Human Interaction, Vol. 7, No. 2, pp. 174-196

[16] Hollnagel, E. & Woods, D. D. (1982): Cognitive Systems Engineering: New wine in new
bottles. International Journal of Human-Computer Studies, Volume 51, Number 2, Aug.
1999, pp. 339-356

[17] Holzmann, F. (2007): Adaptive Cooperation between Driver and Assistant System.
Springer

[18] Kelsch, J. (2012): Arbitration between Driver and Automation: why Overriding is just
the Tip of the Iceberg. InteractIVe Summer School, 04.-06.06.12, Corfu Island, Greece

[19] Kelsch, J., Heesen M., Hesse T., Baumann M. (2012): Using human-compatible
reference values in design of cooperative dynamic human-machine systems. EAM 2012,
11-12.09.2012, Braunschweig, Germany

[20] Kleene, S. C. (1938): On notation for ordinal numbers. Journal of Symbolic Logic, Vol.
3, No. 4, pp. 150-155

[21] Lewin, K. (1938): The Conceptual Representation and the Measurement of
Psychological Forces. Psychological Theory, 4, Duke University Press, Durham, N.C.

[22] Lintern, G. (2007): What is a Cognitive System? Proceedings of the 14th International
Symposium on Aviation Psychology, pp. 398-402. 18.-21.04.2005, Dayton

[23] Lintern, G. (2011): Tutorial: Work Domain Analysis. www.cognitivesystemsdesign.net
[24] Łukasiewicz, J., Borkowski, L. (Ed.) (1970): Selected Works, Warsaw
[25] Montenegro, S., Dannemann, F., Dittrich, L., Vogel, B., Noyer, U., Gacnik, J., Hannibal,

M., Richter, A., Köster, F. (2010): (Spacecraft Bus Controller + Automotive ECU) / 2 =
Ultimate Controller, in Lecture Notes in Informatics (GI-Edition), 160, Gesellschaft für
Informatik. Software Engineering 2010 / ENVISION2020, pp. 103-114, Paderborn

[26] Nielsen, J. (1993): Usability Engineering. Morgan Kaufmann, San Francisco
[27] Norman, D. A. & Draper, S. (1986): User centered system design: New perspectives on

human-computer interaction. Mahwah, Lawrence Erlbaum Associates
[28] Norman, D. A. (2007): The design of future things. New York, N.Y. Basic Books
[29] Pagès, B. (2012): Bouml 2.7.6. http://bouml.free.fr/, last visited Dec. 2012
[30] Puerta, A., Eisenstein, J. (2002): XIML: a common representation for interaction data.

Proceedings of the 7th international conference on Intelligent user interfaces, 214-215
[31] Putzer, H. & Onken, R. (2003): COSA - A generic cognitive system architecture based

on a cognitive model of human behavior. CTW (2003) 5: pp. 140-151
[32] Rao, A. S. & Georgeff, M. P. (1991): Modeling rational agents within a BDI-

architecture. Proceedings of the International Conference on Knowledge,
Representation and Reasoning, pp. 473-484

[33] Rasmussen, J. (1986): Information processing and human-machine interaction: An
approach to cognitive engineering. New York, North-Holland, pp. 101-115

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.fltk.org/
http://bouml.free.fr/

[34] Rasmussen, J., Pejtersen, A., Goodstein, L. (1994): Cognitive Systems Engineering. New
York, Wiley

[35] Schieben, A., Temme, G., Köster, F., Flemisch, F. (2011): How to interact with a highly
automated vehicle - generic interaction design schemes and test results of a usability
assessment. Human Centred Automation. de Waard, D., Gerard, N., Onnasch, L.,
Wiczorek, R. & Manzey, D. (Eds.). Maastricht, Shaker Publishing: pp. 251-266

[36] Schramm, W. (1954): How Communication Works. In: W. Schramm (ed.). The Process
and Effects of Mass Communication. Urbana: University of Illinois Press 1955, 3-26

[37] Schweitzer, F. (2003): Brownian Agents and Active Particles. Springer, Berlin
[38] Shannon, C.E. (1948): A Mathematical Theory of Communication. Bell System

Technical Journal, Vol. 27
[39] Shoham, Y., Leyton-Brown, K. (2009): Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press
[40] Vakarelov, O. (2009): The Cognitive Agent. Department of Philosophy, University of

Arizona, Tucson, Arizona
[41] Vicente, K. J. (1999): Cognitive work analysis: Toward safe, productive, and healthy

computer based work. Lawrence Erlbaum Assoc Inc
[42] Wallach, M. A., Kogan, N., & Bem, D. J. (1964). Diffusion of responsibility and level of

risk taking in groups. Journal of Abnormal and Social Psychology, 68, pp. 263-274
[43] Watzlawick, P., Helmick Beavin, J., Jackson, D.D. (1967): Pragmatics of Human

Communication: A Study of Interactional Patterns, Pathologies, and Paradoxes. Norton
[44] Wickens, C.D. (1984): Processing resources in attention. In Parasuraman R. & Davies

D.R. (Eds.), Varieties of attention, pp. 63-102. New York. Academic Press
[45] Woods, D. D., & Hollnagel, E. (1987): Mapping cognitive demands in complex

problem-solving worlds. International Journal of Man-Machine Studies, 26, pp. 257-275

