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Abstract 
Creating dynamic cognitive systems, such as human-machine systems with 
the appropriate interaction inside, the system engineer is usually facing a 
high overall complexity. For instance, designing a modern driver assistance 
system, the developer is dealing with the diversity of drivers’ behavior, the 
complexity of the traffic and vehicle dynamics and the heterogeneity of 
already designed assistance systems. To deal with this complexity 
effectively, the creation of holistic, stable and well-usable cognitive systems 
implies the usage of a design framework, which could provide benefit and 
orderliness to the creation process. In this contribution, we propose such a 
design framework that consists of the theoretically derived generic 
cognitive system architecture as well as of the arbitration-based 
methodology and tool-based interface for the interaction design. Besides the 
theoretical background, we describe the general rules of the framework in a 
stepwise manner using an automotive example of a newly developed driver 
assistance system for cooperative lane changes in a highway scenario. 
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Introduction 
The main goal of this paper is to contribute to the structured design process 
in the research field of cognitive systems engineering (CSE) [16] by 
proposing a correspondent design framework. CSE is an important part of 
systems engineering [6], since the designed systems get more complex and 

mailto:johann.kelsch@dlr.de


because the human is a crucial part of those systems. During the last three 
decades, much effort has been made addressing the CSE research field and 
bringing up many useful concepts. One of the achievements (and maybe the 
most important) was the definition of the machine as a cognitive agent [16], 
although there is criticism from the perspective of human sciences [22] 
regarding the inability of the machines to reason. Though, the today’s 
machines are able to percept and to comprehend complex situations, for 
instance, by data fusion. Machines are able to project situation dynamics, 
for example, probabilistically, in order to generate autonomous decisions 
and control actions. In other words, today’s machines can be called 
cognitive, because they possess already placeholders for all levels of 
situation awareness [7] as well as internal knowledge and behavioral 
models. However, in this contribution, we use the term cognitive system 
‘CS’ as an aggregation for the cognitive multi-agent and human-machine 
systems. Further, we use the acronym ‘CA’ for all kinds of cognitive agents: 
humans, intelligent machines, automation, assistance etc. Furthermore, the 
important keywords and key-phrases will be highlighted by the italic font. 

The next important achievement in the field of CSE was the user centered 
design approach toward the usability engineering [26], [27], which moved 
the consideration of the human user’s cognition further into the CS design 
process and balanced it versus technology centered design [13]. After 
investigating several design metaphors for highly automated human-
machine systems in the automotive domain [12], [17], it became also more 
obvious that the machine design is not forced to be human-like but human-
compatible [11], [19]. Further, the methodology toward cognitive function 
and task analysis [3] and, in more general, cognitive work analysis [23], 
[41], [45] has to be considered. These approaches allow analyzing CAs and 
CS in a holistic way considering the possible cognitive processes and states 
within the CAs. During the proposed functional CS decomposition, the 
functional CA and CS requirements can be gathered and clarified.  

Though, besides the functional requirements in the CS design, there is also a 
strong necessity of gathering the structural requirements and thus the 
necessity of structural CS decomposition. It is not enough to answer the 
questions, for example, when and which tasks should be allocated to which 
CA and which goals which CA is supposed to achieve by means of which 
resources? To move toward the more concrete system design and 
implementation it is also crucial to answer the following two research 
questions. 1. How to implement the CS structurally? That means in detail: 
How can theoretically known cognitive structure elements be mapped to the 
soft- and hardware of the developer? Which structure elements have to be 



mapped? What is the appropriate common data representation thereby? 
There are many theoretical considerations regarding CA architectures [4], 
[30], [32] and several of them regarding CS architectures [31], [39], but 
unfortunately, we discovered a lack of structurally applicable propositions 
on the CS level as well as on the level of integrated CA interaction design 
process. Supposedly, this circumstance is due to the lack of the evident 
structural similarities between different kinds of CS both on the system and 
on the agent interaction level. What are cognitive structural elements that 
could be common for the agent interaction at an office work place, in a 
driver-automation system and in a swarm of UAV’s? By means of those 
similarity hints, essential structural information could be gathered to 
describe a generic CS architecture. Further, a proper design interface to the 
generic CS architecture could be derived regarding creation or modification 
the functional CS inner life by means of the CA interaction design. That 
leads us directly to the second research question. 2. How can the interaction 
design process be connected to a generic CS architecture? We will deal 
with both research questions in two theoretical parts of this contribution.  

After the theoretical parts, we will focus on how to translate the proposed 
theory toward a more concrete CS architecture and interaction design for 
the automotive domain. We will give a brief and stepwise overview about 
the application of the proposed framework for the development of new 
cooperative lane change driver assistance system. Besides this, we will 
emphasize the advantages for a system engineer, who follows the proposed 
framework philosophy using a new interaction design interface tool based 
on the presented theoretical basis as well. 

Structural similarities toward the generic CS architecture 
Let’s address the question about structural similarities between different CS 
first. Therefore, we take a look on the definitions: What are a CS and a CA 
and what is the dependency between them? The most obvious statement, 
that can be made after defining the machine as a CA, is the conclusion that 
every CS, either artificial or not, consists of at least two CAs. Surely, 
generic CS with only one CA inside is possible as well, but in these brief 
theoretical considerations we do not take into account this exceptional case. 
However, there are two CAs within a generic human-machine system: a 
human and a machine agent and there are at least a driver and an assistance 
system agent within a generic driver-automation system in automotive 
domain. This initial CS description is well-known and is also identified in 
the field of the multi-agent system research, such as distributed artificial 
intelligence [15], [30], [32], [39], which, by the way, can be used in CS 



design by means of the provided powerful methodology for the agent 
modeling. Further, it is important to note that a CS with several CAs inside 
is a complex system because of the theoretically assumed emergent origin of 
the cognition itself [5], [22]. So in CSE, we have to deal with emergent 
effects, highly non-linear dynamics, self-organizing processes etc. 

There are several definitions of the term ‘cognitive agent’, for instance [5] 
“agent is any entity able to act”, [32], [40], etc. Most definitions claim 
nearly the same sub-parts of a CA: beliefs, desires, goals, plans, intentions 
and actions and a ‘cognitive kind’ of dealing with these items by a CA. For 
instance, a CA can possess declarative and procedural knowledge, mental 
models, a CA can be able to learn something, a CA can transform allocated 
tasks into activity by means of cognitive functions [3] and a CA can possess 
internal situation awareness states with a generic cognitive informational 
processing inside: perception, comprehension, projection [7] and (more or 
less) independent decision and action performance. Thereby, the cognitive 
items, such as beliefs, desires, goals etc., can be regarded as factors 
influencing the cognitive process itself as well as products of and 
informational links between the processing steps. Though, on the current 
abstract level of CS consideration, these cognitive items can be aggregated 
as actions. Further, to deal with the similar content on the CS level, it is 
reasonable to define the environment within a particular CS as a non-
cognitive (reactive) agent (NCA) like proposed also in [5]. In automotive 
domain, we have at least two NCAs: the environment and the vehicle. Thus, 
the first structural similarity toward a generic CS architecture is that all (re-
)acting entities within a CS can be represented by (re-)acting agents. 

However, in this contribution we will not stress the whole agent modeling 
side of the CSE. Rather, we will stress that first: agents are interfering with 
each other by means of actions, second: that a system engineer can 
influence this interference and third: that a generic CS architecture and 
corresponding interaction design interface can be derived using that 
information. Because of this and in order to give the system engineer the 
freedom to integrate her/his own agents or agent models into the particular 
CS design, we use CAs as well as NCAs structurally as black boxes with 
corresponding inputs and outputs. Such a ‘black box’ is able to perceive 
information from other agents, to process this information changing certain 
internal states, making decisions and providing the processed information 
toward interference with other agents. An example for the automotive 
domain: During the driving, a driver is acting and interacting constantly 
with her/his assistance, vehicle and environment and the assistance agent 
does so as well. The vehicle is reacting and interacting with the reactive 



environment and with the CAs on board. In such a CS model the second 
structural similarity is that the informational behavior of agents can be 
described by agents’ input and output (re-)actions. In this manner, all 
agents can be regarded being in an action space interfering with each other 
by means of actions. We speak about interaction between two agents, when 
input and output (re-)actions of each agent have both-sided connections. 

Every behavior of an agent contains an informational component. “One 
cannot not communicate” [43]. And the information itself, provided by an 
agent, needs an initial event to be presented and/or to be revealed. Thereby, 
events can be regarded as trigger for new actions as well as connections 
between agents and actions. Actions themselves can be regarded as 
expression of internal agent states and can produce new events. This 
relationship between event, (cognitive) agent state and action is the third 
structural similarity on the way to the generic CS description. Until now, 
we (over-)simplified the CS ontology toward the abstract interaction model 
[36] and similar to the ‘quasi thermodynamic’ model of Brownian Agents 
[37]. Figure 1 left shows a cooperative lane change traffic scenario and on 
the right the corresponding structural CS decomposition. 

 

There are two main vehicles: V1 (NCA1) on the right lane and V2 (NCA2) 
on the left lane of a two-lane highway. Both vehicles have human drivers 
and lane change assistance systems on board of V1 and V2 (CA1-4). The 
third vehicle and the environment are aggregated in the non-cognitive agent 
NCA3. In this scenario, a conflict is modeled: V1 has to change its current 
right lane because of the dangerous environmental issue in front, but the 

Figure 1: Conflict modeling in a cooperative lane change scenario (right) and (left) 
structural decomposition of the scenario into the agent and action space based model 



aimed left lane is potentially blocked by the fast moving vehicle V2. To 
resolve this conflict situation, there is a necessity for cooperation between 
V1 and V2. On the Figure 1 right, the agents are shown as circles, their 
actions as arrows and events as arrowheads. However, to get more concrete 
toward the structural CS and agent interaction description, we need five 
further theoretical concepts: action tension [19], agent interference [5], 
arbitration [18], multi-resource theory in cognitive informational 
processing [44] and the time horizon in CA behavior. 

Let’s speak about the action tension first. There are two well-accepted 
psychological concepts (Psychological Forces [21] and Affordances [13]) 
dealing with human’s motivational processes. They operate with terms 
being near to physical and technical terms, such as force and tension. Both 
concepts can be summarized in a prospective and directed metric action 
tension indicating the direction toward certain possible actions to reach the 
same system state (Figure 2 left). This provides the opportunity to model 
the behavior of CAs and CS both on a higher level and on a common 
ground. The complex interaction processes, being highly dependent on CA 
behavior (actions) itself, can be modeled in a more simplified manner.  

 

A hypothetical example of using action tensions in CS design is shown as 
‘food assistance’ in a sequence diagram on Figure 2 right. The machine 
agent communicates relevant interaction signals to the hungry agent in order 
to keep her/him in the optimal state ‘full’ and away from the state ‘sick’. 
Here is also shown that the action tension can have two opposite directions: 
toward get/avoid food (+/++, -/-- AT), or steer left/right as example for 
automotive applications. So, the continuous two-directional value separated 
in discrete zones would be the common data representation in the proposed 
CS architecture. Here, the value itself is the action tension, the zones are 
operationalized tension states and the borders between the zones mark the 
trigger events for possible cognitive state changes and anchor points for 
artificially designed interaction and CS behavior synchronization signals. 

Figure 2: Combination of psychological force and affordance to action tension (left) 
and action tension based hypothetical example of a food assistance (right) 



Thesis: A cognitive system being in a particular state can be described as 
controlled by multiple tensions directed toward actions leading to other 
system states. Hypotheses: I) Humans are supposed to act toward keeping 
the tensions in an optimal state and machines can be designed to do so as 
well [19]. II) The particular action tension falls if the CA acts toward the 
optimal action tension state and it rises when a) CA acts contrary to the 
optimal action tension state or b) CA persists (performs no action) being in 
a suboptimal state. Hence, the particular action tension can describe in the 
generalized way how urgent the particular action is and which sequence of 
interactions is necessary to reach the change of the system state toward 
minimizing the action tension by transition into the aimed optimal action 
tension state. The consideration of action tensions is the fourth structural 
similarity. It describes the ‘missing glue’ between all possible CA actions 
within the action space and could be also one of the applicable “pre-
cognitive structures” claimed to be formalized for CSE [5]. Further, action 
tensions can be used in CSE to analyze and to redirect the CA actions by 
means of explicitly designed interaction signals in the direction favored by 
the system engineer. This is indicated on Figure 1 right by parallel drawn 
actions influenced by the correspondent (cooperative) action tension.  

Using action tensions as universal reference values for the CS design and 
control, the system complexity can be reduced and the control processes can 
be linearized toward favored design and control issues, such as workload 
distribution, attention control, situation awareness [8], safety, efficiency, 
comfort improvement etc. Therefore, action tensions can be separated in 
time, space or more complex value dependent zones operationalized, for 
example, by inductive exploration and/or by theoretical deduction of 
possible agent states and subsequently connected agent (re-)actions. The 
borders between the zones can be used as events synchronizing the CA 
actions by artificially designed signals, which can be distributed within the 
whole CS, for example, by machine agents or HMI agents [2]. Thereby, the 
important constraint of using the action tensions for the CS and interaction 
design is the finding of an appropriate operationalization manner.  

The fifth structural similarity can be found in the CA interference, which is 
necessary for deriving the generic CS architecture as well as for the 
corresponding interaction design interface. Here, we follow Castelfranchi 
[5] arguing that all agents (CAs as well as NCAs) are interfering with each 
other within a CS by means of actions. This way, the behavior of a CS can 
be defined by the CA interference. There are two dual sorts of interference: 
positive and negative. The negative interference causes emergent effects 
within a CS influencing negatively the objective CS performance during the 



CA interference. The negative CA interference is characteristic for 
(potential) conflict states. For example, when a driver drives down a road 
fork by an intelligent vehicle and the driver and the machine agent on board 
have or are going to have different intentions. The driver could aim at 
steering to the left and the machine agent to the right. Will the vehicle move 
to the left or to the right? Those conflicts or competition situations and 
hence the negative interference between CAs can be managed by a concept 
of arbitration [18], which is a subset of the overall CA interactions. The 
particular arbitration model for the automotive domain is shown on Figure 3 
left. The CA arbitration is defined as the finite negotiation between two 
CAs by means of proper interaction strategies and signals aimed at reaching 
a joint intent, decision and action within the CS and within the available 
time. This way, a system engineer can influence strategically and/or 
immediately the (joint) action of at least two CAs by explicitly designed 
arbitration strategies and signals. Therefore, the complete agents’ actions 
must be described within a common frame of reference (CFoR) in order to 
manage the CA interference explicitly, for example, by an arbiter [18] or by 
another kind of HMI agent. It is important to note, that the CA interference 
is present at all steps of the agent informational processing. If we assume, 
that CAs possess an internal situation awareness processes, then the agents 
are interfering in perception, comprehension, projection, decision and action 
states using the corresponding cognitive items: beliefs, desires, goals, plans, 
tasks, intentions and actions. The (potential) conflicts on all levels of 
situation awareness can be arbitrated by influencing these cognitive items 
using action tensions. Therefore, a system engineer can moderate the joint 
CA decisions toward the joint CA actions by using additionally injected 
interaction signals, which must be defined within the CFoR as well and 
which can be triggered by events placed along the action tensions.  

The positive interference is dual to the negative one. However, it can be 
managed exactly the same way like the negative interference. The positive 
interference causes emergent effects within a CS, which influence positively 
the objective CS performance during the CA interference. An example for 
the positive interference is the agent cooperation [5], [14]. To improve, for 
example, the overall effectiveness of the traffic in the proposed scenario 
from Figure 1 left, it is reasonable to initiate a cooperation process between 
V1 and V2. So, the V2 could decelerate slowly and thus energy efficiently 
in order to allow the lane change for V1. Afterwards, V1 could change the 
lane fluently and efficiently as well. Therefore, during the functional CS 
decomposition, a priori domain purpose and functions [23] must be defined, 
such as “the traffic should act energy efficiently” and/or “the dangerousness 
of the traffic situations should be minimized”. If those functions or purposes 



are in a possible conflict state, for example, the traffic is not yet acting 
efficiently, then the system engineer can use this discovered higher level 
conflict as the starting point to improve the CS performance. This can be 
done, for example, by means of cooperation mechanisms, such as 
cooperation modes [14] or design patterns for cooperation [1]. 

To initiate, moderate and decide within cooperation processes, arbitration 
concept can be used, because finite negotiations of cooperative (joint) 
decisions and actions within cooperation processes are necessary as well. 
For the cooperation, and thus for the positive interference issues, HMI 
agents, such as arbiters, can be used. Further, cooperation processes and 
cooperative CA actions can be managed by the system engineer on all levels 
of cognitive informational processing by using operationalized 
(cooperative) action tension within the cooperation design. Following this 
line of argumentation, we state that within the proposed CS ontology, it is 
possible to address every kind of CA interference by arbitration.  

We claim that the starting point for design of CA interference management 
and thus the starting point for interaction design should be the analysis and 
modeling of (possible) conflicts together with the functional and structural 
CS decomposition. Thereby, the system engineer could follow the proved 
minimalistic design principles, such as “keep it simple but not simpler” or 
“never touch a running system”, because only possibly discovered CS 
conflicts would justify the usage of new interaction strategies and signals. If 
no (possible) system conflicts are discovered, then no CA interaction design 
is necessary! Further, the discovered conflicts allow using design patterns 
as proved ‘problem-solution dyads’ [1]. Furthermore, such conflict-centered 
design approach allows a balancing between human-centered and 
technology-centered CS design, since the relevant usability problems within 
a CS arise within the action space between the CAs [28]. 

The sixth structural similarity can be found considering the time horizon in 
CA behavior within a CS. Rasmussen [33] argues, for example, that the 
human’s control behavior is separable into three levels: skill-, rule- and 
knowledge-based levels. For the interaction design, he proposes using 
signals, signs and symbols respectively. The main argumentation thereby is 
that for the processing of those interaction signals on the proposed levels of 
control more processing time or longer time constants are necessary, when 
the informational processing moves from the signal to the symbol 
processing and from the skill-based to the knowledge-based level. In the 
theory of situation awareness [7], there are three levels as well: perception, 
comprehension and projection that are assumed as a sequence of the 
cognitive informational processing. Because of necessity of running through 



former situation awareness levels (for instance, perception and 
comprehension), the next level of situation awareness (for instance, 
projection) would take an overall longer time slot and it could be controlled 
using longer time constants as well. Other considerations due to the time 
horizon in CA behavior we find in [5] and based on it [14], which propose 
at the end three levels as well: action-, plan- and meta-level. These levels 
can be regarded also with rising time constants on the way from the action- 
to the meta-level. Similar triples regarding the time horizon, we find in 
economic science and military definitions: operational, tactical and strategic 
levels, which have also rising time constants on the way from operational to 
the strategic level, e.g., of planning or executing tasks. However, because in 
system and interaction design the system engineer is interested in effects 
s/he can achieve by the proper interaction strategies and parameterization of 
the interaction elements, it is reasonable to cluster all discussed terms after 
the time horizon similarity. After doing this, we define also three levels 
regarding the expected influence to the agent (re-)actions: long-term, short-
term and immediate effect levels (Figure 3 right). Exemplary for automotive 
CS, on the long-term level could be the management of automation levels 
[11], cooperation modes [14] and/or maneuver arbitration. On the short-
term level could be trajectory arbitrations (lateral deviation, speed and 
distance to other objects etc.) On the immediate level, the management of 
control allocations to particular CAs could be placed. 

 

The last seventh structural similarity toward the generic CS architecture can 
be found in the parallel consideration of the multi-resource theory (MRT) 
[44] and channel structures proposed in technical communication sciences 
[38]. MRT argues that humans possess several different cognitive resources, 
which can be used simultaneously. When humans percept and process 
information toward actions subconsciously, symbolically, linguistically by 

Figure 3: Particular arbitration model for automotive domain (left), time horizon/time 
constants dependent clustering of cognitive processing models (right) 



means of different modalities, such as acoustic, visual or haptic, then we are 
able to process the information in parallel with some interference or noise 
effects between the particular cognitive resources. For interaction design, 
MRT shows the opportunity to use the parallel cognitive processing power 
by channeling information separating the designed interaction signals into 
former defined multimodal channels and sub-channels. 

Every multimodal channel, e.g. haptic channel, can be separated in sub-
channels dealing with different sorts of interaction signals and 
correspondent semantics. So, a ‘hint sub-channel’ can be defined providing 
hints by discrete haptic signals, such as haptic ticks, or an ‘action guiding 
sub-channel’ can be defined providing information by continuous haptic 
force feedback. Other modalities, such as visual and acoustic, can be 
separated in sub-channels with deterministic semantics as well. This way by 
means of sub-channels, different semantics can be channeled to the CAs 
simultaneously using the power of CA parallel cognitive informational 
processing. Further, the deterministic kind of providing information 
semantics allows using technical approaches for managing the informational 
flows, such as prioritization, de-conflicting and/or arbitration. Furthermore, 
early consideration of semantics brings orderliness, consistency and user 
compatibility to the design process as well as to the interaction design itself.  

Now, it is possible to set up the generic CS architecture (Figure 4 left). On 
the upper (Agent Action and Tension) layer we deal with the first four CS 
structural similarities. Here, the inference of agent states and actions as well 
as inference of possible events and action tensions can be placed. This can 
be done using former definition of CFoR and concepts described above. 
Brief summary: All entities in a CS are agents with internal (cognitive) 
states. The agent states are getting ‘visible’ by correspondent actions. All 
agent actions and thus all agent states can be manipulated on later layers 
using synchronization events and correspondent interaction signals placed 
along operationalized action tensions. On the next (Agent Interference 
Management) layer we deal with the fifth and sixth CS structural 
similarities. Here, agent interference management units, such as arbiters or 
other sorts of HMI-Agents, can be placed arbitrating discovered system 
conflicts and/or managing the agent interference toward cooperation. This 
can be done using the appropriate interference management strategies on the 
three levels dependent on the expected time horizon of action influence 
effects: long-term, short-term or immediate and derived from former 
designed informational syntax and semantics.  



On the next (Interaction Element and Channel) layer, very concrete 
implementation of interference management can be placed in form of 
concrete interaction element (and hence multimodal sub-channel) behavior 
definition, parameterization, calculation, de-confliction and channeling 
toward the last (Agent Interaction Hardware) layer. Thereby, the interaction 
hardware implies the human user compatible active multimodal 
inceptor/feedback devices as well as the hardware providing interaction to 
and between the machine agents. Further, the Semantic Design Layer can be 
connected to the proposed generic CS architecture by means of the tool-
based Interference and Element Design Interface. We will deal with this 
important interface as well as with the correspondent interaction design 
methodology in the next section. 

 

Interaction design process and interface to the CS architecture 
On the Figure 4 right a communication path is shown, which describes the 
informational flow between a system engineer designing favored interaction 
and a human user or other kind of CA receiving the designed information. 
First, the system engineer has to decode or to translate the favored 
information on the sematic and syntax design layer answering the central 
question: “Which information must be communicated to the CAs?” The 
answer to this question can be found modeling situation conflicts and using 
deductive and/or inductive methods. Deductive methods could be the 
cognitive task, function and/or work analysis [3], [34], [41]. Inductive 
methods could be the systematic design space definition and/or exploration. 
However, the answer to the first central question implies the answers to the 
sub-questions: “Are there issues that the system engineer can resolve by a 
proper interaction design? What will happen if these issues stay unresolved? 

Figure 4: Generic CS architecture with connected interaction design interface (left) 
and communication path between the system engineer and the system user (right) 



Which issues must be resolved necessarily? When and which information 
CAs need therefore? What could be the applicable arbitration strategies?” 
Under the assumption that it is possible to linearize and to operationalize the 
agent interference process by using action tensions, the output of the 
semantic decoder part should be the clearly decomposed and consistent 
semantic informational pieces, such as phrases and sentences, preferable in 
form of a ‘semantic storyboard’ and/or a sequence diagram dealing with 
informational and agent behavioral flows on the semantic level. 

Afterwards, the storyboard can be used toward the particular CA interaction 
design answering the second central question: “How the identified 
information design can be communicated to the CAs?” Therefore, the 
favored interaction design should be decomposed structurally answering the 
following sub-questions: “Which action tensions can be identified and 
operationalized within the gathered semantics and the particular CS 
context? Which CA actions must be exhibited (initiated, assisted, gained 
etc.) or inhibited (prevented, forbidden, redirected etc.)? Which interference 
and/or arbitration strategies and signals can be used to resolve the 
discovered issues? Which multimodal channels and sub-channels can be 
used therefore?” Thereby, the storyboard can be encoded in action tension 
dependent strategies using multimodal elements, which should be separated 
into sub-channels and tuned to be presented to the user by means of the 
interaction hardware. The aimed CA receives the channeled interaction 
information by decoding the multimodal element signals and strategies 
encoding them into the overall designed semantic meaning at the end. 

Such kind of holistic interaction design often needs the participation of and 
the discussion between persons working in various disciplines: Designers, 
technicians, human factors professionals or computational scientists. In 
order to make the design process easily understandable and usable for all 
involved disciplines, it is necessary to present and to design the interaction 
in a clearly arranged way. Figure 5 left shows a proposition for a design 
interface that can be easily connected between the Agent Interference 
Management and the Interaction Element and Channel Layer of the former 
proposed generic CS architecture (Figure 4 left). After producing the 
semantic storyboard and definition of action tensions it is possible to 
describe the interference strategies (syntax) using ternary logic [20], [24] 
between the trigger events based on action tensions and the triggered 
interaction elements separated in correspondent semantic channels. The 
used ternary logic consists of three logical states: enable (+), disable (-) and 
don’t care (0). The truth tables of the logic are shown on the Figure 5 right. 



The activation of a particular semantic sub-channel and consequently the 
enabling of a particular multimodal interaction element can be logically 
determined by the ternary AND-relation. The element priority based de-
confliction of the elements placed on the same semantic channel can be 
determined by the ternary OR-relation. Elements themselves can be 
parameterized by manipulating correspondent element parameters. This 
way, using the proposed design interface, a deterministic interaction model 
can be produced, which will be integrated into the generic CS architecture. 
This model can be tested and tuned within the particular developed CS and 
within the particular used simulation environment. Usage of the proposed 
design interface and principles, e.g. in a GUI, could provide an easy and 
open parameterization and tuning interface for the interaction design, a 
quick portability of the interaction models between different CS 
environments, a reusability of interaction design models, a well-ordered 
dialog between participating professionals from different disciplines and so 
guide the whole design process toward holistic cognitive system design. 

 

Application of the interaction design framework 
In this section, we deal with the exemplary application of the proposed 
interaction design framework. Therefore, we use the cooperative lane 
change scenario introduced on Figure 1 left. The initial step toward the 
development of new cooperative lane change assistance was the problem 
analysis and the conflict modeling. Therefore (1), we defined [23], [41] for 
the current domain (land-based cooperative traffic) the domain purpose 
(personal and goods transport on highways) and the domain values & 
priorities (safety, efficiency and comfort). Then (2), we modeled the former 
mentioned scenario that is very common for the domain on the one hand but 
conflicts the domain values on the other hand. The modeled CS scenario is 
unsafe, inefficient and uncomfortable. The solution for the modeled conflict 

Figure 5: Tool-based interaction design interface to the generic CS architecture (left) 
and truth tables for AND- and OR-relations in used ternary logic (right) 



was expected in the cooperation between the vehicles V1 and V2 initiated 
by the assistance systems on board. Therefore in the aimed CS, all possible 
CA actions must be influenced toward cooperative actions by an appropriate 
interaction design. Following the proposed framework (3), we assumed a 
linear cooperative action tension that controls cooperative CA actions 
within the aimed CS. That tension must consist of a particular state 
sequence describing the syntax of the cooperation process as well as of the 
state transitions triggering events for additionally injected signals. Those 
signals were supposed to provide the aimed interaction semantics for the 
cooperation maintenance and to synchronize the cooperative CS behavior. 
Further, the optimal tension was defined using two functional system states: 
‘There is no need for cooperation’ and ‘cooperation is done’ (Figure 6 mid). 

 

The next development steps were: (4) functional and structural 
decomposition of the origin CS, (5) interaction design and (6) composition 
of the aimed CS regarding the operationalized cooperative action tension 

Figure 6: Framework based design for cooperative lane change assistance system: 
Semantic storyboard and agent interaction signal flow (top), after cognitive function 
and task analysis operationalized cooperative action tension (mid), design of the 
visual feedback display for both vehicles (down) and overall legend (right) 



and the designed interaction. The steps (4), (5) and (6) we will describe in 
more detail. Thereby, we will focus on four important design aspects: 
initiation of the cooperative process, arbitration by using the cooperation 
modes, by the providing distributed situation awareness and by the 
cooperative action guiding. Figure 1 right shows the structural 
decomposition, where all CAs as well as NCAs were identified. Using the 
functional decomposition of the origin CS and working out the semantic 
storyboard for aimed interaction design (Figure 6 top) in parallel, it was 
possible to identify the functional states and synchronizing events in 
between, which operationalize the assumed cooperative action tension 
(Figure 6 mid). Four main states (or action tension zones) were identified: 
‘Determining of cooperation necessity’, ‘determining of cooperation 
acceptance’, ‘guiding of resource producing’ and ‘guiding of resource 
usage’. The events between the states were identified as: ‘Cooperation is 
necessary’, ‘cooperation is accepted’ and ‘resource is ready’. 

During the functional CS decomposition, in particular during the cognitive 
task analysis toward the aimed system composition, two cooperation modes 
[14] for implementation of the aimed interaction design were defined: 
‘Perception mode’ and ‘mutual control: Action suggestion mode’ (Figure 7 
bottom right). In perception mode the driver is responsible for the execution 
of the complete lane change maneuver. If necessary, the assistance is 
responsible for initiation of the cooperation. If cooperation usage is 
accepted by the drivers, the cooperation mode changes to the action 
suggestion mode. Here, the assistances negotiate opening the gap and 
suggesting to the drivers the proper actions, which lead to the successful 
completion of cooperation toward opening the gap and changing the lane.  

Technically, this behavior is implemented as two HMI-Agents called Mode 
Selection and Arbitration Unit (MSAU) and Maneuver Arbitration Unit 
(MAU). MSAU manages the cooperation mode selection and interference, 
which is a strategic and long-term sort of CS control. The driver can decide 
strategically to continue driving, e.g. performing of the next maneuver, with 
or without support by the assistance. Internally, the MSAU is a state 
machine (Figure 7 top right), which describes the available cooperation 
modes and all possible transitions between these modes. Primarily, it uses 
the design pattern of interlocked transitions [35] and the operationalized 
cooperative action tension. It activates HMI elements in order to arbitrate 
the mode selection conflicts and to inform the driver about the current 
cooperation mode and mode transition. In action suggestion mode, the 
MSAU communicates the current cooperation mode to the MAU that 
activates maneuver guiding HMI elements using cooperative action tension. 



 

Composing the aimed CS structurally, both HMI-Agents (MSAU&MAU) 
were implemented within an integrated, reusable and model-based C++ 
software/hardware architecture (Figure 7 left) called InteractionController. 
It follows the generic CS architecture from Figure 4 left, automotive 
arbitration model from Figure 3 left and is integrated into the DOMINION 
implementation platform [25]. For better reusability of software modules, 
the InteractionController was implemented using software modeling tool 
BOUML 2.7.6 [29]. Human, automation and situation data collectors 
together with the CAs (driver and automation) represent the Agent Action 
and Tension Inference Layer of the generic CS architecture. MSAU&MAU 
are producing long-term effects on the Agent Interference Management 
Layer. They provide interaction activation data for the Interaction Element 
and Channel Layer, where Interaction Calculator and HMI-Handler are 
placed. Interaction Calculator uses the interaction design model and the 
object oriented multimodal element collection to produce the requested 
HMI signal flow separated in the former defined (sub-) channels. The HMI-

Figure 7: Adaptation of the generic CS architecture for cooperative lane change 
assistance system (left). Particular behavior of the Mode Selection/Arbitration Units in 
vehicles V1, V2 and definition of the used cooperation modes (right) 



Handler arbitrates this flow and produces a deterministic output for the 
Agent Interaction Hardware Layer represented by the HMI-hardware. 

Designing the CA interaction, the main strategy was to initiate the 
cooperation process between the vehicles V1 and V2, to maintain it and to 
guide it along the cooperative action tension toward the successful 
termination. This was mainly done using the design pattern and the visual 
channel of the distributed situation awareness. Figure 6 down sketches the 
corresponding visual display in both vehicles with slightly different parts of 
the same situation display. The own vehicle is always in the middle. 
Further, it shows the interaction sequence (syntax) depending on the 
cooperative action tension. Therefore, the defined semantic sub-channels 
were: Cooperation initiation and existence feedback (dashed and solid 
dyads), intention and action suggestion feedback (hollow and full triangles) 
and gap availability feedback (hollow and full rectangles). Using dyads was 
supposed to prevent the diffusion of responsibility [42] and to maintain the 
cooperation process. Intention and gap availability feedback was supposed 
to improve the distributed situation awareness. Action suggestion feedback 
was supposed to initiate and to guide the cooperative actions. According to 
the concept presented on Figure 5, the model of the presented interaction 
was developed in a GUI-based interaction design tool (Figure 8). The tool 
itself was developed in a straightforward way using the FLTK graphical 
toolkit [10]. This design tool is arranged in different layers grouping and 
logically linking different types of relevant interaction data. The data shown 
in the GUI is represented internally in eXtensible Markup Language (XML) 
[9] as a human readable hierarchical format. This makes it possible to reuse 
interaction design models and use them without or with other GUIs as well. 

 
Figure 8: GUI-based Interaction design tool with exemplary interaction implementation 



Summary and Outlook 
In this contribution, we presented the theoretical background to the 
arbitration based framework for design of holistic multimodal human-
machine interaction. Based on seven CS structural similarities and ternary 
logic, it consists of a vertical generic CS architecture and a horizontal tool-
supported interaction design interface and methodology. Further, we 
showed an exemplary application of the proposed framework toward 
development of a cooperative lane change assistance system for the 
automotive domain. The work on the presented framework as well as on the 
cooperative lane change assistance is still in progress. It is planned to 
formalize the framework toward verifiable CA interaction modeling and the 
correspondent usability testing methodology. The presented exemplary 
interaction design and the developed cooperative assistance system will be 
verified next in a usability study and a usability experiment as well. 
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