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The full publication of Ardipithecus ramidus has particular importance for the origins of hominin
bipedality, and strengthens the growing case for an arboreal origin. Palaeontological techniques
however inevitably concentrate on details of fragmentary postcranial bones and can benefit from
a whole-animal perspective. This can be provided by field studies of locomotor behaviour, which
provide a real-world perspective of adaptive context, against which conclusions drawn from
palaeontology and comparative osteology may be assessed and honed. Increasingly sophisticated
dynamic modelling techniques, validated against experimental data for living animals, offer a differ-
ent perspective where evolutionary and virtual ablation experiments, impossible for living
mammals, may be run in silico, and these can analyse not only the interactions and behaviour of
rigid segments but increasingly the effects of compliance, which are of crucial importance in guiding
the evolution of an arboreally derived lineage.
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1. INTRODUCTION
Darwin’s (1871) argument on human origins has
never appeared stronger than now, when molecular
evidence suggests a divergence time of only 5–8 Ma
for humans and their extinct relatives (the tribe Homi-
nini), from the chimpanzees and bonobos (tribe
Panini; Bradley 2008). But as pointed out by Tuttle
et al. (1974) in their excellent review, Darwin, while
he did not present a detailed model of the last
common ancestor of humans and other African apes,
made an important point that is too often ignored:
that we should not expect the last common ancestor
to resemble either living humans or other living apes
particularly closely.
2. BIPEDALISM: AN ARBOREAL OR
TERRESTRIAL ORIGIN?
In the first four decades of the twentieth century, it was
generally accepted that bipedalism had an arboreal
origin (e.g. Keith 1903, 1923; Morton 1922; Schultz
1936). But for the last 60 years, since the first field
study of mountain gorillas by Schaller (1963), the
field studies of chimpanzees by Goodall (1998), and
the ensuing recognition (e.g. Zihlman et al. 1978) of
a special and genetically very close relationship
between the hominins (humans and their ancestors)
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and the panins (bonobos and common chimpanzees),
the prevailing paradigm for the origins of human
bipedalism has been the knucklewalking quadrupedal-
ism model (first proposed by Washburn (1967) and
reviewed by Tuttle et al. (1974)). This model holds
that the common ancestor of hominins and panins
would have looked much like chimpanzees do today,
and so bipedalism would have arisen in an ancestor
which was a terrestrial, quadrupedal knucklewalker,
like the panins, and the remaining African apes, the
gorillines.

This paradigm was developed in some detail by
Gebo (1992, 1996), who identified heel-strike planti-
grady as a common, shared-acquired character of
African apes linked closely to knucklewalking quadru-
pedalism, and to the hominin acquisition of a
terrestrially adapted foot. However, heel-strike planti-
grady is not limited to the African apes (Meldrum
1993; Crompton et al. 2003); also, heel-strike is actu-
ally particularly clearly expressed in an Asian ape, the
most arboreal of great apes, the orangutan, subfamily
Ponginae (Crompton et al. 2003, 2008).

All great apes can and do walk bipedally, and most
do so in an arboreal context. Again, it is the most
arboreal, the orangutan, which uses bipedal locomotion
most often (Thorpe & Crompton 2005, 2006). While
bipedal locomotion supported by the hindlimbs alone
makes up only about 2 per cent of arboreal locomotion
of orangutans, a further 6 per cent consists of bipedal-
ism where one or both forelimbs are used for balance.
But this small percentage of locomotor bipedalism (or
compressive orthogrady, if preferred) plays an
This journal is # 2010 The Royal Society
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ecologically crucial role in movement on the fine per-
ipheral branches, where fruits are located. It further
allows orangutans to bridge from tree to tree at
canopy level, avoiding the very high costs (Thorpe
et al. 2007a) and predation risk associated with cross-
ing on the ground. It is again the orangutan which of
all living apes approaches closest to us in one of the
most important of the biomechanical features ident-
ified by Alexander (1991) as characteristic of human
walking: namely stiff-legged, upright gait. As a conse-
quence of its stiff-legged gait, the orangutan
produces, in a fifth of its bipedalism, double-humped
vertical ground reaction force curves (vGRF) which,
alone among apes, overlap with those produced by
human walking (Crompton et al. 2003), and which
allow a high degree of pendular energy conversion.
Our calculations indicate that while in untrained
common chimpanzees energy conversion in bipedal-
ism reaches little more than 8 per cent, it approaches
some 50 per cent in untrained orangutans, still well
short, of course, of the 70 per cent possible in
humans (Wang et al. 2003). But while it has recently
been argued that the elongated, inverted foot of the
orangutan does not at all closely resemble our own
(Sayers & Lovejoy 2008), orangutan foot function in
bipedal walking, expressed in the pattern of foot
pressure, is actually very similar (Crompton et al.
2008) to that of the bonobo (Vereecke et al. 2003),
often suggested by others as a model for the
common panin–hominin ancestor (e.g. Zihlman
et al. 1978 and reviewed in Vereecke et al. 2003).

It has been apparent for the last few years that a
growing number of scientists have found cause to
doubt whether firm evidence exists in the fossil
record for a knucklewalking origin: see, e.g. Stern &
Susman (1983) for Australopithecus afarensis; Ward
et al. (1999) for the South Turkwel handbones and
Clarke (1999, 2002) for the StW-573 hand. A range
of purported ‘knucklewalking features’, dorsal ridges
on the distal aspect of the metacarpals, os centrale
–scaphoid fusion or extension of the proximal articu-
lar surface of the capitulum onto its dorsum, have
been sought in the hominin fossil record, but have
either not been found or found only inconsistently.
Dainton & Macho (1999) raised doubts about whether
knucklewalking was a homologous phenomenon even
in chimpanzees and gorillas. However, Richmond &
Strait (2000) argued that the distal radial morphology
of Au. afarensis was evidence for a knucklewalking
phase in evolution some time between 3.6 Ma and
the commonly accepted 5–8 Ma limits for genetic
separation of hominins and panins. It is therefore note-
worthy that the morphology plotted by Richmond &
Strait (2000) lies well within the orangutan range of
variation. Only large male Bornean orangutan make
much use of the ground, the Sumatran tiger being a
major discouragement to terrestriality on that island,
the clouded leopard posing a threat to small or juvenile
orangutan on Borneo. Large Bornean males have too
much unstable mass above the hip to sustain unas-
sisted bipedalism, and so tend to cross the ground
quadrupedally. But when crossing the ground they
do not walk on the middle phalanx, as chimpanzees
or gorillas do, but on their proximal phalanges or on
Phil. Trans. R. Soc. B (2010)
the side of their hand. Richmond et al. (2001), however,
stoutly defended a knucklewalking origin in an exten-
sive review, and Richmond & Jungers (2008) claimed
that similarities in curvature of a single phalanx of the
late Miocene protohominin Orrorin to that in chimpan-
zees represented evidence of knucklewalking, although
Orrorin is regarded by its discoverers as arboreally
adapted, orthograde and bipedal when moving on the
ground (Senut et al. 2001). Kivell & Begun (2007)
however found no clear functional link between os cen-
trale–scaphoid fusion and knucklewalking and Kivell &
Schmitt (2009) argue that there are two functionally
distinct modes of knucklewalking in African apes: that
in chimpanzees being associated with extended wrist
postures in an arboreal environment (directly addressing
Richmond & Jungers 2008), and that in gorillas with a
neutral wrist posture in a terrestrial environment.
Kivell & Schmitt (2009) go on to argue that the pur-
ported knucklewalking features of hominins are
instead adaptations to arboreality, and thus that
bipedalism indeed arose in the arboreal ecological
niche common to living apes.

While the absence of purported knucklewalking fea-
tures in the hand of Au. afarensis (e.g. Stern & Susman
1983) leaves little time for hominins to lose any such
features after the separation of hominins and panins
5–8 Ma, the publication of a full description of
Ardipithecus ramidus shows that knucklewalking
features, including dorsal distal metacarpal ridges are
also absent in Ar. ramidus (Lovejoy et al. 2009a),
with the exception of os centrale–scaphoid fusion.
However, recall that Kivell & Begun (2007) found
no functional link to knucklewalking for this feature.
This extends the lack of evidence for a terrestrial
knucklewalking phase in the evolution of human
bipedalism to 4.4 Ma. Equally, in linking terrestrial
bipedalism to arboreality (Lovejoy et al. 2009a,b),
publication of Ar. ramidus has greatly strengthened
the positive case for an arboreal origin for the core
hominin adaptation. In doing so, it challenges us to
develop a convincing arboreal alternative to a terres-
trial knucklewalking model of the origins of human
bipedalism.

While still based on the concept that we should look
for the origins of human bipedalism among activities
of living African apes, the most supported arboreal
challenger for the terrestrial knucklewalking model is
the ‘vertical climbing’ hypothesis of Fleagle et al.
(1981). This was derived primarily from electromyo-
graphic similarities between hip, buttock and thigh
musculature activity of African apes during climbing
on large, vertical supports, and that of humans walking
bipedally. However, the kinematics of vertical climbing
(Isler 2002, 2003; Isler & Thorpe 2003) and knuckle-
walking (Watson et al. 2009) are rather similar,
involving highly flexed postures of the hip and knee
(Crompton et al. 2003), which are quite unlike the
extended postures seen in human walking and which
underlie its efficiency (Alexander 1991). Running
does involve more flexed limb postures, but this is
linked to the use of elastic recoil, as the spring-mass
mechanism requires substantial elastic energy stores.
The most well known of these elastic energy stores, a
marked Achilles tendon, is absent in both the African
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apes and the orangutan, which all have large distal
muscle masses (Thorpe et al. 1999; Payne et al.
2006a,b), which help the more powerful forelimbs
(Thorpe et al. 1999; Oishi et al. 2009) in climbing
but probably also act to tune the limbs to deal with
variations in support compliance in an arboreal
context. Interestingly, the gibbons and siamangs do
have a large Achilles tendon: its mechanical role
is currently under investigation in our laboratory
(Channon et al. 2009).

The absence of a medial longitudinal arch (MLA)
in the non-human great apes and its reported absence
in Ar. ramidus (Lovejoy et al. 2009a) appears to rule
out that possible location of the required mass of elas-
tic tissue. So the existence of one or both of the most
likely possible elastic energy stores, a large mass of
plantar soft tissue housed within a MLA (Ker et al.
1987) or a large Achilles tendon, is required to be
demonstrated before a mechanically effective com-
pliant, rather than stiff-legged, gait can reasonably be
posited for early hominins.

While energetic efficiency and mechanical perform-
ance are by no means the only parameters subject to
natural selection (as fieldworkers know better than
most), they are very often directly or indirectly impor-
tant, and can be assessed and predicted relatively
readily. Several laboratories, including our own, have
therefore used computer simulation to assess the effec-
tiveness of alternative gaits in Au. afarensis and other
hominins. Independent studies by at least three separ-
ate laboratories (Crompton et al. 1998; Kramer 1999;
Kramer & Eck 2000; Sellers et al. 2003, 2004, 2005;
Nagano et al. 2005) demonstrate that Au. afarensis
could have been an effective stiff-legged upright
biped, particularly over relatively short distances and
walking unloaded (Wang & Crompton 2004; Wang
et al. 2004). Using forwards dynamic modelling, meta-
bolic cost can be predicted. Predicted costs for human
models have been verified against experimental values
for human adults and come within 10–15% of these
values. Predicted values for upright walking by
Au. afarensis in independent studies by Sellers et al.
(2004, 2005) and Nagano et al. (2005) are in good
accord and come quite close to the experimental
values for human children of equivalent size. If
Au. afarensis could thus have been an effective stiff-
legged, upright biped, and if moving in a compliant
gait would have incurred both substantial increases
in the mechanical cost of locomotion (Crompton
et al. 1998) and physiological costs including increased
heat load (Carey & Crompton 2005), an origin for
bipedalism in locomotor modes associated with
highly flexed limb postures, such as vertical climbing,
seems unlikely.

A different objection to the vertical climbing model
has recently been raised by DeSilva (2009). He argues
that early hominin ankle joint morphology is distinct
from that of vertical-climbing African apes, and
incompatible with the kinematics required for vertical
climbing. Lovejoy et al. (2009b) argue that anatomical
features of the hand associated with vertical climbing,
such as elongated metacarpals, are absent in
Ar. ramidus, and they follow Thorpe et al. (2007b) in
proposing that both knucklewalking and a strong
Phil. Trans. R. Soc. B (2010)
adaptive commitment to vertical climbing were
acquired independently in panins, after the divergence
from hominins, although Lovejoy et al. (2009b) do not
appear to make a functional link between the two.

Lovejoy et al. (2009a,b,c) identify a number of fea-
tures in which the hands and feet of Ardipithecus
resemble those of the root hominoid Proconsul and
some living arboreal monkeys, rather than living great
apes. These include evidence for short hands with an
extensive dorsiflexion range in the metacarpophalangeal
joints that is absent in living great apes apart from
humans (individuals in some human populations,
such as the Han Chinese can often dorsiflex to more
than 908 when young; personal observation, R. H.
Crompton 1982). Following earlier arguments (Moyà-
Solà et al. 2004) that the presence of the same feature
in the Miocene hominoid Pierolapithecus catalaunicus
suggested that it was an arboreal quadruped, they
suggest, although acknowledging that it is a curious
combination, that while bipedal on the ground (Lovejoy
et al. 2009c), Ar. ramidus was primarily quadrupedal in
the trees (Lovejoy et al. 2009b), while using some ‘care-
ful climbing and bridging’, presumably at the periphery
of trees (Lovejoy et al. 2009b).

The feet of Ar. ramidus, like those of monkeys,
apparently retained a thick plantar layer of fibrous
tissue, and were thus rather stiff when compared
with those of the panins, gorillines and pongines
(Lovejoy et al. 2009a). This implies lesser ability to
conform to branch diameter, and thus relatively poor
grip for what was apparently a large-bodied (50 kg,
Lovejoy et al. 2009c) hominin, nearly twice the mass
of the largest cercopithecine monkey, the mandrill,
and more than 10 kg greater than the largest individ-
uals of the largest monkey, the Sichuan snub-nosed
monkey Rhinopithecus roxellana (Rowe 1996). It is
argued that panins, gorillines and pongines also
acquired their compliant feet independently (Lovejoy
et al. 2009a). With no tail, but equally little pedal
gripping power, as well as short hands, there can
have been little or no capability to exert balancing
counter-torques on the support. Then how did
Ar. ramidus balance their body mass above branches
during pronograde quadrupedalism? Quadrupedal
monkeys, lacking the wide and powerful grasp of the
living non-human great apes, improve stability by
deep flexion of the limbs. Stability in flexion is very
often aided by anteflexion of the olecranon process
in arboreal monkeys (Fleagle 1998), but there is
apparently no evidence of anteflexion of the olecranon
in the Ardipithecus proximal ulnae (Lovejoy et al.
2009b). Further, habitual deep flexion of the limbs
as an arboreal quadruped would increase mismatch
(in the power capacity of muscles at different joint
angles) between the requirements of terrestrial
bipedalism and those of arboreal quadrupedalism.
3. THE ARBOREAL ORIGINS OF BIPEDALISM:
COMPRESSIVE ORTHOGRADY?
A more parsimonious explanation of the metacarpo-
phalangeal dorsiflexion seen in Ar. ramidus is surely
desirable. It exists, in part, in consideration of
elements of arboreal behaviour of all the great apes,
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namely in the use of arboreal hand-assisted bipedal-
ism, or if preferred, compressive orthogrady, both
postural and locomotor, to move around the forest
canopy. Again, in part, the explanation is to be
found in consideration of the similarity, in shared
lack of digital elongation and in morphological con-
servatism, between the human hand and that of
Ar. ramidus, demonstrated by Lovejoy et al. (2009a).

Together with the suggestion of Thorpe et al.
(2007b) that vertical climbing and knucklewalking
were both acquired independently in panins (after the
separation from hominins) and in gorillins, and its con-
firmation by the description of Ar. ramidus (Lovejoy
et al. 2009b,c), there is increasing evidence (e.g.
Larson 1998) that suspensory adaptations did not
evolve at the same time as other features of orthogrady,
but rather homoplastically. While it is difficult to obtain
definitive figures from all studies and for all species,
table 1 shows that, together, terrestrial knucklewalking
quadrupedalism, vertical climbing and forelimb suspen-
sion make up some 67 per cent of bonobo locomotion,
93 per cent of common chimpanzee locomotion and 97
per cent of mountain gorilla locomotion, but only 39
per cent of orangutan locomotion. A figure for lowland
gorilla knucklewalking versus non-knucklewalking
quadrupedalism is more difficult to determine, but
based on proportions of arboreal and terrestrial activity,
we have assigned a tentative figure which allows a total
proportion of novel locomotor modes in the repertoire
to be set pro tempore at 62 per cent. Thus, from the
reported evidence of Ardipithecus, the great majority of
the panin and gorilline locomotor repertoire employs
novel adaptations since the divergence from hominins.
This observation has significance for both palaeontolo-
gists and fieldworkers, and underlines Darwin’s (1871)
warning, with which we began this paper, that we
should not expect the common ancestor to resemble
either humans or living apes particularly closely.

This suggests that what is now the relatively small
compressive component of great ape orthograde loco-
motion may be the oldest, and human locomotion thus
relatively conservative. (Whether compressive ortho-
grady is as old as orthogrady itself, or whether
orthograde body posture arose earlier from a random
homeotic event (Filler 2007), we currently have no
way of knowing). Importantly however, this behaviour
offers a reasonable alternative for locomotion in a
species not yet in possession of vertical climbing and
suspensory adaptations. We suggest that in an arboreal
context, hominin species such as Ar. ramidus (as well
as ourselves) which do not have elongated hands,
powerful in suspension, may tend more often to
climb upwards (which they must have done relatively
frequently if they were exploiting both terrestrial and
arboreal niches) by pushing themselves up by pressure
of the hands below shoulder level, so that the ulnar
four metacarpophalangeal joints pass into deep dorsi-
flexion. This adds much of the length of the
metacarpals to the potential lift. This is of course
exactly how humans usually climb large-trunked
trees when they lack climbing equipment to help
them move on the main trunk, with the human lack
of ‘vertical climbing’ adaptations (primarily very
powerful arms; see Thorpe et al. 1999; Payne et al.
Phil. Trans. R. Soc. B (2010)
2006a,b; Oishi et al. 2009): we climb up bough by
bough, further out in the tree. In the absence of climb-
ing aids, humans find it difficult and of course
dangerous (Pontzer & Wrangham 2004) to climb up
trees where long, naked trunks occur before any side
branches. Gorillas and chimpanzees are readily able
to do so, using the vertical climbing adaptations,
which Ardipithecus suggests (Lovejoy et al. 2009a,b,c)
arose independently and in parallel in the two lineages.
Similarly, hand-assisted compressive orthogrady has
been shown to allow orangutans to move on very flex-
ible branches at the periphery of tree crowns where the
most abundant supply of fruit is generally situated
(Thorpe et al. 2007b) and it may play a similar role
in the behaviour of lowland gorillas (see table 11 in
Remis 1994). Analogy with the largest cercopithecine,
the mandrill (Lahm 1986), less than 27 kg, and con-
sideration of the behaviour of the largest of all
monkeys, Sichuan snub-nosed monkeys Rhinopithecus
roxellana (Kirkpatrick et al. 1999; Li 2001; Li et al.
2002), less than 37 kg, suggests that the 50 kg body
weight claimed for Ar. ramidus (Lovejoy et al. 2009c)
may exceed mass limits of effective monkey-like
arboreal plantigrade quadrupedalism. However, com-
pressive orthogrady is exhibited by similar-sized apes
and could facilitate both access into trees and move-
ment within them. Further, Miocene crown-
hominoid body weight begins above that of mandrills,
and equals or exceeds that of R. roxellana: 30–54 kg
for Morotopithecus (MacLatchy et al. 2000), 30 kg for
Pierolapithecus (Culotta 2004; Moyà-Solà et al. 2004),
30–37 kg for Hispanopithecus (Moyà-Solà & Köhler
1996) and 32 kg for Oreopithecus (Köhler & Moyà-
Solà 1997). We suggest that it is unlikely that the
consistently larger size of Miocene crown hominoids
was not accompanied by a shift from monkey-like
arboreal locomotion.

Thus, we argue that a hominin which had not
acquired suspensory/vertical climbing features in the
forelimb would have accessed the trees and moved
within them primarily by palmigrade compressive
orthogrady. In the absence of vertical climbing capa-
bilities and a powerful hand grip, access to trees
would of course favour use of more stable supports,
which can be loaded under compression without
excessive deflection. In the absence of suspensory fea-
tures, hand-assisted bipedalism could have facilitated
movement among the finer supports at the periphery
of trees, employing strategies similar to those we
have reported in the orangutan (Thorpe et al. 2007b,
2009). Quadrupedalism would be used when absol-
utely necessary—as of course it is by ourselves when
we no longer trust our balance or stability—but palmi-
grade hand postures would be inappropriate among
finer supports. Many anthropoids are able to employ
some degree of suspension, vertical climbing and
quadrupedalism regardless of their primary adap-
tation, although perhaps rarely, and at some
additional cost, so suspension is also likely to have
been used under certain conditions. It may be
argued that this is referential modelling (Sayers &
Lovejoy 2008): but at least we are using multiple refer-
ents, and we are able to test the predictions of our
models by simulation. We predict, for example, that
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a dynamic model of quadrupedalism in Ardipithecus
would show that quadrupedalism would be possible,
if unstable, and very expensive, if perhaps less so
than it would be for longer-legged humans.

A parallel case has very recently been discussed in
the literature. Pierolapithecus is described by Almécija
et al. (2009) as orthograde, but as lacking the obvious
suspensory adaptations seen in the rather later Iberian
crown hominoid, Hispanopithecus (D.) laietanus. The
metacarpophalangeal joints are described as adapted
for use in dorsiflexion in palmigrade postures
(Almécija et al. 2009). Reference to monkeys would
suggest that it was an arboreal quadruped (Moyà-
Solà et al. 2004), but these authors now regard it as
orthograde in body plan (Almécija et al. 2009) but
moving by palmigrade quadrupedalism. The authors
also suggest that the description of the Miocene pon-
gine Sivapithecus by Madar et al. (2002) may suggest
similar behaviour. It is very difficult to reconcile an
orthograde body plan with quadrupedal locomotion,
even when there are no claims that Pierolapithecus
was a terrestrial biped. The obvious, simple solution
is again the one we propose here, that it (and perhaps
even Sivapithecus) was an orthograde clamberer which,
in the absence of marked suspensory adaptations, used
hand-compressive climbing techniques below shoulder
level, in other words, hand-assisted bipedalism and
other components of the compressive-orthogrady
continuum best exemplified today in orangutans.
4. THE LEGACY OF ARBOREAL ORIGINS FOR
HUMAN BIPEDALITY
The arboreal habitat differs markedly in one major
mechanical respect from the terrestrial: it is compliant
(Alexander 2003) and thus unstable, as it can be set
vibrating by imposed forces. Arboreal mammals need
to have strategies for dealing with this compliance.
Schmitt (1999) has shown that limb flexion (limb
compliance) is one such response, but limb flexion
requires muscle power to maintain stable flexed pos-
tures. For this reason, most probably, muscle masses
tend to be higher in arboreal animals (Degabriele &
Dawson 1979), while terrestrial cursor limbs have
short muscle bellies and long tendons (Alexander
2003). To what extent has this legacy of compliance
influenced early hominin evolution?

(a) A compliant foot?

Lovejoy et al. (2009a) argue that whereas the living
non-human great apes have acquired compliant feet,
to enable them to grip branches more effectively, and
humans have of course acquired a MLA, Ardipithecus
is again conservative in the plantar foot, lacking a
MLA, but retaining a thick and fibrous layer on the
plantar aspect of the foot, like that of cercopithecines,
contrasting with the loss of such a thick aponeurotic
layer in the non-human apes, which gain thereby in
foot adaptability to irregular substrates.

Following Bojsen-Møller (1979), it is common in
the hominin palaeontology literature (e.g. Lewis
1980; Berillon 2000; Harcourt-Smith & Aiello 2004;
Jungers et al. 2009) to assess the presence or absence
of a MLA by the degree of development and
Phil. Trans. R. Soc. B (2010)
asymmetry of the cuboid peg for the calcaneus
(figure 1a), and Lovejoy et al. (2009a) appear to
follow this practice. The asymmetry and size of the
cuboid peg is not, however, entirely a reliable guide
to the existence or absence of a functional MLA: as
can be seen in figure 1a, the peg is not overlapped ven-
trally by the calcaneus. While it is usual to associate
this development with loss of the mid-tarsal break
(axis of plantarflexion), which is present in other
living apes (Lewis 1980), the absence of a mid-tarsal
break is not universal in humans. Setting aside con-
ditions such as Charcot foot, where soft-tissue failure
arising from diabetes or directly from neurological
conditions results in collapse of the lateral midfoot
and in some cases a midfoot pressure peak under, or
near, the calcaneocuboid joint, figure 1b (unfortu-
nately from uncalibrated pressure plate data, but
qualitatively reliable) shows that clinically normal indi-
viduals may also show a lateral midfoot pressure peak.
It is interesting that this individual also shows absence
of a lateral-to-medial path of the centre of pressure
and, in figure 1c, a single-peaked vGRF, with a non-
human-ape-like slow tailing-off of vGRF at ‘toe-off ’.
While the absence of the mid-tarsal break does seem
functionally linked with an extended toe-off, neither
are therefore universal features of hominins. Neverthe-
less, if Ardipithecus lacked a human-like cuboid peg,
lateral-foot stability would be limited. In both cases,
a certain degree of rigidity provided by retention of a
thick plantar fibrous layer would improve the capacity
of the lateral metatarsals to deliver accelerative force
from a more effective, relatively anterior, position.

We (Pataky et al. 2008) recently demonstrated a
negative correlation of plantar pressure with walking
speed in humans, which implies reduced collapse of
the MLA, and thus increased stiffness. This may be
directly beneficial to force transmission to the ground.
It is also important in enabling control of gear ratios,
and thus in tuning muscles to enhance performance
during constant-speed running by applying pre-tension
during landing, while optimizing them also for effi-
ciency or power at toe-off (Carrier et al. 1994).
Perhaps most importantly, we can optimize muscle
properties during rapid changes in speed and changes
in incline in both running and walking (Lichtwark &
Wilson 2006, 2007, 2008). We have suggested that
increased stiffness results from pre-tension applied to
the plantar aponeurosis (PA) by heel-strike or early-
stance muscle activity (in triceps, tibialis anterior and
the digital dorsiflexors; Pataky et al. 2008; Caravaggi
et al. 2009). The windlass mechanism created as the
PA wraps round the heads of the metatarsals
(figure 1a) is known to contribute to stiffen the foot
in late stance (Hicks 1954) by pulling on the calcaneus,
causing inversion of the subtalar joint and hence ‘lock-
ing’ the midtarsal joint (Tansey & Briggs 2001). A
dynamic model of the plantar foot constructed in our
laboratory (Caravaggi et al. 2009) however shows that
the PA is also pre-tensioned in early stance, from
heel-strike onwards, as proposed by Pataky et al.
(2008), and the tension appears to increase with walk-
ing speed. The predicted tension (verified against
cadaveric data from Gefen (2003)) increases from lat-
eral to medial, and ranges from 0.47 body weight at
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heel-strike to a peak 1.5 BW, generating vertical forces
which sustain the MLA and metatarsals. Thus, the
MLA is supported through much of stance by soft
tissue: stiffening of the PA, as well as bone shape, con-
tributes directly and very substantially to the existence
of the MLA. An assumption that lack of a human-like
cuboid peg (figure 1a) implies lack of a MLA is
unsafe without extensive investigation of the possibility
of soft-tissue stiffening. The case of human individuals
with a mid-tarsal break suggests that sustained vGRFs
and a substantial hallucal toe-off depend on stiffening
of both the medial and lateral foot by soft-tissue ten-
sioning throughout stance.

It is notable that Vereecke et al. (2003) have shown
that foot pressure records of human bipedalism are
much less variable between strides and between indi-
viduals than those of the bipedalism of other
hominoids. In humans, forces are applied in a more
consistent manner, particularly by the hallux, which
plays a limited propulsive role in most non-human
apes, and may act more as a balancing structure
during bipedalism. If the hallux of Ardipithecus is as
Phil. Trans. R. Soc. B (2010)
abducted as Lovejoy et al. (2009a) report, the degree
of abduction is comparable to that in living gibbons
(e.g. Vereecke et al. 2005; Crompton et al. 2008)
and perhaps Oreopithecus. While Moyà-Solà et al.
(1999) suggested that the extent of hallucal abduction
in Oreopithecus would not have been compatible with
other than postural bipedalism, Vereecke et al.
(2006a,b) have shown that gibbons, despite compliant
feet with widely abducted halluces, can sustain run-
ning on the ground for some hundred yards and
attain absolute speeds equalling the human walk–run
transition. Neither do compliant feet prevent the
non-human great apes from walking bipedally, terrest-
rially or arboreally. High robusticity of metatarsals two
and three is also a feature of Ar. ramidus (Lovejoy et al.
2009a) and suggests that these digits may have been
more important in applying accelerative parasagittal
force than the hallux, while the abducted hallux pro-
vided grip on branches. However, even in human
bipedal walking, plantar pressure tends to be lower
under the hallux, and greater under metatarsal heads
two and three, in flat-footed humans or humans who
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have been brought up as barefoot walkers (D’Août
et al. 2009).

Thus, the human foot is less distinct than is often
thought from that of other great apes. It has built on
the compliant arboreal legacy (whether prior to or
after the separation from panins we submit is not yet
clear, given the mixed message of Ardipithecus; Lovejoy
et al. 2009a) by becoming a variable-gear organ, able
to change its stiffness to accommodate to speed, as
well as to support compliance and irregularity.
(b) Limb mass proportions

Another likely legacy from a recently arboreal past is
the partial retention of arboreal limb mass pro-
portions. A cursorial animal needs to accelerate its
limbs rapidly. Rapid acceleration can be achieved
with less energy if the moments of inertia are reduced,
and this is commonly achieved by a reduction in distal
limb elements (Hildebrand 1995). Figure 2 shows
a comparison of the inertial properties and limb
dimensions of hominoids in comparison with a
Phil. Trans. R. Soc. B (2010)
dedicated terrestrial cursor (horse). All dimensions
have been geometrically scaled to the estimated mass
of Ar. ramidus, 50 kg, using mass1/3 for lengths and
mass5/3 for moments of inertia. All the arboreal species
have longer than expected forelimbs, but, except for
humans and gibbons, hindlimb length is not greatly
different from that of the specialist cursor. However,
when looking at the moments of inertia it can clearly
be seen how elongated limbs with heavy autopodia
lead to extremely large moments of inertia when
compared with the values seen in horses. This has
inevitable but complex effects in terms of top speed
and efficiency. Long, high-inertia legs are perfectly
efficient for the pendular mechanics of slow walking,
but the high-speed spring mechanics of running require
low moments of inertia to minimize the internal energy
lost per step. Hylobates seems to some extent to have
dealt with the inertial problem of very long legs by redu-
cing distal muscle mass. We suggest, following
Channon et al. (2009), that several aspects of gibbon
anatomy may relate to an unrecognized importance of
leaping in the gibbon locomotor repertoire.



ch
im

pa
nz

ee

go
ril

la

or
an

gu
tan

gib
bo

n

hu
man

rei
nd

ee
r

ha
re

gr
ey

ho
un

d
10−2

10−1

1

10

te
nd

on
 m

as
s 

fr
ac

tio
n 

(%
)

Figure 3. Total tendon in both hind limbs as a fraction of body
mass. Data are based on information from Pierrynowski

(1995), Payne et al. (2006), Williams et al. (2007, 2008) and
Wareing et al. (submitted).

Review. Arboreal origins of hominin bipedalism R. H. Crompton et al. 3309
However, upper limb–lower limb proportions and
the distribution of lengths and mass within limbs
also affect their swing frequency. Part of the efficiency
of long distance human walking at least depends on a
forward swing of the contralateral arm to counteract
the horizontal torque applied to the body by the
swing leg (e.g. Li et al. 2001) which, among other
effects, interferes with lateral stability. These swings
occur even in short-distance walking of young children
of similar stature/mass to Au. afarensis, and increase in
magnitude with walking speed (Li et al. 2001), so they
are of relevance to any consideration of early hominin
locomotion. Match between the natural pendular
period (NPP), and hence swing-time of upper and
lower limbs, affects efficiency of all gaits, bipedal and
quadrupedal; and distribution of mass within the
limb affects the NPP (Isler et al. 2006). The distal pos-
ition of the centre of mass of the forelimb of most great
apes, with the exception of the chimpanzee, means
that there is a considerable mismatch with forelimb
NPP, and segment proportions are thus not well opti-
mized for quadrupedal gaits (Isler et al. 2006).
Chimpanzees may have modified their limb mass dis-
tribution for more efficient quadrupedalism,
suggesting that the last common African ape ancestor
was not a proficient quadruped (Isler et al. 2006).
However, experimental work on the oxygen consump-
tion of both bipedal and quadrupedal locomotion in
chimpanzees confirms that they are relatively ineffi-
cient in both modalities (Sockol et al. 2007),
compared with both modern humans and quadrupeds
of equivalent body size. This may indicate that maxi-
mum terrestrial speed, rather than minimal terrestrial
energy cost, may be the target of selective pressure
for chimpanzees. (By contrast, preliminary data from
the same research group suggest that metabolic costs
of bipedalism in the orangutan are some of the
lowest recorded locomotor costs for the body size;
personal communication from H. Pontzer (2009)).
(c) Proportion of mass as tendon

Another area where there is still a considerable legacy
from the recent arboreal past is in the amount of
tendon in the hindlimbs of hominoids compared
with cursorial animals. Figure 3 shows the mass of
hindlimb tendon in both hindlimbs as a proportion
of body mass. This parameter is informative since its
biomechanical interpretation is independent of
moment arm data, of which there is very little available
for comparison in non-primates. Tendon acts as a
simple damped spring during locomotion, so the
amount of energy that can be stored depends on the
mass. The strain energy storage of tendon is
2500 J kg21 at 8 per cent strain (Vogel 2003), which
is therefore the limit of the amount of elastic strain
energy that is potentially available per gait cycle—
whether for power amplification or energy saving.
For the hominoids, tendon mass was estimated using
published tendon length and muscle physiological
cross-section area data. Tendon cross-section area
was estimated by assuming 6 per cent strain at maxi-
mal isometric contractile force and muscle
contraction stress of 300 kN m22 (Sellers & Manning
Phil. Trans. R. Soc. B (2010)
2007). Resulting volumes were converted to tendon
mass using a density of 1100 kg m23 (Watson &
Wilson 2007). It is clear that tendon mass is highly
variable and more often related to high speed and
high acceleration than to efficiency. It is also clear
that while humans have appreciably increased their
hindlimb tendon proportion when compared with
the other apes, they are still a long way from the
much higher proportions in more specialized cursorial
quadrupeds—particularly those specializing in explo-
sive acceleration rather than long-distance efficiency.
This is emphasized if we multiply through by
2500 J kg21 to express elastic storage capacity in
terms of energy. Most hominoids have about 1 J kg21

of elastic energy storage, humans nearly three times
that, reindeer 10 J kg21 but greyhounds fully
100 J kg21. Thus, while humans have adjusted
tendon mass somewhat to enhance terrestrial running,
perhaps retaining a relatively large muscle mass to
allow for adjustments to optimize the hindlimb for ter-
rain, speed and support characteristics, the African
apes have not. Bonobos and lowland gorillas may not
require to do so because of limited terrestriality;
mountain gorillas may be protected by size, but chim-
panzees may simply have modified mass proportions to
match hindlimb–forelimb swing frequencies better,
suggesting that the selective pressures associated with
movement in an unstable arboreal milieu remain
strong.

We can further investigate the role of elasticity in
human locomotion by simulation. In recent simulation
work (Sellers et al. 2010), the role of tendon elasticity
was quantified by ‘virtual ablation’. In this paradigm,
simulations are repeated with identical anatomical
models except for the structure of interest, which is
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removed or altered in some versions of the model. This
allows the effect of a specific structure to be isolated in
much the same way as classical ablation experiments
but without the danger of side effects (let alone ethical
difficulties) associated with performing such exper-
iments surgically. In this case, the elastic effect of
tendons was removed by making them 100 times
their normal stiffness, so that the simulated tendons
were unable to store appreciable amounts of energy
in the simulation. Four experimental conditions were
compared: normal hindlimb tendons; all hindlimb ten-
dons stiff; all normal hindlimb tendons except for a
stiff Achilles tendon; all tendons stiff except for a
normal Achilles tendon. Figure 4 shows that for
humans, the presence of tendon has only a moderate
effect on the maximum running speed of the simu-
lation but a very marked effect on the net cost of
locomotion, and that this effect was mostly produced
by the Achilles tendon. This confirms the critical
role in efficient, high-performance running of a sub-
stantial Achilles tendon, which is missing from all
hominoids except humans, gibbons and siamangs.
Whether such a structure is present in fossil hominins
(and which) is currently unknown but evidence of its
presence, perhaps by analysis of calcaneal microstruc-
ture, would probably be diagnostic of running ability.
5. CONCLUSIONS
We argue that, given the large body mass of Ar. rami-
dus, typical of both living and extinct hominoids, it is
more likely that when it moved in the trees it made
use of compressive orthogrady, which we suggest
may be the oldest crown-hominoid locomotor adap-
tation, than that it adopted a monkey-like
quadrupedalism. This would run counter not only to
Phil. Trans. R. Soc. B (2010)
expectations from body size but also to Ar. ramidus’
clear adaptations for one form of compressive ortho-
grady, terrestrial bipedal walking.

Secondly, we argue that from our arboreal ancestors
humans have inherited feet and legs that can adapt to a
large variety of terrains, support compliances and
speeds. However, at some stage in our evolution we
have departed some way from other hominoids in
adaptation for energy-efficient running. This combi-
nation probably has a lot to do with our ability to
outrun horses in trials such as those over 22 miles of
hilly mid-Wales or 50 miles of sand-dunes in the
United Arab Emirates. But we are not fast runners
(see Bramble & Lieberman 2004), and in terms of
energy storage have a very long way to go to catch
up with dogs bred for hunting. Early human ancestors
would clearly have been no match for a cursorial
predator, so that it is perhaps fortunate that along
with late retention of long forearms (Dunsworth
et al. 2003), which would improve throwing distance
if not accuracy, part of our arboreal inheritance was
powerful leg muscles, which remain very helpful for
climbing trees!
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