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Abstract

Nash-Williams’ arboricity theorem states that a finite graph is the edge-disjoint union of at most k forests
if no set of � vertices induces more than k(� − 1) edges. We prove a natural topological extension of this
for locally finite infinite graphs, in which the partitioning forests are acyclic in the stronger sense that their
Freudenthal compactification—the space obtained by adding their ends—contains no homeomorphic image
of S1. The strengthening we prove, which requires an upper bound on the end degrees of the graph, confirms
a conjecture of Diestel [The cycle space of an infinite graph, Combin. Probab. Comput. 14 (2005) 59–79].
We further prove for locally finite graphs a topological version of the tree-packing theorem of Nash-Williams
and Tutte.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A criterion for the smallest number of acyclic subgraphs of a finite graph whose union contains
the entire graph is given by Nash-Williams’ arboricity theorem:

Theorem 1 (Nash-Williams [10]). Let k ∈ N, and let G be a finite multigraph in which no set
of � vertices induces more than k(� − 1) edges. Then G is the edge-disjoint union of at most k
forests.

Theorem 1 easily extends to locally finite graphs by compactness, if a forest is defined as a
graph that contains no finite cycles. However, recent studies of the cycle space of infinite graphs—
see Diestel [2]—suggest that in an appropriate infinite analogue of Nash-Williams’ theorem the
forests should not be allowed to contain ‘infinite cycles’ either. These are infinite subgraphs of G
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Fig. 1. Every two forests partitioning the multigraph contain infinite cycles.

whose closure in |G|, the compactification of G by its ends (see Section 2), is homeomorphic to
the unit circle.

An infinite version of Theorem 1 based on such topological forests would be much stronger.
So much so, in fact, that without additional constraints it is false. Indeed, consider the infinite
ladder in which each rung except the first has been subdivided and all other edges duplicated (see
Fig. 1). This multigraph satisfies the condition of Theorem 1 for k = 2, because it is an edge-
disjoint union of two (ordinary) forests, but clearly, every two such forests must each contain a
double ray. That double ray forms an infinite cycle as its closure contains the graph’s single end,
to which the double ray’s subrays converge.

We can easily generalise this counterexample to arbitrary k ∈ N and simple graphs. Simply
replace each of the subgraphs of the form ({v, w}, {vw, vw}) with a simple finite graph H that
is the union of k edge-disjoint spanning trees (for example H = K2k), identifying v, w with
distinct vertices of H. Then, as before, G is an edge-disjoint union of k ordinary forests, and
hence satisfies Nash-Williams’ condition that no set of � vertices spans more than k(� − 1)

edges. But any partition of G into k forests induces such a partition in each copy of H, i.e. into
spanning trees of H. Each of these contains a v–w path, so each of our k forests contains a double
ray and thus an infinite cycle. These counterexamples are due to Bruhn and Diestel (personal
communication).

In order to generalise Theorem 1 to topological forests, we thus need to impose some further
conditions. One natural way to do this is to require local sparseness not only for all finite subgraphs
(as in Nash-Williams’ condition) but also around ends, e.g. by placing an upper bound on their
‘degrees’. The degree of an end � is defined in [1] to be the supremum of the cardinalities of sets
of edge-disjoint rays in � (for details, see Section 2). So, the counterexamples above each have
an end of degree �2k. It is not difficult to construct others whose end has degree exactly 2k. Just
choose H such that it contains a vertex of degree k and identify this vertex with v.

The following conjecture of Diestel [2], whose proof is the main result of this paper, is therefore
best possible in this sense:

Theorem 2. Let k ∈ N, and let G be a locally finite graph in which no set of � vertices induces
more than k(� − 1) edges. Further, let every end of G have degree < 2k. Then |G| is the edge-
disjoint union of at most k topological forests in |G|.

Although, as we have seen, the bound of 2k in Theorem 2 cannot be reduced, the theorem has
no direct converse: a partition into k topological forests does not force all end degrees to be small.
The N × N grid, for example, is an edge-disjoint union of two topological forests (its horizontal
vs. its vertical edges), but its unique end has infinite degree.
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Our second topic in this paper is how to extend the well-known tree-packing theorem of Nash-
Williams and Tutte. This will be treated in Section 5, which has been entirely contributed by
Bruhn and Diestel. We need a standard definition: an edge is said to cross a given vertex partition
of a graph G if it has its endvertices in distinct partition sets.

Theorem 3 (Nash-Williams [9], Tutte [13]). For a finite multigraph G the following statements
are equivalent:

(i) G contains k edge-disjoint spanning trees;
(ii) every partition of V (G), into r ∈ N sets say, is crossed by at least k(r − 1) edges of G.

Nash-Williams [11, Conjecture A] conjectured that Theorem 3 should extend to countable
graphs. This was disproved by Oxley [12], who constructed a locally finite graph that satisfies
(ii) for k = 2 but has no two edge-disjoint spanning trees. Tutte pursued a different approach:
he proved that in a locally finite graph every vertex partition into r parts is crossed by at least
k(r − 1) edges if and only if the graph has k edge-disjoint ‘semi-connected’ spanning subgraphs.
In our topological context, the condition acquires an unexpected natural interpretation: it turns
out that the ‘semi-connected’ spanning subgraphs of a graph G are precisely those whose closure
in the compactification of G is topologically connected. Furthermore, the closure of every such
subgraph contains a topological spanning tree. This then leads to a near-verbatim generalisation
of the tree-packing theorem:

Theorem 4. For a locally finite multigraph G the following statements are equivalent:

(i) |G| contains k edge-disjoint topological spanning trees;
(ii) every partition of V (G), into r ∈ N sets say, is crossed by at least k(r − 1) edges of G.

2. The topological space |G|

The basic terminology we use can be found in Diestel [3]. A 1-way infinite path is called a ray,
a 2-way infinite path is a double ray, and the subrays of a ray are its tails. Two rays in a graph G
are equivalent if no finite set of vertices separates them; the corresponding equivalence classes of
rays are the ends of G. We denote the set of ends of G by �(G) .

Let us define a topology on G together with its ends. This topology was first introduced by
Freudenthal [7] and Jung [8]. We begin by endowing G itself with the usual topology of a 1-
complex. (Thus, every edge is homeomorphic to the real interval [0, 1], and the basic open
neighbourhoods of a vertex v are the unions of half-open intervals [v, z), one for every edge e at
v with z an inner point of e.) In order to extend this topology to �(G), we take as a basis of open
neighbourhoods of a given end � ∈ �(G) the sets of the form C(S, �) ∪ �(S, �) ∪ E′(S, �)

where S ⊆ V is a finite set of vertices, C(S, �) is the component of G − S in which every ray
from � has a tail, �(S, �) is the set of all ends �′ ∈ �(G) whose rays have a tail in C(S, �), and
E′(S, �) is any union of half-edges (z, y], one for every S–C(S, �) edge e = xy of G, with z an
inner point of e. Let |G| denote the topological space thus defined.

It is not overly difficult to see that if G is locally finite and connected, then |G| is compact
(it is then also known as the Freudenthal compactification of G). We shall freely view G and its
subgraphs either as abstract graphs or as subspaces of |G|. For details on |G|, see Diestel and
Kühn [6].
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A cut of G separates a set S ⊆ V (G) from an end � ∈ �(G) if it meets every ray of � that
starts in S. For a subgraph H ⊆ G, the boundary �H of H is the cut E(H, G − H); in particular,
�G = ∅ = �∅. A region of G is an induced subgraph which is connected and whose boundary
contains only finitely many edges. Note that given a subgraph H ⊆ G and an end � ∈ �(G) with
� /∈ H its boundary �H separates � from V (H).

An arc is a set A ⊆ |G| homeomorphic to the unit interval; a circle is a set C ⊆ |G| homeo-
morphic to the unit circle. The subset C ∩ G may be viewed as a subgraph of G, and will then
be called a cycle of G. Clearly, this definition includes traditional finite cycles but also allows for
infinite cycles, which are disjoint unions of certain sets of double rays. Diestel and Kühn have
shown in [5] that for a circle C the closure of C ∩ G coincides with C, we may thus speak of the
unique defining circle of a cycle. We need the following theorem.

Theorem 5 (Diestel and Kühn [4]). Let G be a locally finite graph, and let Z ⊆ E(G). Then Z
is a cycle in G if and only if |F ∩ Z| is even for every finite cut F of G.

Having adapted the notion of a cycle to our topological viewpoint, we must do the same for
forests and, in particular, spanning trees. The closure H in |G| of a subgraph H of G is a topological
forest if it contains no circles. A topological spanning tree is a path-connected topological forest
in |G| that contains all vertices of G (it then also contains all ends and all edges of which it
contains inner points). See Diestel and Kühn [6] for more information on topological spanning
trees.

A fundamental property of a tree is that it contains a path between any two of its vertices. That
is the reason why topological spanning trees are required to be path-connected rather than only
topologically connected. The next theorem shows that this makes no difference in our case.

Theorem 6 (Diestel and Kühn [6]). If G is locally finite, then every closed connected subset of
|G| is path-connected.

It is an open problem whether Theorem 6 extends to arbitrary subsets of |G|.
Finally, let us see how the vertex degree notion can be extended to the ends of a locally finite

graph G. We define the degree d(�) ∈ N ∪ {∞} of an end � ∈ �(G) as the supremum of the
cardinalities of sets of edge-disjoint rays in �. This concept (and a generalisation to end degrees
in subgraphs) was introduced in [1], where also the following Mengerian criterion for measuring
end degrees can be found.

Lemma 7 (Bruhn and Stein [1]). Let G be a locally finite graph, and let � ∈ �(G). Then d(�) =
k ∈ N if and only if k is the smallest integer such that every finite set S ⊆ V (G) can be separated
from � with a finite cut F of cardinality k.

3. Finitely many small cuts cut off all ends

Given a locally finite graph G, a finite set S ⊆ V (G) and an end � ∈ �(G) of finite degree < k,
Lemma 7 yields a cut of cardinality < k that separates S from �, and therefore induces a region
K� ⊆ G − S whose closure contains �. Now, if instead of � we consider finitely many ends,
each of degree < k, we can easily choose the K� disjoint (because there is a finite set S′ ⊇ S

which separates our ends pairwisely).
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Clearly, there is also a (possibly infinite) set of regions K ⊆ G − S with |�K| < k such that
every end of degree < k lies in the closure of one of them. But are we still able to choose these
regions disjoint? The next lemma gives a positive answer to this question.

Lemma 8. Let k ∈ N, let G be a locally finite graph and let S ⊆ V (G) be finite. Then there is
a set K of disjoint regions K ⊆ G − S of G with |�K| < k, such that for every � ∈ �(G) with
d(�) < k there is a K ∈ K with � ∈ K .

Proof. If S is empty, then K := {G} is as desired, so assume S 	= ∅. We use induction on k to
prove the existence of a set Kk of disjoint regions of G such that for all K ∈ Kk:

(i) K ⊆ G − S and |�K| < k;
(ii) there is no finite set H such that V (K) = ⋃

H∈H V (H) and |�H | < |�K| for all H ∈ H.
In addition, we require for all regions K ′ ⊆ G − S:

(iii) if |�K ′| < k then E(K ′) −⋃
K∈Kk E(K) is finite.

Then Kk is the desired set K of the lemma. Indeed, consider an end � ∈ �(G) with d(�) < k,
and let R ∈ �. By Lemma 7, there is a region K ′ ⊆ G−S of G with � ∈ K ′ such that |�K ′| < k.
By (iii), E(K ′) − ⋃

K∈Kk E(K) is finite. Hence, R has only finitely many of its edges outside⋃
K∈Kk E(K). Thus, since the K ∈ K are pairwise disjoint, there is a K ∈ K such that R has a

tail in K, implying � ∈ K , as desired.
Put K1 := ∅, a choice which trivially satisfies (i) and (ii), and also (iii) because S 	= ∅ and

we may suppose G to be connected (thus, the only K ′ ⊆ G − S with |�K ′| < 1 is K ′ = ∅). So
assume we already found a set Kk−1 satisfying (i)–(iii); we show the existence of the set Kk .

Let H1, H2, . . . be an enumeration of all regions H ⊆ G − S of G with |�H | < k and E(H)

−⋃
K∈Kk−1 E(K) infinite (there are only countably many such regions as E(G) is countable).

From the Hi and Kk−1 we construct a sequence of subgraphs Li ⊆ G − S as follows. Put
L0 := ⋃

K∈Kk−1 K , and let for i ∈ N

Li := Li−1 ∪ Hi if �Hi ∩ E(Li−1) = ∅
and Li := Li−1 otherwise. It is easily shown by induction that for all i ∈ N each component
of Li is a region that sends less than k edges to the rest of G. Now, put L := ⋃∞

i=1 Li and
let Kk be the set of the components of L. Note that

⋃
K∈Kk K = L ⊆ G − S and that the

K ∈ Kk are induced subgraphs of G. Furthermore, |�K| < k for each K ∈ Kk , as otherwise
there would already have been a component K ′ of Li with |�K ′|�k for some i ∈ N (just
choose i such that Li contains at least k vertices which are incident with edges in �K plus finite
paths that connect these vertices pairwisely). Thus, Kk is a set of disjoint regions for which
(i) holds.

Let us show (ii). Suppose there are a K ∈ Kk and a finite set H such that V (K) = ⋃
H∈H V (H)

and |�H | < |�K| for all H ∈ H. By (i), |�K| < k, thus, |�H | < k−1 for all H ∈ H. Then (iii) for
k−1 yields that E(H)−⋃K ′∈Kk−1 E(K ′) is finite for all H ∈ H.As |H| < ∞ and �H is bounded
for all H ∈ H, also E(K) −⋃

H∈H E(H) is finite, implying that E(K) −⋃
K ′∈Kk−1 E(K ′) is

finite. Hence K contains none of the Hi used in the construction of Kk , and thus K = K ′ for some
K ′ ∈ Kk−1, contradicting (ii) for k − 1.

Finally, we prove (iii). Suppose there is a region K ′ ⊆ G − S of G with |�K ′| < k such that
E(K ′) −⋃

K∈Kk E(K) = E(K ′) − E(L) is infinite. Assume K ′ is chosen with |�K ′ ∩ E(L)|
minimal. Because K ′ = Hj for some j ∈ N, there is a K ∈ Kk that contains edges of �K ′, as
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otherwise �K ′ ∩ E(Lj−1) = ∅, resulting in K ′ ⊆ Lj ⊆ L, which contradicts our assumption
that E(K ′) − E(L) is infinite.

Hence �K ′ ∩ E(K) 	= ∅, but �K ∩ E(L) = ∅, implying that |�(K ∪ K ′) ∩ E(L)|, |�(K ′
− K) ∩ E(L)| < |�K ′ ∩ E(L)|. As G is connected, K ′ − K has only finitely many components,
one of which is a region K ′′ ⊆ G − S such that E(K ′′) − E(L) is infinite and |�K ′′ ∩ E(L)|
< |�K ′ ∩ E(L)|. Also K ∪ K ′ is such a region, thus, the choice of K ′ ensures that |�(K ∪ K ′)|,
|�(K ′ − K)|�k. Then

|�(K ∩ K ′)| + k � |�(K ∩ K ′)| + |�(K ∪ K ′)|
= |E(K ∩ K ′, K − K ′)| + |E(K ∩ K ′, K ′ − K)|

+|E(K − K ′, G − (K ∪ K ′))|
+|E(K ′ − K, G − (K ∪ K ′))|
+2|E(K ∩ K ′, G − (K ∪ K ′))|

= |�K| + |�K ′| − 2|E(K − K ′, K ′ − K)|
� |�K| + |�K ′|
< |�K| + k,

and similarly

|�(K − K ′)| + k � |�(K − K ′)| + |�(K ′ − K)|
� |�K| + |�K ′|
< |�K| + k.

Thus, |�(K ∩ K ′)|, |�(K − K ′)| < |�K|. But then each of the finitely many components of
K∩K ′ and of K−K ′ sends < |�K| edges to the rest of G, while V (K) = V (K∩K ′)∪V (K−K ′),
a contradiction to (ii). �

If, as is the case in Theorem 2, d(�) is bounded for all � ∈ �(G), the set K from Lemma 8
has to be finite:

Lemma 9. Let k ∈ N, let G be a locally finite, connected graph, and let S ⊆ V (G) be finite.
Suppose that every � ∈ �(G) has degree < k. Then there is a finite number of disjoint regions
K1, K2, . . . , Kn ⊆ G − S with |�Ki | < k for all i = 1, . . . , n such that for every � ∈ �(G)

there is an i�n with � ∈ Ki .

Proof. Lemma 8 supplies us with a set K of disjoint regions K of G that have the desired properties.
Then K induces an open cover of the compact end space �(G), and hence has a finite subcover
K′. Since we may assume that the closure of each K ∈ K contains at least one end of G, it follows
that K = K′ is finite, as desired. �

4. Arboricity

In our proof of Theorem 2 we successively define certain finite sets S1 ⊆ S2 ⊆ · · · of vertices,
together with partitions of E(G[Si]). In order to extend the partition of E(G[Si]) to a partition of
E(G[Si+1]), we want to use Theorem 1 on the graph G̃ obtained from G[Si+1] by contracting Si

to a vertex, which we can do if the arboricity condition holds for G̃. The following lemma ensures
that there is a way to choose the Si so that it does:
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Lemma 10. Let k ∈ N, and let G be a locally finite graph in which no set of � vertices induces
more than k(�−1) edges. Then for every finite S ⊆ V (G) there is a finite S′ ⊆ V (G) with S′ ⊇ S

such that ‖G[X]‖ + |E(X, S′)|�k|X| for each X ⊆ V (G − S′).

Proof. Put S0 := S, and for i�1 successively define Si as Si−1 ∪ Xi if there is an Xi ⊆
V (G − Si−1) such that ‖G[Xi]‖ + |E(Xi, Si−1)| > k|Xi |. Observe that then Xi is finite. Either
the process stops at some I ∈ N in which case we put S′ := SI and are done, or we obtain an
infinite sequence S0 ⊆ S1 ⊆ · · · together with the corresponding Xi . In the latter case, consider
for n := k|S| the set Sn. By choice of the Xi ,

‖G[Sn]‖�
n∑

i=1

(k|Xi | + 1) = k

(
n∑

i=1

|Xi | + |S|
)

= k|Sn| > k(|Sn| − 1),

contradicting our assumption that the arboricity condition holds for G. �

We define for a vertex v ∈ V (G) and for i ∈ N the set Ni(v) to be the set of all vertices with
distance i to v (thus, in particular, N1(v) = N(v)). For the set {Ni(x) : x ∈ X}, where X ⊆ V (G)

and i ∈ N, we write Ni(X).

Proof of Theorem 2. We successively define for all i ∈ N finite sets Si ⊆ V (G), together with
k edge-disjoint forests F i

1, . . . , F i
k , such that

(i) Si−1 ∪ N(Si−1) ⊆ Si , for i�2;
(ii) F i−1

j ⊆ F i
j , for j = 1, . . . , k and i�2;

(iii)
⋃k

j=1 E(F i
j ) = E(G[Si]); and

(iv) If C ⊆ G is a cycle so that C ∩ G[Si] ⊆ F i
i mod k , then V (C) ∩ Si−1 = ∅, for i�2.

We claim that the (by (ii) well-defined) unions
⋃∞

i=1 F i
1, . . . ,

⋃∞
i=1 F i

k are the desired topological
forests. Indeed, (i) and (iii) ensure that their edge sets partition E(G), since we may assume G to
be connected. Suppose that there is a j ∈ {1, . . . , k} so that

⋃∞
i=1 F i

j contains an infinite cycle C
of G. Let v be a vertex in V (C). By (i), we can choose i�2 so that v ∈ Si−1 and j = imod k.
This contradicts (iv).

A further condition is needed to make the successive choice of the forests F i
j possible. We

require that for i ∈ N

(v) ‖G[X]‖ + |E(X, Si)|�k|X| for every X ⊆ V (G − Si).

Let S1 be any one-elemented subset of V (G) and put F 1
1 , . . . , F 1

k := ∅; this choice obviously
satisfies (iii) and (v), which is all we required for i = 1. So suppose i�2, and that S�, F

�
1 , . . . , F �

k

are already defined for � < i and satisfy (i)–(v). Since Si−1 is finite, Lemma 9 yields a finite
number of regions K1, . . . , Kn ⊆ G − Si−1 of G such that |�Km| < 2k for all m = 1, . . . , n

and such that every end of G lies in the closure of one of the Km. Then T := V (G −⋃n
m=1 Km)

has only finitely many components, none of which may contain a ray. Thus T is finite, hence, as
|⋃n

m=1 �Km| < ∞, also S := T ∪ ⋃n
m=1 N(G − Km) is finite. So Lemma 10 yields a finite

S′ ⊇ S. Put Si := S′ and observe that conditions (i) and (v) are satisfied.
In order to define the forests F i

1, . . . , F i
k , we consider the multigraph G̃ obtained from G[Si]

by contracting Si−1 to the vertex si−1, keeping multiple edges but deleting loops (if necessary, we
first make Si−1 connected by adding some extra edges). Note that Km ∩ G[Si] = Km ∩ G̃ ⊆ G̃

and furthermore, as �Km ⊆ E(G[Si]), also �Km ⊆ E(G̃). Condition (v) for i − 1 (together
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with the arboricity condition for G) implies that in the finite multigraph G̃, no set of � vertices
induces more than k(� − 1) edges. Hence, by Theorem 1 there is a partition of E(G̃) into the
edge sets of k forests F̃1, . . . , F̃k ⊆ G̃. Let I := imod k and assume the F̃j are chosen so that
|E(F̃I ) ∩⋃n

m=1 �Km| is minimal.
We claim that for m = 1, . . . , n:

all edges in E(F̃I ) ∩ �Km are incident with the same component of F̃I ∩ Km. (1)

Then the partition of E(G̃) into E(F̃1), . . . , E(F̃k) corresponds to a partition of E(G[Si])
− E(G[Si−1]) into the edge sets of k forests F1, . . . , Fk ⊆ G[Si]. Put F i

j := F i−1
j ∪ Fj for

j = 1, . . . , k, and observe that F i
j is a forest since F i−1

j as well as Fj is acyclic, and any

cycle meeting both contains a subgraph that corresponds to a cycle of F̃j . This choice satisfies
(ii) and (iii). In order to see (iv), let C ⊆ G be a cycle with C ∩ G[Si] ⊆ F i

I , and suppose
V (C) ∩ Si−1 	= ∅. By Theorem 5, C meets each �Km in an even number of edges. For every two
edges in E(C) ∩ �Km there is a path in F i

I ∩ Km that connects their endvertices in Km, because
of (1). So, if E(C) ∩ �Km 	= ∅, we can substitute C ∩ Km with the union of these paths. Doing
so successively for all m, we obtain a finite subgraph of the forest F i

I , that has only vertices of
degree �2, and thus contains a cycle, which is impossible. This establishes (iv).

So, let us prove (1). Consider an m ∈ {1, . . . , n}. As otherwise (1) is clearly satisfied for m,
suppose that |E(F̃I ) ∩ �Km|�2. Because |�Km| < 2k, there is then a j ∈ {1, . . . , k} such that
|E(F̃j ) ∩ �Km|�1. We may assume that there indeed is an edge e ∈ E(F̃j ) ∩ �Km, as otherwise
taking any edge from E(F̃I )∩�Km and adding it to F̃j clearly yields a better choice of the forests
F̃1, . . . , F̃k . Let e = vw with v ∈ V (Km) and w ∈ V (G̃ − Km).

Now, consider the graph F̃ obtained from F̃I by contracting the components of F̃I ∩ Km and
of F̃I − Km, deleting loops. Then E(F̃ ) = E(F̃I ) ∩ �Km; furthermore, F̃ is a forest, as F̃I is
one. Let ṽ ∈ V (F̃ ) be the vertex whose branch-set in F̃I contains v. Choose X ⊆ V (F̃ ) with
ṽ ∈ X such that the branch-set of each x ∈ X lies in Km and that every non-trivial component
of F̃ has exactly one vertex in X. Now, put E1 := E(X, N1(X)) ∪ E(N2(X), N3(X)) ∪ · · ·
and E2 := E(N1(X), N2(X)) ∪ E(N3(X), N4(X)) ∪ · · ·; these two sets clearly partition E(F̃ ).
Observe that in G̃

each component of F̃I − Km is adjacent to at most one edge of E1, (2)

and

each component of F̃I ∩ Km is adjacent to at most one edge of E2 ∪ e. (3)

Put H� := F̃� for � ∈ {1, . . . , k} \ {I, j} and let HI , Hj be subgraphs of G̃ with

E(HI ) := E(F̃I − Km) ∪ E1 ∪ E(F̃j ∩ Km),

E(Hj ) := E(F̃j − Km) ∪ E2 ∪ e ∪ E(F̃I ∩ Km).

We claim that HI and Hj are forests. Indeed, any cycle in HI contains edges of E1, and thus a
path in F̃I − Km that connects two edges of E1, which is impossible, by (2). On the other hand,
any cycle in Hj must contain edges of E2 ∪ e, and thus a path in F̃I ∩Km that connects two edges
of E2 ∪ e, a contradiction to (3).

Hence, as E(H1), . . . , E(Hk) clearly partition E(G̃), and E(F̃I ∩ ⋃n
m=1 �Km) = E(HI ∩⋃n

m=1 �Km) ∪ E2, the choice of F̃1, . . . , F̃k implies that E2 = ∅. Suppose there is an edge
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e′ ∈ E1 = E1 ∪ E2 = E(F̃I ) ∩ �Km, with endvertex x in Km, such that there is no v–x path in
F̃I ∩ Km. Then put H ′

I := (V (HI ), E(HI ) − {e′}) and H ′
j := (V (Hj ), E(Hj ) + {e′}). Observe

that H ′
j is a forest, as any cycle in H ′

j contains both e and e′, and thus a v–x path in F̃I ∩Km, which

is impossible. But since H ′
I has less edges in

⋃n
m=1 �Km than F̃I , this contradicts the choice of

F̃1, . . . , F̃k .
So every edge in E(F̃I ) ∩ �Km is incident with the component of F̃I − Km that contains v,

establishing (1). �

5. Tree-packing

Clearly, (i) of Theorem 3 is equivalent to G being the edge-disjoint union of k spanning con-
nected subgraphs. Tutte [13] weakens this version of condition (i) in order to extend the theorem
to locally finite graphs. He replaces ‘connected’ with ‘semi-connected’, defined as follows: A
subgraph H of a multigraph G is semi-connected in G if every bipartition of V (G) is crossed
either by an edge of H or by infinitely many edges of G.

Theorem 11 (Tutte [13]). For a locally finite multigraph G the following statements are equiva-
lent:

(i) G is the edge-disjoint union of k spanning semi-connected subgraphs;
(ii) every partition of V (G), into r ∈ N sets say, is crossed by at least k(r − 1) edges of G.

Considering Oxley’s [12] counterexample, Tutte’s infinite version of his theorem is in a sense
best possible, but it certainly lacks the intuitive appeal of Theorem 3. However, in our topological
setting the extension suddenly becomes quite natural: semi-connectedness of a spanning subgraph
H ⊆ G is the same as topological connectedness of its closure in |G|.

Lemma 12. A spanning subgraph H of a locally finite multigraph G is semi-connected in G if
and only if its closure H in |G| is topologically connected.

For the proof, we need the following lemma.

Lemma 13 (Diestel and Kühn [4]). Let U be an infinite set of vertices in a locally finite, con-
nected graph. Then there exists a ray R together with an infinite set of disjoint U-V (R) paths.

Proof of Lemma 12. If H is not semi-connected, then V (G) can be partitioned into two non-
empty sets U, W with no H-edge and only finitely many G-edges going from U to W. Then the
closures of H [U ] and of H [W ] are disjoint open subsets of H (in the subspace topology of
H ⊆ |G|), hence H is not topologically connected.

To prove the forward implication, suppose H is semi-connected in G but H is not topologically
connected. Then H is a disjoint union of two open non-empty subsets. Let U and W be the
intersections of those two subsets with V (G); then H contains no U–W edge, we have U ∪ W =
V (H) = V (G), and U ∩ W = ∅ (closures taken in H , but that is the same as in |G| since H

contains all ends). Since H is semi-connected, there is an infinite set F of U–W edges in G; let UF

be the set of vertices in U incident with an edge of F. By Lemma 13, G contains a ray R together
with an infinite set of disjoint UF –V (R) paths. As F is infinite but G is locally finite, there is also
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an infinite set of disjoint W–V (R) paths. Hence every neighbourhood of the end � that contains
R meets both U and W, i.e. � ∈ U ∩ W 	= ∅, a contradiction. �

So the semi-connected subgraphs of Theorem 11 have closures that are topologically connected
subsets of |G|. We now show that each of these contains a topological spanning tree:

Lemma 14. Let G be a locally finite multigraph, and let H be a spanning subgraph of G such
that H ⊆ |G| is topologically connected. Then H contains a topological spanning tree of |G|.

Proof. Since H spans G and H is topologically connected, G is connected and therefore countable.
Let e1, e2, . . . be an enumeration of E(H). Put H0 := H , and for i�1 let Hi := Hi−1 −
ei if Hi−1 − ei is topologically connected, and Hi := Hi−1 otherwise. Obviously, all Hi are
topologically connected.

So T := ⋂∞
i=1 Hi spans G, and its closure T does not contain any circles. Indeed, suppose

there is a circle C ⊆ T , which then contains an edge, ei say. Hence Hi = Hi−1, i.e. Hi−1 − ei is
not topologically connected, and thus allows a partition into two disjoint open sets U, V . As Hi−1
is topologically connected, U and V each contain an endpoint of ei . These are the endpoints of an
arc A ⊆ C that avoids all inner points of ei . As U and V are open and disjoint, A \ (U ∪ V ) 	= ∅.
On the other hand, A ⊆ T − ei ⊆ Hi−1 − ei ⊆ U ∪ V , yielding the desired contradiction.

Hence, if T is semi-connected, then by Lemma 12 (and Theorem 6), T is a topological spanning
tree of G. If T is not semi-connected, then G has a finite cut F that contains no edges of T. Thus,
there is an i ∈ N such that F ∩ E(Hi) = ∅. This yields a partition of Hi into two disjoint open
sets, contradicting our assumption that Hi is topologically connected. �

We finally prove our generalisation of the tree-packing theorem to locally finite graphs:

Proof of Theorem 4. From Lemma 14 follows that (i) holds if and only if G is the edge-disjoint
union of k spanning subgraphs with topologically connected closure in |G|. The latter in turn is
equivalent to (ii), by Theorem 11 and Lemma 12. �

The tree-packing theorem can also be generalised to some graphs that are not locally finite:
those in which no two vertices are linked by infinitely many independent paths. Since no two
vertices in such a graph dominate the same end (send infinite fans to its rays), we can identify
every dominated end with the unique vertex that dominates it, without changing the topology on G
itself. The resulting topology on |G|, IToP, was introduced and studied in Diestel and Kühn [4]. The
proof of Theorem 4 generalises to such graphs with IToP (but not with ToP) in a straightforward
way, which appears to be the most general natural form that the infinite tree packing theorem can
take.
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