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Abstract 

Arbuscular mycorrhizal (AM) symbiosis is heavily and positively implicated in phosphorus (P) acquisition from soil to 
plants, including many important agricultural crops. Its role in plant nitrogen (N) nutrition is generally not as promi-
nent or beneficial, with exception of some situations when N is available predominantly in organic forms. Yet the AM 
fungi (AMF) are, due to their poor exo-enzymatic repertoire, unlikely to degrade organic compounds on their own, 
therefore they possibly depend on other microorganisms to liberate nutrients contained in those materials. Here, 
we review current knowledge on the roles played by the AMF in plant N nutrition in general and uptake of N from 
organic compounds in particular, with a specific reference to microbes and processes involved in liberation and AM 
fungal utilization of N from organic compounds. Future research needs and directions are outlined, as is the agro-
nomic and societal context of such research.
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Introduction—setting the scene
Nitrogen (N) is an integral part of a number of macro-
molecules supporting all life on Earth, including nucleic 
acids, proteins, some polysaccharides (e.g., chitin and 
chitosan) and a wide range of secondary metabolites. 
It is, thus, present in all living cells and is consequently 
regarded as one of the vitally important macronutrients 
(biogenic elements) for the life as we know it. The N-rich 
organic materials such as farmyard and green manures, 
composts and guano have been used for millennia to sus-
tain sedentary agriculture [32]. Since about 100  years, 
large amounts of mineral N fertilizers have been manu-
factured through the Haber–Bosch ammonia synthesis 
with energy and hydrogen inputs from fossil fuels, mainly 
natural gas [17]. This single chemical invention, together 
with widespread use of potent pesticides and breed-
ing for high-yielding crop cultivars, have together made 
what we refer to as Green Revolution, which allowed 
unprecedented yield increases and literally detonated the 

human population explosion, driving the world’s popula-
tion from 1.6 billion in 1900 to current approximately 8 
billion [110]. Even though mineral N fertilizers did play 
a major role in the Green Revolution, their use poses a 
great risk of environmental pollution, degradation of soil 
quality, and great societal dependency on fossil energy. 
As the production of mineral N fertilizers is an energy 
intensive process, it will consequently be very difficult to 
maintain any close to the current production levels, shall 
the availability of fossil energy thin or vanish in the future 
[33, 129]. As the world population would only reach a 
maximum of about 4 billion without synthetic N fertiliz-
ers today, the other half of the world population is liter-
ally reliant on the Haber–Bosch process and, therefore, 
on fossil energy supplies [26].

Agriculture has always been a system out of (natural) 
balance, aiming at suppressing weeds and pathogens and 
maximizing yields of only a few or a single crop/product. 
Current agricultural practices reached much closer to the 
theoretical yield/production potential of many agricul-
tural products than ever before, with further perspectives 
of closing the crop yield gap by fertilizers, supplemen-
tary irrigation, modern breeding and novel management 
options, e.g., precision agriculture [18, 121]. However, 
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the humanity at the same time also achieved the lowest 
levels of global food reserves and the highest depend-
ency on global reshuffling of resources than ever before. 
Therefore, the imminent danger of shortage of suppy of 
food, feed, and other agricultural commodities arises 
shall any of the current agricultural or linked resources 
be performing weakly under future stress scenarios. The 
scenarios include, among others: emergence of novel 
pathogens; drought or heat spells; lack of pollinators; low 
availability of mineral N and phosphorus (P) fertilizers, 
energy and/or pesticides; major soil losses due to erosion; 
and further degradation of soil and ground water quality 
[21, 36, 40].

Relying on mineral N fertilizers, conventional agricul-
tural production literally feeds on finite fossil energy in 
large parts of the world today—and, at the same time, 
silently accepting rather low mineral N fertilizer use effi-
ciency (with the maximum at around 50%) and immense 
environmental costs, particularly with respect to soil and 
water quality [98]. Fostering the transition of a significant 
portion of agricultural lands to more sustainable organic 
management is, thus, urgently required to improve both 
global ecosystem sustainability and resilience of the food 
production systems to current and future challenges 
[114]. This is because organic agriculture helps recycling 
organic waste, improves soil quality and organic food 
generally has a smaller environmental footprint than 
conventionally produced food (though it still requires 
judicious management of inputs), which all may be 
important with respect to mitigation of and adapting to 
climate changes [47, 70, 88]. Additionally, supporting 
personal modesty as a counterbalance to civilization of 
endless consumption must be encouraged; while at the 
same time, an increased level of agricultural productiv-
ity is required to feed the growing world population with 
rising demand for high quality food. As the altered needs 
of human civilization mutually interact with the Earth 
ecosystem, it could remain within habitable boundaries 
[115]. Therefore, future agricultural production systems 
will need to rely, more than ever, on healthy soil and its 
inhabitants, dedicating particular attention to maintain-
ing and promoting soil quality. In this review, we sum-
marize current knowledge on the roles played by the 
omnipresent yet still broadly under-appreciated arbus-
cular mycorrhizal fungi (AMF) in N cycling in soil–plant 
systems in general and recycling organic N from soil to 
plant in particular.

Arbuscular mycorrhizal symbiosis and nitrogen 
cycling
The AMF are establishing so-called arbuscular mycorrhi-
zal (AM) symbiosis with majority (> 60%) of extant plant 
species [111]. This means that AMF can be regarded as 

an important biological soil resource. This is because 
the AM symbiosis, an intimate co-existence between 
the AMF and roots of their host plants, plays a substan-
tial role in mineral nutrition, abiotic stress tolerance and 
pathogen resistance of the plants including many impor-
tant agricultural crops such as wheat, maize, rice, banana, 
potato or sunflower [83, 95, 112]. Further, the AM sym-
biosis apparently plays a pivotal role in maintenance of 
diversity of plant communities through redistribution of 
symbiotic costs and benefits between individuals of the 
same or different plant species through so-called com-
mon mycorrhizal networks [7, 28, 131].

The AMF hyphae interconnect soil with the cortical 
cells of roots, establishing a unique and direct pathway 
to shuffling nutrients from the soil to plants and reduced 
carbon (C) in the other direction [82, 97, 132]. However, 
this connection is not very likely to facilitate any signifi-
cant direct interplant nutrient and/or C transfers [30, 
31], except when C is transferred from a green host to a 
neighboring mycotrophic, achlorophyllous plant [14, 23]. 
The AM symbiosis is particularly important for their host 
plant acquisition of P, zinc and copper from soil because 
those nutrients only have a limited mobility in most soils 
and AMF hyphae are well suited to reach those nutrients 
beyond the root depletion zone [1, 64, 92]. The AMF 
hyphae, however, have generally much lesser importance 
in directly improving N nutrition of their hosts from 
mineral N sources ([51] and reference therein). This may 
appear surprising because the AMF obviously possess the 
metabolic capacity to take up inorganic N forms from 
soil solution and transport the N to their host plants 
[27, 34, 39]. However, the mobility of inorganic N forms 
in soil is mostly not limiting the N uptake by the plants 
[86]—probably with the exception of N being present 
predominantly as  NH4

+ ions in clayey, highly organic, 
and/or calcareous, alkaline soils. Under such conditions, 
the mobility of ammonium ions in soil is low and, conse-
quently, significant improvements of plant N acquisition 
are sometimes, though not always, recorded due to AM 
symbiosis establishment [4, 67, 85].

Yet, the AM symbiosis can have important indirect 
effects on plant N nutrition during which the mycorrhizal 
benefits and costs may vary according to the environmen-
tal context [22, 60, 69]. Particularly, under low mineral N 
availability in the soil, a competition for soil N between 
the plant and the AMF has been documented, resulting 
in less N being taken up from the N-deficient soil by myc-
orrhizal as compared to the non-mycorrhizal plants [99]. 
Only when the N demand of the fungus was satisfied, the 
mycorrhizal growth- and P-uptake responses became 
positive [54, 99]. This is mainly because the N demand of 
AMF hyphae can be substantial, as the N concentration 
in the AMF hyphae may (at least for some AMF taxa) 
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reach well over 5% [53]. On the other hand, in legumes 
supporting symbiotic dinitrogen fixation, AMF-mediated 
P supply could have significant positive feedback on the 
efficiency of atmospheric dinitrogen fixation [100]. Direct 
transfer of N from plant to plant via common mycorrhi-
zal networks is remaining another intriguing yet largely 
unconfirmed hypothesis. It is namely difficult to sepa-
rate processes like biotrophic (AMF hyphae-mediated) 
transfer of N from transfer via root exudates [61] or from 
recycling of nutrients contained in necromass—plant or 
fungal [29, 68]. Uptake of N from such different sources 
can only be unequivocally traced in very simplified eco-
systems such as monoxenic cultures [74] or in reduced 
soil diversity experiments [130]. Using such simplified 
experimental systems, and benefitting from the use of 
isotopically labeled compounds, uptake of simple amino 
acids by AMF hyphae has previously been tested [46, 80]. 
Based on that research, there is thus far no experimental 
evidence for any substantial and quantitatively important 
acquisition of N by mycorrhizal roots via AMF hyphae 
from such simple organic sources, in the absence of other 
microbes. On the other hand, there is some limited and 
partly equivocal evidence from experiments employing 
quantum dot technology indicating that organic N frag-
ments could potentially be taken up by AMF hyphae and 
that uptake of N in the form of certain amino acids is 
enhanced in mycorrhizal as compared to non-mycorrhi-
zal roots [133, 134].

Nevertheless, there are specific situations where the 
AM symbiosis can indeed play a major and direct role in 
soil–plant N cycling—mainly, if the N is present in soil 
predominantly in organic forms (e.g., plant litter, manure, 
compost or organic wastes). This particular scenario will 
be handled in detail below.

Organic nitrogen in soil and AM symbiosis
The development of AMF in soil—both hyphal prolif-
eration and spore formation—is often stimulated by 
organic amendments, particularly by those with a sig-
nificant N content [16, 43, 101]. For example, farmyard 
manure, plant litter, yeast biomass, chitin, nucleic acids 
or proteins, when added to soil/growth substrate, have 
previously been shown to induce short-term increases 
in AMF hyphal and/or spore densities (Table 1 and ref-
erences therein). Such effects have not been observed 
for compounds like cellulose or phytic acid, which 
contain no organically bound N, however [16, 44, 51]. 
Such a stimulation of AMF development could relate 
to release of nutrients (particularly of N in form of 
ammonium) from the soil amendments through min-
eralization, or to locally changed abiotic or biotic soil 
properties, or both [15, 43, 96]. Interestingly, addition 

of mineral nutrients does usually induce much weaker 
effects on AMF hyphal proliferation as compared to the 
organic amendments [15].

The AMF possess a particularly weak exo-enzymatic 
repertoire [124] as compared to other (ecto-, ericoid 
and orchid) mycorrhizal and saprotrophic fungi [76, 
87, 118]. Thus, the AMF are very unlikely to mineralize 
soil organic nutrients effectively on their own, although 
some exo-phosphatase activity has previously been 
detected in the AMF hyphae [71, 72, 77]. Therefore, it is 
very likely that to effectively acquire mineral nutrients 
(be it P or N) bound either in the organic amendments 
or in the soil organic matter (SOM) itself, the AMF 
must rely on mineralization of such resources carried 
out by other saprotrophic or hypersymbiotic microbes 
[62, 96, 123]. The distinction between saprotrophic and 
hypersymbiotic microbes in this regards is the origin of 
C the microbes live on—either from the SOM or from 
the AMF hyphae, respectively. A nice example of a tight 
cooperation between the AMF hyphae and a soil bac-
terium Rahnella aquatilis with regards to organic P 
(phytate) mineralization has recently been described by 
Zhang et al. [136]. Although mineralization of organic 
N is at least equally important process as organic P 
mineralization, and microbial communities in AMF 
hyphosphere amended with organic N have been ana-
lyzed previously [16, 43, 96], there is as yet no specific 
information about the identity of primary organic N 
decomposers teaming directly with the AMF hyphae.

Besides the primary decomposers, which catalyze the 
liberation of small (organic or inorganic) molecules that 
could then be taken up by the microbial cells, it seems 
that for utilization by AMF hyphae of N supplied in 
organic forms, microbial grazers (protists and/or nem-
atodes) play a particularly important role ([15] and ref-
erences therein). This is because the grazers excrete, for 
stoichiometric reasons, large amounts of N they take 
in with their prey as free ammonium ions back to the 
soil solution [126]. From the soil solution, this N can 
then be readily taken up by the AMF hyphae to cover 
their own N demand or to transport it to the host plant 
[15, 68, 123]. The central role of free ammonium ions 
in the utilization of organic N by AMF hyphae has 
been postulated in several studies (e.g., [15, 117]). Fur-
ther, ammonium is the preferred mineral form of N for 
uptake by the AMF hyphae [119]. And, interestingly 
enough, there is no unequivocal evidence as yet for the 
extraradical AMF hyphae to be able to directly and in 
significant amounts acquire small organic N molecules 
such as amino acids, peptides, chitin oligomers, or 
nucleotides from the soil solution ([46, 59, 80]; but see 
[134]).
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Table 1 Responses of  arbuscular mycorrhizal fungi (extraradical hyphal or  spore densities) to  various soil organic 
nitrogen (N)  amendments, and  the  rates of  transfer of  N from  the  amendments to  the  mycorrhizal plants as  recorded 
in previously published experiments (using different experimental set-ups, biological models, and lengths of exposure 
to the isotopes)

a Stimulation (positive values) or inhibition (negative values) of AMF mycelial growth and/or sporulation in contrast to control (non-mycorrhizal) treatment, of 
which the latter is arbitrarily set to 0%. The response of the most common AMF taxa was surveyed (e.g., Glomus hoi, G. aggregatum, Rhizophagus irregularis/syn. G. 
intraradices/, R. clarus/syn. G. clarum/, Funelliformis mosseae/syn. G. mosseae/, Claroideoglomus claroideum/syn. G. claroideum/)
b Crab-shell chitin or fungal chitin
c Amount of isotopically labeled nitrogen (N) added to the root-free patch and transferred to the plant in a mycorrhizal treatment; numbers in brackets indicate 
values recorded in the non-mycorrhizal (NM) treatment if preceded with “NM”. Values in brackets without the prefix “NM” indicate values recorded in the mycorrhizal 
treatment without a significant difference from the NM control treatment, or absence of the NM control treatment from experimental design
d NM—figures for the nonmycorrhizal control treatments
1 Bukovská et al. [15]
2 Bukovská et al. [16]
3 Hodge [48]
4 Hodge [49]
5 Leigh et al. [81]
6 Hodge and Fitter [53]
7 Hodge et al. [58]
8 Barrett et al. [9]
9 Gryndler et al. [43]
10 Gryndler et al. [42]
11 Saia et al. [105]
12 Tanaka and Yano [119]
13 Hodge et al. [56]
14 Hodge et al. [55]
15 Hodge et al. [57]
16 Atul-Nayyar et al. [6]
17 McFarland et al. [89]
18 Tanwar et al. [120]
19 Hodge et al. [52]
20 Allen and Shachar-Hill [2]
21 Fellbaum et al. [27]
22 Johansen et al. [65]
23 Johansen et al. [66]
24 Johansen et al. [67]
25 St. John et al. [116]
26 Hawkins and George [45]
27 Barrett et al. [10]
28 Rains and Bledsoe [102]
29 Cliquet et al. [20]
30 Mäder et al. [85]

Identity (form) of N amendment Quantitative response ratio of AMF hyphal or spore 
 developmenta

Amount of N  transferredc

Complex organic N sources (plant biomass, 
yeast biomass, dead mycelium)

919%1, 292–519%2, 756%4, 55–138%5, 72–341%6, 611%8, 
− 29 to 341%9, 111–347%18, 186–324%19, 111–4179%27

28.3%  (NMd 1.3%)1, (7.9–16.7%)4, 5.0–32% (NM 
0.2%)5, 6.0–6.2% (NM 0.2–0.3%6, 26%7, 5.4–9.0% 
(NM < 0.05%)8, 2.1–3.9% (NM 3.5–6.5%)11, 3.2–5.0% 
(NM 0.34–1.06%)13, (0.8–7.5%)14, 4.6–8.7%15, 16–25% 
(NM 2%)16, 15% (NM 5%)19, 4–15%27

Polysaccharides  (chitinb, chitosan) 507–729%1, 153–637%2, 23–239%9 22.3% (NM 1.2%)1

Proteins (e.g., albumin) 485%1, 244–760%2

Nucleic acids (DNA) 602%1, 233–644%2

Amino acids (Gly, Arg) 439–1124%3, 27–187%20 (72%)3, 1.6–5.1%17, 13%28, 0.06–0.1%29

Humic substances (humic acids, fulvic acids) 5.2–158%10, 0.3–203%25

Mineral N  (NH4
+,  NO3

−) 323%1, − 13% to 612%21, − 1.3 to 25%22, 5.5–59%24, 
828%26

0.35–4.67%12, 1.9–8.2%17, 2.0–5.8%21, 6% (NM 0%)22, 38.2–
39.5% (NM 6.5–15.7%)23, 27.4–49.2% (NM 0.1–0.7%)24, 
(1–7%)26, 34.5%28, 0.58%29, 12–17% (NM 6–8%)30
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Chitin—a relevant organic N source for the AMF?
Chitin is the second (after cellulose) most abundant pol-
ymer in nature [122], and, unlike the cellulose, it is rich 
in N (it contains > 6% N by weight). It is present in soil 
micro- and meso-fauna and in microorganisms, including 
many insects, crustaceans, and fungi, respectively. Large 
amounts of chitin are, thus, both produced and recycled 
in the soils [25, 29]. Addition of crab-shell chitin to plant 
cultivation substrate has earlier been shown to strongly 
promote sporulation of several AMF species [43], a trick 
that is now widely been used in commercial production 
of AMF inocula to enhance their quality. More recently, 
it has been shown by direct isotopic 15N-labeling that a 
large fraction (> 20%) of the organic N supplied as chitin 
into a pot zone accessible solely to AMF hyphae but not 
roots has been transferred to the plants within as little as 
5 weeks [15]. Further examples of experimentally meas-
ured N transfer rates from organic N sources to plants 
via AMF hyphae are provided in Table  1. Such efficient 
release and transport of N as quoted above would require 
very fast chitin mineralization, for example, by special-
ized soil prokaryotes and/or fungi [12, 94] and further 
processing via the soil microbial loop involving micro-
bial grazers [15]. It is noteworthy that chitinolytic micro-
organisms usually degrade chitin to oligomers that are 
directly taken to their cells via specialized transporters, 
referred to (at least in the prokaryotic world) as chitop-
orins ([12] and references therein). Specialized or more 
generic transmembrane transporters facilitate uptake 
of N-acetylglucosamine (a chitin monomer) to eukary-
otic cells [3, 107]. Interestingly, genes responsible for 
N-acetylglucosamine transport across membrane and 
its further metabolism have also been described from 
AM fungus Rhizophagus irregularis [75], yet they have 
only been documented to be active in the intraradical 
mycelium, possibly recycling organic N from collapsing 
arbuscules. Regardless of the possible role of N-acetyl-
glucosamine (or other soluble products of chitinolysis) in 
N nutrition of various microorganisms, chitin oligomers 
and their derivatives (such as lipo-chitooligosaccharides) 
also serve as signals to recognize pathogens or symbionts 
in the plant and microbial worlds [5, 93, 108]. To rec-
ognize such signals, specialized receptors and signaling 
cascades have developed in plants [5, 38], but these are 
unlikely to be involved in mass chito-oligomer uptake by 
cells for nutritional purposes.

Metabolic capacity to take up soluble organic N com-
pounds derived from chitinolysis may give the microbes 
the priority of utilizing the N from chitin over other 
soil opportunists. Yet, regardless the priority in organic 
N uptake, once such microbes are digested by bacte-
rial/fungal grazers, their N eventually returns to the 
soil ammonium pool. The AMF hyphal proliferation in 

chitin-enriched patches [15] could then be explained 
by locally elevated ammonium concentration or by the 
presence of specific microbiome in the chitin-amended 
patches, with countless of more or less specific interac-
tions between individual microbes and the AMF hyphae 
[41, 63]. Among such interactions, we mention here 
just two examples: first, a competition for free ammo-
nium ions in soil solution between AMF hyphae and soil 
ammonia oxidizers has recently been documented [15]. 
And second, stimulation of nosZ gene-carrying bacterial 
clades (e.g., Gemmatimonadetes and Deltaproteobacte-
ria) by AMF hyphae has been suggested to explain over-
all reduction of soil  N2O emissions from AMF-colonized 
 N2O hotspots [13, 117].

There is also an interesting question remaining to be 
answered as to whether the AMF hyphae could directly 
be implicated in chitin mineralization and consequent N 
release from its polymeric structure. If we accept that the 
AMF have chitin in their cell walls [35], hyphal elonga-
tion (apical growth) requires a suite of membrane-bound 
and exo-cellular enzymes including chitin synthases and 
chitinases [37, 104, 109]. Having such enzymes in their 
repertoire, the AMF may (at least theoretically) be well 
capable of releasing N locked up in the exogenous chi-
tin without involvement of other (chitinolytic) microor-
ganisms. Whether the AMF generally utilize the N from 
exogenous chitin without involvement of other micro-
organisms and whether the rate of N release from chitin 
and its uptake into the hyphae is of any significance for 
the AMF is still remaining to be addressed experimen-
tally, though.

Conclusions and future research directions
In spite of a significant progress in understanding of 
importance of organic N sources for AMF hyphal devel-
opment and N acquisition [59], there are still a number of 
open questions to be answered by future research.

First, the effects should specifically be addressed of 
the chemical identity of model N compounds on AMF 
and the soil N cycling. There have namely been different 
organic N sources including complex substrates such as 
plant litter or yeast biomass tested in previous experi-
ments ([16, 50, 52, 103]; see also Table  1), which might 
have stimulated different microbial groups and/or min-
eralization pathways [16]. Future experiments should, 
thus, concentrate on a few, chemically well-defined com-
pounds to achieve deeper understanding of mechanisms 
and processes behind utilization of those model organic 
N sources by the AMF and their associated plants. Chi-
tin may be a good candidate for such experimenta-
tion because of its chemical uniformity and simplicity, 
although, admittedly, complex plant litter [81] or even 
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entire roots [127] might well be even more relevant from 
a broader ecosystem-wise point of view.

Second, unambiguous identification should be 
achieved of the players involved in the release/uptake 
of N from the organic N sources, including their energy 
(and C) sources. Experimental approaches to achieve this 
include stable isotope labeling of the organic soil amend-
ments coupled with density-gradient fractionation of 
nucleic acid and subsequent next generation sequencing 
(NGS) or with signature phospholipid fatty acid analy-
ses, approaches known as stable isotope probing (SIP) 
experiments [24]. Studying soil meta-transcriptomes and 
genetic makeup of microorganisms identified in the SIP 
experiments, along with metabolic and co-occurrence 
network analyses, should allow reconstructing the entire 
organic N utilization pathway [8, 91]. Such experiments 
should carefully be designed to cover all relevant time 
points in the organic N mineralization and downstream 
N utilization within the complex microbial communities 
to seize their temporal dynamics aspect. The unprec-
edented depth of current NGS methods should be uti-
lized, including less prominently studied, but functionally 
equally important, microbial groups such as soil protists 
and nematodes [79, 106, 135].

Third, fully quantitative insights should be provided 
into the fluxes of N and C in soil. The usage of stable iso-
topes allows addressing whether it was specifically the 
N that was cleaved off the organic moieties without fur-
ther degrading/utilizing the C backbone structures of the 
organic soil amendments. Or, alternatively, whether min-
eralization of organic N sources such as chitin is only or 
preferentially happening upon strong microbial demand 
for C/energy. In the latter scenario, liberation of N con-
tained in the organic molecules would effectively happen 
only as a by-product of mineralization of the organic N 
source primarily because of microbial C requirements. 
There is evidence for both pathways being operational 
in the microbial world—with deacetylation/deamination 
processes being more active if bacteria are N but not C 
limited, and full depolymerization/mineralization of chi-
tin being predominant under conditions when chitin is 
the major C source [12]. Specific utilization of organic N 
but not C from the SOM (a process leading eventually to 
enhanced C sequestration) is also described for ectomyc-
orrhizal fungi [11, 84] and also suggested by some earlier 
data from AMF systems [127]. When the entire organic 
N source including the C was taken up by the microbes, 
it would result in removal and not in stabilization/
sequestration of the SOM, which is consistent with some 
other observations, showing co-incidental disappearance 
of both N and C added to the soil as organic amendment 
[19, 128]. Organic N mineralization in soil could also be 
catalyzed by different microbial groups, depending on 

resource stoichiometry such as relative C and N avail-
abilities. This means that bulk processes such as organic 
N mineralization cannot always be unequivocally linked 
to the individual microbial groups—there obviously is a 
continuum in both [78].

Fourth, detailed and spatially explicit insight is 
needed into the microbial world, which would allow 
directly linking the players to individual processes 
in soil N cycling. Spatial arrangement of both the 
microbes and the stable isotopes could be visualized 
by advanced approaches such as fluorescence in  situ 
hybridization (FISH) and by nanoscale secondary ion 
mass spectrometry (NanoSIMs), respectively [73, 90, 
96, 125]. Further, the activity of the different enzymes 
potentially involved in chitin or other N sources miner-
alization (e.g., chitinases, deaminases, proteinases) can 
be visualized in a spatially discrete manner by zymog-
raphy [113].

Fifth, the ultimate proof is required  of the causal  link 
between the functionality and the structure of processes. 
Reconstructing simple model ecosystems from indi-
vidual microorganisms or from functional guilds [130] 
shall provide the direct experimental evidence for the 
processes suggested by observations of complex systems, 
e.g., involvement of protists in increasing N availability 
from the organic N sources for the AMF hyphae through 
so-called soil microbial loop (e.g., [15]).

Last but not least, in each and every stage of the 
research outlined above, it is always important to think 
about how the results relate to our ultimate goal—which 
is to utilize the new knowledge for the sake of global sus-
tainability and human welfare. Applied research should 
translate the basic findings (for example, those related 
to efficiency of organic N recycling in soils) to improved 
and more environmentally sustainable agricultural prac-
tices. Improving efficiency and sustainability of agricul-
tural production is urgently needed, while it is equally 
important not to accept any productivity decreases—an 
uneasy task to fulfill, yet vitally important to attain in 
order to ensure enough food for every human being on 
the planet—now and in the future.
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