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ABSTRACT 
Arbuscular mycorrhizal fungi (AMF) are more 
widely distributed and can associate with a wide 
range of plant species. AMF are keystone or-
ganisms that form an interface between soils 
and plant roots. They are also sensitive to envi-
ronmental changes. AMF are important microbi-
al symbioses for plants under conditions of 
P-limitation. The AMF are crucial for the func-
tioning of terrestrial ecosystems as they form 
symbiotic interactions with plants. Mycorrhizal 
fungi are known to influence plant diversity 
patterns in a variety of ecosystems globally. 
AMF hyphae form an extensive network in the 
soil. The length is a common parameter used to 
quantifying fungal hyphae. The mycelial network 
of AM fungi extends into the soil volume and 
greatly increases the surface area for the uptake 
of immobile nutrients. Also, AM symbioses im-
prove plants tolerance to drought and enhance 
plants’ tolerance of or resistance to root patho-
gens. Also, the networks of AM hyphae play a 
crucial role in the formation of stable soil ag-
gregates and in the building up of a macropor-
ous structure of soil that allows penetration of 
water and air and thereby prevents erosion. The 
functioning of AMF symbiosis is mediated by 
direct and indirect effects of biotic and abiotic 
factors of the surrounding rhizosphere, the 
community, and the ecosystem. AMF have great 
potential in the restoration of disturbed land and 
low fertility soil. However, despite the impor-
tance of AMF to terrestrial ecosystems, little is 
known about the effects of environmental 

changes on AMF abundance, activity and the 
impact of these changes on the ecosystem ser-
vices. Therefore, it is important to gain a clearer 
understanding of the effects of environmental 
changes on the AM fungal species to guide 
conservation and restoration efforts. 
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1. INTRODUCTION 
Arbuscular mycorrhiza is the most ancient and wide-

spread type of mycorrhiza [1]. Paleobotanical and mole-
cular sequence data suggest that the first land plants 
formed associations with Glomalean fungi from the 
Glomeromycota about 460 million years ago [2]. This is 
estimated to be about 400 million years before the ap-
pearance of root nodule symbioses with nitrogen-fixing 
bacteria. Arbuscular mycorrhizal (AM) symbioses can be 
formed with as many plant species as 250,000 [1]. Only 
150 - 200 species of AM fungi have so far been distin-
guished on the basis of morphology. However, DNA- 
based studies suggest that the true diversity of these 
symbionts may be much higher [3,4]. The symbiosis is 
characterized by highly branched fungal structures, ar-
buscules, which grow intracellularly without penetrating 
the host plasmalemma [5]. 

AMF are more widely distributed than other types of 
mycorrhizal associations [1]. They are keystone organ-
isms that form an interface between soils and plant roots; 
and they are also sensitive to changes in soil and plant 
conditions [6]. They can associate with a wide range of 
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plant species [7] and can infect most species of flowering 
plants in most habitats [8]. AMF are important microbial 
symbioses for plants; and under conditions of P-limita- 
tion and AMF are significant in the maintenance of soil 
health and fertility, plant community development, nu-
trient uptake and above the ground productivity [9]. For 
example, a study by Borowicz [10] demonstrates that 
plants generally grow better when they are mycorrhizal. 
van der Heijden et al. [11] found out that plant biodiver-
sity, nutrient capture, and productivity in macrocosms 
increase significantly with an increase of AM hyphal 
length and AMF species richness. Plants acquire nu-
trients and water through mycorrhizal symbioses [5]. 
Numerous studies indicate that mycorrhizal symbiosis is 
the most important to plants where there is a deficiency 
of soil nutrients [12,13]. Plants exchange carbon (C) for 
fungal phosphorus (P) and nitrogen (N) [14]. AM fungi 
release signals molecules, which trigger a series of sym-
biotic plant genes; this activity prepares the intracellular 
root environment for colonization and arbuscules forma-
tion inside the root cortex [15,16]. Studies have been 
undertaken on the distribution and diversity of AMF spe-
cies in relation to individual plant species and plant 
communities in farming systems [17,18]; and recently, 
there is emerging interest in the role of mycorrhizae in 
ecosystem processes [18,19]. However, only a few stu-
dies have been undertaken to track individual fungi over-
time as a result of environments changes. Yet, these 
kinds of studies are necessary in the understanding of the 
dynamics of mycorrhizal symbioses.  

2. AMF FUNCTIONING AND THE  
ECOSYSTEM SERVICES 

AMF are crucial for the functioning of terrestrial eco-
systems; and they form symbiotic interactions with terre-
strial plants and colonize more than 80% of plant roots 
[5]. Mycorrhizal fungi are known to influence plant di-
versity patterns in a variety of ecosystems globally [20]. 
However, despite the importance of AMF to terrestrial 
ecosystems, the contribution of mycorrhizal fungi to the 
maintenance of plant diversity in the tropics is not well 
known [21]. It is well recognized that humans keep on 
changing the global environments at an unprecedented 
rate. These changes are known to have an impact on 
global climate and biota; however, the implications of 
these changes to communities and ecosystems are not 
known [22]. Understanding of the mycorrhizal responses 
to anthropogenic environmental changes can therefore 
help to predict the trajectories of future communities and 
ecosystems in a changing world [19,23]. Limited work 
has been undertaken in AMF at a landscape level in rela-
tion to land use changes in the tropics. However, with an 
increase in the interference of landscape by human be-
ings, it is vital to establish how land use changes influ-

ence AMF abundance, activity and their impact on eco-
system services. The loss of propagules of AMF may 
result into a decrease in the capacity of plants to take up 
nutrients, lowering soil fertility thus threatening the sta-
bility of the ecosystem [24]. There are a number of situa-
tions where management of the mycorrhizal symbiosis is 
necessary in restoring plant cover, improving plant health 
or increasing plant productivity. 

Studies carried out in agricultural systems both in the 
tropical and temperate regions have suggested that AMF 
abundance may decline as a result of agricultural intensi-
fication [25-27]. Whilst reports of AM hyphal lengths in 
agricultural soils are becoming increasingly common 
[28], our knowledge of them in natural ecosystems re-
mains scant. Knowledge about mycelial biomass is im-
portant in comprehending the potential roles of fungi in 
decomposition and nutrient cycling, and plant symbionts. 
For example, a study by Langley and Hungate [29] de-
monstrates that the presence of mycorrhizal fungi can 
alter the rates of above- and below- ground litter de-
composition due to chemical changes in the roots and 
interactions with the decomposer fungi. Also, at present, 
little is known about the control of diversity of AM fun-
gal communities in tropical soils and; given the increas-
ing importance attached to mycorrhizal fungal diversity 
for maintenance of ecosystem functioning, a better un-
derstanding of the causes of AMF diversity and its loss is 
deemed necessary. 

The mycelial network of AM fungi extends into the 
soil volume and greatly increases the surface area for the 
uptake of immobile nutrients, particularly P, N and Cu 
[5,13]. Also, AM symbioses improve plants tolerance to 
drought and enhance plants’ tolerance of or resistance to 
root pathogens [9,30]. Furthermore, networks of AM 
hyphae play an important role in the formation of stable 
soil aggregates [31], in the building up of a macroporous 
structure of soil that allows penetration of water and air 
and thereby prevents erosion [32]. AMF may stabilize 
soils up to 5 months after their host’s death [33]. It is also 
accepted that AMF receive all their carbohydrate from 
the host plant [34,35] and that the association of AMF 
with roots could create a sink demand for carbohydrate, 
which could result into up to 20% drain of carbon from 
the host plant and could indirectly influence carbon sto-
rage in the soils [36]. The Carbon obtained by the host 
plants can be allocated to fungal structures of functional 
importance to plants, to AMF, or to both members of the 
symbiosis [34,37]. The allocation of fungal arbuscules 
and extraradical hyphae can increase plant acquisition of 
soil resources [38]. Fungal allocation to spores and ve-
sicles (C storage structures) is associated with C accu-
mulation by AMF [39]. Thus, it can be seen that AMF 
play an important role in many ecosystems. However, 
AM fungal diversity and activity in the tropical soils 
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have not been adequately studied and understood [40]; 
and relatively little is known about the effects of land use 
changes on AMF abundance and activity in the tropical 
soils. A better understanding of the influence of land use 
changes on AMF abundance will help in improving their 
management, thus leading to improved plant productivity 
in the poor soils. Determining the effects of land use 
changes on the abundance, and activity of beneficial 
AMF in the tropical soils will also be useful in designing 
more sustainable management practices. 

As Marshner and Dell [12] report, the external hyphae 
of AMF can deliver up to 80% of a plant’s P require-
ments. Thus, the understanding of the factors that en-
hance nutrient uptake by AMF is especially important for 
poor countries where the use of mineral fertilizers is not 
economically feasible [13]. Mycorrhizal fungi are of 
high value for ecosystem functioning and sustainability 
[41]. However, land degradation and soil fertility deple-
tion are considered to be the major threats of this eco-
system functioning and sustainability and thereby fru-
strating people’s efforts towards food security and natu-
ral resource conservation in sub-Saharan Africa [42]. 

Mycorrhizal associations are complex hierarchical 
systems [43]. At the core of every association is a fungus 
and a plant living symbiotically [44]. The functioning of 
this symbiosis is mediated by direct and indirect effects 
of biotic and abiotic factors of the surrounding rhizos-
phere, community, and ecosystem [45]. Also, AMF ab-
undance may be directly or indirectly influenced by bio-
tic interactions [46]. Subsequently, soil-borne microor-
ganisms (i.e. fungal symbionts) may either directly 
compete for host C; or develop a beneficial partnership 
in which the plant supplies C and the fungus supplies the 
catalytic elements [47]. The benefit of mycorrhiza for-
mation is believed to depend on the balance between the 
fungal demand for energy and the plant’s needs for nu-
trients [48]. Negative effects of mycorrhizal colonization 
on the host plant are expected when the net C costs for 
fungal maintenance and growth exceed the net benefits 
obtained from improved nutrient supply [49]. Several 
studies have indicated that the effect of mycorrhiza on 
the host plant productivity depends on the amount of 
nutrients available, and on the host plant nutrient status 
[31,50]. 

3. IMPORTANCE OF MYCORRHIZAL 
MYCELIAL NETWORKS 

AM hyphal networks have an impact on the soil 
structure and plant community composition and are 
therefore important belowground carbon sinks [18,34]. 
AMF hyphae form an extensive network in the soil and; 
length is a common parameter used in quantifying fungal 
hyphae [51]. Giasson et al. [52] found out that hyphae of 
AMF may extend up to 8 cm from the root surface. For 

example, in rhizosphere of Ryegrass roots, Tisdall and 
Oades [53] measured about 55 m of hypahe per cubic 
centimetre of the soil. As Olsson et al. [54] suggest the 
mycelial network of AMF accounts for approximately 
half of the microbial biomass in grassland soils. For in-
stance, it has been estimated that one gram of soil con-
tains up to 200 m fungal hyphae [28]. And as Read et al. 
[55] found out, it is the root-based hyphal network in the 
soil rather than resting spores that is responsible for in-
fecting seedlings that become established in a natural 
grassland sward. Soil densities of AMF hyphae in tem-
perate grasslands have been shown to vary with precipi-
tation, soil fertility [38,56], and plant productivity [18]. 
According to Hunt and Fogel [57], the length of hyphae 
decreases with an increase of the soil depths. Also, there 
is an exponential decline in both infection and spore 
numbers with depth [56].  

Extraradical hyphal densities are important with re-
spect to potential ecological selection for different life- 
history strategies under contrasting environmental condi-
tions [58]. This is because the extent of the extraradical 
mycelium is an important trait of AMF, affecting nutrient 
supply to host plants and thus probably their fitness and 
survival [59]. External AM hyphae also produce recalci-
trant forms of C, such as chitin and glomalin [34,35], and 
therefore they might be important contributors to the 
structural stability of the soil and C sequestration [34,35]. 
Hyphal length is an important consideration that needs to 
be integrated into any planning for plant conservation 
because of the potential contribution [60]. Despite their 
ubiquity and potential importance for ecosystem struc-
ture and functions, surprisingly little is known about the 
abundance of AM networks in tropical soils. AMF have 
great potential in the restoration of disturbed land and 
low fertility soil [61]. A more appropriate management of 
mycorrhizae in poor agricultural soils is expected to al-
low substantial reduction in the amount of mineral used 
without losses in productivity, whereas permitting a more 
sustainable production management. 

4. AM FUNGAL SPECIES COMPOSITION, 
HOST RANGE AND INFECTIVITY 

AM fungi vary considerably in their life histories and 
their effects on soil structure and plant health [62,63]. 
AMF are also known to vary in their response to the 
mineral environment of the soil [39]. For instance, it has 
been shown that differences in AMF species distributions 
are caused by habitat preferences of taxa, such as differ-
ences in the tolerance to high nutrient availability [64,65], 
pH and soil type [66,67] and mechanical disturbance [68]. 
Some species of mycorrhizal fungi decline with nitrogen 
enrichment while others proliferate [i.e. 69]. As predicted 
by Wallenda and Kottke [70], AM fungal species with a 
narrow host range (e.g. conifer specialists) are more ad-
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versely affected than species with a broad range of host 
plants. When soil phosphorus is not limiting, members of 
the AM fungal family Gigasporaceae are often dramati-
cally reduced by nitrogen enrichment [71]. On the other 
hand, when soil phosphorus is in limited supply, nitrogen 
enrichment increases the populations of Gigasporaceae 
[72]. This suggests that nitrogen enrichment of phospho-
rus deficient soils exacerbates phosphorus limitation and 
increases the net benefits of mycorrhizas. 

Taxa of AM fungi vary in growth rate, biomass alloca-
tion, and symbiotic effects [62]. For example, Glomaceae 
and Acaulosporaceae allocate more biomass inside roots, 
and benefit their host plants through increasing pathogen 
resistance while Gigasporaceae allocate more biomass 
outside the roots and are more beneficial for plant phos-
phorus acquisition [73]. As Brundrett et al. [74] report, 
members of the Gigasporaceae never form vesicles in 
plant roots; instead they form clusters of auxiliary cells 
in the surrounding soil (extraradical). Furthermore, the 
genus Gigaspora produces intra- and extraradical hyphae 
that are much thicker than other genera [63]. Mycorrhizal 
roots on intact plants or germinated spores are best un-
derstood as sources of infective hyphae for initiating new 
sites of colonization of roots [56]. Vesicles formed within 
roots have been shown to act as propagules for some AM 
fungi [75]. Extra-matrical vesicles of Gigaspora spp. 
represent potential propagules [76]. For each species of 
fungus, the types of propagules may differ widely in their 
tolerance of some conditions [56]. For example, Jasper et 
al. [77] showed that hyphae of Acaulospora laevis in the 
soil completely lose their infectivity with disturbance. 
Therefore, teasing apart the relationships between the 
environment and community composition is essential for 
our understanding of AMF diversity in tropical ecosys-
tems. 

5. INFLUENCE OF GRAZING ON AMF 
ABUNDANCE 

The abiotic environment, particularly soil fertility, 
water and sunlight may structure the balance of trade 
among symbionts [78]. The influence of grazing on soil 
nutrient availability and host plant productivity [79] may 
cause variable effects on AMF community composition 
and structure [80,81]. Grazing of pasture grasses in the 
field has been found to affect the proportion of root 
length infected by decreasing root length per unit volume 
of soil [23,82]. Grazing intensity might change the level 
of mycorrhizal infection in a community by altering the 
plant composition [56]. Therefore, it is likely that the 
activity of AMF is an important factor in regulating the 
cycling of nutrients in undisturbed ecosystems [56]. Be-
cause symbiotic AMF depend so heavily upon living 
plants for C, they will be impacted by any process which 
alters the belowground C allocation [83]. Grazing can 

influence the dynamics of nutrient exchange between 
host plants and AMF [84]. Herbivore grazing can alter 
leaf photosynthetic rates [85], the aboveground produc-
tion [79], and the C allocation belowground [83]. The 
allocation of AMF morphological structures can either 
increase or decrease depending on the timing and severi-
ty of herbivory [86]. Grazers also influence allocation of 
AMF morphological structures by altering soil nutrient 
status through direct inputs of N and P in dung and urine 
deposition [87,88].  

6. EFFECT OF SOIL DISTURBANCE ON 
AMF ABUNDANCE 

Disturbance can affect the occurrence of AM fungi in 
both agricultural and natural ecosystems. It may change 
the abundance and distribution of mycorrhizal fungi in 
several ways [56]. First, it may change the physical, 
chemical or biological environment of soil leading to 
either direct effects on AM fungi or indirect effects oper-
ating via effects of disturbance on plant growth. Second, 
a disturbance may change the plant composition of the 
stand or eliminate host plants leading to changes in the 
distribution and abundance of AM fungi [56]. The re-
moval of surface soil layers mainly by water erosion de-
creased markedly both the number of propagules of AM 
fungi and the extent of mycorrhiza formation [89,90]. 
The disturbance of soil can decrease mycorrhizal infec-
tion. There are several factors that may be responsible for 
this [77]: there may be effects of tillage on the root 
growth affecting the extent of root colonization by my-
corrhizal fungi [27]. Furthermore, an increase in the in-
tensity of cultivation may also lead to a decrease in my-
corrhiza formation in dry beans (Phaseolus vulgaris L.) 
and this is apparently associated with an increase in soil 
compaction and a decrease in root growth [91]. The ef-
fects of soil disturbance on the formation of mycorrhizas 
may be associated with a decrease in phosphate uptake 
after ploughing as opposed to the uptake of plants grown 
without tillage [25].  

7. RESPONSES OF AMF ABUNDANCE 
TO ENVIRONMENTAL CHANGES 

In the mid-1970s, it was recognized that land cover 
change modifies surface albedo and thus surface atmos-
phere energy exchanges, which have an impact on re-
gional climate [92]. A much broader range of impacts of 
land use and cover change on ecosystem goods and ser-
vices include impacts on biotic diversity worldwide [93], 
soil degradation, and the ability of biological systems to 
support human needs [94]. Land use and cover changes 
also determine the vulnerability of places and people to 
climate change [95,96]. When aggregated globally, land 
use and cover changes significantly affect central aspects 
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of the functioning of earth systems [97]. In predicting 
how land use changes affect land degradation, feedback 
on livelihood strategies from land degradation, and vul-
nerability of places and people in the face of land use and 
cover changes require thorough understanding of the 
dynamics of human-environment interactions associated 
with land use change [98].  

During the last century, land use and cover have 
changed drastically in the tropics due to changing econ-
omy and growing population [99]. Natural vegetation 
covers have given way not only to cropland but also to 
pasture. Globally, concerns about the changes in land use 
and cover emerged due to the realization that land sur-
face processes influence climate and that change in these 
processes have an impact on the ecosystem goods and 
services [97]. The impacts of primary concern are the 
negative effects of land use change on biological diver-
sity, soil degradation and the ability of biological systems 
to support human needs. One way by which plants can 
potentially increase ecosystem productivity and stabi- 
lity is by forming mycorrhizal associations [11,100,101]. 
Plants are most likely to form associations with and ben-
efit from mycorrhizal fungi under conditions in which 
availability of one or more soil nutrients, including water, 
is low [30,102,103]. Tropical savannah soils have been 
eroded and deprived of their nutrients leading to reduced 
plant productivity [104]. AMF are of particular impor-
tance to the plants in the soils that are nutrient-poor 
[13,24]. Moreover, AMF may be used as sensitive indi-
cators of ecological soil quality if they respond to envi-
ronmental variation in a predictable way [105]. 

Land use practices have placed new pressures on 
plant-mycorrhizal symbiosis and are evidently a threat to 
AMF [106]. Therefore, agricultural management prac-
tices might affect AMF communities both qualitatively 
and quantitatively [31,62,107]. Studies have shown that 
crop rotation, fertilization, and tillage affect the composi-
tion and diversity of AMF communities as well as spore 
and mycelium densities in temperate and tropical agroe-
cosystems [26,108]. Tillage physically disrupt soil ag-
gregates and AM hyphal networks which deteriorates soil 
structure, lessens fertility and nutrient cycling, and re-
sults into more C allocation within fungal hyphae to 
re-establishing these networks and less C to glomalin 
formations [109]. The disturbance resulting from agri-
cultural activities has been shown to decrease AMF spe-
cies richness and infectivity [110]. In some environments, 
cultivation through tillage and fertilizer application has 
led to fewer species of AM fungi [111]. Continuous 
cropping with inadequate external inputs has caused 
depletion of nutrients such as phosphorus (P) and nitro-
gen (N) in the tropical soils [112]. In no-till and re-
duced-tillage systems, maintenance of the integrity of the 
hyphal network contributes to a rapid AMF infectivity 

and efficient nutrient uptake [13,113]. Non-tillage prac-
tices along with continuous cropping system using my-
corrhizal host crops, and reducing mineral fertilizers, en- 
hance the plant-mycorrhizal symbiotic relationship [18]. 
The AMF diversity occurring over a broad range of the 
tropical natural systems has not yet been investigated. 
Studies have been done in temperate and agricultural 
settings [114] but little is known about the effects of land 
use and cover changes in natural systems in the tropics. 
Information about species composition of AMF commu-
nity appears important in understanding mycorrhizal 
function in the ecosystems [115]. It is evident that AMF 
are crucial for the functioning of terrestrial ecosystems. 
Therefore, understanding the impact of land use and 
cover changes on AMF abundance in the tropical soils is 
crucial.  

8. EFFECT OF SOIL NUTRIENTS ON 
MYCORRHIZAL INFECTION 

The relationships between the level of mycorrhizal 
colonization and soil chemical and physical properties 
are variable [116]. High levels of infection have been 
observed over a wide range of soil pH and soil phosphate 
levels and [55,117]. It seems that changes in soil pH in 
the field will affect the proportion of colonization asso-
ciated with particular fungal species but are unlikely to 
change the total extent of colonization [56]. There are, 
however, marked differences among species of AM fungi 
in the effects of soil properties on their distribution and 
abundance [56]. For example, some species of AM fungi 
are restricted to either acid or alkaline soils; whereas 
others occur in both acid and alkaline soils [118]). Nega-
tive association has been found between the amounts of 
extractable phosphate in the soils and the abundance of 
AM fungi as assessed by infection [119,120]. It has been 
shown that some species of AM fungi differed in the ex-
tent to which phosphate decreased mycorrhiza formation 
[121]. AMF are also known to vary in their response to 
the mineral environment of the soil [39]. There are criti-
cal ranges of soil-solution P concentration at which the 
host-fungus association is truly mutualistic, that is, whe-
reby the benefit each partner derives from the association 
outweighs the costs [5,113]. As Habte and Osorio [113] 
suggest, if P concentration in the soil is suboptimal for 
mycorrhizal function, AMF symbiotic effectiveness is 
reduced, and the fungus and the host may compete for 
scarce P. When solution P concentration is much above 
the optimum for a given host-fungus combination, my-
corrhizal colonization will be suppressed [113]. There is 
also considerable information on the negative effects of 
nitrogen fertilizer on mycorrhizal formation [122]. Hy-
phal growth tends to decrease under fertilization [123]. 

Studies of agricultural systems have shown that high 
levels of fertilization can select AMF that are less bene-
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ficial or even parasitic on their host plants [44,124]. Ad-
ditionally, high levels of nitrogen fertilization can de-
crease colonization by mycorrhizal fungi [9] and lead to 
a significant change in mycorrhizal community structure 
[125]. The adverse effect of high soil P levels on AM 
formation is well documented and is mainly caused by 
higher P concentrations in the roots [56,77,126]. It has 
also been shown that high P levels in the soil can reduce 
not only spore germination and hyphal growth from the 
germinated spores [127] but also early colonization of 
the roots and growth of the extraradical mycelium [128]. 
A comparative study across North American grasslands 
showed that nitrogen fertilization reduces AM hyphal 
densities in phosphorus rich soil, but increases AM hy-
phal densities when phosphorus is in limited supply [38]. 
Adding phosphate fertilizers has been shown to decrease 
the level of mycorrhizal infection in a range of agricul-
tural crops [129]. For example, Nitrogen applications to 
wheat decreased spore numbers and mycorrhizal infec-
tion [56]. However, few studies have been done on the 
effects of nutrients, other than phosphorus, on the abun-
dance and distribution of AMF in the field [56]. 

Investigating how AMF abundance vary with chang-
ing levels of soil N and P in tropical grasslands will fur-
ther advance our understanding of the factors controlling 
mycorrhizas. This is because unlike temperate grasslands, 
there is virtually no seasonal temperature fluctuation in 
tropical grasslands. Decomposition and mineralization 
processes are more likely to be controlled by land use, 
grazing pressures and seasonal moisture deficit in tropi-
cal grasslands as opposed to temperate grasslands. There 
are however only a few studies that dealt with the effects 
of P on the extraradical mycelium of AM fungi; and no 
attempts have been made to investigate its effects on the 
root-soil partitioning in these fungi. As Howeler et al. 
[130] suggest AM hyphae have a lower threshold for 
uptake of phosphorus than that of non-colonized plant 
roots. In the soil with a high capacity to immobilize 
phosphorus and low availability of phosphate, as is the 
case in many tropical soils, AM can be of great benefit to 
plants [13,129]. High phosphorus can inhibit AM colo-
nization of plant roots, reduce formation of entry points 
and vesicles [131], and decrease the length of external 
hyphae associated with AM [126], consequently dimi-
nishing nutrient uptake and host benefit from AM [132]. 

9. CONSERVATION IMPLICATIONS 
It should be apparent from the preceding discussion 

that Arbuscular mycorrhizal symbioses play fundamental 
roles in shaping plant communities and terrestrial eco-
systems. The significance of mycorrhizal fungi lies on 
the fact that they connect the primary producers of eco-
systems, plants, to the heterogeneously distributed (N 
and P) nutrients which are required for their growth. 

Mycorrhizal fungi are of high value for the ecosystem 
functioning and sustainability. A more appropriate man-
agement of mycorrhizae in poor soils would allow sub-
stantial reduction in the amount of minerals used without 
losses in productivity, while at the same time permitting 
a more sustainable production management. Studies on 
AMF species diversity and their functions across land 
use types are crucial in understanding the impact of land 
use changes on ecosystem services. For example, ecolo-
gists who conduct field studies of the impacts of land use 
changes on mycorrhizal colonization and community 
composition could benefit from collaboration with plant 
physiologists to provide mechanistic insights. Currently, 
most studies of mycorrhizal mediation of below ground 
processes have examined individual plant-fungus pairs or 
interactions among individual mycorrhizas and biota or 
abiotic conditions. Although this scale of inquiry pro-
vides precise understanding of specific plant-fungal sys-
tems, it cannot provide meaningful information about 
mycorrhizal function within communities and ecosys-
tems [133]. Also, we still have much to learn regarding 
the extent of mycorrhizal fungal diversity. Among spe-
cies of mycorrhizal fungi, there is very little knowledge 
of functional attributes such as stress tolerance and nu-
trient uptake efficiency. Comparative studies of natural 
systems will improve our understanding of responses to 
environmental and climatic perturbations. This new 
knowledge is an important prerequisite for future and 
sustainable management of terrestrial ecosystems. It is 
critical to gain a clearer understanding of functional var-
iation among AM fungal species to guide conservation 
and restoration efforts.  
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