
Received June 27, 2020, accepted July 20, 2020, date of publication August 12, 2020, date of current version September 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015701

ARC-Net: An Efficient Network for Building
Extraction From High-Resolution
Aerial Images

YAOHUI LIU 1,2,3, JIE ZHOU4, WENHUA QI2, XIAOLI LI5, LUTZ GROSS 3, QI SHAO3,
ZHENGGUANG ZHAO3, LI NI6, XIWEI FAN2, AND ZHIQIANG LI5
1School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
2Institute of Geology, China Earthquake Administration, Beijing 100029, China
3School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
4School of Tourism and Geographic Science, Yunnan Normal University, Kunming 650500, China
5China Earthquake Networks Center, Beijing 100045, China
6Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Corresponding authors: Xiwei Fan (fanxiwei@ies.ac.cn) and Zhiqiang Li (lzhq9028@163.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC1504403 and
Grant 2018YFC1504503, in part by the National Natural Science Foundation of China under Grant 41601390 and Grant 41907397, in part
by the China Earthquake Administration Special Project Surplus Fund (High-Resolution Rapid Post-Earthquake Assessment Techniques),
and in part by the Key Special Fund for the Study on Rapid Assessment of Multi-Source Earthquake Loss under Grant 201308018-5.

ABSTRACT Automatic building extraction based on high-resolution aerial images has important appli-
cations in urban planning and environmental management. In recent years advances and performance
improvements have been achieved in building extraction through the use of deep learning methods. However,
the design of existing models focuses attention to improve accuracy through an overflowing number of
parameters and complex structure design, resulting in large computational costs during the learning phase and
low inference speed. To address these issues, we propose a new, efficient end-to-end model, called ARC-Net.
The model includes residual blocks with asymmetric convolution (RBAC) to reduce the computational cost
and to shrink the model size. In addition, dilated convolutions and multi-scale pyramid pooling modules are
utilized to enlarge the receptive field and to enhance accuracy. We verify the performance and efficiency of
the proposed ARC-Net on the INRIA Aerial Image Labeling dataset and WHU building dataset. Compared
to available deep learning models, the proposed ARC-Net demonstrates better segmentation performance
with less computational costs. This indicates that the proposed ARC-Net is both effective and efficient in
automatic building extraction from high-resolution aerial images.

INDEX TERMS Deep learning, building extraction, high-resolution aerial images, fully convolutional
network, asymmetric, separable convolution.

I. INTRODUCTION

Automatic extraction of buildings based on aerial images
is of great importance in a broad range of application
fields including urban planning, change detection, map ser-
vices, and disaster management [1]–[5]. Recently, with the
continuous advancement of satellite and sensor technology,
high-resolution remote sensing products have become the
preferred data source for building extraction due to their
rich textural, semantic, and spatial details. However, the
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increasing resolution of aerial images results in an increasing
degree of redundant interference information and infernal dif-
ferences. Moreover, the diversity of building characteristics
(color, shape, size, etc.) remains a difficulty and challenge
for accurate building extraction. Thus, the efficiency and
accuracy of automatic building extraction are still difficult
archive and remain a challenging objective which attracts
huge research interests [6].

In the past few years, traditional methods including math-
ematical techniques and morphology approaches have been
proposed to address this issue. Many mathematical descrip-
tors have been introduced to extract the spatial and textural
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features of an image, such as Histogram of Oriented Gra-
dients [7], Haar spaces [8], Grey Level Co-occurrence
Matrix [9], and Local Binary Patterns [10]. Furthermore,
several machine learning classifiers have been employed for
a pixel-by-pixel analysis, including Random Forests [11],
Support Vector Machines [12], K-Means [13], Adaptive
Boosting [14], and Conditional Random Fields (CRFs) [15].
However, these methods rely heavily on prior knowledge and
parameter selections which are leading to limitations as well
as significant time and labor costs when applied in real live
scenarios.
Recently, with the rapid increase of computational power

and available data sources, the use of deep learning technol-
ogy [16], especially convolutional neural networks (CNNs),
has emerged as a powerful tool in computer vision and
semantic segmentation [17]. CNNs automatically learn
semantic information from the input and generate the clas-
sification results through convolutional operations. In the
early stages of CNN development, patch-based CNNmodels,
such as VGGNet [18], GoogLeNet [19], ResNet [20], and
DenseNet [21], have outperformed traditional machine learn-
ing methods on classification applications. Some researchers
also utilized patch-based CNNmethods to segment buildings
in remote sensing images and managed to greatly improve
the performance [22]–[25]. However, as patch-based CNN
models cannot guarantee spatial continuity and consistency,
they are not the best solution for addressing the task of
building segmentation [26].
In the fully convolutional network (FCN), proposed by

Long et al. in 2015 for semantic segmentation [27], fully con-
nected layers are replaced by up-sampling layers so that the
output preserves spatial information of contextual features.
Over the past five years, various FCN-based variants have
been proposed to pursue more accurate segmentation results.
The SegNet [28] and U-Net [29] are two classic architectures
with symmetric encoder-decoder structures, which were both
regarded as effective structures due to their capabilities of
recovering semantic details [30]. Some novel FCN-based
methods are mainly designed to improve performance by
extending the receptive field and by learning multi-scale
contextual information. For example, Yu and Koltun [31] uti-
lized dilated convolutions to gather multi-scale contexts. The
pyramid pooling module, proposed in PSPNet [32], is applied
to capture multi-scale features with different kernel sizes.
The DeepLab_v2 [33] employs atrous convolution and atrous
spatial pyramid pooling (ASPP) to enlarge the receptive field
on different levels. Liu et al. [34] merged the spatial pyramid
pooling module into the encoder-decoder architecture with
a particular focus on building extraction. The JointNet [35]
introduced a new, dense atrous convolution block combining
a dense connectivity block and atrous convolution to obtain
multi-scale features. Ji et al. [36] proposed a scale-robust
FCN and trained it with five outputs of two ASPP structures.
SRI-Net [37] employed large kernel convolution and a spa-
tial residual inception module to preserve details with large
receptive fields. Zhang et al. [38] proposed the Web-Net with

hierarchical dense connections to propagate feature maps
among different levels. These novel FCNs have also been
successfully applied for land-use detection and are regarded
as state-of-the-art methods for semantic segmentation [39].

Some FCN-based models further adopt post-processing
approaches to prediction results to optimize the pixel-wise
results and to preserve the structure consistency. For exam-
ple, Shrestha and Vanneschi [40] proposed a novel fully
convolutional network using CRFs and exponential linear
units for building extraction. Alshehhi et al. [41] proposed
a post-processing method integrating low-level features of
adjacent regions to enhance the performance.Wang et al. [42]
improved the dense conditional random field (Dense CRF)
using a superpixel algorithm in post-processing. However,
post-processing methods are only able to improve results
within a certain range [37]. The result of semantic segmen-
tation cannot be fundamentally changed.

Although these networks presented before have greatly
enhanced the performance of semantic segmentation, their
computational cost is high and they require generous training
time, which is bringing a heavy burden for the application
of deep learning in remote sensing. Therefore, model com-
plexity and computational cost need to be essential indi-
cators to measure the performance of a CNN architecture
and should be taken into consideration [43]. One practical
way to decrease the number of model parameters is the
utilization of efficient structure, such as residual blocks, ker-
nel factorizations, and group convolutions. With these per-
formance considerations in mind but still maintaining high
accuracy, a variety of FCN-based architectures have been
designed, including ENet [44], ERFNet [45], EDANet [46],
theMobileNet family [47], [48], ShuffleNet family [43], [49].
Recent networks such as ICNet [50] and BiSeNet [51] are
targeting to compromise performance and efficiency, but
these models have still complex structure designs and are
difficult to deploy and apply. So, there is still room for further
improvement.

To better balance the accuracy and efficiency, we propose
a new network for automatic building extraction, named
ARC-Net. The basic architecture of the ARC-Net is an
asymmetric encoder-decoder structure. We have designed
the residual block with an asymmetric convolution (RBAC)
module, which incorporates depth-wise separable convo-
lution and asymmetric convolution with the residual con-
nection in order to reduce the computational cost. Dilated
convolution is incorporated with the RBAC module to fur-
ther enlarge the receptive field. Moreover, the advanced
atrous pyramid pooling module is added as a connector
between the encoder and decoder to aggregate multi-scale
contextual information. Experiments on two public building
datasets, the INRIA Aerial Image Labeling Dataset [52] and
the WHU Building Dataset [53], demonstrate the remark-
able performance of the proposed model. Compared to
several other FCN-based models, such as SegNet, FCN,
U-Net, and ERFNet, higher accuracy with less computational
complexity is achieved by the new ARC-Net model when
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FIGURE 1. The structure of our proposed ARC-Net, consisting of three parts: encoder part (blue & yellow, blocks 1-12),
ASPP module (red, block 13), and decoder part (green & yellow, blocks 14-20).

applied to the building extraction from high-resolution aerial
images.

The main contributions of this study are summarized as
follows: (1) We design a novel efficient network, called
ARC-Net, as well as a new residual block with asymmetric
convolution module incorporating depth-wise separable con-
volution to reduce the computational complexity still with
sufficient accuracy and (2) we conduct further experiments
to provide justifications for some of the design decisions for
ARC-Net.

The remainder of this article is organized as follows. The
components of the proposed ARC-Net model are introduced
in Section II. Section III describes the test datasets and experi-
mental settings. Section IV provides the experimental results
of the proposed ARC-Net model including the quantitative
and qualitative comparison with other established models.
Finally, a discussion and some conclusions from this study
are presented in Section V and VI, respectively.

II. METHODS

The proposed ARC-Net model follows an asymmetric
encoder-decoder architecture, which has already successfully
been applied to semantic segmentation. Figure 1 presents
the basic structure of the ARC-Net model. In the encoder
part (blocks 1-12), several down-sampling blocks and resid-
ual blocks with asymmetric convolution (RBAC) modules
are employed to extract the feature maps from the inputs
and at the same improving computational efficiency. The
RBAC modules are also utilized in the decoder phrase with
up-sampling operations to recover the details of images
in the decoder part (blocks 14-20). The atrous spatial
pyramid pooling (ASPP) is employed as a connector in
block 13 between the encoder and decoder to further collect

TABLE 1. The detailed blocks of the proposed ARC-Net outlined in
figure 1.

the multi-contextual information. The various components of
theARC-Netmodel are presented in Table 1. In the following,
each component will be discussed in detail.

A. ENCODER WITH DOWNSAMPLING BLOCK AND RBAC

MODULE

The residual block with the asymmetric convolution (RBAC)
module is the fundamental element of the ARC-Net model.
It mainly contains two parts: the separable convolution and
asymmetric convolution. At the same time, the residual con-
nection is employed to reduce the complexity and to retain
dimensions between the input and output.

The depth-wise separable convolution is considered as an
efficient tool to reduce the computational cost and the number
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FIGURE 2. The structure of the proposed RBAC module (a) and the
down-sampler block (b). Conv: Convolution; BN: Batch Normalization;
ReLU: Rectified Linear Unit.

of parameters while achieving similar (or slightly better)
performance [54], [55]. It splits the full convolution opera-
tions into two independent steps: depth-wise convolution and
point-wise convolution [56]. In depth-wise convolution, each
kernel has a single feature map in and a single feature map
out. As weight kernels are shared the depth-wise convolution
requires fewer parameters than the standard version. Point-
wise convolution is equivalent to a standard convolution
with a kernel size of 1 × 1 and is aiming to combine the
channel-wise independent features from depth-wise convo-
lution. Through such a two-step operation, the number of
parameters to be fitted is reduced, speeding up the deep
learning computations.
Asymmetric convolutions are widely employed to approx-

imate an existing square-kernel convolutional layer for com-
pression and acceleration [57]. Prior research [58], [59]
has shown that a standard d × d convolutional layer
can be factorized as a sequence of two layers with
d × 1 and 1 × d kernels. Results of combing a d × 1 and
following 1 × d convolution are consistent with the results
of a direct d × d convolution, but the number of a multi-
plication operation is reduced from d × d to 2 × d lead-
ing to dramatical computational cost saving as d grows.
This is the reason why asymmetric convolution performs
well in reducing the model parameters and computational
work. In this research, we follow this approach and factorize
a standard two-dimensional d × d convolution kernel into
two one-dimension d × 1 and 1 × d kernels. As presented
in Figure 2 (a), 1 × 1 point-wise convolution is employed

FIGURE 3. Dilated convolution with a 3 × 3 kernel and a dilation rate
of 2.

in the head of the RBAC module. Each 3 × 1 convolution
is then followed by a rectified linear unit (ReLU) while
each 1 × 3 convolution followed by batch normalization and
ReLU function.

The down-sampler block in the proposed ARC-Net is
inspired by the initial block of ENet [44] and performs
down-sampling by concatenating the parallel outputs of a
single 3 × 3 convolution with stride 2 and a MaxPooling
operation with stride 2. In contrast to the ENet which used
it only as the initial block to perform early down-sampling,
we employ it in all down-sampling layers in the ARC-Net.
The structure of the down-sampling block is presented in
Figure 2 (b).

To improve the accuracy of semantic segmentation for
high-resolution aerial images, the models usually need to
enlarge the receptive field to gather sufficiently rich contex-
tual information for each individual pixel [60]. The method
used in the past is combing the stacking of convolutional
layers with down-sampling layers. However, these extra con-
volution layers substantially increase computational effort
during learning.Moreover, over-down-sampling is harmful to
the dense pixel-level classifications it leads to a loss of unre-
coverable spatial information [61]. Dilated convolution [60]
introduces an additional parameter to the convolutional layers
named the dilation rate. This rate defined spacing between
the values in a kernel, delivering a wider field of view at the
same computational cost. Therefore, the dilated convolution
is conducive to enlarge the receptive field and to enhance
the segmentation performance [62], [63]. Following the sug-
gestion from the literature, we set the dilation rate to the
sequence 2, 4, 8, 16 in block 9-12 incorporating the RBAC
module to obtain a wide receptive field. The description of
the dilated convolution is presented in Figure 3.

B. ATROUS SPATIAL PYRAMID POOLING AS THE

CONNECTING MODULE

ASPP, proposed in DeepLab_v2 [33], has several parallel
atrous convolutions that maintain the same feature map and
fuse the outputs at the end. Comparing with the standard
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FIGURE 4. Structure of atrous spatial pyramid pooling module in the
ARC-Net.

convolutional layer, the atrous convolutions can effectively
increase the receptive field of the network without extra
down-samplings. In this work, we employ the ASPP module
with a 1 × 1 convolution and three branches of atrous con-
volution with rate 6, 12, 18 as a connector in block 13 after
encoder to effectively capture multi-scale contextual infor-
mation. Figure 4 presents the detailed structure of the ASPP
module in the ARC-Net.

C. DECODER WITH SIMPLE DECONVOLUTIONS

The main task of the decoder phase is to up-sample the
feature maps and to recover the input resolution from the
encoder phase. Previous works have used heavy-weight
decoders [42], [64], which increases computational cost.
Inspired by the idea of light-weight and asymmetric decoder,
we follow a strategy which similar to ENet [44] and has
a small decoder to up-sample the output of the encoder
fine-tuning the semantic information. The decoder used in
this article is composed of blocks 14 to 20, including the up-
sampler block and RBAC module, see Table 1 and Figure 1.
In contrast to SegNet and ENet, we utilize simple deconvo-
lution layers with stride 2 as the up-sampling block to reduce
computational costs. Two RBAC modules are employed to
collect the contextual information after each up-sampling
block. This operation is repeated twice (blocks 14-19).
Finally, the up-sampling block is utilized in block 20 gener-
ating the output segmentation into two classes: building and
non-buildings.

III. EXPERIMENTAL DATASETS AND EVALUATION

In this section, we conducted experiments on two building
datasets: the INRIA Aerial Image Labeling Dataset and the
WHU Building Dataset. Data processing methods and exper-
imental settings are discussed in detail. A standard metric
with five values was applied to evaluate the performance and
efficiency of the proposed ARC-Net. Other state-of-the-art
deep learning models are introduced and their performances
are compared to ARC-Net.

FIGURE 5. Image and label example selected from the INRIA dataset: (a)
Aerial Image; (b) Label Image. Black and red pixels mark non-building
and building, respectively.

FIGURE 6. Image and label example selected from the WHU dataset: (a)
Aerial Image; (b) Label Image. Black and red pixels mark non-building
and building, respectively.

A. DATASETS

The first dataset used in this research is the INRIA Aerial
Image Labeling Dataset [52]. This dataset covers different
cities all over the world, including Austin, Chicago, Kit-
sap, Western/Eastern Tyrol, Vienna, Bellingham, and San
Francisco. The spatial resolution of each image is 0.3 m
with a size of 5000 × 5000 pixels and surface cover-
age of 1500 × 1500 m2. Following previous investigations
[29,40], we selected the first five images of each city for
validation and the rest for training. Only two semantic classes
were considered as the ground truth; buildings, and non-
buildings. An example of an input image and its correspond-
ing label are presented in Figure 5. The red color represents
the buildings and the black color presents the background.
TheWHUBuilding Dataset is proposed by [53], covering a

surface area of about 450 km2 in Christchurch, New Zealand.
The dataset contains 8189 images of 512 × 512 pixels with
a spatial resolution of 0.3 m. This dataset was divided into
a training set, a validation set, and a test set, consisting of
4736 images, 1036 images, and 2416 images, respectively.
Figure 6 shows an original image and its corresponding label.

B. DATA PROCESSING

Data augmentation is an effective way to enlarge the datasets
and to avoid overfitting [35]. In this study, windows were
rotated by 90, 180, and 270 degrees.Moreover, horizontal and
vertical flipping were randomly applied with a probability
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FIGURE 7. An example of data augmentation by rotating and flipping.

FIGURE 8. The accuracy and loss of the proposed model for training the datasets: (a) INRIA dataset; (b) WHU dataset. Accuracy
and loss are plotted as blue and yellow curves respectively.

of 0.5. Figure 7 presents an example of the image after data
argumentation by rotating and flipping. For the deep learning
process, the pixel values of each image were scaled to the
interval [0, 1] by dividing by 255. The sigmoid function was
utilized in the final layer to generated outputs within the range
[0, 1]. Final segmentation results were produced by further
applying a threshold of 0.5. No additional post-processing
was performed.

C. EXPERIMENTAL SETTINGS

The building extraction experiments were built on the deep
learning framework named PyTorch. The experiments were
conducted on computer servers with two NVIDIA GeForce
GTX 1080 Ti (11GB). Parallelization was utilized to make
full use of the available graphics processing unit (GPU) capa-
bility and to accelerate computation. Due to the limitation
in GPU memory, we randomly cropped all images in two
datasets to be 256× 256 pixels for model training and cross-
validation of each epoch.
In the process of the experimental setting, we conducted

many comparative experiments to finally determine the opti-
mal model parameters. In the training phase, we adopted
the ADAM stochastic optimizer [57] with an initial learning
rate of 0.0001. To avoid over-fitting, an L2 regularization
was introduced with a weight decay of 0.0001 [37]. Models

had been trained with 150 epochs for the INRIA dataset
and 100 epochs for the WHU dataset, respectively. To over-
come the limitation of the GPU memory, the mini-batch
size was set as 8. Figure 8 displays the dynamic accuracies
and losses of the INRIA and WHU datasets with increasing
epochs. It is obvious that the loss gradually decreases while
the accuracy increases and retains at a high and stable level.

D. EVALUATION METRICS

The quantitative experiments are based on five evaluation
metrics: the ‘Overall Accuracy’ (OA), ‘Precision’, ‘Recall’,
‘F1-score’, and Intersection-over-Union (‘IoU’). ‘Overall
Accuracy’ refers to the number of correctly classified pixels
divided by the total number of test pixels. ‘Precision’ is
the fraction of correctly classified positive pixels amongst
all predicted positive pixels where ‘positive pixel’ refers to
the pixel of the building. ‘Recall’ is the proportion of cor-
rectly classified positive pixels amongst all true target pixels.
‘F1-score’ is the weighted average of precision and recall.
‘IoU’ is the average value of the intersection of the prediction
and ground-truth regions over their union. The five metrics
are presented as follows:

OverallAccuracy =
TP+ TN

TP+ TN + FP+ FN
(1)
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Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 =
2 × Precision× Recall

Precision+ Recall
(4)

IoU =
TP

TP+ FP+ FN
(5)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN
is the number of false negatives

E. MODEL COMPARISONS

The performance of ARC-Net is compared with the following
four FCN-based models:
SegNet: Badrinarayanan et al. [28] proposed SegNet

for the semantic pixel-wise segmentation. Encoder-decoder
structure with MaxPooling operations is employed in SegNet
for up-sampling the lower-level information input feature
maps. Thus, SegNet is considered as efficient in terms of
memory and computational time [17].
U-Net: The U-Net architecture was proposed by Ron-

neberger et al. [29] for biomedical image segmentation. Con-
tracting paths and symmetric expanding paths are used to
aggregate contextual information. Multiple skip connections
were introduced between the upper and downer layers. Due
to its robustness and excellent performance, U-Net and its
variants are widely adopted for many semantic segmentation
tasks in recent years.
ENet: ENet was proposed by Chaurasia et al. in 2017 [44],

aiming at performing pixel-wise semantic segmentation with
low latency operation. The ENet model is providing an accu-
racy similar or - in some cases even - better accuracy with
far fewer computations achieving a good trade-off between
accuracy and processing time of a network.
ERFNet: The ERFNet was proposed by Romera et al. in

2017 [45]. The core of the ERFNet architecture is the novel
layer that uses residual connections and factorized convo-
lutions to remain computational efficient while delivering
remarkable accuracy. The ERFNet model can be applied
in real-time while providing accurate semantic segmenta-
tion [45].
SRI-Net: Liu et al. [37] proposed a novel FCN-based net-

work named SRI-Net in 2019. The spatial residual inception
(SRI) module was introduced to capture and aggregate multi-
scale contexts for a better semantic representation. Mean-
while, depth-wise separable convolutions were employed to
further improve the accuracy and to decrease the number of
model parameters.

IV. RESULTS

A. EXPERIMENTAL RESULTS ON THE INRIA DATASET

We first conduct the comparisons on the INRIA dataset
between the ARC-Net model and the well-known models
including SegNet, U-Net, ENet, and ERFNet. The experi-
ments are implemented on the test dataset with the same

TABLE 2. Quantitative comparison with the state-of-the-art models on
the INRIA dataset. The highest value for each metric is marked as bold.

experimental settings. Figure 9 presents the qualitative seg-
mentation results for all five models on the INRIA dataset.
The green, red, blue, and black pixels of the maps represent
the predictions of true positive, false positive, false negative,
and true negative, respectively. SegNet and ENet return more
false negatives (blue) while U-Net gains more false posi-
tives (red) than the other models. ERFNet gets more false
positives (red) compared to ENet. By contrast, the proposed
ARC-Net shows significantly less false positives (red) and
false negatives (blue) than the other models and is able to
maintain a high degree of completeness in building seg-
mentation on the INRIA dataset. However, all models have
consistently misclassified parts of the built-up area in the top
left corner of the first test image.

The quantitative comparison of the networks across the
entire test dataset is displayed in Table 2. The 3-digit number
is utilized to better differentiate performance. The proposed
ARC-Net outperforms the other FCN-based models on all
evaluation metrics except for Precision. ARC-Net is the best
among all networks on the Overall Accuracy metric with an
improvement of 2.0% (0.925 vs. 0.909) over the next best
model ENet. As for Precision, SegNet holds the highest value
and gains 1.9% (0.913 vs. 0.896) over the proposedARC-Net.
For Recall, U-Net, ERFNet, and the proposed ARC-Net show
significantly performance over the other two methods while
ARC-Net achieves the highest value being 1.4% (0.868 vs.
0.856) ahead of the ERFNet model. Similarly, ARC-Net
reaches the best F1-score where U-Net and ERFNet present
the same performance. For the IoU metric, ARC-Net has
scored the best value 6.3% ahead of ERFNet (0.779 vs. 0.733)
and even 9.6% ahead of SRI-Net (0.779 vs. 0.711).

B. EXPERIMENTAL RESULTS ON THE WHU DATASET

Building segmentation results of different CNN models on
the WHU dataset are displayed in Figure 10 for qualita-
tive comparisons. Clearly, all models present quite similar
performance in building segmentation except the SegNet
model. As for the INRIA dataset, SegNet returns too many
false positives (blue) and false negatives (red) indicating
the worst performance on the WHU dataset across the five
tested models. In contrast, the proposed ARC-Net (last row)
performs best among all models accurately detecting an edge
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FIGURE 9. Examples of segmentation results by different FCN-based models on the INRIA dataset. The first two
rows are aerial images and ground truth, respectively. Rows 3 to 7 are building extraction results of SegNet, U-Net,
ENet, ERFNet, and our proposed ARC-Net, respectively. The green, red, blue, and black pixels of the maps
represent the predictions of true positive, false positive, false negative, and true negative, respectively.
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FIGURE 10. Examples of segmentation results by different FCN-based models on the WHU dataset. The first two
rows are aerial images and ground truth, respectively. Rows 3 to 7 are building extraction results of SegNet, U-Net,
ENet, ERFNet, and our proposed ARC-Net, respectively. The green, red, blue, and black pixels of the maps
represent the predictions of true positive, false positive, false negative, and true negative, respectively.
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TABLE 3. Quantitative comparison with the state-of-the-art models on
the WHU dataset. The highest value for each metric is marked as bold.

in building segmentation. Moreover, for column 2, all deep
learning models wrongly classified a building at the bottom
of the area except the proposed ARC-Net.
For a quantitative evaluation of the performance, we calcu-

lated the individual evaluation metrics presented in Table 3.
The proposed ARC-Net model holds the highest scores rela-
tive to the established models except for Recall where U-Net
performs the better. The performance differences across the
deep learning models except SegNet are small, especially
for U-Net, ERFNet, and SRI-Net. Compared to the ERFNet,
the proposed model still yields a higher F1-score by 1.2%
(0.957 vs. 0.946) and a higher IoU by 2.2% (0.918 vs. 0.898).

C. COMPUTATIONAL EFFICIENCY

Computational efficiency is an additional key performance
indicator of deep learning models. The computational perfor-
mance includes the cost and complexity of the model training
and testing. As stated in the introduction, the main motivation
of ARC-Net is to achieve high prediction accuracy with less
computational costs when applied to the building extraction.
The model-training for each epoch and testing time of differ-
ent deep learning models are presented in Table 4.
For the model-training phase, SegNet, and U-Net required

about 180 sec while costs for ERFNet and ARC-Net were
about 20 more sec on the INRIA dataset. For the WHU
dataset, on the other hand, SegNet took the highest training
time (455.5 sec) while ARC-Net required only 160.2 sec per
epoch. For the model-testing phase, ARC-Net was demand-
ing the least time per epoch on the INRIA dataset (13.4 sec)
as well as the WHU dataset (12.4 sec). The SegNet model is
the most time-consuming and required 1.2 to 1.5 times more
time than the fastest ARC-Net model. It is pointed out that the
new ARC-Net took less time than ERFNet for both training
and testing on both of the datasets.
To conclude, the new ARC-Net model requires about

an extra 11% time more than the fastest SegNet on the
model-training of the INRIA dataset, but it returns out-
standing performance of building extraction as presented in
Section IV-A and IV-B. For the WHU dataset, ARC-Net is
the most effective model as well as showing the best com-
putational performance in building extraction. These find-
ings demonstrate that the new ARC-Net implements a good

TABLE 4. Comparison of model-training and model-testing time in
seconds of each epoch for different FCN models. The minimums are
marked as bold.

TABLE 5. Comparison of the proposed model with different groups of
dilated convolutions on the INRIA dataset. The higher values are marked
as bold.

balance between computational performance and segmenta-
tion efficiency on the two building datasets.

V. DISCUSSION

A. GOING DEEPER OR NOT

Previous researches have demonstrated that a deeper CNN
structure with more convolution operations processes more
semantic information during the training phase, which helps
to improve the classification accuracy [20]. However, due to
the limitation of computational sources and the complexity
of structure design, a deeper deep learning neural network
requires fitting a larger amount of parameters and can lead
to instability introducing gradient explosion and gradient
vanishing. In this article, we developed the RBACmodule and
incorporated it into the ARC-Net in combination with dilated
convolutions in order to seek a balance between accuracy
and efficiency. As mentioned in Section II-A the dilation
rate in the RBAC module in the encoder phase is set as the
sequence of 2, 4, 8, 16 which raises the question if a repeated
application of dilated convolution in the RBACmodulewould
enhance the performance. To optimize the architecture of
the ARC-Net model, we kept other experimental settings
unchanged and conducted three comparison experiments with
different groups of dilated convolutions for the RBAC mod-
ule, including one group (as used in ARC-Net), two groups,
and three groups, respectively. The results of the comparison
on the INRIA dataset are presented in Table 5. Results show
that one repeated dilated convolution module (as applied in
the proposed ARC-Net) achieves in fact the best score in the
five score metrics in comparison to the other two architecture
design.

B. THE EFFECT OF ATROUS SPATIAL PYRAMID POOLING

The ASPP module has demonstrated its considerable perfor-
mance in aggregating multi-scale contextual features, which
improve the extraction accuracy of buildings in different
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TABLE 6. Comparison of the ARC-Net with or without the ASPP module
on the WHU dataset. The higher values are marked as bold.

sizes, especially medium-sized to over-sized buildings [65].
One crucial innovation of the ARC-Net in comparison to the
ERFNet is that it employs the ASPP module as a connector
between the encoder and the decoder. To test the performance,
we conducted a comparison experiment with and without the
ASPPmodule of ARC-Net on theWHUdataset. As presented
in Table 6, the model with ASPP shows an obvious improve-
ment over the model without ASPP across all evaluation
metrics. The comparison result demonstrates the efficiency
and applicability of the ASPP module as a connector for
building extraction from high-resolution aerial images [34].

C. ABOUT THE PROPOSED METHOD

Deep learning methods, especially FCN-based models, have
been widely applied in automatic building extraction from
high-resolution aerial images. Recently, several advanced
FCN-based models have delivered improved feature repre-
sentation capabilities to achieve better classification perfor-
mance (e.g., USPP [34], EU-Net [65], and MC-FCN [66]).
However, most of the existing models focus on improving
the accuracy with very little consideration on the computa-
tional efficiency, which suffers under large numbers of weight
parameters introduced in the model design and high memory
costs in the learning phase.
In this article, we designed a novel asymmetric encoder-

decoder networkwith residual connections, namedARC-Net,
to pursue good segmentation performance with lower com-
putational cost. The proposed model focuses on three key
innovations: (1) The residual block with asymmetric con-
volutions (RBAC) module is proposed to reduce the model
parameters and address the degradation problem (2) Larger
convolutional kernels and dilated convolutions are used in the
backbone of the architecture to enlarge the receptive field and
to obtain rich semantics when detecting objects in complex
backgrounds. Moreover, depth-wise separable convolutions
are introduced to improve computational efficiency without
reducing prediction performance. (3) The ASPP module is
utilized as a bridge between the encoder and decoder to
further aggregate spatial context information. Through these
three innovations, the proposed ARC-Net model implements
a good balance between performance and efficiency achiev-
ing better predictions with less computational resources.
The training accuracy and loss presented in Section III-C

show that the tested CNN models achieved better perfor-
mance and stability on the WHU dataset than on the INRIA
dataset. Compared to the segmentation results on the INRIA
dataset, the IoU metric of the different CNN models is all

higher than 85%, indicating that theWHU dataset is of higher
quality and building and background are easier to distinguish.
The INRIA dataset includes wrong labels, high buildings, and
shadows, factors that may heavily influence the discrimina-
tive ability of CNNmodels as presented in [37], [53]. For this
reason, the differences in the experimental results between the
two datasets as shown in this article are reasonable.Moreover,
these results verify that the proposed ARC-Net has a benefi-
cial capability for practical application scenarios.

D. LIMITATIONS

Despite the good performance and efficiency achieved, the
application of the ARC-Net model is still limited. With the
recent progress of remote sensing technology, it is getting
much easier to obtain remote sensing images at different
scales and spectral bandwidths also to meet different research
requirements. However, the datasets used in this article do
not contain images from different sensors or different sensor
types, such as hyperspectral images and SAR images. More-
over, the buildings have complex morphological characteris-
tics, such as different height, shape, and orientations while
with the current approach these attributes cannot directly be
determined through deep learning networks. In the future,
we will expand to the multi-source training data and integrate
multi-disciplinary knowledge to jointly extract the buildings
from remote sensing images.

VI. CONCLUSION

The main objective of this research is to propose an efficient
FCN-based model for automatic building extraction from
high-resolution aerial images that is achieving an outstand-
ing accuracy with less computational resources. To address
this issue, we proposed the ARC-Net model which incor-
porates an asymmetric encoder-decoder structure with the
ASPP module as a connector. The RBAC module, the core
of the ARC-Net, is designed by incorporating residual con-
nections with depth-wise separable and asymmetric convo-
lutions to reduce the number of model parameters and to
accelerate the calculations. In addition, dilated convolutions
and the ASPP module are utilized to extend the receptive
field for delivering desirable segmentations. Experiments on
two public building datasets, the INRIA and WHU datasets,
have shown that the proposed ARC-Net outperforms other
established FCN-based models with higher metric scores
and less computational time. The buildings were extracted
successfully by ARC-Net with fewer classification errors
and shaper boundaries which demonstrates that the proposed
ARC-Net achieves high accuracy and efficiency in building
extraction from high-resolution aerial images. In future stud-
ies, multi-resources remote sensing data from different sen-
sors will be combined to further improve automatic building
extraction.
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