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SURVLEY, EXPOSITORY & TUTORIAL

ARC ROUTING PROBLEMS, PART I:
THE CHINESE POSTMAN PROBLEM
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MICHEL GENDREAU and GILBERT LAPORTE

Centre de recherche sur les transports, Université de Montréal, Montréal, Québec, Canada
(Received January 1994; revision received March 1994; accepted June 1994)

Arc routing problems arise in several areas of distribution management and have long been the object of study by mathematicians
and operations researchers. In the first of a two-part survey, the Chinese postman problem (CPP) is considered. The main
algorithmic results for the CPP are reviewed in five main sections: the undirected CPP, the directed CPP, the windy postman

problem, the mixed CPP, and the hierarchical CPP.

In arc routing problems (ARPs), the aim is to determine
a least-cost traversal of a specified arc subset of a
graph, with or without constraints. Such problems occur
in a variety of practical contexts and have long been the
object of attention by mathematicians and operations re-
searchers. Perhaps the earliest documented reference to
ARPs is the famous Konigsberg bridge problem. The
question is to determine whether there exists a closed
walk traversing exactly once each of seven bridges on
the Pregel river in Koénigsberg, now called Kaliningrad
(Figure 1). The problem was solved by the Swiss mathe-
matician Leonhard Euler who found conditions for the
existence of a closed walk and showed there was none in
this particular case (Euler 1736). Euler was concerned
almost exclusively with the existence of a closed walk.
The question of determining such a walk was addressed
and solved more than one century later by Hierholzer
(1873). Interesting accounts of this problem, including
facsimiles of Euler’s manuscripts can be found in Euler
(1953) and in Korte (1989). English translations of the
original Euler and Hierholzer articles are provided in
Fleischner (1990).

Another well-known closely related problem is the so-
called Chinese postman problem posed by Meigu Guan
(or Kwan Mei-Ko), a mathematician at the Shangtun
Normal College who spent some time as a post office
worker during the Chinese cultural revolution (Korte). In
contrast to the Konigsberg bridge problem, which is only
concerned with the existence and determination of a closed
walk, here the question is to deal with situations where
such a solution does not exist. In this case, a natural
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question is to determine a minimum length walk covering
each segment af least once. The problem is simply stated
by Guan (1962): ““A mailman has to cover his assigned
segment before returning to the post office. The problem is
to find the shortest walking distance for the mailman.”

Arc routing problems arise in a number of practical
contexts, such as mail delivery, garbage collection, snow
removal, and school bus routing. Billions of dollars are
spent each year by governments and private enterprise
on these operations. Important sums of money are also
wasted because of poor planning. Operations researchers
have for a long time studied the structure of these prob-
lems and proposed workable solutions, sometimes yield-
ing sizeable savings. Some of the most important work
has been summarized in early surveys (Benavent et al.
1983, Bodin et al. 1983, Guan 1984a), in some books
(Busacker and Saaty 1965, Kaufmann 1967, Harary 1969,
Liebling 1970, Christofides 1975, Larson and Odoni 1981,
Lawler et al. 1985, Fleischner 1990, 1991, Evans and
Minieka 1992), and in Win’s thesis (1987). However, this
literature is quite scattered and disorganized. The objec-
tive of this two-part survey is to present an integrated
and updated overview of the most relevant operations
research literature on arc routing. In addition to provid-
ing an extensive bibliographic coverage, we will describe
the relationships between the various problems, com-
ment on their relative difficulty, outline some of the best
algorithms, and describe applications.

It is convenient to define ARPs as a special case of the
class of general routing problems (GRPs) studied by
Orloff (1974) and by Male, Liebman and Orloff (1977).

0030-364X/95/4302-0231 $01.25
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Figure 1. The seven bridges of Kdnigsberg.

Let G = (V, A) be a connected graph without loops,
where V' = {v,, ..., v,} is the vertex set (or node set),
and4 = {(v,, v)):v, v, € Vandi = j} is the arc set. (In
some problems, G is a multigraph, i.e., some arcs (v,,
v,) may be replicated.) With every arc (v,, v,) is associ-
ated a nonnegative cost, distance or length c,;; assume
that ¢,, = « if (v,, v,) is not defined. The matrix C =
(c,) is symmetric if and only if ¢, = ¢, for allZ, j. When
C is symmetric, it is common to associate an edge (or
undirected arc) with every vertex pair. Hence, depending
on whether 4 is a set of arcs or edges, the associated
ARP will be termed directed or undirected. Some graphs
that include directed and undirected arcs are called
mixed graphs. The cost matrix satisfies the triangle in-
equality if and only if ¢, + ¢ < ¢; for all i, j, k. In
GRPs, one seeks a minimum cost circuit that includes a
subset @ C V of required vertices and a subset R € A of
required arcs, but may involve other vertices and arcs if
necessary. Two important ARPs can be derived from
GRPs (see Lenstra and Rinnooy Kan 1976): 1) the rural
postman problem (RPP) for @ = & and some prespeci-
fied R; 2) the Chinese postman problem (CPP) for Q =
& and R = A. The RPP is commonly associated with
mail delivery in rural areas: There are a number of vil-
lages whose set R of streets has to be serviced by a
postman, and a set A\R of links between villages that do
not have to be served, but may be used for traveling
between villages. In contrast, the CPP is more likely to
arise in urban settings. Most arc routing applications are
of the RPP type. The first part of this survey of ARPs is
devoted to the CPP, while the second part (to appear in
the next issue of this journal) is about the RPP.

The property of unicursality is central to the study of
the CPP. A connected graph is said to be unicursal or
Eulerian if there exists a closed walk in G containing
each arc exactly once and each vertex at least once. A
fundamental result is the statement of necessary and suf-
ficient conditions for a connected graph to be unicursal
(Ford and Fulkerson 1962, pp. 70-71):

1. If G is undirected, every vertex must have an even
degree, i.e., an even number of incident edges. This
condition was first proved by Euler (1736).

2. If G is directed, the number of arcs entering and leav-
ing each vertex must be equal.

3. If G is mixed, every vertex must be incident to an
even number of directed and undirected arcs;

moreover, for every § € V, the difference between
the number of directed arcs from S to I\ S and the
number of directed arcs from ¥\ 'S to S must be less
than or equal to the number of undirected arcs joining
S and '\ S. This condition is sometimes called the
““balanced set condition’” (Nobert and Picard 1991).

Algorithms for the CPP contain two distinct stages.
The first is to determine a minimum cost augmentation
of the graph, i.e., a least-cost set of arcs or edges that
will make the graph unicursal. Then an actual traversal
of the augmented graph can always be determined in
polynomial time. When G is completely undirected or
completely directed, the augmentation problem is easy
and well solved. In the first case, a unicursal graph can
be derived from G in polynomial time by solving a
matching problem (Edmonds and Johnson 1973); in the
second case, the minimum cost augmentation is obtained
by solving a minimum cost flow probiem (Edmonds and
Johnson). Other types of CPP are not so easy. If G is a
mixed graph, the least-cost augmentation problem is NP-
hard, even if G is planar or if all ¢,’s are equal to the
same value (Papadimitriou 1976). A problem closely re-
lated to the mixed CPP is the windy postman problem
(WPP) first introduced by Minieka (1979). Here, G is an
undirected graph, although the cost of traversing an edge
depends on the direction of travel. The WPP consists of
determining a least-cost traversal of all edges of G.
Brucker (1981) and Guan (1984b) have shown that the
WPP is NP-hard, but the problem is solvable in polyno-
mial time if G is Eulerian (Win 1989). Every mixed CPP
can also be transformed into a WPP: If (v,, v)) is an edge
of cost ¢, then the cost of traversing (v,, v;) in either
direction is c; if (v,, v;) is an arc of cost ¢, then in the
WPP the cost of traversing (v,, v,) is c if travel goes from
v, to v;, and « otherwise (Win 1989). Heuristic algo-
rithms for the mixed CPP and the WPP consist of achiev-
ing a low-cost angmentation of the graph to satisfy the
unicursality conditions. The best exact algorithms use an
integer linear programming formulation of the problem
and solve it by a branch-and-cut procedure. While this
approach is relatively successful, it does not seem to
perform as well as similar algorithms developed for the
traveling salesman problem (TSP) (for example, sec
Padberg and Rinaidi 1991 or Grétschel and Holland
1991).

Another important CPP extension is the hierarchical
CPP where a precedence relation is defined on 4, and
the order in which the arcs are serviced must respect this
relation. As shown by Dror, Stern and Trudeau (1987),
this problem is NP-hard but can sometimes be solved in
polynomial time. This problem has received less atten-
tion than other types of CPP. A dynamic programming
algorithm has been proposed for its solution.

Whereas the Fleischner books (1990, 1991) provide an
exhaustive treatment of the CPP from a graph theoretical
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perspective, our treatment of the subject is more algo-
rithmic. A number of interesting applications are de-
scribed in Section 1. The remaining sections are devoted,
respectively, to the following cases: the undirected CPP,
the directed CPP, the WPP, the mixed CPP, and the
hierarchical CPP. The conclusions follows in Section 7.

1. APPLICATIONS

In most arc routing applications, it is not necessary to
service all arcs of the graph and these are therefore mod-
eled as RPPs. In addition, several side constraints often
come into play. However, the CPP often arises as a sub-
problem in these applications and this can be exploited in
the design of algorithms. There are also problems that
can be modeled as pure CPPs.

Miliotis, Laporte and Nobert (1981) consider the prob-
lem of determining a shortest complete cycle in G, i.e., a
cycle passing through each vertex at least once. It is well
known (see, e.g., Hardgrave and Nemhauser 1962) that
this problem can immediately be transformed into a TSP
with costs ¢, equal to the length of a shortest path be-
tween v, and v,. However, an alternative approach is
possible.

In the undirected case, define a restricted edge set A’
by removing from A4 all edges (v,, v,) which are not
themselves a shortest chain between v, and v,. Also de-
fine for each (v,, v)) € A'(i < j) an integer variable X,
equal to the number of times (v,, v,) is used in the solu-
tion. Then the problem is as follows.

Problem UCC

Minimize E CyXy (1)
(ve,v,)EA’
subject to
Dxut Xxy -2 =2 (k=1,...,n) (2)
1<k j>k
2 x, 22(8CV;2<|S|sn-2) (3)
v, ES,v, &S
orv, &S,v, €S

xl] E{Oa 13 2} (vl’ V}) EA’) (4)
y. 2 0 and integer (v, EV). (5)

The solution to UCC defines a connected graph in
which each vertex has an even degree; this graph is
therefore unicursal. A shortest complete cycle on G
is then easy to identify by solving a CPP. The directed
case is similar. Computational results indicate that this
approach may be preferable to transforming the problem
into a TSP.

An important practical problem that can be modeled as
a CPP is the topological testing of some computer sys-
tems at different levels (Malek, Mourad and Pandya
1989). These systems are described by graphs in which
the vertices correspond to processors, switches or regis-
ters, depending on the specific level at which testing is to
be conducted, and arcs represent data flow or data lines
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between vertices. An Eulerian circuit can then be used to
send a testing packet traversing all arcs and vertices in
minimal time.

Barahona (1990) describes several problems displaying
a mathematical structure similar to that of the CPP. One
of these problems is the determination of exact ground
(minimal-energy) states for some planar spin glass sys-
tems (Barahona et al. 1982). A spin glass system can be
modeled by an undirected graph in which each vertex
corresponds to a spin and weighted edges indicate the
interactions between spins (the weight of an edge repre-
sents the level of positive or negative interaction be-
tween the spins that it links). The ground-state problem
consists of assigning +1 or —1 orientations to the spins
with the objective of minimizing the total energy of the
system, given by the opposite of the sum over all edges
of the product of the spin orientations and the interaction
weights. The optimal solution to this problem can be
obtained by finding a minimum weight cut in the graph,
partitioning up spins (+1 orientation) from down spins
(—1 orientation). For planar spin glass systems, this min-
imum weight cut can be determined by solving an ARP
on the planar dual graph of the graph describing the sys-
tem. In this dual graph, the cost assigned to an edge is
the absolute value of the interaction weight of the unique
edge of the original graph crossed; the desired solution
then corresponds to a minimum cost cycle cover of the
dual edges associated with negative weight edges in
the original graph.

A second problem described by Barahona is the via
minimization problem arising in the design of VLSI cir-
cuits. In this problem, wires that connect the chip com-
ponents must be assigned to one of the two layers of the
chips. Wires are not allowed to cross one another on
the same layer, but may go from one layer to the other
through vias (connections between layers). The objective
is to minimize the number of vias. To solve this problem,
one first constructs a planar graph representation of the
chip in which vertices correspond to wire end points and
crossings and edges correspond to sections of wire be-
tween these. The solution is obtained by determining the
smallest number of edges that must be broken into two
pieces to make the graph bipartite (each occurrence cor-
responds to a via).

2. THE UNDIRECTED CHINESE POSTMAN
PROBLEM

The first known result concerning the undirected CPP is
due to Euler (1736) who showed that a connected undi-
rected graph G = (V, E) is unicursal if and only if all its
vertices have even degree. Guan (1962) observed that G
always has an even number of odd-degree vertices and
that a unicursal graph G’ can be derived from G by
adding edges to link odd-degree vertices, i.e., some
edges are replicated by introducing copies with the same

Copyright © 2001 All Rights Reserved
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cost. Guan proved that a necessary and sufficient condi-
tion for the optimality of a Eulerian tour on G’ is that it
has no redundancy, i.e., it does not contain more than
two edges linking any vertex pair, and the length of
added edges on every cycle does not exceed half the
length of the cycle.

A natural way to formulate the undirected CPP as an
integer linear program (ILP) is to seek a least-cost aug-
mentation of G into G’ such that all vertices of G’ have
an even degree. Define x,,, the number of copies of (v,,
v))(i < j) required to augment G. Let 8(i) be the set of
edges incident to v,, and let T C V' be the set of odd-
degree vertices of 1. Then the formulation is as follows.

Problem UCPP1

Minimize Y  cyX, (6)
(vi,v,)EA
subject to
_ [1 (mod 2)ifv, €T )
Vi ,v,)EB(1) 0 (mod 2) if v, € V\T
x,; €40, 1} ((v,, v,) €A). (8)

This model can be solved as a perfect matching problem
on Kz = (T, Ar), where Ar = {viv)iv,v,€T,i <
j}, and the cost of (v,, v,) € Ay is the cost of a shortest
path between v, and v, on G (see, e.g., Edmonds 1965a,
Busacker and Saaty 1965, Christofides 1973). Graph G’
is then obtained from G by introducing the shortest paths
corresponding to the optimal matching solution. Lawler
(1976) provides an O(|V']*) time algorithm for the match-
ing problem, but lower complexity algorithms can be de-
rived by suitably exploiting data structures (see, €.g.,
Galil, Micali and Gabow 1986, Derigs and Metz 1991).

As Barahona notes (1990), this approach does not de-
pend on the density of arcs in G. An equivalent formula-
tion that exploits the sparsity of G has been proposed in
a fundamental article by Edmonds and Johnson. For this,
define for any nonempty proper subset of }7 the set
ES) ={v,Vv)v,ES,v,EV\Sorv, EV\S, v, €
S}. Then the problem is as given below.

Problem UCPP2

Minimize », Xy (9)
(vi,v; )EA
subject to
x, 21 (SCV, S odd) (10)
(vi,v,))EE(S)
Xy 20 ((vl’ Vj) EA) (11)
x, integer ((v,,v,) €EA). (12)

In this formulation, constraints 10 are referred to as blos-
som inequalities. These are defined for every odd set S,
i.e., for every proper subset of V' containing an odd num-
ber of odd vertices. The polyhedron of solutions to (10)
and (11) is equal to the convex hull of solutions to UCPP2

(Edmonds and Johnson). Edmonds and Johnson solve
UCPP2 by means of an adaptation of Edmonds’ blossom
algorithm (1965b) for matching problems.

Once an Eulerian graph has been obtained, an Eulerian
cycle must be determined on G'. Defining a bridge as an
edge whose removal disconnects graph G, we can now
describe Fleury’s method as reported in Kaufmann
(p- 309).

Fleury’s Algorithm for Determining an Eulerian
Cycle in an Undirected Eulerian Graph

STEP 1. Starting from an arbitrary vertex v, traverse
an edge (v,, v,) that is not a bridge and erase edge

Vi v))-

STEP 2. Set v, := v, and repeat Step 1 starting from
the other extremity of the deleted edge or stop if all
edges have been deleted.

In spite of its apparent simplicity, this procedure may
be time consuming because of the difficulty of determin-
ing at each step whether the edge considered for deletion
is a bridge. To counter this, Edmonds and Johnson pro-
pose alternative methods of O(|V]) time complexity. We
describe their ““end-pairing”” algorithm.

End-Pairing Algorithm for Determining an Eulerian
Cycle in an Undirected Eulerian Graph

STEP 1. Trace a simple tour that may not contain all
vertices. If all edges have been included in the tour, stop.

STEP 2. Consider any vertex v on the tour incident to
an edge not on the tour. Form a second tour from v not
overlapping the first one.

STEP 3. Let e,, e, be the two edges incident to v on
the first tour, and let e;, e, be the two edges incident to v
on the second tour. Merge the two tours into a single
tour: For example, starting at v with edge e;, follow the
second tour until it meets v by way of e,, then continue
on the first tour starting with e, until v is reached again
by e,. If all edges have been traversed, stop. Otherwise
go to Step 2.

Additional algorithms for determining Eulerian cycles
in graphs are described in Fleischner (1991).

A number of variants of the undirected CPP have been
studied. Frederickson, Hecht and Kim (1978) consider
the m-vehicle version of the problem where the objective
is to minimize the length of the longest route. These
authors show that this problem is NP-hard by reduction
of the k-partition problem (Sahni and Gonzalez 1976). A
heuristic with a worst-case performance ratio of 2 ~ 1/m
is also provided. A problem closely related to the CPP is
that of covering a graph by undirected cycles. The objec-
tive is to cover all edges of the graph by simple cycles so
that the total length of the cover is minimized. This prob-
lem arises in the design of irrigation systems (Cross 1936)
and in the analysis of electrical circuits (Itai and Rodeh
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1978). Itai et al. (1981) state that the complexity of deter-
mining a minimal length cover in a graph is not known,
but they conjecture that this problem is NP-hard. They
also prove that minimizing cover length and solving the
CPP are not equivalent. For example, they show that
the Petersen graph (Figure 2) with unit edge lengths has
an optimal CPP solution equal to 20 and a minimal cover
solution of length 21. However, Kesel’man (1987) proved
that in planar graphs the two problems are equivalent.

3. THE DIRECTED CHINESE POSTMAN PROBLEM

In the directed case, determining a minimum cost
Eulerian graph from G can be achieved by solving a
minimum cost flow problem where the flow on each arc
has to be at least 1 (Orloff 1974). Note, however, that
contrary to the undirected case, this problem may not
have a solution even if G is connected. For a solution to
exist, the graph must be strongly connected, i.e., there
must be a directed path between every pair of nodes.
Edmonds and Johnson (1973), Orloff (1974) and Beltrami
and Bodin (1974) show how a least-cost Eulerian graph
can be constructed by solving a transportation problem.
Let I be the set of vertices v, for which the number of
incoming arcs exceeds the number of outgoing arcs by s;
and J, the set of vertices v, for which the number of
outgoing arcs exceeds the number of incoming arcs by
d,. Thus, s, can be interpreted as a supply, and d, as a
demand. In addition, let c,; be the length of a shortest
path from v, to v,. The problem is then as follows.

Problem DCPP
Minimize Y 2 cyx, (13)

wv.el v,eJ

subject to

Figure 2. Petersen graph.
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Xy =8, €1 14
2 Xy =5 €D (14)
> x,=d, (v€J) (15)
v, el

x, 20 (v, €I, v, EJ). (16)

The optimal x,, values represent the number of extra
times each arc has to be traversed. An equivalent proce-
dure is also suggested by Lin and Zhao (1988). Once a
unicursal graph has been determined, an Eulerian circuit
can be drawn by simply adapting Fleury’s algorithm for
undirected graphs (Christofides 1975, p. 202). Alterna-
tively, one can use the following procedure suggested by
van Aardenne-Ehrenfest and de Bruijn (1951) and also
described in Edmonds and Johnson.

The van Aardenne-Ehrenfest and de Bruijn
Algorithm for Determining an Eulerian
Circuit in a Directed Graph

STEP 1. Construct a spanning arborescence rooted at
any vertex v,.

STEP 2. Label all arcs as follows: Order and label the
arcs outgoing from v, in an arbitrary fashion; order and
label the arcs out of any other vertex consecutively in an
arbitrary fashion, so long as the last arc is the arc used in
the arborescence.

STEP 3. Obtain an Euler tour by first following the
lowest labeled arc emanating from an arbitrary vertex;
whenever a vertex is entered, it is left through the arc not
yet traversed having the lowest label. The procedure
ends with an Euler circuit when all arcs have been
covered.

As in the undirected case, there exist a number of
covering problems associated with directed graphs, such
as covering the graph with star trees, simple paths or
circuits (see, e.g., Busacker and Saaty, and
Christofides). An interesting problem consists of deter-
mining a minimum cost Eulerian subgraph in a given
graph G. This problem was addressed by Richey, Parker
and Rardin (1985) and Richey and Parker (1991) who
have shown it to be NP-hard, even if G has a bounded
vertex degree, but the problem can be solved in O(|}V]?)
time on so-called series-parallel graphs.

4. THE WINDY POSTMAN PROBLEM

As indicated in the Introduction, the WPP is NP-hard
and contains the undirected, directed and mixed CPPs as
special cases. In some cases, however, the problem can
be solved in polynomial time. One sufficient condition,
stated by Guan (1984b), is that the two orientations of
every cycle of G should have the same length. Then, a
shortest WPP tour on G is easy to determine as follows:
Derive from G an undirected graph G’ with edge costs
¢, = (¢, + ¢,)/2, solve a CPP, and determine an Euler
tour on G’. This tour is a shortest windy postman tour.
This algorithm is polynomial, but requires checking
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whether all cycles have the same cost in both directions.
Another sufficient condition for polynomial solvability is
for G to be Eulerian. For this case, Win (1987, 1989) has
proposed a polynomial-time algorithm based on a trans-
formation of the Edmonds and Johnson aigorithm for the
mixed CPP. He also observed that the transformation of
the WPP into a minimum cost integer flow problem with
gains (Maurras 1972) suggested by Minieka (1979) does
not yield a polynomial-time algorithm even for Eulerian
graphs.

The polyhedral structure of the WPP has been studied
by Win (1987, 1989) and by Grétschel and Win (1988,
1992). Let G = (V, A) be the underlying graph and
define 8(i) as the set of edges incident to vertex v,
and E(S) as the set of edges (v,, v)) withv, €S, v, & §,
where § C V. Also let x,, be an integer variable indicat-
ing how many times edge (v;, v,) is traversed from v, to
v, in the optimal WPP solution. The problem is then as
given next.

Problem WPP
Minimize >, (cyx; + %) (17)
(vi,v; )EA
subject to
x, +x, 21 ((v,, v,)EA) (18)
(xlj _sz) =0 (vl S V) (19)
(ve,v,)E80)
Xys Xpn 20 ((vl9 V}) EA) (20)
Xy, X, integer {(v;, v,) EA). (21)

Let P be the polyhedron of the vectors x = (x,,, x,,)
satisfying (18), (19), and (20). Then G is Eulerian if and
only if every vertex of P is integral; furthermore, the
components of the vertices of P are always 0, 1/2, or a
positive integer. Also, if G is Eulerian, then (18)-(20)
give a complete description of the convex hull of the
incidence vectors of the windy postman tours on G, de-
noted by WP(G) (Win 1987, 1989). Gendreau, Laporte
and Zhao (1990) have shown that a previous result
proven by Minieka (1979) for the mixed CPP applies to
the WPP: In any optimal solution to WPP, one of the
following three cases occurs for any edge (v,, v,): either
x,=0and x, 2 l,orx, =0and x,, 2 1, or x; =
x;, = 1. This suggests a natural three-way branching
scheme. Grotschel and Win (1988) have shown that each
of inequalities (18) and (20) defines a facet of WP(G) if
and only if (v,, v)) is not a bridge of G. Furthermore for
any odd |E(S){, the following odd cut inequalities are
valid with respect to WP(G), and define facet of WP(G)
if and only if the subgraphs of G induced by S and V'\ §
are connected:

ey +x,) Z|ES)+1 (SCV) (22)
(vi,v,)EE(S)
> xy 2 B(E®S)|+1D) (SCV)  (23)
viES,V, &S

and

> x, 2 VAES) +1) (SCV). (24)
v, ES,v, &S
Additional valid inequalities are also derived in Grétschel
and Win (1988). Grotschel and Win (1992) observe that
although the LP model defined by (17)~(20) and (22)—(24)
contains an exponential number of constraints, it can be
solved in polynomial time in the input length of the given
WPP, by making use of the Padberg and Rao (1982) pro-
cedure to satisfy the odd-cut constraints. Grotschel and
Win have devised a cutting plane algorithm to solve the
LP, and have applied it to the solution of WPP instances
ranging from 52 to 264 vertices, and having between 78
and 489 edges. The LP solution provided an optimal
WPP solution for 31 problems out of 36. When the above
LP fails to provide an integer solution, feasible WPP
tours can be derived by appropriately rounding up the
fractional variables, and then possibly setting some vari-
ables to zero (Grotschel and Win 1992). Similar strategies
have been proposed by Win (1987, 1989) and by
Gendreau, Laporte and Zhao (1990), starting from the
solution of the LP defined by (17)-(20).

A problem closely related to the WPP is the minimum
cost Eulerian orientation problem (MCEOP). Here G =
(V, A) is an undirected Eulerian graph and there are two
costs ¢, and c,, associated with each edge (v,, v)). An
orientation of G is obtained by replacing edge (v,, v,)
either by arc (v,, v,), or by arc (v,, v,). The MCEOP
consists of determining the minimum cost Eulerian orien-
tation of G. This problem differs from the WPP in that
each edge may be traversed only once in the optimal
solution. Guan and Pulleyblank (1985) proposed an
O(|V|l4]%) time algorithm for this problem. These au-
thors also show how a class of sparse and Hamiltonian
graphs can be derived from the set of MCEOP solutions.
Win (1987, 1989) provides a complete description of the
Eulerian orientation polytope of G. He also shows how
some results developed for the MCEOP can be used to
solve a restriction of the WPP in which each edge (v,, v))
can be traversed at most d,, times (this problem reduces
to the MCEOP if d,, = 1 for all (v,, v,)). In particular, if
alld,’s are odd, the problem can be solved in polynomial
time and there exists a complete description of the poly-
tope of feasible solutions containing O(] 4 *) constraints.

5. THE MIXED CHINESE POSTMAN PROBLEM

For notational convenience, we will assume in this sec-
tion that the mixed CPP is defined on a strongly con-
nected graph G = (V, A U E), where A is an arc set, E
is an edge set, and the cost matrix C = (c,;) is associated
with 4 U E. Solving the CPP amounts to finding a
minimum-cost augmentation of G by suitably replicating
some arcs and edges, to satisfy the necessary and suffi-
cient conditions for unicursality stated in the Introduc-
tion, and then determining an Eulerian traversal of the
augmented graph.
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In what follows, a graph is called even if the total
number of arcs and edges incident to each of its vertices
is even; it is symmetric if for each vertex the number of
incoming arcs is equal to the number of outgoing arcs; a
graph is balanced if the balanced set conditions are sat-
isfied. Recall that a mixed connected graph is Eulerian if
and only if it is even and balanced. If a graph is even and
symmetric, then it is balanced, but symmetry is not a
necessary condition for unicursality (see Figure 3). If it is
known that G is Eulerian, one is left with the problem of
determining an FEulerian circuit in G. This can be
achieved in three phases: 1) assign directions to some
edges so that G becomes symmetric; 2) assign directions
to the remaining edges; 3) determine an actual traversal
of G.

To derive a symmetric graph from G, one can apply
the following procedure proposed by Ford and Fulkerson

(p. 60).

Ford and Fulkerson’s Procedure for Transforming
a Mixed Graph into a Symmetric Graph

STEP 1. Replace each edge of G with a pair of oppo-
sitely directed arcs, thus obtaining a directed graph G’ =
(V, A’). Assign to each arc of 4’ N A a lower bound of
1 and to each arc of A"\A a lower bound of 0. Also
assign to each arc of A’ an upper bound of 1.

STEP 2. Using a network flow algorithm, determine a
feasible circulation in G'. Let x, be the flow on arc
(vl’ V])'

STEP 3. Orient some edges of G as follows: If (v,, v))
€ E, x;, = 1 and x;, = 0, orient (v,, v,) from v, to v,.

Now that the graph is symmetric, the remaining edges
can be oriented by means of the following O(|4 U E})
time procedure.

Procedure for Completely Orienting a
Symmetric Graph

STEP 1. 1f all edges are directed, stop.

STEP 2. Let v be a vertex with at least one incident
undirected edge (v, w). Set v, := v and v, := w.

STEP 3. Orient (v, v,) fromv, tov,. Ifv, = v, go to
Step 1.

STEP 4. Set v, := v, and identify an edge (v,, v,)
incident to v,. Go to Step 3.

»

Figure 3. Example of a graph that is not symmetric but
Eulerian.
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Once a completely directed graph has been obtained,
the van Aardenne-Ehrenfest and de Bruijn algorithm de-
scribed in Section 3 can be applied to determine an
Eulerian traversal of G.

As noted by Ford and Fulkerson, their maximal flow
algorithm can be applied to an even graph not known a
priori to be Eulerian: The algorithm will either produce
a feasible flow or fail, in which case the graph is not
Eulerian. If G is not Eulerian, a graph that satisfies the
sufficient conditions for unicursality can be determined
by augmenting G, i.e., by replicating a sufficient number
of edges and arcs of G so that the resulting graph is
Eulerian. To solve the mixed CPP on G, one must deter-
mine a minimum-cost augmentation. Note that this is not
always feasible because some graphs cannot be made
Eulerian (Figure 4).

Several authors have used integer linear programming
to determine the minimum cost augmentation of a mixed
graph, but computational resuits are sketchy and com-
parisons between the various approaches are hard to
make. An example is provided by Grotschel and Win
(1992): The ILP formulations these authors suggest for
the WPP can be applied to the CPP through simple mod-
ifications. This formulation determines a minimal-cost
augmentation of the graph while assigning a direction to
every edge. The resulting graph is directed and symmet-
ric because of constraints (19): It is therefore Eulerian.
The role of the odd-cut inequalities is to strengthen the
linear relaxation. Applying a constraint relaxation ap-
proach to this formulation, Grétschel and Win solved to
optimality and without any branching, nine mixed CPPs
out of nine that were attempted, in which 52 < |V]| <
172, 37 < |E| < 154 and 31 < |A| < 116.

The Grotschel and Win formulation without the odd-
cut inequalities is identical to the Kappauf and Koehler
(1979) formulation, apart from the variables’ names.
These authors did not, however, provide any computa-
tional results. Another formulation belonging to the same
family was proposed by Christofides et al. (1984). Let
A ={vv) €EAw, = v}, AL = {(v,v) EAiv, =
v} and V7, the set of ail vertices linked to v, by an edge.
Let x, be the number of extra times arc (v,, v,) is tra-
versed in the optimal solution, and let y,; be the total
number of times edge (v,, v;) is traversed from v, to v,.

.- —o

Figure 4. Example of a graph that cannot be made
Eulerian.
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Also let p, be a binary constant equal to 1 if and only if
the degree of vertex v, is odd, and let z;, be an integer
variable. The formulation is as follows.

Problem MCPP1

Minimize » c¢;(1+x,)+ 2 cy(yy +¥,)

v.,v,)eA v.i,v,)EE (25)
subject to
z (1+xy,) - 2 (1 +x;)+ E Yy
(vi,v))EAF (vi,v,)EAR v, €V
- X yu=0 (vpEV) (26)
v, &V
S oxyt+r T oxit X (yytye-—1)
V., JEAT ViV, JEAL v, EVi
=2z, +pr (v €EV) (27)
ylj+y1131 ((Vi’ V})EE) (28)
Zks Xy, Yy ¥, 2 0 and integer. (29)

The problem is solved by means of an enumerative
algorithm in which two different lower bounds are com-
puted at each node of the search tree. The first bound is
obtained by relaxing constraints (26) in a Lagrangian
manner and solving the minimum-cost perfect matching.
The second is obtained by the Lagrangian relaxation of
constraints (28), and solving a minimum-cost flow prob-
lem. Using this approach, the authors solved to optimal-
ity 34 randomly generated problems with 7 < {V] = 50,
3 < |A| < 85 and 4 < |E| < 39. The maximum CPU
time observed was in the region of 500 seconds on a
UNIVAC 1100/60.

In the formulation proposed by Nobert and Picard,
there is only one variable y, associated with every edge
of E. The ILP solution does not therefore specify
edge directions. Constraints are imposed to ensure that
the augmented graph satisfies the Ford and Fulkerson
necessary and sufficient conditions for unicursality, i.e.,
the graph must be even and balanced. To present the
formulation, define for any proper subset S of I the sets

AYNS)={(v,, v,)EAv, ES, v, EV\S},
A7(S) ={(v;, v))EA Vv, EV\S, v, ES],
ES)={(v,,v))EE:v,ES,v; EV\S
orv, EV\S, v, €S},
and let u(S) = |A(S)| — |47(S)| — |E(S)|. Thus, if
S = {v,}, then 4A*(8) = A, A~ (S) = Ay, and E(S) =
E,. Constants p, and variables z, are defined as above,
and only one variable y,, is defined for each (v,, v)) € E.
Variable y,; now represents the number of copies of edge

(v,, v;) that must be added to the graph to make it
Eulerian. The formulation is given next.

Problem MCPP2

Minimize Y c,x; + 2 ¢,y (30)
(v.,v;)E4 (vi,v,)EE
subject to
E X, + 2 Yy
w,,v,)EA4 (v.,v))EE
=2z +pr (Vi EV) (31)
- D x, + > x, +
(vi,v,)EA*(S) v.,v,)EA(S) (vi,v,)EE(S)
zulS) (SCV, S=0) (32)
Zg, Xy, ¥y 2 0 and integer. (33)

In this formulation, constraints (32) force all nonempty
proper subsets S of V' to be balanced: This is done by
imposing that a sufficient number of arcs and edges will
be introduced to compensate for the imbalance u(S) of
S. In addition to these constraints, the authors introduce
a generalized form of blossom inequalities (see (10)):

x, + > xy+ > vy

(v,,v,)E4*(S) (vi,vy)EA (S) (vi,v, }EE(S)

21 (SCV, S odd). (34)

Again, these constraints are redundant, but help
strengthen the LP relaxation. Nobert and Picard describe
a procedure to identify the most unbalanced sets, based
on previous algorithms by Picard and Radiff (1975) and
by Picard and Queyranne (1980). A constraint relaxation
approach is used to solve MCPP: Initially, the program
includes all nonnegativity constraints, balanced set con-
straints (32) corresponding to unbalanced vertices and to
most of the unbalanced sets S of G, and generalized
blossom inequalities (34) associated with odd vertices. In
the course of the algorithm, additional balanced set and
generalized blossom inequalities are generated as they
are found to be violated. When this is no longer possible,
a number of Gomory cuts are added to help gain integral-
ity. The procedure may terminate at an integer or at a
noninteger solution. If the solution is integer and satisfies
all constraints, a minimum-cost Eulerian graph has been
identified. Otherwise, a branching process has to be ini-
tiated. The algorithm was applied to a large number of
randomly generated MCPPs with 16 < |IV] < 225, 2 <
| 4| < 5,569 and 15 < |E| < 4,455. Out of 440 problems
that were attempted, 313 were solved to optimality with-
out branching. The number of constraints generated dur-
ing the course of the algorithm was usually of the order
of [V1.

Finally, Minieka (1979) suggested that the mixed CPP
can be formulated and solved as a network flow problem
with gains (see Maurras). He did not, however, provide a
formulation or an algorithm.

Heuristics for the mixed CPP have been suggested by
Edmonds and Johnson (1973), and have been improved
by Frederickson (1979), and by Christofides et al. (1984).
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These heuristics seek good solutions satisfying the neces-
sary and sufficient conditions for unicursality.
Frederickson suggests two heuristics, MIXED1 and
MIXED2, each of time complexity O(max{}]?,
| A|(max{| 4|, |[E|})?}) and having a worst-case ratio of 2.
If the two algorithms are applied in succession to the
same problem, the worst-case ratio of this mixed heuris-
tic goes down to %5. No results are reported on the com-
putational behavior of these heuristics. We now sketch
these two algorithms. Detailed procedures are provided
in the original article.

Heuristic Mixedt for the Mixed CPP

STEP 1. (EVENDEGREE) In a graph G = (V, A U
E), identify odd-degree vertices. Find all shortest paths
between odd vertices, ignoring arc directions, and use
these to determine minimum-cost matching of odd verti-
ces. Augment the original graph by including all edges
and arcs used for the matching solution.

STEP 2. (INOUTDEGREE) Using a minimum-cost
flow algorithm, make the graph symmetric. Let G' = (V,
A’ U E') be the resulting graph.

STEP 3. (EVENPARITY) Identify the set of odd verti-
ces in G'. Identify cycles consisting of alternating paths
(irrespective of arc directions) in A"\ 4 and E’, with ev-
ery path anchored at each end by an odd vertex. As a
cycle is covered, its arcs are either replicated or deleted,
and its edges are directed, so that the resulting graph
remains symmetric and becomes even.

As observed by Frederickson, Step 3 is made neces-
sary in part by the fact that an even graph may not be
preserved by Step 2. To see this, consider Figure 5 bor-
rowed from Frederickson, showing: a) an even but asym-
metric graph obtained at the end of Step 1, b) a
symmetric but noneven graph at the end of Step 2,
c) procedure EVENPARITY being applied to the graph

DELETE
N
REPLICATE "«

h g
.
\
\
\
. \
’ 1
P K
v’ ,’
. .
e
.

Figure 5. Solution produced by the MIXEDI1 heuristic.
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after Step 2, and d) the final even, directed, and symmet-
ric graph.

Heuristic Mixed2 for the Mixed CPP

STEP 1. (INOUTDEGREE) See Step 2 in heuristic
MIXEDIL. Let G’ = (V, A’ U E’) be the resulting graph.

STEP 2. (LARGECYCLES) Identify the vertices of
odd degrees in G” = (V, E'). Find all shortest paths
between these odd vertices over the graph G = (V, E).
Perform a minimum-cost matching of the odd vertices of
G using shortest path distances. Insert the edges used in
the matching into E'. Find a traversal of the arcs and
directed edges in 4’ and undirected edges in E’.

The algorithm of Christofides et al. is equivalent to
MIXED?2 and will not be described here. It is worth not-
ing, however, that when applied to 34 instances with 7 <
V] < 50,3 < |A| < 85and 4 < |E| < 39, this heuristic
produced solution values that were on the average 3%
above the optimal value, the worst deviation being 17%.
Finally, these authors have suggested the following im-
provement procedure applicable to any feasible solution:
If the cost ¢, of an arc exceeds the length of a shortest
path from v; to v,, then it is advantageous to replace (v,,
v;) by that path in order to reduce the number of vari-
ables. This idea is also used by Gendreau, Laporte and
Zhao in the context of the WPP.

6. THE HIERARCHICAL POSTMAN PROBLEM

The hierarchical postman problem (HPP) is defined on a
directed or on an undirected graph G = (V, A), where V
contains a source s and a sink 7. The arcs of 4 not
incident to s or ¢ are partitioned into {4, ... , A}, and
an order relation < is imposed on the elements of the
partition. The HPP consists of determining a least-cost
traversal of G starting at s, ending at #, and servicing the
arcs of the partition in such a way that if 4 , < A, then
all arcs of 4, are serviced before any arc of 4,. How-
ever, arcs of 4, may be traversed before some arcs of
A, This problem arises naturally in snow plowing oper-
ations where the sets 4 correspond to streets with differ-
ent priority levels (Stricker 1970, Lemieux and
Campagna 1984, Alfa and Liu 1988, Haslam and Wright
1991). Other applications are waste collection (Bodin and
Kursh 1978) and flame cutting (Manber and Israni 1984).

Consider the subgraphs G,, = (V,, 4,,) induced by the
sets A,,. If each such subgraph is connected and the or-
der relation is complete, i.e., a total order 4, <
A, < -+ < A, is specified, the problem can be solved in
O(k|V1®) time, as shown by Dror, Stern and Trudeau.
For this, construct a directed acyclic graph G = (V, A)
as follows. Define ¥, as the set containing one copy of
each vertex incident to an arc of A,, and let ¥V = {s, t} U
Vi U...U V. The arc set A is made up of all arcs
from s to the vertices of ¥, and from the vertices of 7,
to ¢, and of all arcs from the vertices of I_/p to the vertices
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of V,,i(p = 1, ..., k — 1). The cost c,, of an arc
(u, v) of A is determined as follows. If u = s andv €
V,, then c,, is the value of a shortest path (if G is di-
rected) or chain (if G is undirected) from u tov; if u €
V,andv €V, forp =1, ..., kand V., = {t}, then
¢, is the value of a minimum cost Eulerian path or chain
starting at u, ending at v, and covering all arcs of 4.
The HPP is then solved by determining a shortest path
form s to ¢ in G. To illustrate, consider the example
depicted in Figure 6. Here the arcs from s and to ¢ are
shown in bold lines. The remaining arcs are partitioned
as follows: 4; = {(1, 2), (1, 5), (4, 5), (4, 7), (5, 7),
(7, 8)} in full light lines, 4, = {(2, 5), (2, 6)} in dashed
lines, and 4; = {(3, 5), (5, 8), (6, 8), (8, 9)} in dot-
ted lines. Hence, ¥, = {1, 2, 4, 5, 7, 8}, V, =
2,5, 6}, V;=1{3,5,6, 8, 9}. In all arcs from s to ¢ are
indicated. All arcs from ¥, to ¥, and from ¥/, to V5 are
defined, but these are not shown explicitly.

The complexity of this procedure is determined by the
computation of the arc costs in G. Since any vertex of V/
can belong to up to k vertex sets V,, there are O(k|V%)
such arcs. Algorithms exist to compute each arc cost in
O(|V]?) time, whether G is undirected or directed. In the
undirected case, a better time complexity can be
achieved by using a faster matching algorithm.

When subgraphs G, are not connected or if the order
relation is only partial, the problem becomes NP-hard.
This can be shown by transformation of the recognition
version of the HPP from the Hamiltonian path problem,
known to be strongly NP-complete (Garey and Johnson
1979). Such transformations are provided by Dror, Stern

Vv, v,
il R
3,

e s/7" t
a8 8
N7 9

0) / ]
Neg—",

Figure 6. Construction of G from G: a) Graph G;
b) Graph G.

and Trudeau in the undirected case, and by Gélinas
(1992) in the directed case.

Gélinas describes an exact enumerative algorithm for
undirected HPPs with specified starting and ending verti-
ces, in which the order relation is general, and all sub-
graphs G, are strongly connected. The problem is solved

Table 1
Summary of the Main Algorithmic Results for the CPP

Problem Exact Algorithms

Heuristic Algorithms

Constructing a Unicursal Graph
Undirected CPP  Polynomial. Matching-based algorithm (Edmonds and Johnson —

1973).
Directed CPP
1974, Beltrami and Bodin 1974).

Polynomial. Flow algorithm (Edmonds and Johnson 1973, Orloff —_—

NP-hard. Polynomial if graph is Eulerian (Win 1987). A cutting  Rounding up fractional variables in LP

Windy CPP
plane algorithm solves 31 instances out of 36: 52 < [V] < 264,  relaxation (Grétschel and Win 1992).
78 < | A| < 489 (Grotschel and Win 1988, 1992).

Mixed CPP NP-hard. Branch-and-cut. Grétschel and Win (1992) solve 9

instances out of 9 without branching: 52 < |V] < 172, 37 <
|E| < 154, 31 < |A| < 116. Nobert and Picard (1991) solve
313 instances out 414 without branching: 16 < |V < 225,

2 < |A| < 5,569, 15 < |E| < 4,455.

MIXED1 and MIXED?2 applied in
succession yields a worst-case ratio
of 5/3 (Frederickson 1979).
Christofides et al. (1984) propose an
algorithm equivalent to MIXED2:
solution values are on the average
3% above optimum.

Hierarchical CPP NP-hard. Can be solved polynomially in O(k|V]®) time if each of None available.
the k subgraphs is connected and the order relation is complete
(Dror, Stern and Trudeau 1987). DP-based algorithm for the
undirected case, with strongly connected subgraphs and general
order relation: |V] = 16, |A4] = 48, 1 < k < 10 (Gélinas

1992).

Determining an Eulerian Cycle or Circuit
Undirected case  Polynomial. End-pairing algorithm (Edmonds and Johnson 1973). —

Directed case
Ehrenfest and de Bruijn 1951).

Polynomial. Spanning arborescence algorithm (van Aardenne- —
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by means of a dynamic programming algorithm in which
the states correspond to the subgraphs already traversed,
and the last node of the current path. Various versions of
the algorithm were tested on a problem with [I| = 16,
|A| = 48, and k = 1, 2, 3, 4, 6, 8 and 10. In addition, a
real-life problem associated with snow plowing operations
in a Montreal district was solved to optimality. The dimen-
sions of this problem were |V] = 171, | 4| = 544, and k = 4.

7. CONCLUSION

The CPP is a basic graph theory problem that arises in a
number of practical contexts. Table I summarizes the
main computational results developed in this paper.

The pure undirected and directed versions of the prob-
lem are solvable in polynomial time and have attracted
little attention lately. However, a number of graph cov-
ering problems by cycles or circuits are NP-hard and are
still relatively unexplored. The mixed and windy CPP
are also NP-hard. For these problems, branch-and-cut
algorithms, such as those proposed by Nobert and Picard
and by Grétschel and Win (1992), are promising optimiz-
ing approaches. Work on heuristics is scant and is badly
needed. Finally, little is known on the hierarchical CPP
despite the practical importance of this problem. Much
research remains to be done on the development of fast,
exact algorithms for the solvable cases, and on the de-
sign of heuristics.
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