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Abstract. 

The concept of motivic integration was invented by Kontsevich 

to show that birationally equivalent Calabi-Yau manifolds have the 

same Hodge numbers. He constructed a certain measure on the arc 

space of an algebraic variety, the motivic measure, with the subtle and 

crucial property that it takes values not in R, but in the Grothendieck 

ring of algebraic varieties. A whole theory on this subject was then 

developed by Denef and Loeser in various papers, with several appli

cations. 

Batyrev introduced with motivic integration techniques new sin

gularity invariants, the stringy invariants, for algebraic varieties with 

mild singularities, more precisely log terminal singularities. He used 

them for instance to formulate a topological Mirror Symmetry test for 

pairs of singular Calabi-Yau varieties. We generalized these invari

ants to almost arbitrary singular varieties, assuming Mori's Minimal 

Model Program. 

The aim of these notes is to provide a gentle introduction to 

these concepts. There exist already good surveys by Denef-Loeser 

[DL8] and Looijenga [Loo], and a nice elementary introduction by 

Craw [Cr]. Here we merely want to explain the basic concepts and 

first results, including the p-adic number theoretic pre-history of the 

theory, and to provide concrete examples. 

The text is a slightly adapted version of the 'extended abstract' 

of the author's talks at the 12th MSJ-IRI "Singularity Theory and 

Its Applications" (2003) in Sapporo. At the end we included a list of 

various recent results. 
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1 Pre-history 

1.1. Let f E Z[xl, ... 'Xm] and T E z>O· A very general problem 
in number theory is to compute the number of solutions of the congru

ence f(x 1 ,···,xm) = 0 mod r (in (Zjrz)m). Thanks to the Chinese 

remainder theorem it is enough to consider the case where r is a power 

of a prime. 

So we fix a prime number p and we investigate congruences mod

ulo varying powers of p. We denote by Fn the number of solutions of 

f(xl, · · ·, Xm) = 0 mod pn+l. 

1.2. Examples. 

1. h = y- x 2 • It should be clear that Fn = pn+l. 

2. f2 = x · y. EXERCISE: Fn = (n + 2)pn+1 - (n + 1)pn. 

3. h = y 2 - x 3. We list Fn for small n: Fo = p, 

F1 = p(2p- 1) 

F2 = p2(2p- 1) 

F3 = p3(2p- 1) 

F4 = p4(2p- 1) 

Fs = p5(p2 + p- 1) 

F6 = p6(p2 + p- 1) 

Fn = pll(p3 + P2- 1) 
Fl2 = p12(p3 + p2- 1). 

F1 = p 7 (2p2 - 1) 

Fs = p8 (2p2 - 1) 

F9 = p9(2p2 - 1) 
FlO = p10(2p2- 1) 
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Note that the plane curve {h = 0} is nonsingular, {h = 0} has the 

easiest curve singularity, an ordinary node, and {h = 0} has a slightly 

more complicated singularity, an ordinary cusp. It is in fact this cusp 

which is responsible for the at first sight not so nice behavior of the Fn 

for !J. 
More generally, the problem of the behavior of the Fn turns out to 

be non-obvious precisely when {f = 0} has singularities. 

1.3. We now know that, for any f E Z[x1 , · · ·, xmJ, the Fn do 

satisfy the following 'regular' behavior. 

Conjecture [Borewicz, Shafarevich] = Theorem [Igusa]. The 

generating formal series Jp(T) := Jp(f, T) = Ln?:O FnTn is a rational 

function in T. (In particular the Fn are determined by a finite number 

of them.) 

Igusa showed this in 1975 [Igl] using 

(1) a 'translation' of Jp(T) into a p-adic integral (more precisely into 

fzm lfl~ldxl, which is now called lgusa's local zeta function, and which 
p 

is the ancestor of the motivic zeta function of section 6), 

(2) an embedded resolution of singularities for {f = 0}, 

(3) the change of variables formula for integrals. 

(We will see later an analogue of this strategy in the theory of motivic 

integration.) 

1.4. Examples (continuing 1.2). 

1. Jp(h; T) = 1_!'pT (easy). 

E J (f T) 2p-l-p2T 
2. XERCISE : p 2; = (l-pT)2 · 

3 Cl . . J (f . T) - l+(p-l)T+(p6-p5)T5-p7T6 
. aim . p 3, - p (l-p7TB)(l-pT) · 

1.5. We already want to mention another connection with singu

larity theory; the famous (still open) monodromy conjecture of Igusa 

relates the poles of Jp(T) with eigenvalues of local monodromy of f 
considered as a map f : en ___. <C, see (6.8). 

1.6. Before introducing arc spaces and motivic integration in the 

next sections, we present a hopefully motivating analogy between this 

number theoretic setting and the geometric arc setting. 
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solution of f = 0 over the ring 
Z/pn+tz ~ Zpjpn+lzp, i.e. 

an m-tuple with coordinates 

of the form ao + a1p + ... + anpn, 

aiE{0,1, ... ,p-1} 

solution of f = 0 over 
Zp = limZ/pn+lz, -i.e. with coordinates of the form 

integrate over Z;' 

W. Veys 

solution of f = 0 over the ring 

C[t]/(tn+l) ~ C[[t]]/(tn+1 ), i.e. 

an m-tuple with coordinates 

of the form ao + a1t + ... + antn, 

ai E <C 

("n-jet" of {f = 0}) 

solution of f = 0 over 

C[[t]] = l~C[t]/(tn+l), 

i.e. with coordinates of the form 
"00 i un=O ait 

("arc" of{!= 0}) 

integrate over 

.C(<Cm) := { arcs of em} 

Warning. Here and further on we sometimes use other (better ?) nor

malizations than in the original papers. 

2 Arc spaces 

Let X be an algebraic variety over <C. (The theory of arc spaces and 

motivic integration can be generalized to any field of characteristic zero, 

see e.g. [DL8].) 

2.1. The space of arcs modulo tn+l or space of n-jets on X is an 

algebraic variety .Cn(X) over <C such that 

{points of .Cn(X) with coordinates in <C} 

={points of X with coordinates in (t~~~) }. 

For all n there are obvious 'truncation maps' 7r~+l: .Cn+t(X)--. .Cn(X), 
obtained by reducing (n+ 1)-jets modulo tn+t, and more generally 1r;;': 

.Cm(X) --. .Cn(X) for m 2: n. This description is somewhat informal, 
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but is essentially what is needed. We now first provide examples and 
give the 'exact' definition later. 

2.2. Example. Let X = Cd. Then 

.Cn(X) ={(a~l) + ai1)t + · · · + a~ 1 )tn, · · ·, a~d) + aid)t + · · · + a~d)tn), 

with all a~i) E C} 

~cCn+l)d_ 

2.3. Example. Let X= {y2 - x3 = 0}. 

(0) .Co(X) = {(ao, bo) E C 2 lb~ =an= X. 

(1) .C1(X) 

= {(ao + a1t, bo + b1t) E (C[t]/(t2))2 I (bo + b1t)2 = (ao + a1t)3mod t2} 

= {(ao + a1t, bo + b1t) E (C[t]/(t2))2 I b~ =a~ and 2bobl = 3a~al}. 

So we can consider .C1(X) as the (two-dimensional) algebraic variety 

in C4 with equations b~ = a~ and 2bob1 = 3a~a 1 in the coordinates 

ao, at, bo, b1. The map 1rJ : .C1 (X) --+ .Co(X) = X is induced by the 

projection C4 --+ C2 : (ao, at, bo, bt) ~--+ (ao, bo). 
The fibre of 1rJ above (0, 0) is {(0, a1, 0, b1)} ~ C2; this corresponds 

to the fact that the tangent space to X at (0,0) is the whole C2. The 

fibre above (ao, bo) =/= (0, 0) is the line in the (at, bt)-plane with equation 

2bobl = 3a~al, which corresponds to the tangent line at X in (ao, bo). 
In other words : .C1 (X) is the tangent bundle T X, and 1rJ is the natural 
projection T X --+ X. 

(2) .C2(X) = {(ao + a1t + a2t2, bo + b1t + b2t2) E (C[t]/(t3))2 I (bo + b1t + 
b2t2)2 = (a0 + a1t + a2t2)3mod t3} is given in C6 by the equations 

EXERCISE. a) Verify the description of .C2(X) and note that the map 

?T~ : .C2(X) --+ .C1(X) is not surjective. More precisely, the fibre of 1r5 
above (0, 0) is {(0, a1, a2, 0, 0, b2)} ~ C3, but its image by ?T~ is not the 
whole (at, bt)-plane; it is just the line {b1 = 0}. 

b) Compute .C3(X) and note that also ?T~ : .C3(X)--+ .C2(X) is not 
surjective. 
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c) However, above the nonsingular part of X= .Co(X) all considered 

maps 71";:+1 : .Cn+l (X) -t .Cn(X) are fibrations with fibre C. 

2.4. Some observations in the examples are easily seen to be sat

isfied in general. 

(1) .Co(X) =X, .C1(X) = TX. 
(2) If X is smooth of dimension d, then all 71";:+1 are locally trivial 

fibrations (w.r.t. the Zariski topology) with fibre Cd. 

2.5. The space of arcs on X is an 'algebraic variety of infinite 

dimension' .C(X) over C such that 

{points of .C(X) with coordinates in C} 

={points of X with coordinates in C[[t]]}. 

We provide the 'exact' definition after continuing the examples. Now 
we have for all n truncation maps 11"n : .C(X) -t .Cn(X), obtained by 

reducing arcs modulo tn+1 . 

2.6. Example. Let X= Cd. Then 

00 00 

n=O n=O 

which can be considered as an infinite dimensional affine space. 

2.7. Example. Let X= {y2 -x3 = 0}. Then .C(X) is given in the 
infinite dimensional affine space with coordinates 

by the infinite number of equations 
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2.8. More precise definitions. 

(i) The 'base extension operation' Y---+ Y xc C[t]/(tn+l) is a covari

ant functor on the category of complex algebraic varieties, and it has 

a right adjoint X ---+ .Cn(X). (Even more precisely we should say that 

we consider the reduced scheme .Cn(X) associated to this right adjoint 

scheme.) This says that, for any C-algebra R, the set of R-valued points 

of .Cn(X) is in natural bijection with the set of R[t]/(tn+ 1 )-valued points 

of X. In particular, as we said in (2.1), the C-valued points of .Cn(X) 
can be naturally identified with the C[t]/(tn+l)-valued points of X. 

(ii) Then .C(X) is the inverse limit l~.Cn(X). (Technically, it is im-

portant here that the truncation morphisms 7r~+l : .Cn+l(X)---+ .Cn(X) 
are affine.) The K-valued points of .C(X), for any field K ~ C, are in 

natural bijection with the K[[t]]-valued points of X. We mention the 

following result, attributed to Kolchin : if X is irreducible, then .C(X) 

is irreducible. 

See [DL3] for more information. 

2.9. When X is an affine variety, i.e. given by a finite number of 

polynomial equations, one can describe equations for the .Cn(X) and for 

.C(X) as in Examples 2.3 and 2.7. 

2.10. Some first natural and fundamental questions are how the 

.Cn(X) and 7rn(.C(X)) change with n. (For 7rn(.C(X)) this was already 

considered by Nash [Na].) Note that .Cn(X) describes by definition the 

n-jets on X, and 7rn(.C(X)) those n-jets that can be lifted to arcs on X. 

This can be compared with the number theoretical setting of the 

previous section: there the question was how the solutions over Z/pn+lz 

changed with n, and we could consider the same question for those 

solutions over Z/pn+lz that can be lifted to solutions over Zp. 

2.11. We now introduce the Grothendieck ring of algebraic va

rieties, which is the 'best' framework to answer these questions, and 

which is moreover (essentially) the value ring for motivic integration, to 

be explained in the next section. 

Recall first two fundamental properties of the topological Euler char

acteristic x( ·) E Z on complex algebraic varieties : 

(1) x(V) = x(Z) + x(V \ Z) if Z is (Zariski-)closed in V, 

(2) x(V x W) = x(V) · x(W). 

A finer invariant satisfying these properties is the Hodge-Deligne poly

nomial H(·) = H(·; u, v) E Z[u, v], given for an algebraic variety V of 
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dimension d by 

d 2d 

H(V; u, v) := L (L( -1)ihp,q(H~(V, C)))uPvq, 
p,q=O i=O 

where hP,q(·) denotes the dimension of the (p, q)-component of the mixed 

Hodge structure. (When we would work over an arbitrary field of 

characteristic zero, we use an embedding into C of the field of defini

tion of V. The uPvq_coefficients of H(V; u, v) do not depend on the 

chosen embedding, since for a smooth projective V they are equal to 
( -1)P+q dim Hq(V, Df_. ).) 

Note that H(V; 1, 1) = x(V). 

The Grothendieck ring is the value ring of the 'universal Euler char

acteristic' on algebraic varieties. 

Definition. (i) The Grothendieck group of (complex) algebraic vari

eties is the abelian group K 0 (Varc) generated by symbols [V], where 

V is an algebraic variety, with the relations [V] = [W] if V and W are 

isomorphic, and [V] = [Z] + [V \ Z] if Z is (Zariski-) closed in V. 

(ii) there is a natural ring structure on K 0 (Varc) given by [V] · 

[W] := [V X W]. 

- So by construction the map {Varieties over C} -+ K 0 (Vanc) : V f--.+ 

[V] is indeed universal with respect to the two properties above. Of 

course we still loose some information by this operation. For example 

X= {y2 - x 3 = 0} c A2 satisfies [X] = [A1]. Also, when V-+ B is a 

locally trivial fibration with fibre F, then [V] = [B] · [F]. -

(iii) Let C be a constructible subset of some variety V, i.e. a disjoint 

union of (finitely many) locally closed subvarieties Ai of V, then [C] E 

Ko(V arc) is well defined as [C] := Li[Ai]· 
(iv) We denote 1:= [point], lL := [A1] and Me := K 0 (Varc)IL the 

ring obtained from Ko(Varc) by inverting lL. 

The rings K 0 (Varc) and Me are quite mysterious. For instance, it 

was shown only recently that K 0 (Varc) is not a domain [Po], and it is 

still not known whether Me is a domain or not, or whether the natural 

map Ko(Varc) -+Me is injective. 

Remark. There is an interesting alternative description of K 0 (Varc) as 

the abelian group, generated by isomorphism classes [V] of nonsingular 
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projective varieties V, with the relations [0] = 0 and [V]-[E] = [V]-[Z], 

where V-+ Vis the blowing-up with centre Z and exceptional variety 

E [Bil]. 

2.12. We now answer the questions in (2.10). We will consider 

[.Cn(X)] and [7rn(.C(X))] in Me. For the latter we use a theorem of 
Greenberg [Gr], saying that 1Tn(.C(X)) is a constructible subset of .Cn(X). 

Theorem [DL3][DL8]. The generating formal series 

in Me [[T]] are rational, with moreover as denominators products of poly

nomials of the form 1 -lLaTb, where a E Z and bE Z>O· 

The proof uses motivic integration, which 'explains' why Me is 

needed instead of Ko(Vare); see section 3. 
This result specializes to the analogous statement, replacing [·] by 

x(-) or H(·). Note for this that x: Ko(Vare)-+ Z and H: Ko(Vare)-+ 

Z[u,v] obviously extend to X: Me-+ Z and H: Me-+ Z[u,v][u1vl· 
When X = {! = 0} for some polynomial f, the statement for J(T) 
should be compared with Theorem 1.3 for Jp(T) ! In this case, we will 

outline a proof for J(T) later. We just mention that the proof for P(T) 
uses techniques from logic, more precisely quantifier elimination. 

2.13. Example. When X is smooth of dimension d, all .Cn(X) = 
1Tn(.C(X)) are locally trivial over X with fibre end. Hence 

J(T) = P(T) = _L[X]ILndrn = 1 ~~dT' 
n~O 

2.14. Example. Let X = {y2 - x3 = 0}. The descriptions in 

Example 2.3 yield [.C0 (X)] = [X] = IL, [.C1 (X)] = IL2 + (IL- 1)IL = 
2IL2 -IL, [.C2 (X)] = IL3 + (IL -1)IL2 = 2IL3 -IL2 • We claim that 

, 1 + (IL -1)T + (JL6 -JL5)Ts -JL7T6 
J(T) = lL (1- JL7T6)(1 -ILT) ' 
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see section 6. (Compare with 1.4(3)!) The formula in [DL5, Proposition 

10.2.1] yields 

lL + (1 -IL)T -ILT2 

P(T) = (1 -ILT)(1- T2) . 

2.15. Example. Let X= {xy = 0}. EXERCISE: 

(i) [Cn(X)] = (n+ 2)JLn+l- (n + 1)1Ln. Then 

21L- 1 -IL2T 
J(T) = (1 - ILT)2 . 

(Compare again with Examples 1.2 and 1.4.) 

(ii) [7rn(C(X))] = 2JLn+l- 1. Then 

21L- 1 -ILT 
P(T) = (1 -ILT)(1 - T) 

2.16. [Mu1] To conclude this section, we relate some properties of 
the spaces of n-jets on X to properties of X. Let X be irreducible of 

dimension d. 

(i) The closure in Cn(X) of (7r(I)- 1 (Xreg) is an irreducible component of 

Cn(X) of dimension d(n + 1). 

(ii) Suppose that X is locally a complete intersection. Then 

(1) Cn(X) is pure dimensional if and only if dimCn(X) ::; d(n + 1). 

(2) Cn(X) is irreducible if and only if dim(7r8)- 1(Xsing) < d(n + 1). 

(3) If Cn+l(X) is pure dimensional or irreducible, then so is Cn(X). 
(4) If Cn(X) is irreducible for some n > 0, then X is normal. 

(5) Cn(X) is irreducible for a~l n > 0 if and only if X has rational 
singularities. 

(iii) When d = 1 we have for any n > 0 that Cn(X) is irreducible if and 
only if X is nonsingular. 

3 Motivic integration 

This notion is due to Kontsevich [Ko] oii nonsingular varieties. It has 
been further developed by Batyrev [Ba2][Ba3], and especially by Denef 
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and Loeser [DL3][DL4][DL6][DL8], with some improvements by Looi

jenga [Loo]. Probably the best way to view and understand it, is as 

being an analogue of p-adic integration. 

Let in this section X be any algebraic variety of pure dimension d. 

3.1. A subset A of .C(X) is called constructible or cylindric or a 

cylinder if A = 1r;;,1C for some m and some constructible subset C of 

.Cm(X). These can be considered as 'reasonably nice' subsets of the arc 

space .C(X), being precisely all arcs obtained by lifting a nice subset of 

a jet space. 

3.2. Suppose that X is nonsingular. Then such a constructible 

subset A= 1r;;,1C satisfies the property 

[7rn(A)] = JL(n-m)d[C] for all n 2: m, 

since 7f~ : Ln(X) = 7rn(.C(X))----+ Lm(X) = 1fm(.C(X)) is a locally trivial 

fibration with fibre c<n-m)d_ We have in particular that the 

[7rn(A)] 
JLnd 

are all equal in Me for n 2: m. 

For general X, a constructible set A C .C(X) which is disjoint with 

.C(Xsing) still satisfies the property that the [7ri~1ll stabilize for n big 

enough [DL3, Lemma 4.1]. More precisely we have the following. 

Definition. We call a set A C .C(X) stable if for some m E N we have 

(i) 1fm(A) is constructible and A= 7f;;,1 (7rm(A)), and 

(ii) for all n 2: m the projection 1fn+l(A) ----+ 1fn(A) is a piecewise 

trivial fibration with fiber <Cd. 

(So in particular A is constructible.) 

Lemma [DL3]. If A C .C(X) is constructible and An.C(Xsing) = 0, 
then A is stable. 

Hence for such A it makes sense to consider limn->oo [7ri~1)l E Me 

as an invariant of A; it is called its naive motivic measure. Note that 

for nonsingular X the measure of .C(X) is just [X]. 
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3.3. For arbitrary constructible A C .C(X) the sequence [11"££1)1 

will not stabilize. 

Example. Let X= {xy = 0}. From Example 2.15 we see that 

[7rn(.C(X))] 
JLnd 

2JLn+l- 1 1 
JLn = 21L - JLn · 

This sequence 'almost' stabilizes (the singular point of X of course causes 
the trouble), and it would be nice to be able to consider 21L as the limit 

of this sequence. 

This will indeed work in Kontsevich's completed Grothendieck ring 

Me. This is by definition the completion of Me with respect to the 
decreasing filtration pm, m E Z, of Me, where pm is the subgroup 

of Me generated by the elements W with S an algebraic variety and 

dimS - i ~ -m. Note that this is indeed a ring filtration : pm · pn C 

pm+n. So Me= lim*. 
m: 

Continuing the example. Indeed in Me we have 

lim [7rn(.C(X))] = 21L- lim _!:.._ = 21L. 
n--+oo JLnd n--+oo JLn 

Theorem [DL3]. Let A be a constructible subset of .C(X). Then 
the limit 

(A) ·- r [7rn(A)] 
J.L .- n~~ JLnd 

exists in Me. 

We call J.L(A) the motivic measure of A. This yields a a-additive measure 

J.L on the Boolean algebra of constructible subsets of .C(X). Thus, given 

any sequence A;, i E Z>o, of disjoint constructible subsets in .C(X) such 

that lim J.L(Ai) = 0, we have that J.L(UiAi) = Li J.L(Ai) in Me. 
•--+oo 

Note. It is not known whether the natural map Me --+ Me is injective; 
its kernel is nmEZpm. However, e.g. the topological Euler characteristic 

x(-) and the Hodge-Deligne polynomial H(·) factor through the image 

of Me in Me. 
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Remark. Let 8 s;; X be a closed subvariety; it is not difficult to see that 

£(8) is not a constructible subset of £(X). It is possible to introduce 

more generally measurable subsets of£(X), and to associate analogously 

a motivic measure (in Me) to those subsets [Ba2][DL6]; we then have 
that such £(8) are measurable of measure zero. 

3.4. We briefly compare with the p-adic case. Let M be a d

dimensional submanifold of Z~, defined algebraically. We denote by 

l7rn(M)I the cardinality of the image of M under the natural truncation 

map 1r • (Z )m --+ (Z jpn+lz )m - (Zjpn+lz)m Then 111"n(M)I E Z[l] n • p p p - • p(n+l)d p 

is constant for n big enough and is called the volume f..lv ( M) of M. 

For a singular d-dimensional subvariety Z of Z~ one defines its vol

ume as f..lv(Z) := lim ...... o f..lv(Z \ T.(Zsing)) E JR., where T. denotes a small 
tubular neighbourhood 'of radius t:'. Then by a Theorem of Oesterle 

[Oe] we have, with analogous notation 17rn(Z)I, 

Note the analogy 

integrate over 

value rings 

( ) . l7rn(Z)I 
f..lp Z = nl_:.~ p(n+l)d · 

p-adic 

zm 
p 

z 
Z[~] 

JR. 

motivic 

Ko(Vare) 

Me 

Me 

The brilliant idea of Kontsevich was to use Me instead of JR. as a value 
ring for integration. 

3.5. We can now consider in a natural way motivic integration. We 

do not treat the most general setting; the following suffices in practice. 
Let A C £(X) be constructible and a : A--+ Z U { +oo} a function with 

constructible fibres a- 1{ n }, n E Z. Then 
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in Me, whenever the right hand side converges in Me. Then we say 
that lL -<> is integrable on A. (This will always be the case if a is bounded 
from below.) 

3.6. An important example of an integrable function is induced 

by an effective Cartier divisor D on X, i.e. D is an (eventually non
reduced) subvariety of X which is locally given by one equation. Define 

ardtD : .C(X) -t N U { +oo} : 'Y f-.+ ordtfD('y), where fD is a local 
equation of D in a neighbourhood of the origin 1!"0 ('-y) of 'Y· Note e.g. 

that (ardtD)('y) = +oo if and only if 'Y E .C(Dred) and (ordtD)('y) = 0 if 

and only if 7ro('y) ~ Dred· One easily verifies that JL-ordtD is integrable 

on .C(X). 

We note that (ordtD)- 1 (+oo) = .C(Dred) is not constructible; it is 
however measurable with measure zero. 

Example. Take X = A 1 and D the divisor associated to the function 

xN, i.e. the 'origin with multiplicity N'. 

EXERCISE. (i) Nl(ordtD)('y) for all'"'( E .C(A1 ) and 

lL-1 
J.L(b E .C(A1) I (ardtD)('Y) =iN})= JLi for all i EN. 

( "") f JL-ordtDd _ (IL-l)JLN+l _ (JL 1) + IL-l 
11 J.C(f!.l) J.L- JLN+l-1 - - ]Ll+N-1· 

This example is the easiest case of the following very useful formula. 

Proposition [Ba3][Cr]. Let X be nonsingular and take a normal 

crossings divisor D = LiES NiDi on X, i.e. all Di are nonsingular 

hypersurfaces intersecting transversely (and occurring with multiplicity 

Ni)· DenoteD'}:= (niEIDi)\(UutJD£) for I c S; the D[, I c S, form a 

natural locally closed stratification of X (note that D0 =X\ (U£ESD£)). 
Then 

{ JL -ordtD dJ.L = "[D'}] II lL ~ 1 . 
j .C(X) ~ JLHN, - 1 

ICS iEI 

3.7. The construction in (3.6) can be generalized as follows. Let 
I be a sheaf of ideals on X. Then we define 

ordt'I: .C(X) -t N U { +oo} : 'Y f-.+ min ardtg('y), 
g 
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where the minimum is taken over g E I in a neighbourhood of rro('y). Of 

course, when I is the ideal sheaf of an effective Cartier divisor D, then 

ordti = ordtD. 

3.8. The most crucial ingredient in the theory of motivic integra

tion is the change of variables formula or transformation rule for motivic 

integrals under a birational morphism. 

Theorem [DL3]. (i) Let h : Y ---+X be a proper birational mor
phism between algebraic varieties X and Y, where Y is nonsingular. Let 

A C .C(X) be constructible and a : A ---+ .Z U { +oo} such that lL -a is 

integrable on A. Then 

Here the ideal sheaf Jach is defined as follows. When also X is non

singular, it is locally generated by the 'ordinary' Jacobian determinant 
with respect to local coordinates on X and Y. For general X, the sheaf 

of regular differential d-forms h*(n'k) is still a submodule of n~; but 

now h*(n•.O is not necessarily locally generated by one element. Taking 

(locally) a generator Wy 0 f n~, each h * ( W) for W E n'5c can be written as 
h*(w) = 9wWY, and Jach is defined as the ideal sheaf which is (locally} 

generated by these 9w. 

(ii} When also X is nonsingular and a = ordtD for some effective 
divisor D on X, we can rewrite the formula as follows : 

Here h* D is the pullback of D, i.e. locally given by the equation f o h, 

if D is given by the equation f. And KYIX is the relative canonical 

divisor, which is precisely the effective divisor with equation the Jacobian 

determinant. Alternatively, KYIX = Ky- h* Kx where K. denotes the 

(ordinary) canonical divisor, i.e. the divisor of zeros and poles of a 

differential d-form. 

Note. The birational morphism h above must be proper in order to 

induce a bijection from .C(Y) to .C(X) outside subsets of measure zero. 

More precisely, denoting by Exc the exceptional locus of h, we have a 
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bijection from .C(Y) \ .C( Exc) to .C( X) \ .C( h( Exc)). This is an easy con

sequence of the valuative criterion of properness [Har, Theorem II.4.7]. 

EXERCISE. Check the change of variables formula in the following special 

case : h is the blowing-up of a nonsingular X in a nonsingular centre, 

A= .C(X) and a is the zero function. 

4 First applications 

4.1. Here we mean by a Calabi- Yau manifold M of dimension d 

a nonsingular complete (=compact) algebraic variety, which admits a 

nowhere vanishing regular differential d-form WM· Alternative formula

tions of this last condition are that the first Chern class of the tangent 

bundle of M is zero, or that the canonical divisor KM of M is zero. 

Theorem [Ko]. Let X and Y be birationally equivalent Calabi

Yau manifolds. Then [X]= [Y] in Me. 

Proof. Since X and Y are birationally equivalent there exist a non

singular complete algebraic variety Z and birational morphisms hx : 

Z ____,X and hy : Z ____, Y. By the definition of the motivic measure and 

the change of variables formula we have in Me : 

[X]= p,(.C(X)) = { ldp, = { L -ord,Kzjx dp, = { L -ord,Kzdp, 

1 £(X) 1 .C(Z) 1 t:.(Z) 

and of course [Y] is given by the same right hand side. Q.E.D. 

This implies that birationally equivalent Calabi-Yau manifolds have 

the same Hodge-Deligne polynomial, meaning that they have the same 

Hodge numbers. This result was Kontsevich's motivation to invent mo

tivic integration ! 

The same proof gives the following more general result. Two nonsin

gular complete algebraic varieties are called K-equivalent if there exists 

a nonsingular complete algebraic variety Z and birational morphisms 

hx : Z ____,X and hy : Z ____, Y such that h*xKx = h}rKy. This is an 

important notion in birational geometry. 
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Theorem. Let X and Y be K -equivalent varieties. Then [X] = 
[Y] inMe. 

4.2. Let h : Y ----> X be a proper birational morphism between 

nonsingular algebraic varieties. We assume that the exceptional locus 

Exc of h, i.e. the subvariety of Y where h is not an isomorphism, is a 

normal crossings divisor. Let Ei, i E S, be the irreducible components 

of Exc. The relative canonical divisor K YIX is supported on Exc; let 

Vi -1 be the multiplicity of Ei in this divisor, so K YIX = LiES(vi -1)Ei. 

Denoting E'j := (niEIEi) \ (Ub;_IER) for I c S, we have 

[X] - ""'[Eo] II JL - 1 - ""'[Eo] II _1 -
- ~ I JLVi _ 1 - ~ I [JP'Vi -1] 

IcS iEI ICS iEI 

in Me. Indeed, by the change of variables formula we have again that 

[X]= J..L(.C(X)) = { JL -ordtKYIX df.l, 
l.c(Y) 

and then Proposition 3.6 yields the stated formula. Specializing to the 

topological Euler characteristic yields the remarkable formula 

x(X) = L x(E'j) II : , 
ICS iEI ' 

which was first surprisingly obtained in [DL1], using p-adic integration 

and the Grothendieck-Lefschetz trace formula. 

5 Motivic volume 

Here X is again any algebraic variety of pure dimension d. 

5.1. Definition. The motivic volume of X is J..L(.C(X)) E Me, thus 

the motivic measure of the whole arc space of X. Recall that J..L( .C( X)) = 

limn--.oo [1l'n~~X))], and that it equals [X] when X is nonsingular. 

We computed in (3.3) the motivic volume of X = {xy = 0} as 

J..L(.C(X)) = 21L by the defining limit procedure. For more complicated 
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X, the following formula in terms of a suitable resolution of singularities 

is very useful. 

5.2. Theorem [DL3]. Let h : Y --+ X be a log resolution of X; 

i.e. h is a proper birational morphism from a nonsingular Y such that 

the exceptional locus Exc of h is a normal crossings divisor. Assume 

also that the image of h*(Oi) in 0~ is locally principal, i.e. locally 

generated by one element. 

Denote by Ei, i E S, the irreducible components of Exc, and let 

Pi - 1 be the multiplicity along Ei of the divisor associated to h* (Oi), 
i.e. the (effective) divisor locally given by the zeroes of a generator of 

h*(Oi ). Finally, set E'j := (niEIEi) \ (Ut<tiEt) for I c S. Then 

~-t(.C(X)) = L[E'j] II::,-_\ = L[Ell II [IP'P~-1] 
IcS iEI ICS iEI 

in Me; in particular ~-t(.C(X)) belongs to the subring of Me, obtained 

from {the image of) Me by inverting the elements l+L+· · ·+Ll = [!P'J]. 

We will denote this subring by Mloc· 

5.3. Example. Let X= {y 2 - x 3 = 0} in A2 . We take A,1 --+ X: 

u f-+ ( u2 , u3 ) as a log resolution. Since n_k is generated by dx and dy 

(subject to the relation 2ydy = 3x2dx), one easily verifies that h*O_k is 

generated by udu. Hence the image of h*O_k in 0} is principal and we 

can apply Theorem 5.2. 

Note that Exc = E 1 = {0}, occurring with multiplicity 1 in the 

divisor of udu. So Pl = 2 and 

1 L 2 

~-t(.C(X)) =L-1+ [IP'l] = L+1. 

(Recall that [X] = L.) 

5.4. Example. Let X= {z 2 = xy} in A3 . 

EXERCISE. (i) Verify that ~-t(.C(X)) = L2. (The 'obvious' log resolution 

satisfies the assumption of Theorem 5.2, and the unique component E 1 

of the exceptional locus has p1 = 2.) 

(ii) Note that also [X] = L2 ; this could be interpreted as the singu
larity of X being 'very mild'. 
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5.5. EXERCISE. Compute again that the motivic volume of X = 
{xy = 0} is 2lL; now using Theorem 5.2. (Note here that [X]= 2lL- 1; 

one could say that the motivic volume counts the double point twice.) 

5.6. Recall that for nonsingular X its universal Euler characteristic 

[X] E K 0 (Varc) specializes to its Hodge-Deligne polynomial H(X) E 

Z[u, v] and further to x(X) E Z. 

Since x(·) and H(·) factor through the image of Me in Me, they 

induce natural maps X : Mtoc -+ Q and H : Mtoc -+ Z[[u, v]]. Apply

ing these specialization maps to the motivic measure of X yields new 

(numerical) singularity invariants, which generalize the usual x(X) and 

H(X) for nonsingular X. Denef and Loeser call x(J.L(.C(X))) the arc

Euler characteristic of X. 

For example the arc-Euler characteristic of {y2 - x3 = 0} is ~ and 

the one of {xy = 0} is 2. 

6 Motivic zeta functions 

In this section M is a nonsingular irreducible algebraic variety of dimen

sion m, and f : M -+ C is a non-constant regular function. 

6.1. For each n E N the morphism f : M -+ A 1 = C induces a 

morphism f n : .Cn ( M) -+ .Cn (A 1). A point a E .Cn (A 1 ) corresponds to 

an element o:(t) E C[t]/(tn+ 1 ); we denote as usual the largest e such that 

te divides o:(t) by ordta E {0, 1, · · ·, n, +oo }. We set 

Xn :=bE .Cn(M) I ordtfnb) = n} for n EN; 

it is a locally closed subvariety of .Cn(M). 

EXERCISE. Denote X:= {f = 0}. Then [Xn] = lLm[.Cn-1 (X)]- [.Cn(X)] 
for n 2: 1, and [Xo] = [M]- [X]. 

Definition. The motivic zeta function of f : M -+ C is the formal 

power series 

Z(T) := L[Xn](lL -mT)n 

n;:::o 

in Mc[[T]]. 
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6.2. Considering the exercise above, it is not a surprise that for 

X:={!= 0} the series J(T) = L:n~ 0 [.Cn(X)]Tn and Z(T) determine 

each other. Indeed, one easily verifies that 

J(T) = Z(lLmT)- [M]. 
JLmT -1 

6.3. The definition of Z(T) is inspired by the p-adic Igusa zeta 

function, associated to a polynomial f E Zp[x1, · · ·, xmJ, which is defined 

as 

Zp(s) := { if(x)i~idxi 
lz= p 

for s E <C with 3?(s) > 0. Recall that each z E Zp \ {0} can be expressed 

as z = p'-u with £ E Z~o and u E z;. One denotes ordp(z) := £ and 

izip := p-ordpz = p-'-. To compare with 6.1, note that Zp(s) can be 

rewritten as 

Zp(s) = L volume{x E z; I ordpf(x) = n}p-ns 

n~O 

6.4. EXERCISE. Write D for the (effective) divisor of zeros of J, 
i.e. D is "{! = 0} with multiplicities". Then 

{ lL -ord,Ddp, = Z(lL -1) 
l.c(M) 

in Me, meaning in particular that the substitution in the right hand 

side yields a well-defined element of Me. 

6.5. As for the motivic volume, there is an important (similar) 
formula for Z(T) in terms of a resolution. 

Theorem [DL2]. Let h : Y --+ M be an embedded resolution of 

{! = 0}; i.e. h is a proper birational morphism from a nonsingular Y 

such that h is an isomorphism on Y \ h- 1{! = 0} and h- 1{f = 0} is 

a normal crossings divisor. Let Ei, i E S, be the irreducible components 
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of h- 1{! = 0}. For i E S we denote by Ni the multiplicity of Ei 

in the divisor off o h on Y, and by Vi - 1 the multiplicity of Ei in 

the divisor of h*w, where w is a local genemtor of OM-. (Equivalently: 

div(f o h) = "LiES NiEi and K YIM = "LiES (vi- 1 )Ei-) Set finally EJ := 

(niEIEi) \ (Utr;.IEt) for I C S. Then 

Z(T) ="[Eo] II (IL- 1)TN;. 
L....J I JLV; -TN; ' 
IcS iEI 

in particular Z(T) is mtional and belongs more precisely to the subring of 

Mc[[T]] genemted by Me and the elements Lv~N' where v, N E z>O· 

6.6. Corollaries. 

(i) In the special case that X= {! = 0} is a hypersurface this yields 
the stated rationality of J(T) in (2.12). 

(ii) Let M =Am and f E Z[x1 , · · ·, Xm]· Then by a similar formula 
of Denef [De2] for the p-adic Igusa zeta functions Zp(s), Theorem 6.5 

yields that Z(T) specializes to the Zp(s) for all p except a finite number. 

See [DL2] for a precise statement. Similarly J(T) specializes to Jp(T) 

for all p except a finite number [DL8, Theorem 6.1]. 

(iii) For any f: M---+ C we now explain how Z(T) specializes to the 
topological zeta function off. Using Theorem 6.5 and the notation there, 
we evaluate Z(T) at T = lL -s for any sEN; this yields the well-defined 

elements 

'"'[Eo] II lL - 1 _ '"'[Eo] II 1 
L....J I JLv;+sN; _ 1 - L....J I [JP>v;+sN;-1] 
IcS iEI ICS iEI 

in (the image in Me of) the localization of Me with respect to the 

elements [JP>i]. Applying the Euler characteristic specialization map x(-) 
yields the rational numbers 

for s E N. The topological zeta function Ztop(s) of f is the unique 

rational function in one variables admitting the values above for s EN. 
Without the specialization argument above it is not at all clear that 

Ztop(s) does not depend on the chosen resolution h : Y ---+ M. In fact 

Ztop( s) was first introduced in [DL1], in terms of a resolution, and p-adic 
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Igusa zeta functions and the Grothendieck-Lefschetz trace formula were 

needed to prove independence of the chosen resolution. 

6. 7. We just mention that there is an important generalization 

of the motivic zeta function, working over a relative and equivariant 

Grothendieck ring; it specializes by a limit procedure to objects in (an 

equivariant version of) Me, which are shown to be a good virtual motivic 

incarnation of the Milnor fibres off at the points of{! = 0}. It is quite 

remarkable that a definitely non-algebraic notion as the Milnor fibre has 

such an algebraic incarnation. See [DL2] [DL 7]. 

Moreover these objects satisfy a motivic Thom-Sebastiani Theorem, 

generalizing the known results of Varchenko and Saito. See [DL4]. 

6.8. Monodromy Conjecture. 

There is an intriguing conjectural relation between the poles of the topo

logical zeta function and the eigenvalues of the local monodromy of f. 

Monodromy conjecture. If so is a pole of Ztap(s), then e211'iso 

is an eigenvalue of the local monodromy action on the cohomology of the 

Milnor fibre off at some point of {f = 0}. 

One can also state the analogous conjecture for the motivic zeta 

function, but then one has to be careful with the notion of pole, see 

[RV2]. Alternatively, we can formulate this monodromy conjecture for 

Z(T) as follows, without mentioning poles [DL2] : 

Z(T) belongs to the ring generated by Me and the elements L}'_~N, 

where v, N E Z>o and e211'ifr is an eigenvalue of the local monodromy 
as above. 

Actually, it was originally stated for the p-adic Igusa zeta function, being 

even more remarkable, for then it relates number theoretical invariants 

off E Z[x1, · · ·, xm] to differential topological invariants off, considered 
as function en -+ c. 

The conjecture was shown by Loeser for M = A 2 [Loel J; a shorter 

proof in dimension 2 is in [Ro]. In dimension 3 there is a lot of 'ex

perimental evidence' [Vel J, and by now various special cases are proved 

[ACLMl] [ACLM2] [Loe2] [RVl J. 
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Example. Let M = A2 and f = y 2 - x 3 . 

EXERCISE. Compute, using Theorem 6.5, 

and 

z (s) _ 5 + 4s 
top - (5+6s)(l+s) 

(This is how we computed J(T) in Example 2.14.) In particular, the 

poles of Ztap(s) are -1 and -5/6. On the other hand, it is well known 

that the monodromy eigenvalues off are 1, e-¥, and e--¥. Hence the 

monodromy conjecture is indeed satisfied here. 

Note. The previous example was too simple to exhibit the 'typical' 

situation. Each irreducible component Ei in Theorem 6.5 induces a 

candidate-pole -ft;, and quite miraculously, for a generic example with 

a lot of components Ei, 'most' of these candidates cancel. This experi

mental fact is compatible with the monodromy conjecture, see [Vel]. 

7 Batyrev's stringy invariants 

Using motivic integration, Batyrev [Bal][Ba2] introduced new singular

ity invariants for algebraic varieties with 'mild' singularities, more pre

cisely with at worst log terminal singularities. He used them for instance 

to formulate a topological mirror symmetry test for singular Calabi-Yau 

varieties, to give a conjectural definition for stringy Hodge numbers, and 

to prove a version of the McKay correspondence. 

We first explain log terminal and related singularities; for this we 

need the Gorenstein notion. 

7 .1. Let X be a normal algebraic variety of dimension d. In par

ticular X is irreducible, X sing has codimension at least 2 in X, and X 

has a well defined canonical divisor Kx (up to linear equivalence). One 

can view (a representative of) Kx as the divisor·of zeroes and poles of 

a rational differential d-form on X; it is also the Zariski-closure of the 

usual canonical divisor on Xreg· 

When X is nonsingular, Kx is a Cartier divisor, i.e. locally given 

by one equation. This is not true in general. 
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Definition. A normal variety X is Gorenstein if Kx is a Cartier divisor. 

Alternatively : X is Gorenstein if the rational differential d-forms on X, 

which are regular on Xreg, are locally generated by one element. 

Example. Let X = {z2 = xy}; then those differential 2-forms are gen

erated by dx;;_du = dx~dz = - dy~dz (which is indeed regular on Xreg)· 

This notion is quite general; for instance all (normal) hypersurfaces and 

even complete intersections are Gorenstein. 

Note. In the literature one often uses the term Gorenstein alterna

tively for varieties X for which all local rings Ox,x(x E X) are Goren

stein rings, and then the property that Kx is a Cartier divisor is called 

1-Gorenstein. 

7.2. We now introduce a certain 'badness' for singularities, in 

terms of numerical invariants of a resolution. 

Let X be Gorenstein of dimension d. Take a log resolution 11' : Y ~ 

X of X and denote by Ei, i E 8, the irreducible components of the 

exceptional locus Exc of h. We associate as follows an integer ai to each 

Ei. 

(1) Description with divisors. Since Kx is Cartier, the pullback 

11'* K x makes sense and one can consider the relative canonical divisor 

Kv1x = Kv -11'*Kx, which is supported on Exc. Then ai -1 is the 

multiplicity of Ei in Kv1x, i.e. Kv1x = LiES(ai -1)Ei. 

(2) Description with differential forms. Take a general point Qi of 

Ei and local coordinates Yb Y2, · · ·, Yd around Qi such that the local 

equation of Ei is Yl = 0. Let Wi be a local generator around 11'(Qi) of 

the d-forms on X, which are regular on Xreg· (Such an wi exists by the 

Gorenstein property.) Then around Qi one can write 11'*wi as 

11'*wi = uyf'- 1dyl 1\ dy2 1\ · · · 1\ dyd, 

where u is regular and nonzero around Qi. 

In general the ai E Z, and when X is nonsingular they satisfy ai 2:: 2. 

Terminology. One calls ai the log discrepancy of Ei with respect to X 

(and ai - 1 the discrepancy). 
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Example. The standard log resolution of X = { z2 = xy} has one excep

tional curve E ~ IP'1 with log discrepancy a = 1. 

7.3. We also have to consider a technical generalization : the 

normal variety X is called Q-Gorenstein if rKx is Cartier for some 

r E Z>o. In this case the log discrepancies are defined analogously by 

KYIX = L:iES(ai -1)Ei, which should be considered as an abbreviation 

of rKYIX = rKy- rKx = L:iES r(ai- 1)Ei. Now the r(ai- 1) E Z, 

and hence ai E ~ Z. 

Example. Let X be the quotient of A2 by the action of /t3 = { z E C I 
z3 = 1} given by ( x, y) ,__... (EX, EY) for E E p,3 • Concretely, X is given in 

A 4 by the equations 

in particular it is not a complete intersection. Here Kx is not Cartier; 

a representative of Kx is for example {u1 = u2 = U3 = 0}. However, 

3Kx is Cartier; a representative is { u1 = 0}. 

The standard log resolution of X has one exceptional curve E ~ IP'1 

with log discrepancy a = ~. 

A nice introduction to these notions is in [Rel]. 

7.4. Definition. (i) Let X be a Q-Gorenstein variety. Take a log 

resolution 1r : Y ---+X of X; let Ei, i E S, be the irreducible components 

of the exceptional locus of 1r with log discrepancies ai. Then X is called 

terminal, canonical, log terminal and log canonical if ai > 1, ai ~ 1, 

ai > 0 and ai ~ 0, respectively, for all i E S. 

One can show that these conditions do not depend on the chosen reso

lution. 

(ii) We say that X is strictly log canonical if it is log canonical but 

not log terminal. 

We should note that 0 is indeed the relevant 'border value' here; if 

some ai < 0 on some log resolution, then one can easily construct log 

resolutions with arbitrarily negative ai. 

The log terminal singularities should be considered 'mild', the singu

larities which are not log canonical 'general', and the strictly log canon

ical ones as a special 'border' class. 
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7.5. Example. (1) When X is a surface (d = 2) terminal is equiv

alent to non-singular, the canonical singularities are precisely the so

called ADE singularities or rational double points, and the log terminal 

singularities are precisely the Hirzebruch-Jung or quotient singularities. 

(2) Let X = {x~ + x~ + · · · + x~+l = 0} in A,_d+l. The origin 

is the only singular point of X, and the blowing-up with the origin 

as centre yields a log resolution 1r : Y ___, X of X with exceptional 

locus consisting of one irreducible component E, which is isomorphic to 

{X~ + X~ + · · · + X~+l = 0} C JPld. 

EXERCISE. (i) The log discrepancy of E with respect to X is d + 1- k. 

(ii) X is log terminal, strictly log canonical, and not log canonical 

when k < d + 1, k = d + 1, and k > d + 1, respectively. 

7.6. There are nice results of Ein, Mustata and Yasuda, relating 

the previous notions with jet spaces. 

Theorem [Mu1] [EMY] [EM]. Let X be a normal variety, which is 

locally a complete intersection. Then X is terminal, canonical, and log 

canonical if and only if Ln(X) is normal, irreducible, and equidimen

sional, respectively, for every n. 

7. 7. Definition. Let X be a log terminal algebraic variety. Take 

a log resolution 1r : Y ___, X of X. Let Ei, i E S, be the irreducible 

components of the exceptional locus of 1r with log discrepancies ai ( E 

Qbo). Denote also E'j := (niEIEi) \ (U£~IE£) for I c S. 

(i) The stringy Euler number of X is 

est(X) := L x(E'j) II : . 
ICS iEI ' 

(ii) The stringy E-function of X is 

""' II uv -1 Est(X) := L H(E'j) ( )a' _ · 
ICS iEI UV 1 

(iii) The stringy £-invariant of X is 

""' II lL-1 Est(X) := L [E'j] JLa, _ 1 . 
ICS iEI 
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Remarks. (1) Clearly e8 t(X) E Q; Est(X) is a rational function in u, v 

(with 'fractional powers'), and Cst(X) lives in a finite extension of Me. 
We have specialization maps C8t(X) t--+ Est(X) t--+ e8t(X). 

(2) Strictly speaking, Batyrev defined and used only the levels (i) 

and (ii) [Ba2][Ba3]. 

When X is nonsingular, Cst(X) = [X] (this is 4.2), and of course 

Est(X) = H(X) and e8 t(X) = x(X). So also these invariants are 
new singularity invariants, generalizing [·], H(·) and x(·), respectively, 

for nonsingular X. (Just as the motivic volume and its specializations. 

We give a comparing example in 7.11.) 

7.8. The crucial point is that the defining expressions above do not 

depend on the chosen resolution. We indicate three different arguments, 

supposing for simplicity that X is Gorenstein, i.e. the ai E Z>o. 

(1) Let 1r: Y----. X and 1r1 : Y'----. X be two log resolutions of X. By the 

formula of Proposition 3.6 we have in fact 

"[EoJII IL-l = { IL-ordtKvlxdp,. 
w I ]La; -1 jl 
ICS iEl .C(Y) 

So we must show that J IL -ordtKYIX du - J 1L -ordtKY'IX du To 
.C(Y) r- - .C(Y') r-· 

this end we take a log resolution p : Z ----. X, dominating 1r and 1r1 ; i.e. 
a 7r . u' 7r' 

we have p : Z ----. Y ----. X and p : Z ----. Y' ----. X. By the change of 

variables formula in (3.8) we have 

{ IL -ordtKYIX dp, = { IL -ordt(u* Kv1x+Kz1Yldp, 

l.c(Y) l.c(Z) 

= { JL -ordt(KziX) dp,, 

j .C(Z) 

and of course the same is true for the integral over .C(Y'). 
This is essentially Batyrev's proof. 

(2) We can define Cst(X) intrinsically, using motivic integration on X 
[Yal][DL6]. There is an ideal sheaf Ix on X such that 

Cst(X) = { ILordtix dp,, 

l.c(X) 
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using the setting of (3.5) and (3.7). More precisely, denoting by wx the 
sheaf of differential d-forms on X which are regular on Xreg, we have a 

natural map n'Jc --+ wx whose image is Ixwx. See [Ya1, Lemma 1.16]. 

(3) Using the Weak Factorization Theorem, see below, one essentially 

has to show that the defining expressions in (7.7) do not change after 

blowing-up Y in a nonsingular centre which intersects UiESEi trans
versely. This is straightforward. 

7.9. Weak Factorization Theorem [AKMW][Wl]. 

(1) Let¢: Y---+ Y' be a proper birational map between nonsingular 
irreducible varieties, and let U c Y be an open set where ¢ is an isomor
phism. Then ¢ can be factored as follows into a sequence of blow-ups 
and blow-downs with smooth centres disjoint from U. 

There exist nonsingular irreducible varieties Y1, ... , Yt-1 and a se
quence of birational maps 

ci>i+l ci>t-1 v ci>t v Y' 
---+ •••---+ L£-1---+ Le = 

where¢= ¢eo 1/Je-1 o · · · o ¢2 o ¢1, such that each ¢i is an isomorphism 
over U (we identify U with an open in the }i), and for i = 1, ... , £ either 

¢i : li-1---+ }i or ¢;1 : }i---+ li-1 is the blowing-up at a nonsingular 
centre disjoint from U, and is thus a morphism. 

(1') There is an index io such that for all i :::; io the map }i --+ Y is 
a morphism, and for i 2: io the map }i --+ Y' is a morphism. 

(2) If Y \ U and Y' \ U are normal crossings divisors, then the 
factorization above can be chosen such that the inverse images of these 
divisors under }i --+ Y or }i --+ Y' are also normal crossings divisors, 

and such that the centres of blowing-up of the ¢i or ¢;1 intersect these 
divisors transversely. 

Remark. (i) In [AKMW] and [Wl] the theorem is stated for a birational 
map ¢ between complete Y andY'; the generalization to proper bira

tional maps between not necessarily complete Y and Y' is mentioned by 
Bonavero [Bo]. 

(ii) In [AKMW, Theorem 0.3.1] the first claim of (2) is not explicitly 

stated, but can be read off from the proof (see [AKMW, 5.9 and 5.10]). 

7.10. Important Intermezzo. Using weak factorization instead of 
motivic integration, we can define Est(X) in a localization of (a finite 
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extension of) Me, which is a priori finer than in (a finite extension of) 

Me, since we do not know whether the natural map Me ----+ Me is 
injective. 

This remark also applies e.g. to (4.1), yielding [X] = [Y] in the 

localization of Me with respect to the [J!D1] instead of merely in Me. 

7.11. Example. Let X= {x~ + x~ + · · · + x~+l = 0} c A,d+l. 

EXERCISE. We use the notation E of Example 7.5. 

(i) Est(X) = (lL -l)[E] + [E]llA~-Ll, 
(ii) J.L(L.:(X)) = (JL- 1) [E] + [E] b-=_\, 
(iii) [X] = (lL- l)[E] + 1. 

(Note also that (ii) and (iii) are consistent with Example 5.4.) 

7.12. Applications. 

( i) Topological mirror symmetry test for singular Calabi-Yau mirror 

pairs [Ba2]. 

(ii) A conjectural definition of stringy Hodge numbers for certain canon

ical Gorenstein varieties [Ba2]. 

(iii) A proof of a version of the McKay correspondence [Ba3] [DL6] [Yal]. 

(iv) A new birational invariant for varieties of nonnegative Kodaira di

mension, assuming the Minimal Model Program [Ve2, (2.8)]. 

8 Stringy invariants for general singularities 

In this section X is a IQ-Gorenstein variety. 

8.1. For a log resolution 1r : Y ----+ X of X, we use the notation Ei 

and ai,i E S, and E'j,I C S, as before. There are (at least) two nat
ural questions concerning a possible generalization of Batyrev's stringy 

invariants beyond the log terminal case. 

QUESTION I. Suppose there exists at least one log resolution 1r : Y ----+ X 

of X for which all log discrepancies ai "I 0. Is (e.g.) 

L x(E'j) IT: 
ICS iEI t 

independent of a chosen such resolution ? 
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This question is still open (a positive answer would yield a general

ized stringy invariant for those X admitting such a log resolution). Note 
that, when using the weak factorization theorem to connect two such log 

resolutions by chains of blowing-ups, log discrepancies on 'intermediate 
varieties' could be zero, obstructing an obvious attempt of proof. 

QUESTION II. Do there exist any kind of invariants, associated to all 
or 'most' Q-Gorenstein varieties, which coincide with Batyrev's stringy 

invariants if the variety is .log terminal ? 

Concerning this question, we obtained the following result [Ve4]. 
We associated invariants to 'almost all' Q-Gorenstein varieties, more 

precisely to all Q-Gorenstein varieties without strictly log canonical sin

gularities, which do generalize Batyrev's invariants for log terminal va
rieties. (Note that in particular log discrepancies can be zero in a log 

resolution of a non log canonical variety !) 

• To construct these invariants we have to assume Mori's Minimal 

Model Program (in fact the relative and log version). 

• As in the previous section, we can work on any level: x(·),H(·), 
and[·]. For simplicity we treat here just the roughest level x(·); the 

other levels are analogous. 

8.2. We associate to any Q-Gorenstein X without strictly log 

canonical singularities a rational function Zst(X; s) in one variable s, 
the stringy zeta function of X. It will turn out that for log terminal X, 

this rational function is in fact a constant and equal to e8 t(X). 

We just present the main idea of our construction. The 'pragmatic' 

idea is to split the log discrepancies ai of a log resolution 7f : Y -t X as 

ai =vi+ Ni such that (vi, Ni) #= (0, 0) for all i, and to define Zst(X; s) 
as 

This is done in a geometrically meaningful way via factoring 7f through 

a certain 'partial resolution' p: xm -t X of X, which is called a relative 
log minimal model of X. This is a natural object in the (relative, log) 

Minimal Model Program; important here is that it is not unique and that 

xm can have certain mild singularities. (Its existence is the key point 

in this Program and this is for the moment proved only in dimensions 2 
and 3.) 
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For the specialists : p is a proper birational morphism, xm is Q

factorial, the pair ( xm, Em) is divisoriallog terminal, and K X"' +Em is 

p-nef, where Em denotes the reduced exceptional divisor of p. References 

for these notions are e.g. in [KM] [KMM] [MaJ. 

We consider the factorization n : Y ~ xm !!... X. In general h is 

only a birational map (maybe not everywhere defined), but we suppose 

for the moment that it is a morphism. We justify this later. Denoting 

as usual by Ei, i E S, the irreducible components of the exceptional 

divisor of 1r, we let EJ:', i E sm, be the images in xm of those Ei which 

'survive' in xm, i.e. which are not contracted by h to varieties of smaller 

dimension. Then 

LaiEi =Ky +LEi -n*Kx 
iES iES 

(1) 

+ h*(Kxm + L EJ:')- h*p* Kx. 
iES"' 

(2) 

Both (1) and (2) are divisors on Y, supported on UiESEi· We write (1) 

as LiES viEi; all vi 2: 0 because the pair (Xm, LiES"' Ef') has only 

mild singularities (more precisely, because it is divisorial log terminal). 

We can rewrite (2) as 

h*(Kxm + L EJ:'- p* Kx) = h*( L aiEJ:'); 
iESrn 

and it is well known that all ai, i E sm, are non-positive (more precisely, 

this follows since Kxrn +LiES"' EJ:' is p-nef). So we can write (2) as 

LiES NiEi where all Ni :::; 0. 

With these definitions of vi and Ni we indeed have ai = vi + Ni for 

i E S, with moreover vi 2: 0 and Ni :::; 0. One can show that, if X has 

no strictly log canonical singularities, the situation vi = Ni = 0 cannot 

occur. 
When X is log terminal, the morphism p : xm ---+ X has no excep

tional divisors, so sm = 0, all Ni = 0 and vi = ai, and as promised 

Z 8 t(X; s) = est(X). 
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In fact we FIRST choose a relative log minimal model p : xm -+ X 

of X, we secondly choose a log resolution h : Y -+ xm of the pair 

( xm, Em), where Em is the reduced exceptional divisor of p, and then 

we put 1r := po h. 

The point is again that Zst(X; s) is independent of both choices, for 

which a crucial ingredient is the Weak Factorization Theorem. 

8.3. Theorem [Ve4]. Let X be any surface without strictly log 

canonical singularities. Then 

lim Z 8 t(X; s) E Q. 
s-->1 

(Recall that this is non-obvious since some ai can be zero. The clue 

is that if ai = 0, then Ei must be rational and must intersect exactly 

once or twice other components; this then easily implies the cancelling of 

vi +sNi in the denominator of Zst(X; s).) So we can define in dimension 

2 a generalized stringy Euler number e8 t(X) as the limit above for any 

such surface X. In fact we constructed this generalized e8t(X) in [Ve3] 

by a 'direct' approach. 

• • (1) 

E • • ( i) 
E$!l E(i) E(i) E(i) 

ri-1 2 1 

• • (k) 

FIGURE 1 

8.4. Example [Ve3]. Let P E X be a normal surface singularity 

with dual graph of its minimal log resolution 1r : X -+ S as in Figure 1. 

There is a central curve E with genus g and self-intersection number -K, 

and all other curves are rational. Each attached chain Eii) - · · · - E$!l 
is determined by two co-prime numbers ni and qi, which are the abso

lute value of the determinant of the intersection matrix of Eii), ... , E$:) 
and Eii), ... , E~;~ 1 , respectively. Finally, we denote by d the absolute 
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value of the determinant of the total intersection matrix of 1r- 1 P. This 

is a quite large class of singularities; it includes all weighted homoge
neous isolated complete intersection singularities, for which the num

bers {g; ~; ( nt, ql), · · · , ( nk, qk)} are called the Seifert invariants of the 
singularity. 

If P E X is not strictly log canonical, then 

1 k 

est(X) = lim Zst(X; s) = -(2- 2g- k + ""'ni) + x(X \ {P})' 
s-+1 a ~ 

i=1 

where 

2 - 2 - k + "k .l. nk . k 
a = g L...•=1 n; = i-1 n, (2 - 2g- k + L ...!:_) 

~ _ "k !Ji. d . ni 
L....=1rn =1 

is the log discrepancy of E. 
We note that some other log discrepancies might be zero. A partic

ular example is the so-called triangle singularity, given by g = 0, ~ = 1, 
k = 3 and r 1 = r2 = r 3 = 1. So, concretely, there is a central rational 
curve with self-intersection -1 to which three other rational curves are 

attached. Then a = -1 and the three other log discrepancies are zero, 

and est(X) = 1- (n1 + n2 + n3) + x(X \ {P} ). 

When such P E X is a weighted homogeneous isolated hypersurface 
singularity, this generalized stringy Euler number appears in some Taylor 

expansion associated to it, studied by Nemethi and Nicolaescu [NN]. 

8.5. Example. [Ve4] Here we mention a concrete example of a 

threefold singularity P E X, which has an exceptional surface with 
log discrepancy zero in a log resolution, and such that nevertheless 

lim8 ..... 1 Zst(X; s) E Q, i.e. such that the evaluation Zst(X; 1) makes sense. 

Let X be the hypersurface {x4 + y4 + z4 + t 5 = 0} in A4 ; its only 
singular point is P = (0, 0, 0, 0). We sketch the following constructions 

in Figure 2; we denote varieties and their strict transforms by the same 

symbol. 
The blowing-up 1r1 : Y1 ---+ X with centre P is already a resolution of 

X (Y1 is smooth). Its exceptional surface E 1 is the affine cone over the 

smooth projective plane curve C = { x 4 + y4 + z4 = 0}. Let 1r2 : Y2 ---+ Y1 

be the blowing-up with centre the vertex Q of this cone, and exceptional 
surface E 2 ~ JP>2 . Then E 1 C Y2 is a ruled surface over C which intersects 
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E2 in a curve isomorphic to C. The composition 1r = 1r1 o 1r2 is a log 

resolution of P E X, and one easily verifies that the log discrepancies 

are a1 = 0 and a2 = -1; in particular P EX is not log canonical. 

Now E 1 C Y2 can be contracted (more precisely one can check that 

the numerical equivalence class of the fibre of the ruled surface E1 is 

an extremal ray). Let h : Y2 -+ xm denote this contraction, and let 

1r = p o h. As the notation suggests, one can verify that Kx= + E 2 is 

p-nef, implying that (Xm, E 2 ) is a relative log minimal model of P EX. 

FIGURE 2 

Denoting as usual 

and 
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we have clearly that v2 = 0 and N2 = -1, and one computes that v 1 = ~ 

and N1 = -~. So 

Zst(X; s) 

x(C) + x(E1 \C)+ x(E2 \C)+ x(X \ {P}) 
(v1 + sN1)(v2 + sN2) v1 + sN1 v2 + sN2 

-4 -4 7 13 
(~-~s)(-s) + ~-~s + _8 +x(X\{P})=-;+x(X\{P}), 

yielding lims-+1 Zst(X; s) = Zst(X; 1) = 13+ x(X \ {P} ). 

8.6. Question. Let X be a Q-Gorenstein variety of arbitrary di

mension without strictly log canonical singularities. When is 

lim Zst(X; s) E Q? 
s-+1 

9 Miscellaneous recent results 

Here we gather a collection of various results, which were obtained after 

the redaction of the survey paper [DL8]. 

• Aluffi noticed in [All] that the Euler characteristic formula in (4.2) im

plies interesting similar statements about Chern-Schwartz-MacPherson 
classes. Then in [Al2] he studies the birational behavior of Chern classes 

with respect to the 'motivic integration philosophy'. There he also in

troduces stringy Chern classes of log terminal varieties, which was done 
simultaneously by de Fernex, Lupercio, Nevins and Uribe in [dFLNU]. 

• Bittner [Bi2] calculated the relative dual of the motivic nearby fibre 
and constructed a nearby cycle morphism on the level of the Grothen

dieck group of varieties. 

• More exotic motivic measures are introduced by Bondal, Larsen and 
Lunts [BLL] and Drinfeld [Dr]. 

• Using arc spaces and motivic integration, Budur [Bu] relates the Hodge 
spectrum of a hypersurface singularity to its jumping numbers (which 

come from multiplier ideals). 

• Campillo, Delgado and Gusein-Zade [CDG1][CDG2][CDG3], and Ebel
ing and Gusein-Zade [EG1][EG2] studied filtrations on the ring of germs 
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of functions on a germ of a complex variety, defined by arcs on the singu

larity. An important technique is integration with respect to the Euler 
characteristic over the projectivization of the space of function germs; 

this notion is similar to (and inspired by) motivic integration. 

• Cluckers and Loeser [CL1][CL2][CL3] built a more general theory for 
relative m0 tivic integrals, avoiding moreover the completion of Grothen
dieck rings. These integrals specialize to both 'classical' and arithmetic 

motivic integrals. 
More 'relative theory' is in [Ni3]. 

• Dais and Roczen obtained formulas for the stringy Euler number and 
stringy E-function for some special classes of singularities [Da][DR]. 

• Now available are the ICM 2002 survey [DL9] and the recent expository 
paper of Hales [Hal3] on the theory of arithmetic motivic measure of 

Denef and Loeser [DL5]. Related work is in [DLlO] and [Ni3]. 

• In [dSL] du Sautoy and Loeser associate motivic zeta functions to a 

large class of infinite dimensional Lie algebras. 

• Ein, Lazarsfeld, Mustata and Yasuda have various other papers about 
spaces of jets, relating them for instance to singularities of pairs, in 

particular to the log canonical threshold, and to multiplier ideals [ELM] 

[Mu2][Ya2]. 

• Koike and Parusinski [KP] associated motivic zeta functions to real 
analytic function germs and showed that these are invariants of blow

analytic equivalence. Fichou [Fi] obtained similar results in the context 

of Nash funcion germs. Both constructions are useful for classification 
issues. 

• Gordon [Go] introduced a motivic analogue of the Haar measure for the 

(non locally compact) groups G(k((t))), where G is a reductive algebraic 
groups, defined over an algebraically closed field k of characteristic zero. 

• Guibert [Gui] computed the motivic zeta function associated to irre
ducible plane curve germs, yielding a new proof of the formula express

ing the spectrum in terms of the Puiseux data. Here he studied also a 

motivic zeta function for a family of functions and related it with the 
Alexander invariants of the family; this is used to obtain a formula for 

the Alexander polynomial of a plane curve. 

• Guibert, Loeser and Merle [GLMl] introduced iterated motivic van
ishing cycles and proved a motivic version of a conjecture of Steenbrink 

concerning the spectrum of hypersurface singularities. 

• Gusein-Zade, Luengo and Melle Hernandez [GLM2] treat integration 
over spaces of non-parametrized arcs and introduce motivic versions of 
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the classical monodromy zeta function. They indicate a formula con

necting the motivic zeta function with this monodromy zeta function. 

• Arithmetic motivic integration in the context of p-adic orbital integrals 

and transfer factors is considered by Gordon and Hales in [GH] and 

[Hal2]. An introduction to this theory is [Hall]. 

• Ishii and Kollar [IK] found counter examples in dimensions at least 4 

to the Nash problem, which relates irreducible components of the space 

of arcs through a singularity to exceptional components of a resolution. 

(And they proved it in general for toric singularities.) Reguera [Reg] 

showed in any dimension that the Nash problem is equivalent to the 

so-called wedge problem. 

For a toric variety, Ishii [Is] described precisely the relation between 

arc families and valuations, and obtained the answer to the embedded 
version of the Nash problem. 

• Ito produced an alternative proof that birational smooth minimal 

models have equal Hodge numbers [Itl], and that Batyrev's stringy E
function is well defined [It2], using p-adic Hodge theory. 

• Kapranov [Ka] introduced another motivic zeta function as the gener

ating series for motivic measures of varying n-fold symmetric products of 

a fixed variety. Larsen and Lunts [LL1][LL2] determined for which sur

faces this is a rational function over K 0 (Varc). It is not known whether 

it is always a rational fun!'tion over Me. See also [DLlO, §7] and [BDN]. 

• For toric surfaces, Lejeune-Jalabert and Reguera [LR] and Nicaise [Nil] 

computed an explicit formula for the series P(T) and J(T), respectively. 

This last paper also contains a sufficient condition for the equality of 

P(T) and the arithmetic Poincare series of a toric singularity, which is 

always satisfied in the surface case. A counter example for this equality 

in dimension 3 is given. 

In [Ni2] Nicaise provides a concrete formula for P(T) if the variety 

has an embedded resolution of a simple form; this yields a short proof 

of the formula for toric surfaces. 

• Loeser [Loe3] studied the behavior of motivic zeta functions of preho

mogeneous vector spaces under castling transformations; he deduced in 

particular how the motivic Milnor fibre and the Hodge spectrum at the 

origin behave under such transformations. 

• In [NS] Nicaise and Sebag establish the motivic zeta function as a Weil 

zeta function of the rigid Milnor fibre. 

• Sebag [Sel] [Se2] studied motivic integration and motivic zeta functions 

in the context of formal schemes. Loeser and Sebag [LS] developed a 
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theory of motivic integration for smooth rigid varieties, obtained a mo

tivic Serre invariant, and provided new geometric birational invariants 

of degenerations of algebraic varieties. 

• The author introduces motivic principal value integrals and investi

gates their birational behavior in [Ve5]. 

• Vojta provides in [Vo] a general reference for jet spaces and jet differ

entials (at the level of EGA), using Hasse-Schmidt higher differentials. 

• Yasuda [Yal][Ya3] introduced so-called twisted jets and arcs over 

Deligne-Mumford stacks and studied then motivic integration over them. 

As applications he obtained a McKay correspondence for general orb

ifolds (see also [LP]), and a common generalization of the stringy E

function and the orbifold cohomology. 

• Yokura [Yo] constructs Chern-Schwartz-MacPherson classes on pro

algebraic varieties and relates this to the motivic measure. 
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