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Abstract. We investigate how the probability of the formation of giant arcs in galaxy clusters is expected to change in cos-
mological models dominated by dark energy with an equation of state p = wρc2 compared to cosmological-constant or open
models. To do so, we use a simple analytic model for arc cross sections based on the Navarro-Frenk-White density profile
which we demonstrate reproduces essential features of numerically determined arc cross sections. Since analytic lens models
are known to be inadequate for accurate absolute quantifications of arc probabilities, we use them only for studying changes rel-
ative to cosmological-constant models. Our main results are (1) the order of magnitude difference between the arc probabilities
in low density, spatially flat and open CDM models found numerically is reproduced by our analytic model, and (2) dark-energy
cosmologies with w > −1 increase the arc optical depth by at most a factor of two and are thus unlikely to reconcile arc statistics
with spatially flat cosmological models with low matter density.

Key words. galaxies: clusters: general – cosmology: theory – cosmology: dark matter – cosmology: gravitational lensing

1. Introduction

The statistics of giant luminous arcs in the cores of galaxy clus-
ters has long been recognised as a potentially powerful cosmo-
logical probe (e.g. Wu & Mao 1996; Bartelmann et al. 1998).
Arcs are formed by gravitational lensing from sources which
happen to lie close to the caustic curves of a cluster lens, where
magnification and distortion are particularly strong.

The cosmological power of arc statistics derives from at
least two, maybe three principal reasons. First, for clusters to be
efficient lenses, they have to be located approximately half-way
between the sources, typically around redshift unity, and the
observer. Depending mostly on the mean cosmic matter den-
sity, parameterised by Ω0, clusters form earlier or later in cos-
mic history if the matter density is low or high, respectively. In
high-density model universes, the cluster population at the red-
shifts mostly relevant for lensing, z ∼ 0.3−0.4 is substantially
less rich than in low-density universes, reducing the number
of available efficient lenses dramatically (e.g. Richstone et al.
1992; Bartelmann et al. 1993; Lacey & Cole 1993, 1994).

The second principal reason is that strong lensing is a
highly nonlinear phenomenon in the sense that it requires the
lensing mass distribution to be supercritical for strong lens-
ing, which means that a suitable combination of surface mass
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density and gravitational tidal field needs to be large enough,
and that, once a lens is supercritical, even small changes in
both can change significantly the length of the caustic curves,
and thus the lens’ ability for strong lensing.

Different cosmological models predict the mass distribu-
tion in clusters to be more or less concentrated. Numerical sim-
ulations consistently show that, the earlier a dark-matter halo
forms, the more concentrated it is because it appears to keep a
record of the mean cosmic density at the time when it formed
(Navarro et al. 1996, 1997). Structure forms later in spatially
flat than in open, low density cosmological models, thus halos
in models with cosmological constant are generally less con-
centrated than halos in open models.

A possible third reason is that the gravitational tidal field at
the location of the lens plays a very important role (Bartelmann
et al. 1995; Meneghetti et al. 2001). It is strong if lenses are
highly asymmetric, as clusters frequently are, and if the sur-
rounding matter distribution is highly irregular. It is possible
that, if cosmic structure forms later, cluster mass distributions
are less relaxed and thus more asymmetric, and that also the
degree of irregularity in their neighbourhood is different than if
structures formed earlier. On the other hand, clusters forming
earlier are built from subhalos which tend to be more concen-
trated and thus more strongly gravitationally bound, hence sub-
structures could then persist within clusters for a longer time
and contribute to the asymmetry.
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Unfortunately, the combination of these effects renders an-
alytic models for arc statistics entirely inadequate for accurate
quantitative predictions of arc probabilities (Meneghetti et al.
2003). The effects of cosmology on cluster compactness and
asymmetry, and on the tidal field of the matter surrounding the
clusters, cannot be captured by reasonably simple analytic lens
models. Numerical simulations of arc statistics, using clusters
formed in sufficiently large N-body simulations as lenses, led to
the surprising result that the expected number of giant luminous
arcs on the sky differs by orders of magnitude between different
cosmological models. While a model with critical matter den-
sity and no cosmological constant fell below the observed num-
ber of arcs, extrapolated to the full sky, by two orders of mag-
nitude, a ΛCDM model with Ω0 = 0.3 failed by one order of
magnitude, and only a low-density open model with Ω 0 = 0.3
produced approximately the right number of arcs (Bartelmann
et al. 1998).

The statistics of quasars multiply imaged by galaxies has
often been used for constraining cosmological parameters. The
basic argument is that the number of lenses and their redshifts
should increase as ΩΛ increases, which typically yields upper
limits on ΩΛ <∼ 0.6−0.7 (Kochanek 1996; Falco et al. 1998;
Quast & Helbig 1999), although discrepant results have also
been found (Chiba & Yoshii 1999; Helbig 1999; Keeton 2002).
We emphasise that the sensitivity of cluster lensing to ΩΛ is
of a different nature. Since clusters form much later in cosmic
history than galaxies, the volume effect is negligible, but ΩΛ
changes the dynamics of cluster formation and thus their core
structure, to which strong lensing is highly sensitive.

These numerical results of Bartelmann et al. (1998) were
tested by Cooray (1999) and Kaufmann & Straumann (2000)
using analytic models based on singular isothermal spheres.
They could confirm the sensitivity of arc statistics to Ω0, but
found only a very weak dependence on ΩΛ, in contrast to the
numerical results. The isothermal sphere has two disadvan-
tages with respect to arc statistics. First, arc cross sections are
very sensitive to asymmetries in the cluster mass distribution,
thus axially symmetric models lack a property which is cru-
cially important for arc statistics. Second, numerical simula-
tions show that the central density concentration of clusters de-
pends on cosmology, and this potentially important feature is
not reproduced by the scale-free isothermal models either. We
shall construct in this paper an analytic model which qualita-
tively reproduces the earlier numerical results.

Bartelmann et al. (1998) used two completely differ-
ent types of N-body codes for simulating galaxy clusters.
Numerous subsequent tests of the results showed that the arc
numbers derived could be off by factors of perhaps 1.5 to 2,
but that there was no way how order-of-magnitude differ-
ences could be bridged (Meneghetti et al. 2000; Flores et al.
2000). The problem became substantially more acute when
measurements of the cosmic microwave background (CMB),
combined with observations of supernovae of type Ia and
large-scale galaxy surveys, left very little room for model uni-
verses which are not spatially flat and have density parame-
ters much different from Ω0 ≈ 0.3 (e.g. Riess et al. 1998;
Perlmutter et al. 1999; Lee et al. 2001; Abroe et al. 2002;
Efstathiou et al. 2002; Netterfield et al. 2002; Wang et al. 2002;

Halverson et al. 2002). Obviously, there is an interesting dis-
crepancy between the statistics of arcs seen on the sky, and the
probability for arcs produced in cosmological models which
are convincingly required by various other observations. While
observations consistently indicate a high probability for arc for-
mation in clusters (Le Fèvre et al. 1994; Gioia & Luppino 1994;
Luppino et al. 1999; Zaritsky & Gonzalez 2003; Gladders et al.
2003), we should point out that the discrepancy between theory
and observations is so far only based on a single set of simu-
lated clusters.

A spatially flat universe with low matter density and a cos-
mological constant is extremely difficult to justify theoretically.
The vacuum energy density provided by the cosmological con-
stant is tens of orders of magnitudes below any natural scale
which is conceivable in particle physics (see Carroll 2001 for a
review on the cosmological constant problem). This difficulty
motivated the introduction of a more general concept for a vac-
uum energy cosmological component, now widely known as
dark energy. The theoretical and observational aspects of the
dark energy are one of the most important issues in modern
cosmology (see Peebles & Ratra 2002 for a review). In gen-
eral, the most important difference of a dark energy compo-
nent compared to a cosmological constant is that its equation
of state, w, can be different from −1, generally implying a time
variation. It should be noted that recent analyses of CMB data
seem to favour a value of w very close to −1, albeit these re-
sults suffer to some degree from parameter degeneracies and
are typically obtained under restrictive assumptions (Douspis
et al. 2003; Melchiorri et al. 2003; Spergel et al. 2003).

Recently, Bartelmann et al. (2002) argued that dark mat-
ter halos in simple dark energy models should be more con-
centrated than in cosmological constant models with the same
dark energy density today. The main reason is that halos form
earlier in dark energy models, allowing them to be more com-
pact. Several different recipes for describing halo concentra-
tions found in numerical simulations as a function of their
formation time lead to consistent results. The halo concentra-
tion increases noticeably in the interval −1 ≤ w ≤ −0.6. For
higher values of w, which are too high for the cosmic acceler-
ation to agree with recent data (Riess et al. 1998; Perlmutter
et al. 1999), there is a strongly opposing effect related to the
amplitude of fluctuations in the CMB: The high level of the
Integrated Sachs-Wolfe (ISW) effect on the large scale CMB
anisotropies leads to a sharp decrease in the normalisation
of the dark matter power spectrum (Bartelmann et al. 2002).
Within a cosmologically interesting range for the equations of
state of the dark energy, the balance between the ISW effect
and the earlier formation of halos is quite delicate, but halos
can typically be expected to be more concentrated.

The ability of a galaxy cluster to produce giant arcs depends
sensitively on the concentration of its mass profile because of
the nonlinearity of the strong lensing effect. We therefore wish
to investigate how the probability for arc formation changes
in dark energy models, compared to cosmological-constant or
open models. For doing so, we use a simple, analytic descrip-
tion for the arc cross section of a cluster of given mass, which
we demonstrate to possess the relevant features of the fully
numerical results. Although it has been shown that analytic
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models are inadequate for quantitatively reliable arc statistics,
we are here interested only in the relative change of the arc-
formation probability caused by changes in the cosmological
model.

Section 2 of the paper introduces the cosmological back-
ground model. Section 3 describes our simple analytic model
for the arc cross section of a galaxy cluster. We then use this
model in Sect. 4 for calculating arc probabilities, and sum-
marise our conclusions in Sect. 5.

2. Cosmological model

Dark energy is characterised by a negative pressure, p = wρc 2,
where ρc2 is the mean energy density of the universe and the
equation of state w assumes negative values in order to produce
cosmic acceleration according to the data from type Ia super-
novae (Riess et al. 1998; Perlmutter et al. 1999). Theoretical
models of dark energy, such as Quintessence scalar fields, gen-
erally predict a time variation of the equation of state, as well as
the presence of dark energy fluctuations on super-horizon cos-
mological scales (see e.g. Peebles & Ratra 2002 and references
therein). In this work, we concentrate on the very basic aspect
of dark energy, by neglecting the spatial inhomogeneities and
assuming w to be a constant. In this case, the adiabatic equation
requires the equivalent matter density ρQ of the dark energy to
change with the cosmological scale factor a as

ρQ = ρQ,0 a−3(1+w), (1)

starting from the density ρQ,0 today. Obviously, cosmologi-
cal constant models are retained setting w = −1. Replacing
the conventional cosmological-constant term by a dark-energy
term, Friedmann’s equation reads

H2(a) = H2
0

[
Ω0 a−3 + ΩQ a−3(1+w)

]
, (2)

assuming with support from recent measurements of
anisotropies in the cosmic microwave background that
the curvature term is negligible. Here, H(a) is the Hubble
parameter as a function of a, H0 is the Hubble constant, and
Ω0 is the density parameter for non-relativistic matter.

The main consequences for the structure formation process
of this modified term in Friedmann’s equation have been de-
tailed in an earlier paper (Bartelmann et al. 2002), so we sum-
marise them only briefly here. Starting from a low-density cos-
mological constant model, keeping Ω0 fixed and increasing w,
the cosmic volume per unit redshift shrinks, and the linear
growth factor for cosmic structures starts rising earlier, hence
structures start forming earlier if the cosmological constant is
replaced by a dark energy component. Additional effects are
that the parameters characterising halo formation, i.e. the lin-
ear overdensity δc and the virial overdensity ∆v, are changed
(cf. Wang & Steinhardt 1998; Mainini et al. 2003).

As we anticipated in the introduction, a further important
consequence of dark energy models is that the gravitational po-
tential of the density fluctuations changes more rapidly with
time, leading to an increased integrated Sachs-Wolfe effect
on the CMB fluctuations at large angular scales. Given the

observed level of CMB power on large angular scales1, a
decreasing fraction of the observed anisotropies can thus be
attributed to the primordial CMB fluctuations, hence the nor-
malisation of the power spectrum has to be reduced as w is
increased in order to be compliant with the COBE-DMR data.
The main result is that the power-spectrum normalisation σ8

is decreasing gently as w is increased from −1 to ∼−0.6, and
then turns to drop more rapidly as the ISW effect intensifies.
Here and below, we adopt the CDM power spectrum with the
Harrison-Zel’dovich power-law index n = 1 and the transfer
function given by Bardeen et al. (1986). Throughout, we use
Ω0 = 0.3 and ΩQ = 0.7. It should be noted here that our re-
sults will be sensitive to the exact value of n as well as other
cosmological parameters.

3. Arc cross sections

3.1. Halo model

We will assume in the following that the average radial den-
sity profile of galaxy clusters can be described by the profile
found in numerical simulations by Navarro et al. (1996, here-
after NFW),

ρ(r) =
ρs

r/rs(1 + r/rs)2
, (3)

where ρs is a density scale, and rs a scale radius. The ratio
between rs and the radius r200 enclosing a mean halo den-
sity of 200 times the critical density is called concentration,
c = rs/r200. The two parameters, ρs and rs, are not indepen-
dent. Numerical simulations showed that the concentration pa-
rameter c depends on the halo mass, which is thus the only free
parameter.

Numerically simulated halos tend to be the more concen-
trated the earlier they form. Their central density apparently
reflects the mean cosmic density at the time of their forma-
tion. Since halos of higher mass are formed later in hierar-
chical models than halos of lower mass, the concentration is
decreasing with halo mass. Based on these findings, several
algorithms were designed for computing halo concentrations
from halo masses.

The algorithm by Navarro et al. (1997) first assigns to a
halo of mass M a collapse redshift zcoll defined as the redshift
at which half of the final halo mass is contained in progeni-
tors more massive than a fraction fNFW of the final mass. Then,
the density scale of the halo is assumed to be some factor C
times the mean cosmic density at the collapse redshift. They
recommend setting fNFW = 0.01 and C = 3 × 103 because
their numerically determined halo concentrations were well fit
assuming these values.

Bullock et al. (2001) suggested a somewhat simpler algo-
rithm. Haloes are assigned a collapse redshift defined such that

1 The only existing data are from the Differential Microwave
Radiometer (DMR) on board the COsmic Background Explorer satel-
lite (COBE, see Smoot 1999 and references therein); more data will
be available in the near future from the Microwave Anisotropy Probe
(MAP, map.gsfc.nasa.gov) and the Planck (astro.estec.esa.
nl/SA-general/Projects/Planck) satellites.
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Fig. 1. Halo concentrations according to Eke et al. (2001) are shown as
functions of halo mass for four spatially flat cosmological models with
different choices for the dark energy parameter w and for the OCDM
model, as indicated. As w increases, halos become more concentrated
until w ≈ −0.6. If w increases further, halo concentrations drop be-
cause then the amplitude σ8 of the power spectrum has to decrease
rapidly in order to remain consistent with the COBE-DMR data, as
the integrated Sachs-Wolfe effect becomes larger (cf. Bartelmann et al.
2002).

the non-linear mass scale at that redshift is a fraction fB of the
final halo mass. The halo concentration is then assumed to be a
factor K times the ratio of the scale factors at the redshift when
the halo is identified and at the collapse redshift. Comparing
with numerical simulations, they found fB = 0.01 and K = 4.
This algorithm reflects the change of halo concentrations with
redshift more accurately than the approach by Navarro et al.
(1997) predicts.

A third algorithm was suggested by Eke et al. (2001). They
assigned the collapse redshift to a halo of mass M by requir-
ing that the suitably defined amplitude of the linearly evolving
power spectrum at the mass scale M equals a constant C−1

ENS.
Numerical results are well represented setting CENS = 28.

We will adopt the latter method for this paper because the
concentrations computed from the algorithm by Navarro et al.
drop too slowly with redshift compared to numerical simula-
tions, and the algorithm by Bullock et al. has problems for high
halo masses because of the requirement that a fixed fraction
of the final halo mass should equal the nonlinear mass, which
may never be reached if the halo mass is high. Concentrations
as a function of halo mass for four different choices of the dark
energy parameter w are shown in Fig. 1.

3.2. Strong lensing by NFW haloes

The arc cross section of a galaxy cluster is the area in the source
plane where a source has to lie for being imaged as an arc with
specified properties, e.g. exceeding a threshold length-to-width
ratio. A typical cluster lens has two critical curves, defined as
curves in the lens plane along which the Jacobian matrix of the
lens mapping is singular, and the image magnification is for-
mally infinite (cf. Fig. 2). The critical curves are the images of

Fig. 2. Tangential and radial caustics for NFW lens models with el-
liptically distorted lensing potential. A halo of mass 1015 h−1 M� at
redshift z = 0.3 is assumed here, and the sources are all placed at
zs = 1. The cosmological model is spatially flat with Ω0 = 0.3 and
normalised to the COBE-DMR data. The upper panels show the caus-
tics for a dark energy parameter of w = −1 and for two ellipticities,
e = 0.1 and e = 0.4. The lower two panels show the caustics for
w = −0.6. The figure illustrates the high sensitivity of strong lensing
to halo ellipticity and concentration.

the caustic curves, thus sources close to a caustic are imaged as
highly magnified and distorted images. The two critical curves
and their corresponding caustic are called tangential and radial,
because of the dominant orientation of the image distortion rel-
ative to the centre of the lens. Seeking to quantify large-arc
cross sections, we are thus looking for an appropriately defined
area covering the tangential caustic of a cluster.

It is well known that arc cross sections depend strongly on
the exact shape of the cluster mass distribution, and on the
gravitational tidal field exerted by density fluctuations in its
neighbourhood (Bartelmann et al. 1995). Thus, the only reli-
able method for exactly quantifying arc cross sections has to
use numerically simulated cluster models without referring to
any symmetry assumptions. For a study like ours, however, we
only need to describe how arc cross sections are expected to
change relative to a fiducial model when certain cosmological
parameters are modified.

Gravitational lensing by an NFW halo can be described by
its lensing potential (e.g. Bartelmann 1996; Meneghetti et al.
2003),

ψ(x) = 4κs

12 ln2 x
2
− 2arctanh2

√
1 − x
1 + x

 , (4)

which is related to the lensing convergence through the Poisson
equation

κ(x) =
1
2
∇2ψ(x). (5)



M. Bartelmann et al.: Arc statistics in cosmological models with dark energy 453

The factor κs in Eq. (4) is defined by

κs =
ρsrs

Σcr
, (6)

where Σcr is the critical surface mass density for lensing. The
dimensionless radius x = r/rs can conveniently be replaced by
the angular radius θ = r/Dd = xrs/Dd, where Dd is the angular
diameter distance from the observer to the lens. The gravita-
tional tidal field, or shear, of the lens is the two-component
quantity

γ1 =
1
2

(ψ11 − ψ22), γ2 = ψ12, (7)

where the subscripts abbreviate partial derivatives with respect
to the angular coordinates (θ1, θ2) on the sky. The deflection
angle is the gradient of the lensing potential,

α(θ) = ∇ψ(θ). (8)

The Jacobian matrix of the lens mapping has the components

Ai j = δi j − ψi j. (9)

Its eigenvalues are λ± = (1 − κ) ± γ, where γ = (γ2
1 + γ

2
2)1/2

is the amplitude of the shear. The tangential critical curve is
determined by the condition λ− = (1 − κ) − γ = 0.

We now distort the axially symmetric NFW lens such that
the iso-potential lines become ellipses,

ψ(θ)→ ψ(ϑ), ϑ =

 θ2
1

1 − e
+ θ2

2(1 − e)


1/2

. (10)

As noted by Kassiola & Kovner (1993), an elliptical potential
can lead to dumbbell-shaped mass distributions with locally
negative mass density. As real clusters are irregular, dumbbell-
shaped mass distributions are acceptable. For the NFW profile
with elliptical isopotential contours, the mass density does in-
deed become mildly negative, but only well outside the core
where strong lensing occurs. For e = 0.4, the minimum κ is
∼−0.01 times the convergence in the core (see also Golse &
Kneib 2002). We thus use the elliptical lensing potential (10)
for computational simplicity.

The Jacobian matrix and its eigenvalues can be computed
from (10) using the relations introduced before. Generally, the
zeroes of the tangential eigenvalue λ− have to be determined
numerically. On the coordinate axes, they are given by

ϑ =


(1 − e)α (θ2 = 0)
α

1 − e
(θ1 = 0) . (11)

The corresponding caustic points, i.e. the cusps of the diamond-
shaped caustic on coordinate axes, can then be found using the
lens equation,

β = θ − α(θ). (12)

We thus know the four intersection points of the tangential
caustic curve with the coordinate axes. We defined them to lie
at (θ1, θ2) = (0,±a) and (θ1, θ2) = (±b, 0). Since the major
axis of the iso-potential ellipses points along the θ2 axis, the
cusps on the θ2 axis are further away from the lens centre than

the cusps on the θ1 axis, hence a > b. Figure 2 illustrates the
caustic curves for elliptical NFW lens models with two differ-
ent ellipticities in two spatially flat cosmological models with
different values for w.

A simple assumption for the large-arc cross section σ of
the elliptically distorted NFW lens holds that it is proportional
to the area enclosed by the critical curve, hence σ ∝ ab, with a
proportionality constant depending on the exact shape of the
caustic curve, and thus on the ellipticity of the lens model.
Since we do not require an absolute calibration of the arc cross
sections, we adopt σ = ab. Earlier work (Meneghetti et al.
2000; Flores et al. 2000) has shown that individual galaxies
have a negligible effect on arc cross sections, which further
supports the assumption that they are determined by the overall
extent of the caustic curves.

We will later have to integrate over the cluster population,
conveniently parameterised by the virial mass and described
by the mass function. Thus, we have to verify whether our ap-
proximate description of the arc cross section scales with clus-
ter mass in the same way as numerically determined arc cross
sections of the same cluster models, given identical ellipticity
parameters e. We therefore set up deflection-angle maps start-
ing from the elliptically distorted lensing potential ψ(ϑ) and
used them for imaging randomly distributed, intrinsically el-
liptical sources by tracing rays passing the image plane on a
rectangular grid. The sources are placed on adaptively refined
grids whose resolution is progressively increased in the vicin-
ity of caustic curves. The images are automatically classified
according to their length, width, length-to-width ratio and sev-
eral other parameters, and the cross section is determined by
counting the number of images exceeding a threshold length-
to-width ratio. More detail on this method can be found in
(Bartelmann & Weiss 1994; Meneghetti et al. 2000). Results
are shown in Fig. 3.

The essential feature of the numerically determined arc
cross sections is that they increase approximately quadratically
with the lens mass. Since the Einstein radius of an extended
lens typically scales linearly with the lens mass, this indicates
that the arc cross section scales approximately like the square
of the Einstein radius. Our simple estimate for the arc cross
section is defined to reproduce this property.

We also check whether numerically determined cross sec-
tions scale with the dark energy parameter w in a similar way
as our simple cross-section estimate does. Figure 4 shows the
example of an elliptically distorted NFW lens of mass M =

7.5 × 1014 h−1 M�. The curves plotted there show qualitatively
the same behaviour. As w increases above −1, the arc cross
section increases by a factor of ∼1.9 until w ≈ −0.6, and then
drops as the normalisation constraint requires to significantly
reduce σ8. Both curves are arbitrarily normalised to unity at
their peaks. The differences between the numerically deter-
mined cross sections and our simple estimate are unlikely to
be significant because the numerical method uses the images
of a finite number of discrete sources for determining the cross
sections, which causes noise in the results. In any case, the two
essential properties of the change in the cross sections with w
are well reproduced, namely the amplitude of the relative in-
crease and the location of the peak.
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Fig. 3. Comparison between the numerically determined arc cross sec-
tions of elliptically distorted NFW lenses as a function of their virial
mass M (solid curve), and the simple estimate for the arc cross sec-
tions which is proportional to the area covered by the tangential caus-
tic curve (dotted curve). Both curves are arbitrarily normalised to unity
at the high-mass end. The lenses are placed at redshift z = 0.3, the
sources at redshift zs = 1.0, the ellipticity of the NFW potential is
e = 0.4. The curves were computed for a dark energy cosmological
model with w = −0.6. Evidently, the simple estimate for the cross sec-
tions correctly reproduces the scaling of the cross sections with clus-
ter mass. The numerically determined curve is not smooth because the
cross sections are computed from finite numbers of simulated arcs and
thus subject to random fluctuations.

Finally, we set the cross section to zero if the major axis
of the critical curve falls below some threshold θmin. The idea
behind this is that if the critical curves become too small,
the images near the critical curves can hardly be called gi-
ant arcs. Suppose typical sources have diameters on the or-
der of an arc second, and the lens should be able to produce
arcs with a length-to-width ratio around ten. Then, ignoring the
source magnification in the radial direction, the tangential crit-
ical curve needs to have a radius of approximately 10 ′′ for this
to happen. We thus set θmin = 10′′ unless stated otherwise, and
show the effect of changing θmin to 5′′ below.

We conclude from this section that the scaling of our sim-
ple estimate for arc cross sections with lens mass and with
the dark energy parameter w well reproduces what is expected
from numerical treatments of the same lens models, i.e. NFW
lenses with elliptically distorted lensing potential. We empha-
sise again that the absolute value of the cross sections are unim-
portant for our present purposes, as we are aiming at studying
the change in the arc-formation probability in various cosmo-
logical models relative to the ΛCDM model.

4. Arc probabilities

We can now proceed to compute the probability for arc for-
mation by a population of clusters. Given a mass function
dn(M, z)/dM, we can write the so-called optical depth τ(z s) as

τ(zs) =
∫ zs

0
dz (1 + z)3

∣∣∣∣∣dV
dz

∣∣∣∣∣
∫ ∞

Mmin

dM
dn
dM

σ(M, z), (13)

Fig. 4. Comparison between cross sections similar to Fig. 3, but for a
fixed halo mass of M = 7.5× 1014 h−1 M� and varying dark energy pa-
rameter w. The solid curve showing the numerically determined cross
sections closely follows the dotted curve, which represents the simple
cross-section estimate introduced here. The curves are arbitrarily nor-
malised to unity at their starting point, i.e. at w = −1. Increasing w

from −1 to −0.6 increases the cross sections by a factor of ∼1.9. As in
Fig. 3, lens and source redshifts are set to 0.3 and 1, respectively, and
the ellipticity of the NFW lensing potential is set to e = 0.2.

where zs is the source redshift, V is the cosmic volume, and
the factor (1 + z)3 accounts for the fact that the mass function
is defined per comoving volume. The lower mass limit Mmin

is determined by the mass required to produce critical curves
whose major axis exceeds the threshold θmin introduced in the
preceding section, thus it depends on the lens redshift z.

For the mass function dn/dM, we choose the modification
by Sheth & Tormen (1999) of the Press & Schechter (1974)
mass function. It well reproduces the halo mass functions found
in numerical simulations. We take into account that our defini-
tion of mass differs slightly from Sheth & Tormen’s in that we
use the mass enclosed by a sphere in which the mean density
is 200 times the critical rather than the mean density. The mass
function depends on cosmology through the normalisation of
the power spectrum and the linear overdensity parameter de-
rived from the spherical collapse model.

We note an important difference to strong lensing by galax-
ies. While the population of galaxy lenses is well described
as isothermal spheres with number counts derived from ob-
servations (e.g. Lehár et al. 2000; Keeton 2002), the lack of
wide-separation lenses argues against isothermal density pro-
files in cluster-scale lenses (Flores & Primack 1994; Porciani
& Madau 2000). Baryonic physics changes the central den-
sity profiles of galaxy-scale halos, but is inefficient on cluster
scales (e.g. Kochanek & White 2001). Cluster mass functions
derived from X-ray observations are found to agree well with
theoretical predictions based on Press-Schechter type models
(e.g. Reiprich & Böhringer 2002). Thus modelling the cluster
population with NFW density profiles and the Sheth-Tormen
mass functions is well justified.

We show in Fig. 5 the redshift integrand of Eq. (13), i.e. the
cosmic volume times the integral over mass of the mass func-
tion times the arc cross section. The figure thus illustrates the
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Fig. 5. The redshift integrand of Eq. (13) is plotted as a function
of z for four different cosmological models, a ΛCDM model with
Ω0 = 0.3, and open CDM model with Ω0 = 0.3 and no cosmologi-
cal constant, and two spatially-flat dark energy models with Ω0 = 0.3
and w = −0.8 and w = −0.6. The spatially-flat models are nor-
malised to the COBE-DMR data, and the open CDM model has the
same σ8 as the cosmological-constant model for easier comparison.
The curves show that our simple analytic model succeeds in repro-
ducing the order-of-magnitude difference between the open and the
cosmological-constant model found in numerical simulations, and that
spatially flat dark energy models cannot bridge the gap between these
two models. The ellipticity of the NFW lensing potential was set to
e = 0.3 here.

total arc cross section contributed by the cluster population at
redshift z. For simplicity, sources are assumed to be at a single
redshift of zs = 1 here. The four curves in Fig. 5 are for the
ΛCDM model with Ω0 = 0.3, the open CDM model with the
same Ω0 but with ΩΛ = 0, and for dark energy models with
the same Ω0 but ΩQ = 0.7, and w = −0.6 or w = −0.8. Again,
the curves are arbitrarily normalised such that the optical depth
τ of the OCDM model is unity. The value of σ8 = 0.88 of
the ΛCDM model was also set for the OCDM model for easier
comparison. The COBE-DMR data would require σ8 ∼ 0.4 for
the OCDM model, which is way below the value required for
reproducing the observed number density of massive clusters.
We thus have to choose σ8 for the OCDM model in conflict
with the COBE-DMR data in order to produce comparable re-
sults on arc statistics.

Figure 5 shows two important results. First, the simple
model for arc cross sections introduced here is capable of re-
producing the order-of-magnitude difference in the total arc
cross section between the ΛCDM and the OCDM models that
had been found earlier in numerical simulations, and could not
be reproduced by analytic models based on singular isothermal
cluster mass distributions. Second, although the dark energy
models have a somewhat higher total arc cross section than the
ΛCDM model, they are still by a factor of ∼6 below the arc
cross section for the OCDM model. According to our analytic
estimates, dark energy models are thus unable to reconcile spa-
tially flat cosmological models with low matter density with
the high abundance of large arcs, which seems to be similarly

Fig. 6. Optical depth τ(zs = 1) defined by Eq. (13) for spatially-flat
dark energy models as functions of w. All curves are arbitrarily nor-
malised to their values for w = −1, i.e. they show the change in optical
depth with w relative to the cosmological-constant model. All curves
were obtained for Ω0 = 0.3 and COBE-normalised CDM power spec-
tra. Results are shown for two different choices each for the elliptic-
ity e and the cutoff angle θmin, as indicated. The curves show that clus-
ters in dark energy models can be ∼50% up to ∼100% more efficient
in forming arcs than in cosmological-constant models, depending in
detail on the exact choices for the ellipticity and the cutoff angle.

impossible with cosmological constant models given the earlier
numerical results.

Figure 6 shows the optical depth τ as defined in Eq. (13)
for four different choices of the free parameters we have in-
troduced, namely the ellipticity e of the lenses and the cutoff
radius θmin. All curves have in common that the arc optical
depth increases noticeably as w increases from −1 to ∼−0.6,
and drops rapidly as w is increased further. The curves are
intended to show the relative increase in τ compared to the
ΛCDM model and are thus normalised to unity at w = −1. The
peak amplitudes range from 1.5 to 2. The largest increase is
achieved for θmin = 10′′ and e = 0.3, the smallest for θmin = 5′′
and e = 0.4.

Several effects act jointly here. First, we saw in Fig. 4 that
the arc cross section of (one example for) an individual halo
increases by a factor of <∼2 as w is increased from −1 to −0.6.
An additional effect is that, as the halo concentration increases,
halos of lower mass become capable of strong lensing. Since
the mass function of galaxy clusters is steep, a small extension
of the mass range towards lower masses can markedly increase
the number of clusters available for strong lensing, but the re-
quirement that arcs should be large imposes a lower limit on
the cluster masses. We see the combined effect in Figs. 5 and 6.
If we set the cutoff radius to θmin = 10′′, we select for higher-
mass clusters in the first place, whose mass function is steeper
than for lower-mass clusters. Thus, the effect of lowering the
lower mass limit by increasing the halo concentrations is more
pronounced if the cutoff radius is chosen higher.

Increasing the ellipticity of the lensing potential increases
its gravitational tidal field, or shear. The increase in halo con-
centration caused by the earlier halo formation in dark energy
models with w > −1 is then relatively less important for arc
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formation, which explains why the arc optical depth caused by
cluster populations with lower e changes more strongly with w
than for clusters with higher e. Fitting the elliptical NFW model
to numerically simulated clusters yields values for e closer
to 0.3.

5. Summary and conclusions

We investigated how the probability for the formation of large
gravitational arcs in galaxy clusters is expected to change as the
underlying cosmological model is modified. The main reason
for this investigation was our earlier finding that halo concen-
trations in a simple class of spatially flat, dark-energy domi-
nated cosmological models are expected to depend sensitively
on the equation-of-state parameter w (Bartelmann et al. 2002).
Strong lensing in general, and the formation of large arcs in
particular, is a highly nonlinear effect which depends sensi-
tively on the matter concentration in the lens cores. It could
therefore reasonably be expected that arc probabilities would
change significantly with w.

This is of cosmological relevance since earlier numeri-
cal simulations (Bartelmann et al. 1998) showed that clusters
in cosmological-constant models fall short by about an or-
der of magnitude of reproducing the abundance of observed
large gravitational arcs. While virtually all recent cosmolog-
ical experiments favour a spatially flat, low-density universe,
arc statistics apparently strongly prefers a low-density, open
model over a low-density model with cosmological constant.
This numerical result was questioned on the basis of simple
analytic models which failed to reproduce the strong depen-
dence of arc statistics on ΩΛ found in the simulations (Cooray
1999; Kaufmann & Straumann 2000). Our first goal was thus
to investigate whether the numerical results could be supported
by a more detailed analytic model.

Earlier studies also showed that analytic models for arc
cross sections are notoriously problematic and inadequate
for an accurate absolute quantification of arc probabilities.
However, since it was our main interest in this paper to quan-
tify changes in the arc optical depth relative to cosmological-
constant models, we applied reasonably flexible analytic lens
models which we demonstrate to reproduce the relevant fea-
tures of fully numerical results (e.g. Bartelmann et al. 1998;
Meneghetti et al. 2003), as described below.

We have chosen to use lenses with NFW density profile
whose lensing potential was elliptically distorted. This model
has several advantages. First, it naturally incorporates the de-
pendence of central halo concentration on cosmology, through
the halo formation time. Second, it agrees with density profiles
consistently found in numerical simulations. Third, the ellip-
tical distortion strongly decreases the mismatch between ana-
lytic and fully numerical lens models (Meneghetti et al. 2003).
Although elliptical lensing potentials can lead to locally neg-
ative surface mass densities for sufficiently large ellipticities,
this is a mild effect which happens only well outside the core
for our model, thus it should be irrelevant for our purposes.
We further adopted a simple estimate for the arc cross sec-
tion and verified that this estimate scaled with cluster mass and
dark energy parameter w in the same way as fully numerically

determined arc cross sections do. In particular, our simple ana-
lytic description for the arc cross section well reproduces the
approximately quadratic scaling with cluster mass obtained
fully numerically from the same elliptically distorted NFW
cluster mass models. Although we would not trust this model
for any accurate quantitative prediction of arc probabilities, we
are confident that it can be used for the relative statements in-
tended here.

Our main findings are as follows:

– Our simple lens model is indeed capable of reproducing the
order-of-magnitude difference between ΛCDM and open
CDM models found in the earlier numerical study. This
shows that the change in halo concentration between the
two models can explain the sensitivity of arc statistics for
the cosmological constant. An additional effect into the
same direction is contributed by the steep mass function
of galaxy clusters. An increase in halo concentration low-
ers the minimum mass required for significant strong lens-
ing, and this makes many more halos available for arc
formation.

– Although increasing the dark energy parameter w has a no-
ticeable effect on the optical depth for arc formation, it can-
not increase the arc optical depth to a level compatible with
that found in open CDM models. This result arises due to
a combination of three main effects: first, individual halos
of fixed mass get more concentrated in dark energy than
in cosmological constant models; second, lower mass ha-
los than before become able to form large arcs; and third,
the requirement that arcs be large imposes a lower limit
on cluster masses. Our analytic model thus suggests that
arc statistics cannot be reconciled with low-density, spa-
tially flat cosmological models which are now dominated
by dark energy, i.e. the discrepancy between arc statistics
and the cosmological model favoured by most, if not all,
recent cosmological experiments is not expected to disap-
pear if the dark energy is not a cosmological constant, but
has an equation of state p = wρc2 with w > −1.

Being based on several simple analytic estimates, this study can
only provide a tentative answer. Detailed numerical simulations
will be necessary for reliable absolute quantifications of the arc
optical depth expected in cosmological models with dark en-
ergy instead of a cosmological constant; similarly, it is neces-
sary to quantify the dependence of the effect we find here on the
specific dark energy model considered, such as a quintessence
scalar field.

According to our preliminary analytic results presented
here, it appears that the solution to the arc statistics prob-
lem as described by Bartelmann et al. (1998) is probably not
to be found in the cosmological model alone, but more in
the details of cluster structure and the history of cluster evo-
lution. The recent suggestion by Wambsganss et al. (2003)
that it could simply be removed by considering higher-redshift
sources is certainly not a viable solution because the prob-
lem arose from comparing simulations to a well-defined sam-
ple of highly X-ray luminous clusters which were observed for
arcs down to a well-defined photometric limit (Le Fèvre et al.
1994; Luppino et al. 1999). In combination with other recent
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results on the strong-lensing properties of dark-matter halos
(e.g. Oguri et al. 2001; Oguri 2002; Oguri et al. 2003) and the
puzzling discoveries of very high-redshift arcs in high-redshift
clusters (Zaritsky & Gonzalez 2003; Gladders et al. 2003), this
seems to imply that arc statistics are teaching us that the prop-
erties of individual clusters and their evolution over time is still
insufficiently understood.
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