
Arcan: a Tool for Architectural Smells Detection
Francesca Arcelli Fontana∗, Ilaria Pigazzini†, Riccardo Roveda∗, Damian Tamburri‡,

Marco Zanoni∗, Elisabetta Di Nitto‡
Università degli Studi di Milano - Bicocca, Milan, Italy

Email: {arcelli,riccardo.roveda,marco.zanoni}@disco.unimib.it∗, i.pigazzini@campus.unimib.it†

Politecnico di Milano Dipartimento di Elettronica, Informatica e Bioingegneria, Milan, Italy
Email: {damianandrew.tamburri,elisabetta.dinitto}@polimi.it‡

Abstract—Code smells are sub-optimal coding circumstances
such as blob classes or spaghetti code - they have received much
attention and tooling in recent software engineering research.
Higher-up in the abstraction level, architectural smells are pro-
blems or sub-optimal architectural patterns or other design-level
characteristics. These have received significantly less attention
even though they are usually considered more critical than
code smells, and harder to detect, remove, and refactor. This
paper describes an open-source tool called Arcan developed for
the detection of architectural smells through an evaluation of
several architecture dependency issues. The detection techniques
inside Arcan exploit graph database technology, allowing for high
scalability in smells detection and better management of large
amounts of dependencies of multiple kinds. In the scope of this
paper, we focus on the evaluation of Arcan results carried out
with real-life software developers to check if the architectural
smells detected by Arcan are really perceived as problems and
to get an overall usefulness evaluation of the tool.

I. INTRODUCTION

It is an established fact that good software architecture and
design lead to better evolvability, maintainability, availability,
security, software cost reduction and more [1]. Conversely,
when that architecture and design process are compromised
by poor or hasted design choices, the architecture is often
subject to different architectural problems or anomalies, that
can lead to software faults, failures or quality downfalls such
as a progressive architecture erosion [2], [3]. A category of
these anomalies is represented by architectural smells, that are
caused by a violation of recognized design principles with a
negative impact on internal system quality [4].

To aid the detection and removal of architecture smells
(AS), this paper introduces Arcan, a static-analysis software
useful to support software developers and designers during the
development, maintenance and evolution of Java applications.
Arcan is able to detect 3 architectural smells (i.e., Cycle De-
pendency, Unstable Dependency and Hub-Like Dependency).
We focused our attention on AS related to dependency issues;
we will consider other AS in the next future. The design
of our tool relies on recent advances in graph database
technology and graph computing: once a Java project has been
analyzed by Arcan, a new graph database is created containing
the structural dependencies of the system. Thanks to graph
computing and connected big data processing technology [5],
it is then possible to run detection algorithms on this graph to
extract information about the analyzed project (package/class
metrics, architectural issues).

In a previous work [6], we outlined the detection algorithms
hardcoded within Arcan. The original contribution of this
paper is its focus on: (a) the tool’s architecture and inner
workings; (b) on the improvements of its detection strategies
for the Cycle Dependency smell, and (c) on the manual
validation of the detection results of Arcan done by real-life
software developers. The latter exercise enabled us to evaluate
whether the detected architectural smells are indeed perceived
as problems by the software developers responsible for them.
By means of this evaluation exercise, we were able to provide
a first evaluation on how the tool works and on its results in
terms of precision and recall. According to the feedback of
this validation, we outline and discuss future directions for
research and extensions of the tool. More in particular, we
learned the need for a Severity Index to identify the most
critical smells to be analyzed and removed first. This Index
would help developers to identify and estimate refactoring
needs and their rough cost.

II. RELATED WORK

As previously stated, many tools have been developed for
code smells detection but only few tools are currently available
for architectural smells detection. The following briefly reports
on some of them. First, the commercial tool inFusion1 and
its evolution in AiReviewer2 support the detection of both
code smells and some design or architectural smells. Another
commercial tool is Designite3 that detects several design
smells in C# projects. The Hotspot Detector [7] tool detects
five architectural smells, called Hotspot Patterns, four patterns
defined at file level and one at package level. Other tool
prototypes have been proposed, e.g., SCOOP [8], and one from
Garcia et al. [9]. We outline that AiReviewer and Designite are
commercial tools and according to our knowledge the other
tools are not yet publicly available. Moreover, there are diffe-
rent commercial tools as for example Sotograph, Sonargraph,
Structure 101 and Cast which are able to detect different
kinds of architectural violations, as dependency cycles. Our
tool (available at http://essere.disco.unimib.it/wiki/arcan), by
analyzing compiled Java files, detects three AS. We compute
the Cyclic Dependency AS among classes and packages, and
we detect it according to different shapes. We exploit different

1Intooitus, http://www.intooitus.com/products/infusion
2http://www.aireviewer.com
3http://www.designite-tools.com



Fig. 1. Cycles shapes [11]

detection techniques with respect to the previous approaches,
that, according to our knowledge, have not been applied for
architectural smells detection before. It is possible to inspect
the results through graphs, more useful respect to other views,
allowing to better identify refactoring opportunities for the
architectural smells.

III. ARCHITECTURAL SMELLS

As previously introduced, Arcan detects 3 architectural
smells described below, that may be causing instability issues,
where instability refers to the predisposition of objects to
change [10]. The instability is computed as the ratio between
efferent dependencies over the total number of dependencies,
where the efferent dependencies are the number of classes
inside the package that depend upon classes outside the
package. In the following for subsystem (component) we mean
a set of packages and classes which identifies an independent
unit of the system responsible for a certain functionality.

1) Cyclic Dependency (CD): (detected on classes and
packages) refers to a subsystem (component) that is involved
in a chain of relations that break the desirable acyclic nature of
a subsystem’s dependency structure. The subsystems involved
in a dependency cycle can be hard to release, maintain or reuse
in isolation. For what concerns this smell, we found useful to
refine the detected cycles according to their shape [11] (shown
in Figure 1). We established rules to identify each shape. Some
of them are formulas which set the relationship between the
number of nodes and edges; others are constraints at graph
level, i.e., patterns that nodes and edges have to follow to
make up a certain kind of shape.

2) Unstable Dependency (UD): (detected on packages)
describes a subsystem (component) that depends on other
subsystems that are less stable than itself, according to the
Instability metric value [10]. This may cause a ripple effect of
changes in the system.

For this smell, we defined a filter to remove false positive
instances. Since a package is considered affected by this smell
only if it depends on another package less stable than itself,
it was interesting to examine the dependencies which actually
cause the smell. Considering “Bad Dependency” a dependency
that points to a less stable package, we proposed a formula to
establish the “Degree of Unstable Dependency” (DoUD):

DoUD =
BadDependencies

TotalDependencies
(1)

A package with a small number of bad dependencies may
not be a smell, and this formula helps to filter misleading

Java FX User Interface

Tinkerpop Framework

Graph Database

Main Processing Unit

Presentation 
Layer

Persistence
Layer

Domain 
Layer

System Reconstructor Graph Manager

Metrics Engine Architectural Smell Engine

Fig. 2. Arcan Architecture

results. The Degree of Unstable Dependency under which a
package is no more a smell can be defined as a threshold of
the filter. The filter threshold establishing the minimum level
needed to consider a package affected by the smell (DoUD)
was set at 30%, since this value highlights the largest share
of correct UD instances, according to a manual validation we
performed while exploring different thresholds over several
projects. We are working on the definition of new methods
for the identification of the right thresholds and to adapt them
to the developers’ needs. In particular, we aim to discover the
right thresholds through machine learning techniques.

3) Hub-Like Dependency (HL): (detected on classes) this
smell arises when an abstraction has (outgoing and ingoing)
dependencies with a large number of other abstractions [12].
For this smell, we figured out which are the conditions where
a Hub-Like could be a false positive instance. First, HL are
highly used classes of the system. Assuming we don’t know
if those classes are used from other systems (since Arcan
analyzes one system at a time), we conjectured that if the
class uses external classes of the system, e.g., classes of the
package java.util.*, and these are the majority of the
total outgoing dependencies related to a system library, then it
should *not* be considered a Hub-Like class. In fact, classes
of this form are rather simple, because they most likely use
default functionalities (e.g lists). Conversely, classes that are
frequently used and implement the main functionalities of the
system exhibit the opposite pattern.

IV. ARCAN: ARCHITECTURE AND INNER WORKINGS

The Arcan architectural core consists of four components
(see Figure 2), structured in a layered architecture style: a
user interface built with Java FX, a main processing unit with
all the logic components and a persistence layer consisting
of a graph database, accessed through a graph computing
framework. The tool is written in Java 8. To interface with
the graph database, we decided to use Apache Tinkerpop4

for two reasons: to easily build and access the dependency
graph which represents the analyzed project and to allow the
exploitation of different graph database backends. This means

4http://tinkerpop.apache.org/, Apache Tinkerpop 3.1.1-incubating



that all the graph elements, e.g., nodes, are Tinkerpop ele-
ments. Every read or write operation that regards the database
is filtered by the framework. Hence, the queries are written
in Gremlin-Java, the variant of the Gremlin5 query language
that allowed us to write graph traversals within the native
Java environment. Tinkerpop deals with the translation of the
dependency graph into specific backend’s graphs and hides the
underneath database. In the current version of Arcan, the graph
generated through Tinkerpop can be stored 1) in-memory or 2)
using a Neo4j6 graph database; other backends can be added
in the future. We chose Neo4j because it offers an intuitive
graphic interface which allows the exploration (using Cypher7

queries) and visualization of the dependency graph built by
Arcan. The graph can be browsed to understand the structure
of the system and different algorithms can be applied on it
to extrapolate more detailed information. After the execution
of these algorithms, new nodes and edges are added to the
graph as “smell” nodes, which indicate the presence of an
architectural smell in the system.

In the following we describe the workflow Arcan applies
for the detection of the three architetcural smells.

1) The System Reconstructor reads the compiled Java
files, which can be submitted as a folder of .class files
or a folder of .jar files. Arcan only retrieves classes and
packages which are included in the input, without extending
the analysis to external components. Hence, to make Arcan
analyze a complete project, it needs to have every component
as input. The information contained in the compiled file are
extracted thanks to the Apache Byte Code Engineering Library
(BCEL8). This library offers a class named JavaClass to
represent the data structures, constant pool, fields, methods
and commands contained in a typical Java .class file.

2) The Graph Manager is the component dedicated to
building the dependency graph. From the JavaClass object
extracted by the System Reconstructor, it is possible to know
the system classes, packages and references which link to
them. These elements are all included in the dependency
graph through Tinkerpop. This component also manages the
initialization of the database and writes the dependency graph
in it.

3) The Metrics Engine computes R. Martin’s metrics [10],
used in the detection of the architectural smells. Moreover
this engine is entrusted with computing typical cohesion and
coupling metrics at the class level, such as Fan In, Fan
Out, CBO and LCOM [13]. To compute these metrics, this
component accesses the dependency graph and the results are
stored as attributes in the nodes representing the classes or
packages that the metrics refer to.

4) The Architectural Smell Engine contains the logic for
both architectural smell detection and filtering of false positive
instances. Every detection algorithm extracts a subgraph from
the whole dependency graph and works on it depending on

5http://tinkerpop.apache.org/gremlin.html
6http://neo4j.com/, Neo4j 2.3.2
7https://neo4j.com/developer/cypher/
8http://commons.apache.org/proper/commons-bcel, Apache BCEL 6.0

the elements which can be affected by the anomaly: classes
or packages. When a smell is detected, a new node of type
“smell” (called “supernode”) is created and linked to the nodes
involved in the detection. This makes easier to filter the results
in a second step, when necessary.

V. VALIDATION OF ARCAN RESULTS

Although in a previous work we experimented Arcan on
several projects [6], a more careful qualitative evaluation of
Arcan results performed by external tool developers other than
ourselves was never previously performed. In the following,
we report on our first attempts at this kind of validation on
the following two projects:

1) DICER9,10: a continuous architecting tool for data-
intensive applications (DIAs) that allows to quickly put to-
gether a model of a data-intensive application using known
DIA middleware such as Apache Spark, Apache Hadoop
MapReduce and Apache Storm. 2) Tower4Clouds11: a flexible,
self-adaptable and auto-configurable monitoring infrastructure
engineered for multi-cloud applications. Tower includes multi-
ple data-collectors that allow monitoring, collecting and sifting
from multiple data sources by means of a rule-based approach.

The evaluation was carried out by direct observation of
Arcan results. In particular, for each tool under study, 3 profes-
sional software designers experienced with the tool discussed
(separately) the Arcan evaluation-sheets line-by-line, quickly
checking the code and/or via available tool documentation and
deliverables to confirm/refute Arcan findings. These practitio-
ners reported on: (a) whether Arcan actually uncovered known
or unknown architecture issues; (b) whether the issues were
actually issues; (c) whether refactoring was needed or planned
following Arcan results. Reports were captured using in-line
comments directly on Arcan result plots – this data is freely
available online12 to encourage verifiability.

TABLE I
ANALYZED PROJECTS

Projects DICER Tower4Clouds
Version 0.1.0 0.3.1
Packages(NOP) 549 373
Classes(NOC) 13204 8820
Analyzed Component it.polimi.dice.dicer it.polimi

Packages(NOP) 9 7
Classes(NOC) 36 111

Size metrics for the projects are shown in Table I. The total
number of AS in the projects, and the evaluation of Arcan
detection performances is reported Table II. We report standard
Information Retrieval performance metrics, i.e., confusion
matrix elements and derivatives, like precision and recall.

We observed a precision of 100%, since Arcan found only
correct instances of architectural smells but developers repor-
ted 5 more architectural smells which are False Negatives.

9https://github.com/dice-project/DICER
10Some of the authors’ work is partially supported by the European

Commission grant no.644869 (H2020 - Call 1), DICE.
11http://deib-polimi.github.io/tower4clouds/docs/overview.html
12http://tinyurl.com/zpquemg



TABLE II
ARCHITECTURAL SMELLS IN THE ANALYZED COMPONENT

DICER Tower4Clouds
Total Architectural Smells 5 9

True Positive 3 6
False Positive 0 0
False Negative 2 3
True Negative 0 0

Precision(%) 100 100
Recall(%) 60 66
F-measure(%) 75 79,52

TABLE III
DETECTED ARCHITECTURAL SMELLS BY ARCAN

DICER Tower4Clouds
Cyclic Dependency (class) 636 439
Cyclic Dependency (package) 83 38
Unstable Dependency 305 123
Hub Like Dependency 1 3

Totals 1025 603

False Negatives were related to external components out of
the scope of the analysis of the tool.

As we can see from Table I, the developers focused their
attention on a component of the projects, and not on the AS
found in the entire projects: this is caused by the high number
of the detected AS. In particular, for the CD smell Arcan found
636 occurrences in DICER and 439 in Tower4Clouds (see
Table III). As a consequence, using followups and feedback
from the evaluation we decided to define a Severity Index for
the CD smell; the purpose of the index is to assist in the
identification of the most critical smells to be analyzed and
then removed first. The Severity Index is defined as follows:
it counts the number of vertices involved in a cycle and the
weight (number of occurrences) of every edge which forms
the cycle, then orders the instances of Cyclic Dependency
descending by the number of vertices in the cycle and the
maximum number of times the cycle occurs.

Moreover, the results of Arcan on the analysis of 8 projects
of the Qualitas Corpus, have been manually evaluated by three
Master students with a high background on the subject. They
found the tool installation very easy and the interface intuitive.
From this evaluation we got important hints on how to improve
Arcan results to remove possible false positive instances: (a)
the detected false positives for Hub Like Dependency smell
reflect abstract classes, interfaces and classes which implement
the Singleton design pattern; (b) the Cyclic Dependency smell
false positives reflect classes which implement Factory Method
design pattern and nested (hidden) classes. In the future we
shall use these insights to offer a more refined version of our
tool to better assist its usage in AS refactoring scenarios.

VI. CONCLUSION

In this paper, we introduced the Arcan tool for architec-
tural smells detection. The aim of Arcan is to support the
automatic analysis of software architecture through a graph
representation of data, providing support during the software

development and maintenance processes. Architectural smells
dig up complexity in the dependency graph as a bottleneck
referring to Hub Like AS, as the violation of the acyclic
dependency principle regarding Cyclic Dependency AS and
as the violation of stable dependency principle with respect
to Unstable Dependency AS. We offer an experimentation
on 2 projects developed in collaboration with industry - our
goal was to validate Arcan results and get feedback by the
developers/maintainers of analysed projects.

In the future, we plan to investigate how architectural smells
evolve in the history of a project and how they affect the over-
all technical debt. Moreover, we aim to define a new technical
debt index more focused on architectural issues [14]. We
currently detect only three AS, we are interested to detect other
architectural smells, also not strictly related to dependency
issues and include a new component devoted to the suggestion
of the refactoring steps to remove the architectural smells,
since their refactoring could be a critical task. In this context,
we aim also to identify the most critical ones exploiting our
Severity Index in order to provide some refactoring needs
estimations and to define other possible filters to remove false
positive instances [15]. Finally, we aim to study the impact that
the different CD shapes could have on architetcure erosion.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison Wesley, 1998.

[2] J. van Gurp and J. Bosch, “Design erosion: problems and causes,”
Journal of Systems and Software, vol. 61, no. 2, pp. 105–119, 2002.

[3] L. de Silva and D. Balasubramaniam, “Controlling software architecture
erosion: A survey,” J. Syst. and Software, vol. 85, no. 1, 2012.

[4] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, Apr. 2006.

[5] N.-L. Tran, S. Skhiri, A. Lesuisse, and E. Zimanyi, “Arom: Processing
big data with data flow graphs and functional programming.” in Cloud-
Com. IEEE Computer Society, 2012, pp. 875–882.

[6] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Proc. of the 32nd Intern.
Conf. Soft. Maint. and Evol. (ICSME 2016). USA: IEEE, Oct. 2016.

[7] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in Proc. 12th
Work. Conf. Soft. Arch. (WICSA 2015), Montreal, Canada, 2015.

[8] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa, “Sup-
porting the identification of architecturally-relevant code anomalies,” in
Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM 2012), Sept 2012, pp. 662–665.

[9] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai, “En-
hancing architectural recovery using concerns,” in Proc. 26th IEEE/ACM
Intern.Conf.Aut.Soft.Engin.(ASE 2011), USA, Nov. 2011.

[10] R. C. Martin, “Object oriented design quality metrics: An analysis of
dependencies,” ROAD, vol. 2, no. 3, Sept–Oct 1995.

[11] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, “On
the shape of circular dependencies in java programs,” in Proc. 23rd
Austr.Soft.Engin.Conf. (ASWEC 2014). Australia: IEEE, Apr. 2014.

[12] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells, 1st ed. Morgan Kaufmann, 2015.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476–493, 1994.

[14] F. Arcelli Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes
provided by tools: a preliminary discussion,” in Proc. of the 8th Intern.
Workshop on Managing Technical Debt (MTD 2016), 2016.

[15] F. Arcelli Fontana, V. Ferme, and M. Zanoni, “Poster: Filtering code
smells detection results,” in Proc. 37th International Conference on
Software Engineering (ICSE 2015). Florence, Italy: IEEE, May 2015.


