
ARCc: A Case for an Architecturally Redundant
Cache-coherence Architecture for Large Multicores

Omer Khan1,2, Henry Hoffmann2, Mieszko Lis2, Farrukh Hijaz1, Anant Agarwal2, Srinivas Devadas2

1University of Massachusetts, Lowell, MA, USA
2Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—This paper proposes an architecturally redundant
cache-coherence architecture (ARCc) that combines the directory
and shared-NUCA based coherence protocols to improve perfor-
mance, energy and dependability. Both coherence mechanisms
co-exist in the hardware and ARCc enables seamless transition
between the two protocols. We present an online analytical
model implemented in the hardware that predicts performance
and triggers a transition between the two coherence protocols
at application-level granularity. The ARCc architecture delivers
up to 1.6× higher performance and up to 1.5× lower energy
consumption compared to the directory-based counterpart. It
does so by identifying applications which benefit from the large
shared cache capacity of shared-NUCA because of lower off-chip
accesses, or where remote-cache word accesses are efficient.

I. INTRODUCTION

Four to eight general-purpose cores on a die are now

common across the spectrum of computing machinery [1],

and designs with many more cores are not far behind [2],

[3]. Pundits confidently predict thousands of cores by the

end of the decade [4]. The biggest challenge facing large-

scale multicores is convenience of programming. Today the

shared-memory abstraction is ubiquitous and some form of

cache coherence is required to keep a consistent view of data

among cores. Software can provide cache coherence, but at

the cost of programming complexity and loss of performance

because of limited observability and controllability into the

hardware. Therefore, multiprocessors and most recently single-

chip multicores support a uniform hardware-coherent address

space. In large-scale multicores lacking common buses, this

usually takes the form of directory-based coherence hardware.

Traditional directory-based cache coherence faces signifi-

cant challenges in the era of large-scale multicores; the most

significant one being the scalability challenge due to the off-

chip memory wall [4]. Today’s multicores integrate very large

on-chip caches to reduce the pressure of off-chip memory

accesses and improve data locality [1]. Directory-based co-

herence requires a logically centralized directory (typically

distributed physically) that coordinates sharing among the

per-core private caches, and each core-private cache must

negotiate shared or exclusive access to each cache line via a

complex coherence protocol. On-chip directories must equal a

significant portion of the combined size of the per-core caches,

as otherwise directory evictions will stress off-chip memory

and limit performance [5].

This work was funded by the U.S. Government under the DARPA UHPC
program. The views and conclusions contained herein are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

In addition to the complexity of the coherence protocol, the

performance of the directory-based coherence architecture is

impacted in the following ways: (i) the directory causes an

indirection leading to an increase in the cache miss access

latency for both producer and the consumer, (ii) the automatic

data replication of shared read data results in one address

being stored in many core-local caches, reducing the amount

of cache left for other data, thereby adversely impacting cache

miss rates, and (iii) a write to shared data or an on-chip

directory cache eviction requires invalidation of all shared

copies of the data, resulting in higher cache miss rates and

protocol latencies.

These shortcomings have been partially addressed by

shared-NUCA [6]; here, we consider a variant Distributed

Shared Cache (DSC) based architecture that ensures cache

coherence. (Note that DSC is similar to [7] and Tilera’s

TILE64 processor, but does not require operating system (OS)

or software support for coherence). The DSC architecture

unifies the per-core physically distributed caches into one large

logically shared cache, in its pure form keeping only one copy

of a given cache line on chip and thus steeply reducing off-

chip access rates compared to the directory-based coherence.

Under DSC, when a thread needs to access an address

cached on another core, the requesting core initiates a remote-

cache access to the core where the memory is allowed to be

cached. A two-message round trip via the on-chip interconnect

ensures any memory load or store can be successfully executed

for the data cached on a remote core. This offers a tradeoff:

where a directory-based protocol would take advantage of

spatial and temporal locality by making a copy of the block

containing the data in the local cache, DSC must repeat

the round trip for every remote access to ensure sequential

consistency; on the other hand, a round trip 2-message pro-

tocol is much cheaper (in terms of latency) than a 3-party

communication of the directory-based protocol. However, the

performance of DSC is primarily constrained by the placement

of data; if the requested data is not locally cached, on-chip

network latencies add to the cost of accessing remote memory.

Various S-NUCA proposals have therefore leveraged data

migration and replication techniques previously explored in

the NUMA context (e.g., [8]) to move private data to its owner

core and replicate read-only shared data among the sharers [9],

[10]; but while these schemes improve performance on some

kinds of applications, they still do not take full advantage of

spatio-temporal locality and may require directory coherence

to deliver the desired performance.

In this paper, we propose an architecturally redundant

Sampling period

D
irC

C
 à

 D
S

C

Application execution

DirCC

… DSC

Cache	 	

miss	 rate	

Performance	 predic2on	

hardware	

Remote-‐cache	 	

access rate	 3. Halt application

4. Initiate protocol transition

5. Resume application under DSC

1. Monitor application characteristics

…

Load App

Fig. 1. Key components of the ARCc Architecture.

cache-coherence architecture (ARCc) that combines the per-

formance advantages of both directory and DSC based co-

herence protocols by enabling these two independent and

heterogenous protocols to co-exist in the hardware. We present

architectural extensions to seamlessly transition between di-

rectory and DSC protocols at application granularity. Figure 1

shows the key components and mechanisms in the proposed

ARCc architecture. The x-axis shows the execution of a

multithreaded application on a multicore. Initially, the appli-

cation is initialized under the directory (DirCC) coherence

protocol. After initialization, a few application characteristics

are monitored at runtime for a short duration of time (the

sampling period in Figure 1). ARCc deploys an in-hardware

analytical model to concurrently predict the performance of

the DirCC and DSC protocols at application-level granularity.

The ARCc architecture delivers higher performance than either

DirCC or DSC protocols, because it trades off the impact of

higher cache miss rate under DirCC with lower cache miss

rate coupled with the remote-cache access rate under DSC.

When the online analytical model indicates a performance

gain of using DSC over DirCC, the hardware automatically

transitions from DirCC to DSC and continues execution. This

process is repeated whenever the operating system schedules

a new application to run on the multicore.

Simulations of a 128-core single-chip multicore show that,

depending on the application and on-chip cache capacity,

the ARCc architecture can significantly improve the overall

application performance (up to 1.6×) and energy consumption

(up to 1.5×) when compared to DirCC. Even better, ARCc

allows redundant coherence protocols to co-exist (that share

minimum hardware resources), and therefore enables a more

dependable architecture that guarantees functional correctness

and performance in the presence of alarming failures rates of

the future CMOS technologies [11].

II. BACKGROUND AND MOTIVATION

One of the key challenges for large-scale multicores is

to preserve a convenient programming model. The shared

memory abstraction is now ubiquitous but requires some form

of cache coherence. Because energy-performance efficiency is

a first-order challenge, we expect a multicore chip to be fully

distributed across tiles with a uniform address space shared by

all tiles (similar to the Tilera TileGx100 [12]). In our baseline

architecture, each tile in the chip communicates with others

via an on-chip network. Such physical distribution allows the

system layers to manage the hardware resources efficiently.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

Homed	

(striped	 data	

placement)	

Homed	

(applica8on	

optomized)	

S
p
e
e
d
u
p
s	
re
la
+
v
e
	 t
o
	 d
ir
e
ct
o
ry
	

ca
ch
e
	 c
o
h
e
re
n
ce
	 (
D
ir
C
C
)	

Fig. 2. DSC vs. DirCC performance of 256x256 2D FFT application using
the 64-core Tilera’s TILEPro64 Processor.

Each tile has an Intel Atom processor-like core with a

2-level L1/L2 instruction and data cache hierarchy. Under

private-L1, a directory protocol is responsible for coherence.

Although a shared-L2 caters to applications with large shared

working sets, many traditional multithreaded applications re-

quire larger private working sets, making private-L2 an attrac-

tive option [10]. Therefore, our baseline architecture utilizes a

private-L1/L2 for the DirCC configuration. On the other hand,

a shared-L1/L2 configuration unifies the physically distributed

per-core caches into one large logically shared cache. Because

only one copy of a cache line can be present on chip,

cache coherence is trivially ensured and a directory protocol

is not needed. The shared-L1/L2 organization is termed as

the Distributed Shared Cache (DSC) architecture. Because

multicores are expected to be critically constrained by limited

package pin density, we expect a small number of on-chip

memory controllers orchestrating data movement in and out of

the chip, therefore, limiting off-chip memory bandwidth [4].

To motivate the proposed ARCc architecture that combines

the performance benefits of directory and DSC protocols under

a unified architecture, we ran a 256x256 2D FFT application

using Tilera’s TILEPro64 processor. We ran three different

setups. First is cache coherence with directories (DirCC),

where the home directories are distributed with an OS hash

function. Second, homed memory (DSC) where each cache

line has a home cache (determined by the OS with a striped

hash function based data placement), where everyone can read

from the home cache (single-word reads), but the data can only

be cached in the home. Third is an optimization for the homed

memory DSC architecture (remote store programming (RSP)

details in [13]), where homes are determined by the application

such that only word-level remote writes are allowed. RSP

guarantees all loads to be local and minimum latency.

Figure 2 shows a non-optimized DSC architecture (naive

data placement statically assigned using striping, resulting in

high remote-cache access rate) that performs 1.23× worse

than the directory protocol for the FFT application. After

application-level modifications (as in RSP [13]), DSC is shown

to outperform DirCC for this application by 3.3×. This shows

that DSC is highly dependent on the application and it can

yield significant performance gains compared to DirCC. Our

proposed ARCc architecture specifically exploits the perfor-

mance benefits of DSC and DirCC protocols by intelligently

choosing the higher performing coherence protocol at runtime.

In what follows, we first present the details of the

ARCc architecture, our experimental methodology, and finally

simulation-based evaluation of the ARCc architecture.

On-‐chip	 interconnec-on	

network	

Router	

FETCH	

PC	

DECODE	

EXE	 UNIT	

MEMORY	

WR	 BACK	

TLB	

L1	 I-‐cache	
Remote-‐access	

Controller	

L1	 D-‐cache	

Directory	 	

Cache	

L2	 Cache	 (inclusive)	

R
e

g
is

te
r

F

ile
 Home

core	

Switch

Directory	

Controller	

Fig. 3. The architecture of a single ARCc tile with support for directory and
DSC cache coherence. The shaded blocks represent the components needed
to enable DSC and ARCc in addition to DirCC.

III. ARCHITECTURALLY REDUNDANT CACHE-COHERENCE

ARCC enables runtime transition between the two cache co-

herence protocols at application granularity, thereby enabling

coarse-grain redundancy with the goal of optimizing user-level

performance. In case one of the coherence mechanisms is

expected to yield degraded performance (cf. Figure 1), it is

disabled and the system transitioned to the alternate mecha-

nism. Figure 3 shows a tile-level view of the proposed ARCc

architecture. In addition to a directory controller and directory

cache orchestrating coherence at cache line granularity, the

DSC protocol requires a remote-access controller (RAC) in

each tile to allow accessing cache resources in another tile via

the interconnection network.

As shown in Figure 4, the system is composed of directories

for tracking actively shared cache lines, translation lookaside

buffers (TLB) with additional entry bits to track the home

core for memory addresses (note that DSC operates on the

OS-page granularity and each memory access looks up the

TLB to extract the core where the cache line is allowed

to be cached), and system registers to differentiate whether

an application is running under DirCC or DSC. By default,

each application is initialized to run under DirCC. However,

regardless of the coherence protocol, the system always en-

ables data placement for assigning a home core to each active

page. During runtime, an application’s progress is time-sliced

into two phases: a sampling period followed by a steady-

state period that lasts until the application executes. During

each sampling period, the system uses in-hardware profiling

to collect runtime parameters that are used to predict the

performance of the DirCC and DSC protocols. At the end

of the sampling period, if the application will substantially

benefit from transitioning the coherence protocol, the system

halts and initiates the transition mechanism and updates the

system registers. It is important to note that the application

executes normally during the sampling period and only halts

if the coherence protocol transition is triggered.

For each memory instruction, the core first consults the

system registers to discover the coherence protocol mode of

operation. If DSC enable is set, the TLB access stage of

the pipeline extracts the home core for that address. If the

memory address’ home core is on another tile, it is a core miss

Ways

S
e

ts

Directory Cache System
registers

Ways

S
e

ts

Translation
Lookaside Buffer

…

Fig. 4. The ARCc Architecture.

and a 2-message memory transaction is initiated to access the

remote cache hierarchy, otherwise, the local cache hierarchy

is accessed. If DirCC enable is set, the core simply initiates a

cache lookup in the local cache hierarchy and possibly consults

the directory to extract the requested data.

A. Protocol Transition Trigger Mechanism

The proposed framework for transitioning between DirCC

and DSC consists of two components: the online profiler and

the performance predictor. The online profiler concurrently

and non-invasively profiles certain aspects of the execution

characteristics during each sampling period. The performance

predictor collects the profiled application characteristics at the

end of the sampling period, and predicts whether to transition

from DirCC to DSC for that application.

By default, the application is loaded and initialized under

DirCC. The time axis is sub-divided into a sampling interval

followed by a longer steady-state interval (cf. Figure 1). The

online profilers are implemented in hardware to collect runtime

statistics during the sampling interval to concurrently estimate

the performance of the application under DirCC and DSC. At

the end of each sampling period, the system hardware uses the

following procedure to decide when/how to transition between

the coherence protocols.

if (DSC performance > DirCC performance)

Halt execution of the application code

Transition coherence protocol from DirCC to DSC

Update system registers to indicate ”DSC enable”

Continue execution of the application under DSC

else Continue execution of the application under DirCC

1) Performance Predictor: Estimating an application’s per-

formance on different cache coherence mechanisms based

on the observed application characteristics is a key step to

avoid expensive trial runs. To gain some intuition for where a

coherence mechanism can win on performance, we consider

the average memory latency (AML), a metric that dominates

program execution times with today’s fast cores and relatively

slow memories.

Under the DSC remote-cache access architecture, AML has

three components: cache access (for cache hits and misses),

off-chip memory access (for cache misses), and a 2-message

cost to access remote data (for core misses):

AMLDSC = cost$access,DSC +

rate$miss,DSC × cost$miss,DSC +

ratecore miss × costremote cache access

(1)

While cost$access,DSC mostly depends on the cache technology

itself, DSC improves performance by optimizing the other

variables: DSC is expected to significantly lower rate$miss,DSC

when compared to DirCC, and therefore, its AML primarily

depends on ratecore miss. costremote cache access depends on the

distance of the remote core from the requesting core; we

estimate an average under a particular interconnect technology.

ratecore miss is application dependent and must be measured

using an online profiler.

Under the directory-based architecture, AML has two key

components: cache access (for cache hits and misses), and

cache misses (including on-chip protocol costs, cache-to-cache

transfers and/or off-chip accesses).

AMLDirCC = cost$access,DirCC +

rate$miss,DirCC × cost$miss,DirCC

(2)

While cost$access,DirCC mostly depends on the cache tech-

nology itself, DirCC improves performance by optimizing

the rate$miss,DirCC. Both cost$miss,DirCC and rate$miss,DirCC are

application dependent and must be measured using an online

profiler.

We propose to use relative comparisons between equations 1

and 2 to predict when it is beneficial for an application to

switch from DirCC to DSC. Transitioning between the two

coherence protocols can be expensive, therefore, we only

allow a transition when our proposed online predictor shows

a performance advantage that amortizes the cost of protocol

transition. For this paper, we empirically fixed the transition

criterion to allow a protocol transition when predicted perfor-

mance advantage is in excess of 5%.

Four critical parameters need to be profiled at runtime

or otherwise estimated to accurately make a prediction

about switching coherence protocols at the application level:

(a) average round trip latency of remote-cache access, (b)

ratecore miss, (c) average cache miss latency under DirCC, and

(d) rate$miss,DirCC.

2) Online Profilers: Because the ARCc architecture always

starts an application under DirCC and may transition the

coherence protocol based on the performance predictor, the

average cache miss latency under DirCC, and rate$miss,DirCC

can be accurately profiled at runtime. The TLB contains the

home core information for each memory access, therefore for

DSC ratecore miss can also be precisely measured for every

memory access. Since the round trip latency of a remote-cache

access cannot be profiled in hardware, we estimate it using a

12×12 mesh network (we assume a 128 core multicore for this

study) with three-cycle-per-hop 128-bit flit pipelined routers,

and an average distance of 8 hops per transit; making the

round trip network transit cost 48 cycles. We deploy hardware

support to efficiently profile the average cache miss latency

under DirCC, rate$miss,DirCC, and ratecore miss.

Each core implements hardware support to instrument the

following parameters during the sampling period: (a) number

of memory accesses, (b) number of core misses (although core

misses are actually not initiated unless the DSC protocol is

activated, this parameter is profiled to predict the performance

of DSC during the sampling period), and (c) accumulated

latency of L2 misses. (a) is implemented using a 64-bit counter

that is incremented on every memory access. Core misses are

tracked when a memory access from a thread is to a home

core that is different from the core this thread is running on.

(b) is implemented using a 64-bit counter that is incremented

on each core miss. Finally, (c) is implemented using a 64-bit

register that is updated by accumulating the latency of each

L2 miss. Because the core is stalled and waiting for the L2

miss data, this register is updated using the core’s ALU. These

profiling registers are reset every time a new thread or a new

application is mapped to a core.

The computation cost of the performance prediction for

DirCC and DSC is mainly attributed to converting the profiled

data into parameters used to predict performance. We summa-

rize the performance prediction calculation in the following

equations:

DirCCPerf =

num cores

∑
i=1

accumulated latency o f L2 misses

num cores

∑
i=0

num o f memory accesses

DSCPerf =

48 cycles network transit×
num cores

∑
i=1

num of core misses

num cores

∑
i=0

num o f memory accesses

Assuming a 128 core processor, this requires approximately

384 accumulate, 1 multiply, and 2 divide operations. Since

the prediction is made only once every sampling interval, these

operations can be performed on the functional units already

present on the chip by stealing their idle slots. By starting

the process of estimating performance several thousands of

cycles before the end of the sampling period, the computation

for performance prediction can be completely hidden and will

not incur performance penalties.

B. Protocol Transition: DirCC → DSC

The final required component of the ARCc architecture is to

enable coherence protocol transition from DirCC to DSC when

the performance predictor indicates substantial performance

gains of using DSC over DirCC. Note that this transition is

initiated only once at the end of the sampling period for each

application. During the protocol transition phase, the execution

of the application is halted and the following procedure is

initiated by the hardware to transition the cache coherence

protocol.

A system wide message is sent to each core to flush all

modified data to the home core for that data. Flushing the data

to the home core has the advantage of avoiding unnecessary

off-chip memory accesses. Each L2 cache initiates a “cache

walk” procedure to scan all cache lines and check whether a

cache line is in modified state. If a cache line is in modified

state, a TLB lookup extracts the home core for that data and

a cache-to-cache transfer is initiated to move the cache line to

its home core. Note that on arrival at the home core’s cache,

if the cache line being replaced is itself in modified state,

then depending on the home core for that cache line, it is

either evicted to its home core or stored back to main memory.

Evictions to the home core may cause a cascade effect, but

the system will stabilize when all modified cache lines reach

their home cores. Because this procedure is implemented in

hardware, it is transparent to the operating system and the

application. At the end of the protocol transition, the system

registers are updated to disable DirCC and enable DSC.

The protocol transition phase is the only performance

penalty observed by the application and may need efficient

implementation. Our estimates for a 128-core processor with

256KB L2 cache per core show that a cache walk with 10%-

20% of the cache lines in modified state requires 50K to 100K

cycles overhead for transitioning coherence protocols.

IV. METHODS

We use Pin [14] and Graphite [15] to model the proposed

ARCc architecture as well as the DirCC and DSC baselines.

We implemented a tile-based multicore similar to Tilera’s

TILE-GX with 128 cores; various processor parameters are

summarized in Table I. We swept the per-tile L2 cache sizes

to characterize the performance and energy tradeoffs between

the proposed ARCc, DirCC, and DSC architectures. On-chip

directory caches (not needed for DSC) were set to sizes rec-

ommended by Graphite on basis of the total L2 cache capacity

in the simulated system. For all experiments using ARCc, we

fixed the sampling period to 5 million cycles. As discussed

in Section III-B, we modeled the overheads associated with

transitioning the coherence protocol from DirCC to DSC.

Our experiments used a set of SPLASH-2 benchmarks:

FFT, LU CONTIGUOUS, OCEAN CONTIGUOUS, RADIX, RAY-

TRACE, and WATER-N2. For the benchmarks for which

versions optimized for directory coherence exist (LU and

OCEAN [16]), we chose the versions that were most optimized

for DirCC. Each application has 128 threads and was run to

completion using the recommended input set for the number of

cores used. For each simulation run, we tracked the completion

time and cycles per instruction for each thread, the percentage

of memory accesses causing cache hierarchy misses, and

the percentage of memory accesses causing remote-cache

accesses.

A. Energy estimation

For energy, we assume a 32nm process technology and use

CACTI [17] to estimate the dynamic energy consumption of

the caches, routers, register files, and DRAM. The dynamic

energy numbers used in this paper are summarized in Ta-

ble II. We implemented several energy counters (for example

the number of DRAM reads and writes) in our simulation

framework to estimate the total energy consumption of running

SPLASH-2 benchmarks for DirCC, DSC and ARCc. Note that

DRAM only models the energy consumption of the RAM, and

the I/O pads and pins will only add to the energy cost of going

off-chip.

B. Data Placement for DSC

In standard S-NUCA architectures and our DSC variant,

data placement is key, as it determines the frequency and

distance of remote-cache accesses. Data placement has been

studied extensively in the context of NUMA architectures

(e.g., [8]) as well as more recently in the S-NUCA context

(e.g., [10]), the operating system controls memory-to-core

mapping via the existing virtual memory mechanism: when

a virtual address is first mapped to a physical page, the OS

!"#"$%&%#' (%)*+,'

!"#$%& '()&*+,"#-$#.&/,%012$&3*3$4*+$.&%*+24$,*%%5$&6"#$%&

7'&*+%0#568"+9-101&616:$&3$#&6"#$& ;(9'<&=>.&?9(,@1A&%$0&1%%"6*18B$&

7(&616:$&3$#&6"#$& C'<.&;(.&<?.&'().&(/<D&=>.&?,@1A&%$0&1%%"6*18B$&

!16:$&4*+$&%*E$&F&<?&GA0$%&

H4$60#*614&+$0@"#I& (J&K$%:.&LM&#"58+2.&'()G&N*0%&

(&6A64$%&3$#&:"3&OP&6"+0$+8"+Q&

J101&3416R+0&%6:R& S*#%0,0"56:.&?&=>&312$&%*E$&

J*#$60"#A&3#"0"6"4& KTHUV.&S544,R13&3:A%*6144A&-*%0#*G50$-&-*#$60"#*$%&

H+0#*$%&3$#&-*#$60"#A&F&C(/<.&/'(.&'=.&(=.&?=D&

;(,@1A&%$0&1%%"6*18B$&

K$R"#A& ;W&X>9%&G1+-@*-0:.&Y/+%&410$+6A&

TABLE I
SYSTEM CONFIGURATIONS USED.

!"#$"%&%'()(*&+,(&%&-./(

0%123%4'+%5&6(

7-3'&(&%&-./(

0%123%4'+%5&6(

8&'+394(

!"#$%&"'()$*"(+,-(./..0(./..,(12!34(125'(67'&%8(91:,1(;$&%(

!7<&"'(+,-(./.++(./..1(02!34(025'(67'&%8(+,-:,.(;$&%(

=$'">&7'?(>@>A"(+,-(B./+C4(./+-4(

./D94(./CD4(./C1E(

B./+C4(./+-4((

./14(./--4(./FE(

B-4(+94(,14(1.4(91E(GH(>@>A"4(

D,2I@?(@%%7>$@JK"(

L,(>@>A"(+,-(B./.D4(./.14(

./.-4(./+14(./,-E(

B./.,4(./.D4(

./.C4(./+,4(./,-E(

B+94(D,4(914(+,-4(,09E(GH(>@>A"4(

12I@?(@%%7>$@JK"(

L+(3@&@(>@>A"(+,-(./.D1(./.+C(+9(GH(M,2I@?(@%%7>$@JK"N(

OP2>A$6(=!QR(-(9/DDD(9/D,,(+(SH(!QR(

TABLE II
AREA AND ENERGY ESTIMATES.

chooses where the relevant page should be cached by mapping

the virtual page to a physical address range assigned to a

specific core. Since the OS knows which thread causes a page

fault, more sophisticated heuristics are possible: for example,

in a first-touch-style scheme, the OS can map the page to

the thread’s originating core, taking advantage of data access

locality to reduce the remote-access rate while keeping the

threads spread among cores. It is plausible to combine a first-

touch data placement policy [18], which maps each page to the

first core to access it, with judicious profiling-based placement

and replication of read-only shared data [10], making DSC an

attractive alternative for cache coherence. In this paper, we

consider a first-touch style data placement scheme, and defer

optimizations for data placement to future work.

C. Directory vs. Distributed Shared Cache (DSC) Coherence

Our baseline directory-based hardware cache coherence

architecture (DirCC) configures the L1/L2 caches private to

each tile and enables a sequentially consistent memory sys-

tem. A coherence controller utilizes a directory-based MOESI

protocol and all possible cache-to-cache transfers to manage

coherence for the associated address space regions. The DirCC

architecture implements a full-map physically distributed di-

rectory [19]. To keep track of data sharers and to minimize

expensive off-chip accesses, we deploy an on-chip directory

cache [5]. The directory cache is sized appropriately as a

function of the number of L2 cache entries tracked by the

coherence protocol. On a directory cache eviction, the entry

with the lowest number of sharers is chosen and all sharers

for that entry are invalidated.

The most performance sensitive aspect of DirCC is the

sizing and organization of the data and directory caches. A

directory cache conflict can result in evicting active cache

lines, causing an increase in off-chip memory accesses due to

data re-fetch. A key feature of DirCC is automatic replication

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

(
)
**
+,

-
.
"

'
&
"/
0
-
12
1/
"

%
3
"/
0
-
12
1/
"

4
"/
0
-
12
1/
"

%
"/
0
-
12
1"

5
6
7
"

(
)
**
+,

-
.
"

'
&
"/
0
-
12
1/
"

%
3
"/
0
-
12
1/
"

4
"/
0
-
12
1/
"

%
"/
0
-
12
1"

5
6
7
"

(
)
**
+,

-
.
"

'
&
"/
0
-
12
1/
"

%
3
"/
0
-
12
1/
"

4
"/
0
-
12
1/
"

%
"/
0
-
12
1"

5
6
7
"

(
)
**
+,

-
.
"

'
&
"/
0
-
12
1/
"

%
3
"/
0
-
12
1/
"

4
"/
0
-
12
1/
"

%
"/
0
-
12
1"

5
6
7
"

(
)
**
+,

-
.
"

'
&
"/
0
-
12
1/
"

%
3
"/
0
-
12
1/
"

4
"/
0
-
12
1/
"

%
"/
0
-
12
1"

5
6
7
"

(
)
**
+,

-
.
"

'
&
"/
0
-
12
1/
"

%
3
"/
0
-
12
1/
"

4
"/
0
-
12
1/
"

%
"/
0
-
12
1"

5
6
7
"

((8" 9:;7<=8" <7>?=;7<=8" @?5AB" @?C8@?7>" D?8>@+=&"

!
"
#"
$$
%
$&
'(
)
*
$%
+
(
,
&+
)
%
&&

#%
$"
+
-
%
&.
(
&/
0
$$
1)

"
*
2&
3
45
.#
46
0
.%
3
&7
4#
8
8
&

Fig. 5. Performance of full-map directory coherence is optimal compared to
the limited hardware sharer variants; as maximum allowed hardware sharers
per cache line are reduced the performance of DirCC drops because limiting
the S state only spreads sharing and therefore cache pollution over time.
On the other hand, DSC only allows a cache line to be cached in a single
tile, therefore increasing the total available cache capacity and effectively
dramatically reducing off-chip accesses.

of shared data that exploits temporal and spacial locality. On

the flip side, replication decreases the effective total on-chip

data cache size because, as the core counts grow, a lot of

cache space is taken by replicas and fewer lines in total can

be cached, which in turn can lead to an increase in off-chip

memory access rates and lower performance.

Figure 5 characterizes the performance of our full-map di-

rectory coherence implementation for 64KB L2 cache per core.

The data presented here is an average across all benchmarks.

Although at first blush it may seem plausible that reducing

the maximum number of allowed hardware sharers per cache

line may yield similar performance as the DSC counterpart, in

reality our results show that reducing the number of allowed

hardware sharers only spreads the sharing and therefore cache

pollution over time. On the other hand, DSC only allows a

cache line to be cached in a single tile, therefore trading off

cache capacity and policy with a communication protocol to

access remote data, effectively dramatically reducing off-chip

accesses. We observe that full-map DirCC and DSC enable the

most interesting tradeoffs in application performance. In the

next section, we show that our ARCc architecture detects and

exploits the performance advantage of transitioning between

DirCC to DSC protocols at application-level granularity.

V. EVALUATION

A. Cache Hierarchy Misses vs. Remote-cache Accesses

Figure 6 illustrates how the DSC and DirCC coherence

protocols differ in cache miss rates. Under DSC, which unifies

the per-core caches into one large logically shared cache and

does not replicate data in caches, cache miss rates not only

start lower to begin with, but also deteriorate much more

slowly as the cache capacity drops.

Although cache miss rates are a primary factor in deter-

mining overall application performance, non-uniform latency

remote-cache accesses in DSC mean that DSC performance

critically depends on how often and how far the remote access

messages must travel. This factor is highly dependent on the

application and the placement of its data in the per-core cache

slices: core miss rate (i.e., the fraction of memory references

0	

1	

2	

3	

4	

5	

6	

7	

256	 128	 64	 32	 16	

C
a
ch
e
	 h
ie
ra
rc
h
y
	 m

is
s	
ra
te
	

L2	 Cache	 per	 core	 (in	 Kilobytes)	

DirCC	

DSC	

ARCc	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

256	 128	 64	 32	 16	

C
o
re
	 m

is
se
s	
p
e
r	
m
e
m
o
ry
	

a
cc
e
ss
	

L2	 Cache	 per	 core	 (in	 Kilobytes)	

DSC	 ARCc	

Fig. 6. On the one hand, DirCC is highly sensitive to cache miss rates, while
DSC markedly lowers cache misses; on the other, DSC is highly dependent on
data placement, which dictates remote-cache access rates (a.k.a core misses).
The data presented in this figure is an average across all benchmarks.

-‐0.15	

-‐0.1	

-‐0.05	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	

0.5	

1	

1.5	

2	

2.5	

3	

FF
T	

LU
_C
O
NT
	

O
CE
AN
_C
O
NT
	

RA
DI
X	

RA
YT
RA
CE
	

W
AT
ER
-‐N
2	

GE
O
	 A
VG
.	

C
o
re
	 m

is
se
s	
p
e
r	
m
e
m
o
ry
	 a
cc
e
ss
e
s	

D
S
C
	 p
a
ra
ll
e
l	
co
m
p
le
0
o
n
	 0
m
e
	

re
la
0
v
e
	 t
o
	 D
ir
C
C
	

16KB	 L2$	

32KB	 L2$	

64KB	 L2$	

128KB	 L2$	

256KB	 L2$	

Remote-‐cache	 access	 rate	

Fig. 7. DSC performance compared to DirCC for various L2 cache sizes.

that result in remote-cache accesses) for DSC varies from less

than 3% in FFT to about 25% in RADIX, and we observe an

average of 14% remote-cache accesses (see Figure 7).

The ARCc architecture intelligently chooses the DirCC or

DSC coherence protocol to tradeoff the latency of the directory

3-party communication (of every cache hierarchy miss) with

the DSC round trip latency (of each remote-cache access).

Figure 6 shows that a 256KB L2 cache lowers the cache

hierarchy miss rates of DirCC to under 1% and the cost of

(on average 14%) remote-cache accesses for DSC exceeds the

latencies associated with cache misses under DirCC. There-

fore, ARCc only transitions from DirCC to DSC for a few

select applications. As the per-core L2 cache size is reduced,

the cache miss rates of DirCC increase sharply compared

to DSC, but the remote-cache accesses under DSC remain

relatively constant. This results in more applications choosing

DSC as the coherence protocol under ARCc. Eventually,

at 16KB L2 cache per core, we observe that most of the

applications transition to DSC under ARCc as the benefits

of reducing cache miss rates (and associated communication

latencies) outweigh the latencies associated with the remote-

cache accesses.

B. Performance Advantage of ARCc

The key contribution of the proposed ARCc architecture is

its performance advantage over DirCC and DSC protocols.

To understand where ARCc wins in performance, we evaluate

the parallel completion time (PCT) of DSC relative to DirCC.

Figure 7 shows the PCT for various per-core L2 cache

configurations. Because DSC does not allow data replication

and utilizes the available cache capacity more efficiently, the

performance for DSC is on average superior to DirCC at

smaller per-core L2 cache configurations. The remote-cache

accesses (a.k.a core misses) primarily dictate the memory

latency and performance under DSC. Results show that this

factor is highly dependent on the application and the data

placement in the per-core caches; applications with higher

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

FF
T	

LU
_C
O
NT
	

O
CE
AN
_C
O
NT
	

RA
DI
X	

RA
YT
RA
CE
	

W
AT
ER
-‐N
2	

GE
O
	 A
VG
.	

A
R
C
c	
p
e
rf
o
rm

a
n
ce
	 g
a
in
s	
	

re
la
2
v
e
	 t
o
	 D
ir
C
C
	

16KB	 L2$	

32KB	 L2$	

64KB	 L2$	

128KB	 L2$	

256KB	 L2$	

Fig. 8. ARCc performance compared to DirCC for various L2 cache sizes.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

FF
T	

LU
_C
O
NT
	

O
CE
AN
_C
O
NT
	

RA
DI
X	

RA
YT
RA
CE
	

W
AT
ER
-‐N
2	

GE
O
	 A
VG
.	 A

R
C
c	
d
y
n
a
m
ic
	 e
n
e
rg
y
	 r
e
d
u
c0
o
n
	

re
la
0
v
e
	 t
o
	 D
ir
C
C
	

16KB	 L2$	

32KB	 L2$	

64KB	 L2$	

128KB	 L2$	

256KB	 L2$	

Fig. 9. ARCc energy compared to DirCC for various L2 cache sizes.

core miss rates tend to perform worse under DSC, specifically

when the corresponding cache hierarchy miss rates are low

under DirCC. For example, the average cache hierarchy miss

rate for DirCC under 16KB per-core L2 cache is 6% and

most applications tend to perform better under DSC where

the latency cost of round trip remote-cache accesses results

in lower memory access latency compared to the 3-party

directory protocol for the (6%) cache misses under DirCC.

The proposed ARCc architecture intelligently selects (cf.

Section III-A) the appropriate coherence protocol at per-

application granularity and as a result delivers higher perfor-

mance relative to either DSC or DirCC protocols. Figure 8

shows the performance advantage of ARCc relative to DirCC

for several per-core L2 cache configurations. The point where

DSC outperforms DirCC is different for each application and

also depends on the available cache capacity; this motivates

our ARCc architecture and automatic DirCC to DSC coher-

ence protocol transition.

FFT has the lowest core miss rate for DSC, and a high

cache miss rate for DirCC, resulting in DSC outperforming

DirCC by a wide margin. Under ARCc, our performance

model switches to DSC for all L2 cache configurations in this

application. On the other hand, WATER-N2 exhibits a mixed

behavior, where the cache miss rate under DirCC ranges from

4% (16KB L2) to less than 1% (256KB L2). Because DSC

has 15% remote-cache accesses, the small cache miss rate of

DirCC (less than 1% under 256KB per-core L2) allows it to

outperform DSC. On the other hand, the 4% cache hierarchy

miss rate of 16KB per-core L2 results in several round trip

messages due to 3-party communication under DirCC. The

latency of 15% remote-cache access round trips is offset by

much lower (under 1%) cache hierarchy misses resulting in

superior performance for DSC relative to DirCC.

In summary, our results show that ARCc always predicts

the better performing coherence protocol correctly under the

proposed online analytical model. As a result ARCc delivers

1.6× (for 16KB L2) to 1.15× (for 256KB L2) performance

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

256	 128	 64	 32	 16	

P
e
rf
o
rm

a
n
ce
	 r
e
la
,
v
e
	 t
o
	

D
ir
C
C
	 a
t	
2
5
6
K
B
	 p
e
r-‐
co
re
	 L
2
	

L2	 Cache	 per	 core	 (in	 Kilobytes)	

DirCC	

DSC	

ARCc	

Fig. 10. Performance averaged over all benchmarks as cache sizes decrease
for 128-core multicore.

advantage over the directory-based DirCC protocol.

C. Dynamic Energy Advantage of ARCc

Since energy consumption is a critical factor in future

single-chip processors, we employed an energy model (cf.

Section IV-A) to estimate the dynamic energy consumed by

the ARCc, DSC and DirCC coherence protocols. On the

one hand, remote-cache accesses incur dynamic energy costs

due to increased traffic in the on-chip network; on the other

hand, dramatic reductions in off-chip accesses equate to very

significant reductions in DRAM access energy.

Figure 9 shows that energy consumption depends on each

application’s access patterns. For FFT, for example, which

incurs crippling rates of eviction invalidations under DirCC,

the energy expended by the coherence protocol messages

and DRAM references far outweigh the cost of energy used

by remote-cache accesses. ARCc chooses to switch to the

DSC protocol and exploits energy benefits in addition to the

performance gains. On the other extreme, the mostly on-

chip data usage and read-only paradigm of RAYTRACE allows

DirCC to efficiently keep data in the per-core caches and

consume far less energy (in addition to performance gains)

compared to DSC.

In summary, our results show that in addition to perfor-

mance, ARCc also exploits the energy advantage of DSC.

For all applications and per-core cache sizes, where ARCc

chooses to switch from DirCC to DSC, dynamic energy

benefits materialize. Overall, ARCc delivers 1.5× (for 16KB

L2) to 1.05× (for 256KB L2) dynamic energy advantage over

the directory-based DirCC protocol.

D. Overall Performance and Dependability

Figure 10 shows, for a 128-core processor, how the ARCc

architecture performs on average as the capacity of caches

is reduced. Although the DSC protocol performs better at

lower cache sizes and DirCC performs better at higher cache

sizes, the combined ARCc architecture responds to system

conditions to select the best combination on a per-application

granularity, and outperforms both baselines. We observe that

ARCc becomes more advantageous when the system cache

sizes are no longer sized exactly to deliver maximum perfor-

mance for a particular protocol.

Even under our default 256KB per-core L2 cache, ARCc

picks the best performing protocol and delivers an average of

8% performance gain over DirCC protocol. At 128KB and

64KB per-core L2 cache sizes, ARCc incurs 3% and 27%

performance loss respectively, whereas, the DirCC counterpart

would have experienced in excess of 30% and 50% perfor-

mance loss compared to the default 256KB L2 cache per core.

Finally, when the L2 cache is sized at 32KB or 16KB per

core, DirCC performs significantly worse than DSC, whereas

ARCc matches or performs slightly better than DSC. Thus,

the ARCc architecture exploits application-level asymmetri-

cal behaviors to boost system performance and consistently

outperforms both DSC and DirCC coherence mechanisms.

The fact that ARCc allows two redundant and independent

coherence protocols to co-exist in hardware can be exploited

to improve dependability; we will explore this in future work.

VI. RELATED WORK

Although directory-based coherence protocols have become

the de facto standard to keep on-chip caches coherent, they

have certain drawbacks such as frequent indirections due

to the directory storage overhead and protocol complexity.

Therefore, researchers have recently proposed several alter-

native architectures to simplify the hardware requirements for

cache coherence. The COHESION architecture [20] combines

hardware-managed and software-managed coherence domains

at fine-grained granularity. COHESION offers reduced mes-

sage traffic and does not require an on-chip directory when

software coherence is used. Our ARCc architecture is superior

to COHESION in that it utilizes a more efficient hardware

alternative to ensure architectural redundancy. Because ARCc

is all-hardware, it also does not require any software changes.

Pugsley et al. [21] proposed SWEL, a directory-less coher-

ence protocol. The SWEL protocol replaces the directory with

a much smaller bookkeeping structure that tracks private, read-

only and shared read/write cache lines. The read-only data is

allowed to be replicated in the L1 caches and the read/write

data is only allowed to be present in the L2 cache that is shared

by all cores. SWEL greatly reduces the number of coherence

operations, but it also requires a fallback broadcast-based

snooping protocol when infrequent coherence is needed. Their

results show that SWEL can improve performance over the

directory-based counterpart when an application has frequent

read-write data sharing.

The ARCc architecture proposes distributed shared cache

(DSC) based coherence as an alternative, architecturally re-

dundant mechanism to directory-based coherence. The DSC

protocol is similar to the shared-memory mechanism for

coherence proposed by Fensch and Cintra [7]. They argue that

directory-based hardware cache coherence is not needed and

that the OS can efficiently manage the caches and keep them

coherent. The L1s are kept coherent by only allowing one L1

to have a copy of any given page of memory at a time.

VII. FUTURE WORK

In this paper, we have presented the ARCc architecture

that allows a one-way transition from directory to DSC based

coherence at application-level granularity. Hence, only one

application can run at a time. In the future we plan to

evaluate the ARCc architecture at the granularity of phases

within application, OS-pages, as well as cache lines. Novel

static and dynamic methods will be explored that correctly

predict when DSC is preferable to the directory protocol. After

prediction, efficient transitions need to be made between the

two protocols.

VIII. CONCLUSION

In this paper we have identified the need for architecturally

redundant cache-coherence in large-scale multicore proces-

sors. We have proposed a novel cache coherence architecture

(ARCc) that provides architectural redundancy for maintaining

coherence across on-chip caches. ARCc combines traditional

directory-based coherence with a remote-cache-access based

coherence architecture (DSC) to ensure significant perfor-

mance and energy gains. ARCc allows these two independent

and heterogeneous coherence protocols to co-exist in hardware

and enables a more dependable architecture.

REFERENCES

[1] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta,
and S. Vora, “A 45nm 8-core enterprise Xeon R© processor,” in A-SSCC,
2009, pp. 9–12.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown et al., “TILE64 - processor:
A 64-Core SoC with mesh interconnect,” in ISSCC, 2008, pp. 88–598.

[3] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain et al., “An 80-Tile Sub-100-W
TeraFLOPS processor in 65-nm CMOS,” IEEE J. Solid-State Circuits,
vol. 43, no. 1, pp. 29–41, 2008.

[4] S. Borkar, “Thousand core chips: a technology perspective,” in DAC,
2007, pp. 746–749.

[5] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,” in
International Conference on Parallel Processing, 1990.

[6] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in ASP-

LOS, 2002.
[7] C. Fensch and M. Cintra, “An os-based alternative to full hardware

coherence on tiled cmps,” in International Conference on High Perfor-

mance Computer Architecture, 2008.
[8] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating

system support for improving data locality on cc-numa compute servers,”
SIGPLAN Not., vol. 31, no. 9, pp. 279–289, 1996.

[9] M. Zhang and K. Asanović, “Victim replication: maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in ISCA, 2005.

[10] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in ISCA, 2009.

[11] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” in IEEE Micro,
2005.

[12] http://www.tilera.com, “Tile-gx processor family: Product brief,” 2011.
[13] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote Store Program-

ming A Memory Model for Embedded Multicore,” in HiPEAC, 2010.
[14] M. M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazel-

wood, A. Jaleel, C. Luk, G. Lyons, H. Patil et al., “Analyzing parallel
programs with pin,” Computer, vol. 43, pp. 34–41, 2010.

[15] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in HPCA, 2010, pp. 1–12.

[16] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: characterization and methodological considerations,” in ISCA,
1995.

[17] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchies,” in ISCA, 2008,
pp. 51–62.

[18] M. Marchetti, L. Kontothanassis, R. Bianchini, and M. Scott, “Using
simple page placement policies to reduce the cost of cache fills in
coherent shared-memory systems,” in IPPS, 1995.

[19] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based
cache coherence in large-scale multiprocessors,” in COMPUTER, 1990.

[20] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: A hybrid memory model for accelerators,” in International

Conference on Computer Architectures, 2010.
[21] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,

“Swel: Hardware cache coherence protocols to map shared data onto
shared caches,” in International Conference on Parallel Architectures

and Compilation Techniques, 2010.

