
EPiC Series in Computing

Volume 54, 2018, Pages 23–52

ARCH18. 5th International Workshop on Applied
Verification of Continuous and Hybrid Systems

ARCH-COMP18 Category Report:

Continuous and Hybrid Systems with

Linear Continuous Dynamics

Matthias Althoff1, Stanley Bak2, Xin Chen3, Chuchu Fan9, Marcelo Forets7,

Goran Frehse4, Niklas Kochdumper1, Yangge Li9, Sayan Mitra9, Rajarshi Ray5,

Christian Schilling8, and Stefan Schupp6

1 Technische Universität München, Department of Informatics, Munich, Germany
althoff@in.tum.de

2 Safe Sky Analytics, Manlius, NY, United States
stanleybak@gmail.com

3 University of Dayton, Dayton, OH, United States
xchen4@udayton.edu

4 Univ. Grenoble Alpes, Grenoble, France
goran.frehse@imag.fr

5 National Institute of Technology Meghalaya, Shillong, India.
rajarshi.ray@nitm.ac.in

6 RWTH Aachen University, Theory of hybrid systems, Aachen, Germany
stefan.schupp@cs.rwth-aachen.de

7 UTEC Universidad Tecnológica, Uruguay
marcelo.forets@utec.edu.uy

8 University of Freiburg, Freiburg, Germany
schillic@informatik.uni-freiburg.de

9 University of Illinois at Urbana-Champaign, Champaign, IL, United States
{mitras,cfan10,li213}@illinois.edu

Abstract

This report presents the results of a friendly competition for formal verification of con-
tinuous and hybrid systems with linear continuous dynamics. The friendly competition
took place as part of the workshop Applied Verification for Continuous and Hybrid Sys-
tems (ARCH) in 2018. In its second edition, 9 tools have been applied to solve six different
benchmark problems in the category for linear continuous dynamics (in alphabetical or-
der): CORA, CORA/SX, C2E2, Flow*, HyDRA, Hylaa, Hylaa-Continuous, JuliaReach,
SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the
types of benchmarks they are particularly suited for. Due to the diversity of problems,
we are not ranking tools, yet the presented results probably provide the most complete
assessment of tools for the safety verification of continuous and hybrid systems with linear
continuous dynamics up to this date.

G. Frehse (ed.), ARCH18 (EPiC Series in Computing, vol. 54), pp. 23–52

ARCH-COMP18 Linear Dynamics Althoff et al.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with linear continuous dynamics aims at providing a landscape of the cur-
rent capabilities of verification tools. We would like to stress that each tool has unique
strengths—not all of the specificities can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others. The obtained results have
been verified by an independent repeatability evaluation. To establish further trustworthi-
ness of the results, the code with which the results have been obtained is publicly available
at gitlab.com/goranf/ARCH-COMP.

This report summarizes results obtained in the 2018 friendly competition of the ARCH
workshop1 for verifying hybrid systems with linear continuous dynamics

ẋ(t) = Ax(t) +Bu(t),

where A ∈ R
n×n, x ∈ R

n, B ∈ R
n×m, and u ∈ R

m. Participating tools are summarized in
Sec. 2. The results of our selected benchmark problems are shown in Sec. 3 and are obtained
on the tool developers’ own machines. Thus, one has to factor in the computational power of
the processors used, summarized in Appendix A, as well as the efficiency of the programming
language of the tools.

The goal of the friendly competition is not to rank the results, but rather to present the
landscape of existing solutions in a breadth that is not possible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. For all results reported by each
participant, we have run an independent repeatability evaluation.

The selection of the benchmarks has been conducted within the forum of the ARCH website
(cps-vo.org/group/ARCH), which is visible for registered users and registration is open for
anybody. All tools presented in this report use some form of reachability analysis. This,
however, is not a constraint set by the organizers of the friendly competition. We hope to
encourage further tool developers to showcase their results in future editions.

2 Participating Tools

The tools participating in the category Continuous and Hybrid Systems with Linear Continuous
Dynamics are introduced subsequently in alphabetical order.

CORA The tool COntinuous Reachability Analyzer (CORA) [1, 3, 4] realizes techniques for
reachability analysis with a special focus on developing scalable solutions for verifying hybrid
systems with nonlinear continuous dynamics and/or nonlinear differential-algebraic equations.
A further focus is on considering uncertain parameters and system inputs. Due to the modular

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

24

https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH

ARCH-COMP18 Linear Dynamics Althoff et al.

design of CORA, much functionality can be used for other purposes that require resource-
efficient representations of multi-dimensional sets and operations on them. CORA is imple-
mented as an object-oriented MATLAB code. The modular design of CORA makes it possible
to use the capabilities of the various set representations for other purposes besides reachability
analysis. CORA is available at http://www6.in.tum.de/Main/SoftwareCORA.

CORA/SX CORA/SX is a port of the basic zonotope reachability algorithm from the CORA
MATLAB toolbox to SpaceEx. It varies slightly in that some matrix computations (which
approximate the input over one time step) use SpaceEx code instead of an over-approximation
that is based on intervals.

C2E2 C2E2 (Compare-Execute-Check-Engine) [21, 22] is a tool for verifying bounded-time
invariant properties for hybrid system with both linear or nonlinear dynamics, and discrete
transitions with guards and resets. The tool implements a simulation-based approach for over-
approximating the reachable states. The input hybrid automata and the unsafe set has to be
represented in an XML format. The new version of C2E2 used for these experiments (to be
released in Fall 2018) comes with a model editor that can compose hybrid automata and a built-
in plotter. C2E2 and related publications are available from https://publish.illinois.edu/

c2e2-tool/.

Flow* The tool Flow* [18, 17] computes Taylor model (TM) flowpipes as overapproximations
for continuous and hybrid system reachable sets. For systems defined by Linear Time-Invariant
(LTI) and Linear Time-Varying (LTV) ODEs which could be uncertain, Flow* computes sym-
bolic flowpipes which are essentially TM overapproximations for the exact flow mappings from
initial sets to the reachable sets in different time intervals. The overapproximation error is
only proportional to δk+1 where δ is the time stepsize and k is the TM order in use. Unlike
convex set representations, symbolic flowpipes are usually more time-costly to obtain, however,
they are only ODE related and can be directly reused in a safety verification task, i.e., with a
different initial set or unsafe condition. Besides, symbolic flowpipes can be used in generating
relational abstractions [30, 19] and real-time monitoring [20] for dynamical systems. In the
current version, Flow* simply treats all real numbers as intervals in order to take roundoff
errors into account in all computational tasks. However it sometimes leads to serious issues in
numerical stability especially in the operations on large-scale matrices. This year, we are going
to release the first version of Flow* API such that the tool can be used in a more flexible way.
For example, various integration, intersection and aggregation algorithms are exposed to the
users, the roundoff errors produced in a function may be ignored when the inputs are rational
numbers. In the future, we also plan to design more sophisticated methods to track roundoff
errors in matrix computation. Flow* is available at flowstar.org.

HyDRA The Hybrid systems Dynamic Reachability Analysis (HyDRA) tool implements
flow-pipe construction based reachability analysis for linear hybrid automata. The tool is built
on top of HyPro [31] available at ths.rwth-aachen.de/research/projects/hypro/, a C++ library
for reachability analysis. HyPro provides different implementations of set representations tai-
lored for reachability analysis such as boxes, convex polyhedra, support functions, or zono-
topes, all sharing a common interface. This interface allows one to easily exchange the utilized
set representation in HyDRA. We use this to extend state-of-the art reachability analysis by
CEGAR-like parameter refinement loops, which (among other parameters) allow us to vary the

25

http://www6.in.tum.de/Main/SoftwareCORA
https://publish.illinois.edu/c2e2-tool/
https://publish.illinois.edu/c2e2-tool/
flowstar.org
http://ths.rwth-aachen.de/research/projects/hypro/

ARCH-COMP18 Linear Dynamics Althoff et al.

used set representation. Furthermore, HyDRA incorporates the capability to explore different
branches of the search tree in parallel. Being in an early state of development, HyDRA already
shows promising results on some benchmarks, although there is still room for improvements.
An official first release is planned.

Hylaa The tool Hylaa [9, 10] computes the simulation-equivalent reachable set of states for
a hybrid system with linear ODEs. That is, for a given model, Hylaa can compute all the
states reached by any fixed-step simulation. This is a bit different than full reachability as it
does not reason between time steps (it checks safety at discrete times), and furthermore time-
varying inputs are considered to be constant between time steps (not varying at any point in
time) [11]. If an unsafe state is reachable, however, Hylaa can produce a counter-example trace
with an initial point and set of inputs to apply at each time step in order to reach an unsafe
state. Hylaa uses numerical simulations to compute the matrix exponential, and LP solving to
check for intersections with guards and unsafe states. Hylaa is a Python-based tool (with core
computational components being libraries written in other languages), which can produce live
plots during computation, as well as images and video files of projections of the reachable set.
Hylaa’s website is http://stanleybak.com/hylaa. The version of Hylaa used in this year’s
competition is available at https://github.com/stanleybak/hylaa/releases/tag/v1.1.

This year we also developed a version of Hylaa tailored to continuous affine systems (without
discrete switches) [12]. This version, which we refer to as Hylaa-Continuous, uses explicit initial
and output spaces to reduce the number of simulations needed to compute linear projections of
the matrix exponential. It also supports Krylov subspace methods when systems are extremely
large, but this feature was not used in this year’s competition as the benchmarks are of modest
size. The implementation used is available in the continuous branch of the Hylaa repository,
https://github.com/stanleybak/hylaa/releases/tag/continuous-May18.

JuliaReach JuliaReach is a software framework for reachability computations of dynamical
systems, available at http://juliareach.org. It is written in Julia, a modern high-level
language for scientific computing. Currently JuliaReach can handle continuous affine systems.
The reachability algorithm uses a block decomposition technique presented in [14]. Here we
partition the state space, project the initial states to subspaces, and propagate these low-
dimensional sets in time. This allows us to perform otherwise expensive set operations in low
dimensions. Furthermore, if the output does not depend on all dimensions, we can effectively
skip the reach set computation for the respective dimensions. In the evaluation we used two-
dimensional blocks, for which our implementation supports epsilon-close approximation; for
box approximation we can handle arbitrary partitions. For the set computations we use the
LazySets library, which is also part of the JuliaReach framework. LazySets exploits the principle
of lazy (on-demand) evaluation and uses support functions to represent lazy sets. JuliaReach
also comes with SX, a parser for SX (SpaceEx format) model files. For next year we plan
to add support for hybrid dynamics, which will require a careful balance between low- and
high-dimensional computations and adaptive choice of the partition.

SpaceEx SpaceEx is a tool for computing reachability of hybrid systems with complex, high-
dimensional dynamics [24, 25, 23]. It can handle hybrid automata whose continuous and jump
dynamics are piecewise affine with nondeterministic inputs. Nondeterministic inputs are par-
ticularly useful for modeling the approximation error when nonlinear systems are brought to
piecewise affine form. SpaceEx comes with a web-based graphical user interface and a graphical
model editor. Its input language facilitates the construction of complex models from automata

26

http://stanleybak.com/hylaa
https://github.com/stanleybak/hylaa/releases/tag/v1.1
https://github.com/stanleybak/hylaa/releases/tag/continuous-May18
http://juliareach.org

ARCH-COMP18 Linear Dynamics Althoff et al.

components that can be combined to networks and parameterized to construct new components.
The analysis engine of SpaceEx combines explicit set representations (polyhedra), implicit set
representations (support functions) and linear programming to achieve a maximum of scala-
bility while maintaining high accuracy. It constructs an overapproximation of the reachable
states in the form of template polyhedra. Template polyhedra are polyhedra whose faces are
oriented according to a user-provided set of directions (template directions). A cover of the
continuous trajectories is obtained by time-discretization with an adaptive time-step algorithm.
The algorithm ensures that the approximation error in each template direction remains below
a given value. SpaceEx is available at http://spaceex.imag.fr.

XSpeed The tool XSpeed implements algorithms for reachability analysis for continuous and
hybrid systems with linear dynamics. The focus of the tool is to exploit the modern multicore
architectures and enhance the performance of reachability analysis through parallel computa-
tions. XSpeed realizes two algorithms to enhance the performance of reachability analysis of
purely continuous systems. The first is the parallel support function sampling algorithm and
the second is the time-slicing algorithm [28, 29]. The performance of hybrid systems reacha-
bility analysis is enhanced using an adaptation of the G.J. Holzmann’s parallel BFS algorithm
in the SPIN model checker, called the AGJH algorithm [27]. In addition, a task parallel and
an asynchronous variant of AGJH are also implemented in the tool. XSpeed is available at
http://xspeed.nitmeghalaya.in/

3 Verification of Benchmarks

For the 2018 edition, we have decided to keep all benchmarks from our 2017 friendly competition
[2], but solve them with our updated tools and tools that did not participate in 2017. In addition,
we have added three new benchmarks for 2018: a model of the international space station, a
spacecraft rendezvous, and an automotive powertrain. We first discuss special features of each
benchmark, different treatment of uncertain inputs, and different paths to successfully verifying
a benchmark. Afterwards, the verification of each benchmark is presented in detail.

Special Features We briefly list the special features of each benchmark:

• Space station benchmark from [32]: This is a purely continuous benchmark with 270 state
variables and three inputs. This year, it is the benchmark with the largest amount of
continuous state variables (in 2017, the building benchmark with 48 state variables was
the benchmark with the most continuous state variables).

• Spacecraft benchmark from [15]: This benchmark has a hybrid dynamics and is a lin-
earization of a benchmark in the other ARCH-COMP category Continuous and Hybrid
Systems with Nonlinear Dynamics. Consequently, the reader can observe the difference in
computation time and verification results between the linearized version and the original
dynamics.

• Powertrain benchmark from [5, Sec. 6]: This is a hybrid system for which one can select
the number of continuous state variables and the size of the initial set. Up to 51 continuous
state variables are considered.

27

http://spaceex.imag.fr
http://xspeed.nitmeghalaya.in/

ARCH-COMP18 Linear Dynamics Althoff et al.

• Building benchmark from [32, No. 2]: A purely continuous linear system with a medium
number of continuous state variables; the benchmark does not only have safety properties,
but also ones that should be violated to check whether the reachable sets contain certain
states.

• Platooning benchmark from [13]: A rather small number of continuous state variables is
considered, but one can arbitrarily switch between two discrete states: a normal operation
mode and a communication-failure mode.

• Gearbox benchmark from [16]: This benchmark has the smallest number of continuous
state variables, but the reachable set does not converge to a steady state and the reachable
set for one point in time might intersect multiple guards at once.

Types of Inputs Generally, we distinguish between three types of inputs:

1. Fixed inputs, where u(t) is precisely known. If in addition, u(t) = const, the linear
system becomes an affine system ẋ(t) = Ax(t) + b. For instance, the gearbox benchmark
has affine dynamics.

2. Uncertain but constant inputs, where u(t) ∈ U ⊂ R
m is uncertain within a set U , but

each uncertain input is constant over time: u(t) = const.

3. Uncertain, time-varying inputs u(t) ∈ U ⊂ R
m where u(t) 6= const. Those systems do

not converge to a steady state solution and consider uncertain inputs of all frequencies.
For tools that cannot consider arbitrarily varying inputs, we have stated that changes in
inputs are only considered at fixed points in time.

Different Paths to Success When tools use a fundamentally different way of solving a
benchmark problem, we add further explanations.

3.1 International Space Station Benchmark

3.1.1 Model

The International Space Station (ISS) is a continuous linear time-invariant system ẋ(t) =
Ax(t) + Bu(t) proposed as a benchmark in ARCH 2016 [32]. In particular, the considered
system is a structural model of component 1R (Russian service module), which has 270 state
variables with three inputs.

The specification deals with the possible range for output y3, which is a linear combination
of the state variables (y = Cx, C ∈ R

3×270). Initially all 270 variables are in the range
[−0.0001, 0.0001], u1 is in [0, 0.1], u2 is in [0.8, 1], and u3 is in [0.9, 1]. The time bound is 20,
with a suggested step size of 0.005. The A, B, and C matrices are available in MATLAB format2

(that can also be opened with Python using scipy.io.loadmat) and in SpaceEx format3. There
are two versions of this benchmark:

ISSF01 The inputs can change arbitrarily over time: ∀t : u(t) ∈ U .

ISSC01 (constant inputs) The inputs are uncertain only in their initial value, and constant over
time: u(0) ∈ U , u̇(t) = 0.

2slicot.org/objects/software/shared/bench-data/iss.zip
3cps-vo.org/node/34059

28

http://slicot.org/objects/software/shared/bench-data/iss.zip
https://cps-vo.org/node/34059

ARCH-COMP18 Linear Dynamics Althoff et al.

3.1.2 Specifications

The verification goal is to check the ranges reachable by the output y3, which is a linear
combination of the state variables. In addition to the safety specification, for each version
there is an UNSAT instance that serves as sanity checks to ensure that the model and the
tool work as intended. But there is a caveat: In principle, verifying an UNSAT instance only
makes sense formally if a witness is provided (counter-example, under-approximation, etc.).
Since most of the participating tools do not have this capability, we run the tools with the
same accuracy settings on an SAT-UNSAT pair of instances. The SAT instance demonstrates
that the over-approximation is not too coarse, and the UNSAT instance demonstrates that the
over-approximation is indeed conservative, at least in the narrow sense of the specification.

ISS01 Bounded time, safe property: For all t ∈ [0, 20], y3(t) ∈ [−0.0007, 0.0007]. This property
is used with the uncertain input case (ISSF01) and assumed to be satisfied.

ISS02 Bounded time, safe property: For all t ∈ [0, 20], y3(t) ∈ [−0.0005, 0.0005]. This property
is used with the constant input case (ISSC01) and assumed to be satisfied.

ISU01 Bounded time, unsafe property: For all t ∈ [0, 20], y3(t) ∈ [−0.0005, 0.0005]. This
property is used with the uncertain input case (ISSF01) and assumed to be unsatisfied.

ISU02 Bounded time, unsafe property: For all t ∈ [0, 20], y3(t) ∈ [−0.00017, 0.00017]. This
property is used with the constant input case (ISSC01) and assumed to be unsatisfied.

3.1.3 Results

Results of the international space station benchmark for state y3 over time are shown in Fig. 1
and Fig. 2. The computation times of various tools for the building benchmark are listed in
Tab. 1.

Note CORA CORA was run with a step size of 0.01 and with a zonotope order of 30 for
benchmark version ISSF01. For version ISSC01 a step size of 0.02 and a zonotope order of 10
was used.

Note C2E2 C2E2 can solve ISS02 when the initial sets for some variables are slightly reduced.
With the original initial set, the computation never seems to stop. Due to the reduced initial
set, ISU02 cannot be properly verified by C2E2. C2E2 solve the model using time step 0.005
and K value 2000.

Note Flow* Both of the safe and unsafe properties on the time-varying and time invariant
models are solved using the new C++ API in Flow*. Due to the numerical instability in
handling large-scale interval matrices, we ignore the roundoff errors only in computing the
product of two matrices whose entries are all rationals. For the model ISSC01, we use the time
stepsize 0.02 and the TM order 3, while the matrix exponential is firstly overapproximated by
a TM of order 10 and then conservatively truncated to order 3. For the model ISSF01, we use a
smaller stepsize which is 0.005 along with a lower TM order which is 2. The matrix exponential
is firstly overapproximated by a TM of order 6 and then conservatively truncated to order 2.
In all of the tests, we use the precision 200 in MPFR library. It is worth mentioning that the
flowpipes are initial set independent, which means that they can be reused for any other initial
sets.

29

ARCH-COMP18 Linear Dynamics Althoff et al.

Note Hylaa Hylaa and Hylaa-continuous were run with a step size of 0.005. The plots for
Hylaa are at discrete points in time. They look continuous since the time-step used is fairly
small.

Note JuliaReach The algorithm was run with a step size of 0.005 for all scenarios but ISS01,
where a step size of 0.0006 was used. There is a check mode for property checking that makes
the minimum support function evaluations (the whole reach pipe is built with the reach mode).
Moreover, a specialized option was designed for this benchmark and used to verify ISS01; it
adds less over-approximation error by keeping the inputs lazy over time.

Note SpaceEx SpaceEx was run with the LGG scenario. The sampling was chosen as 0.005
for ISSF01 and 0.05 for ISSC01. The template directions were taken to be ±y3, so only two
directions. Since y3 is an algebraic variable that is a linear expression of the state variables,
we replaced it in the forbidden states and the direction definition by the corresponding linear
expression. To model the constant inputs in ISSC01, we introduced u1, u2, u3 as state variables
with u̇1 = u̇2 = u̇3 = 0. A custom algorithm for constant inputs could avoid such an artificial
augmentation and significantly reduce the runtime for ISSC01. Note that SpaceEx treats the
initial states as a general polyhedron, i.e., a linear program is solved at every time step. SpaceEx
also computes the full matrix exponential, a 270×270 matrix, even though in the LGG algorithm
it would suffice to compute the vector eAtℓ for each template direction ℓ.

Since SpaceEx does not currently support the plotting of algebraic variables, we used the
following trick to plot y3 over time: we introduced a state variable z with dynamics ż =
−1000(z − y3). Since the time constant for z is about two orders of magnitude below that of
y3, we expect the plots to practically identical to a true plot of y3.

(a) CORA. (b) Flow*. (c) Hylaa.

(d) JuliaReach. (e) SpaceEx.

Figure 1: ISS: Reachable sets of y3 plotted over time for the uncertain input case.

30

ARCH-COMP18 Linear Dynamics Althoff et al.

(a) CORA. (b) C2E2. (c) Flow*.

(d) Hylaa. (e) JuliaReach. (f) SpaceEx.

Figure 2: ISS: Reachable sets of y3 plotted over time for the constant input case.

Table 1: Computation Times for the International Space Station Benchmark

computation time in [s] platform

ISSF01 ISSC01 machine

tool ISS01 ISU01 ISS02 ISU02 language (Sec. A)

CORA 370 200 6.46 0.29 MATLAB MCORA

C2E2 − − 29.86 − C++ MC2E2

Flow* 212 154 99.3 55.7 C++ MFlow*

SpaceEx 37.6 40.1 29.5 32.9 C++ MSpaceEx

JuliaReach 2.82 1.17 0.23 0.17 Julia MJuliaReach

discrete-time tools4

Hylaa 34.6 25.2 28.2 0.9 Python MHylaa

Hylaa-Continuous 3.3 2.3 2.1 0.06 Python MHylaa

JuliaReach 0.40 1.35 0.22 0.16 Julia MJuliaReach

4Reachable sets computed in discrete-time are not generally conservative when embedded in continuous
time.

31

ARCH-COMP18 Linear Dynamics Althoff et al.

3.2 Spacecraft Rendezvous Benchmark

3.2.1 Model

Spacecraft rendezvous is a perfect use case for formal verification of hybrid systems since mis-
sion failure can cost lives and is extremely expensive. This benchmark is taken from [15]; its
original continuous dynamics is nonlinear, and the original system is verified in the ARCH-
COMP category Continuous and Hybrid Systems with Nonlinear Dynamics. However, we find
it interesting to see the difference in computation time and verification results if we also investi-
gate the linearized dynamics. The hybrid nature of this benchmark originates from a switched
controller, while the dynamics of the spacecraft is purely continuous. In particular, the modes
are approaching (100m-1000m), rendezvous attempt (less than 100m), and aborting. The model
is available in C2E2, SDVTool, and SpaceEx format on the ARCH website5. The set of initial
states is

X0 =

−900
−400
0
0

⊕

[−25, 25]
[−25, 25]

0
0

.

There are two versions of this benchmark:

SRNA01 The spacecraft approaches the target as planned and there exists no transition into
the aborting mode.

SRA01 A transition into aborting mode occurs at time t = 120min.

3.2.2 Specifications

Given the thrust constraints of the specified model, in mode rendezvous attempt, the absolute
velocity must stay below 0.055m/s. In the aborting mode, the vehicle must avoid the target,
which is modeled as a box B with 0.2m edge length and the center placed as the origin. In the
rendezvous attempt the spacecraft must remain within the line-of-sight cone L = {[x, y]T |(x ≥
−100m) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}. It is sufficient to check these parameters for
a time horizon of 200 minutes.

Let us denote the discrete state by z(t) and the continuous state vector by x(t) =
[sx, sy, vx, vy]

T , where sx and sy are the positions in x- and y-direction, respectively, and vx
and vy are the positions in x- and y-direction, respectively. The mode approaching is denoted
by z1, the mode rendezvous attempt by z2, and the mode aborting by z3. We can formalize the
specification as

SR01 ∀t ∈ [0, 200min], ∀x(0) ∈ X0 : (z(t) = z2) =⇒
(√

v2x + v2y ≤ 0.055m/s ∧

[sx, sy]
T ∈ L

)

.

SR02 ∀t ∈ [0, 200min], ∀x(0) ∈ X0 : (z(t) = z2) =⇒
(√

v2x + v2y ≤ 0.055m/s ∧

[sx, sy]
T ∈ L

)

∧ (z(t) = z3) =⇒ ([sx, sy]
T /∈ B).

To solve the above specifications, all tools under-approximate the nonlinear constraint
√

v2x + v2y ≤ 0.055m/s by an octagon as shown in Fig. 3.

5cps-vo.org/node/36349

32

https://cps-vo.org/node/36349

ARCH-COMP18 Linear Dynamics Althoff et al.

x

y

0.055m/s

under-approximating

octagon original

constraint

Figure 3: Under-approximation of the nonlinear velocity constraint by an octagon.

Remark on nonlinear constraint In the original benchmark, the constraint on the ve-
locity was set to 0.05 m/s, but it can be shown that this constraint cannot be satisfied by a
counterexample. For this reason, we have relaxed the constraint to 0.055 m/s.

3.2.3 Results

Results of the spacecraft rendezvous benchmark for the sx-sy-plane are shown in Fig. 4 for the
version SRNA01 and in Fig. 5 for the version SRA01. The computation times of various tools
for the spacecraft rendezvous benchmark are listed in Tab. 2.

Note CORA For both benchmark versions CORA was run with a zonotope order of 10 and
with a step size of 0.2min for the mode approaching, 0.02min for the mode rendezvous attempt,
and 0.2min for the mode aborting (does not exist for version SRNA01). The intersections with
the guard sets are calculated with the method of Girard and Le Guernic in [26]. In order to
find suitable orthogonal directions for the method in [26], we perform the following procedure:
first, we project the last zonotope not intersecting the guard set onto the guard set; second, we
apply principal component analysis to the generators of the projected zonotope, providing us
with the orthogonal directions.

Note C2E2 The run time reported for verifying the model is the sum of the run time for
verifying each constraint of the under-approximating octagon (see Fig. 3). For all cases, C2E2
runs with a step size of 0.1. Note that the result for C2E2 is not optimal since C2E2 is currently
being updated.

Note Flow* The flowpipes are computed using the user interface of Flow*. For the model
SRNA01, we use a stepsize of 0.05, a fixed TM order of 4 for the mode approaching, a fixed
TM order of 6 for the mode rendezvous attempt, and a cutoff threshold [−10−8, 10−8]. For the
model SRA01, we use the stepsize of 0.01 for the mode approaching and mode aborting, and
the stepsize of 0.005 for the mode rendezvous attempt. The TM order is fixed at 3, and we use
the same cutoff threshold. All roundoff errors in the reachability computation are kept in the
results.

Note Hylaa Hylaa was run with a step size of 0.1. The plots for Hylaa are at discrete points
in time. They look continuous since the time-step used is fairly small.

33

ARCH-COMP18 Linear Dynamics Althoff et al.

Note SpaceEx SpaceEx was run with the LGG scenario, box directions, and a flowpipe
tolerance of 0.2.

(a) CORA. (b) Hylaa. (c) C2E2.

(d) Flow*. (e) SpaceEx.

Figure 4: Reachable sets for the spacecraft rendezvous benchmark in the sx-sy-plane for the
benchmark variant without maneuver abortion (SRNA01)

Table 2: Computation Times for the Spacecraft Rendezvous Benchmark

computation time in [s] platform

SRNA01 SRA01 machine

tool SR01 SR02 language (Sec. A)

CORA 2.1 0.92 MATLAB MCORA

C2E2 21.95 25.51 C++ MC2E2

Flow* 4.2 16.5 C++ MFlow*

SpaceEx 0.41 0.38 C++ MSpaceEx

discrete-time tools6

Hylaa 32.7 10.8 Python MHylaa

6Reachable sets computed in discrete-time are not generally conservative when embedded in continuous
time.

34

ARCH-COMP18 Linear Dynamics Althoff et al.

(a) CORA. (b) Hylaa. (c) C2E2.

(d) Flow*. (e) SpaceEx.

Figure 5: Reachable sets for the spacecraft rendezvous benchmark in the sx-sy-plane for the
benchmark variant with maneuver abortion at t = 120min (SRA01)

35

ARCH-COMP18 Linear Dynamics Althoff et al.

3.3 Powertrain with Backlash

3.3.1 Model

The powertrain benchmark is an extensible benchmark for hybrid systems with linear continu-
ous dynamics taken from [5, Sec. 6] and [8, Sec. 4]. The essence of this benchmark is recalled
here, and the reader is referred to the above-cited papers for more details. The benchmark
considers the powertrain of a vehicle consisting of its motor and several rotating masses repre-
senting different components of the powertrain, e.g., gears, differential, clutch, among others,
as illustrated in Fig. 6. The benchmark is extensible in the sense that the number of continuous
states can be easily extended to n = 7+2θ, where θ is the number of additional rotating masses.
The number of discrete modes, however, is fixed and originates from backlash, which is caused
by a physical gap between two components that are normally touching, such as gears. When
the rotating components switch direction, for a short time they temporarily disconnect, and
the system is said to be in the dead zone. The model is available in SpaceEx format on the
ARCH website7.

The set of initial states is

X0 = {c+ αg|α ∈ [−1, 1]},

c = [−0.0432,−11, 0, 30, 0, 30, 360,−0.0013, 30, . . . ,−0.0013, 30]T ,

g = [0.0056, 4.67, 0, 10, 0, 10, 120, 0.0006, 10, . . . , 0.0006, 10]T .

Jm

J1 J2 Jθ

Jl

ks k1 k2 kθ

Θm

Θ1 Θ2 Θθ

Θl

gear

engine

dynamics
u

Tm

Θs

2α

Figure 6: Powertrain model.

3.3.2 Specifications

We analyze an extreme maneuver from an assumed maximum negative acceleration that lasts
for 0.2 [s], followed by a maximum positive acceleration that lasts for 1.8 [s]. The initial states
of the model are on a line segment in the n-dimensional space. We create different difficulty
levels of the reachability problem by scaling down the initial states by some percentage. The
model has the following non-formal specification: after the change of direction of acceleration,
the powertrain completely passes the dead zone before being able to transmit torque again.
Due to oscillations in the torque transmission, the powertrain should not re-enter the dead zone
of the backlash.

7cps-vo.org/node/49115

36

https://cps-vo.org/node/49115

ARCH-COMP18 Linear Dynamics Althoff et al.

To formalize the specification using linear time logic (LTL), let us introduce the following
discrete states:

• z1 : left contact zone

• z2 : dead zone

• z3 : right contact zone

For all instances, the common specification is: For all t ∈ [0, 2], x(0) ∈ X0, (z2Uz3) =⇒
G(z3). The instances only differ in the size of the system and the initial set, where center(·)
returns the volumetric center of a set.

DTN01 θ = 2, X0 := 0.05(X0 − center(X0)) + center(X0).

DTN02 θ = 2, X0 := 0.3(X0 − center(X0)) + center(X0).

DTN03 θ = 2, no change of X0.

DTN04 θ = 22, X0 := 0.05(X0 − center(X0)) + center(X0).

DTN05 θ = 22, X0 := 0.3(X0 − center(X0)) + center(X0).

DTN06 θ = 22, no change of X0.

3.3.3 Results

Results of the powertrain benchmark in the x1-x3-plane are shown in Fig. 7. The computation
times of various tools for the powertrain benchmark are listed in Tab. 3

Note Flow* The flowpipes for all of the 6 models are computed using the new C++ API in
Flow*. We use a more sophisticated strategy to aggregate flowpipe/guard intersections while
they are very few and consecutive. While there are consecutive flowpipes F1, . . . , Fn intersecting
a guard, we then compute the hitting as well as the leaving time point and compute a aggregated
flowpipe over this time interval. For the cases DTN01, DTN02, and DTN03, we use a fixed
stepsize of 0.005 and a fixed TM order 25. The cutoff threshold is [−10−10, 10−10] and the
precision is 100. For the cases DTN04, DTN05, and DTN06, we use the same setting except
that the stepsize is reduced to 0.0025. All roundoff errors are included in all results.

Note Hylaa Hylaa aggregates sets across discrete transitions, and then de-aggregates them
if the aggregated set were to reach a spurious transition. Since sets are aggregated, plots show
a certain amount of over-approximation. The resulting, intentional lack of accuracy shows in
the plot. Also, the plot for Hylaa is also for the θ = 2 system, since plotting for the θ = 22
system caused GLPK8 (the LP solver library Hylaa uses) to enter an infinite loop (the bug has
been reported). Hylaa was run with a step size of 0.0005. The plots for Hylaa are at discrete
points in time. They look continuous since the time-step used is fairly small.

8https://www.gnu.org/software/glpk

37

ARCH-COMP18 Linear Dynamics Althoff et al.

(a) CORA (DTN03). (b) CORA (DTN05). (c) Hylaa (DTN03).

(d) Flow* (DTN03). (e) Flow* (DTN05).

Figure 7: Reachable sets in the x1-x3-plane.

Table 3: Computation Times for the Powertrain Benchmark

computation time in [s] platform

machine

tool DTN01 DTN02 DTN03 DTN04 DTN05 DTN06 language (Sec. A)

CORA 3.28 3.17 3.31 17.8 17.9 18.3 MATLAB MCORA

Hylaa 1.61 2.69 8.89 7.76 23.3 90.9 Python MHylaa

Flow* 2.51 2.51 2.52 103 114 116 C++ MFlow*

38

ARCH-COMP18 Linear Dynamics Althoff et al.

3.4 Building Benchmark

3.4.1 Model

This benchmark is quite straightforward: The system is described by ẋ(t) = Ax(t) + Bu(t),
u(t) ∈ U , y(t) = Cx(t), where A, B, C are provided on the ARCH website9. The initial set and
the uncertain input U are provided in [32, Tab. 2.2]. There are two versions of this benchmark:

BLDF01 The inputs can change arbitrarily over time: ∀t : u(t) ∈ U .

BLDC01 (constant inputs) The inputs are uncertain only in their initial value, and constant
over time: u(0) ∈ U , u̇(t) = 0. The purpose of this model instance is to accommodate
tools that cannot handle time-varying inputs.

3.4.2 Specifications

The verification goal is to check whether the displacement y1 of the top floor of the building re-
mains below a given bound. In addition to the safety specification from the original benchmark,
there are two UNSAT instances that serve as sanity checks to ensure that the model and the
tool work as intended. But there is a caveat: In principle, verifying an UNSAT instance only
makes sense formally if a witness is provided (counter-example, under-approximation, etc.).
Since most of the participating tools do not have this capability, we run the tools with the
same accuracy settings on an SAT-UNSAT pair of instances. The SAT instance demonstrates
that the over-approximation is not too coarse, and the UNSAT instance indicates that the
over-approximation is indeed conservative.

BDS01 Bounded time, safe property: For all t ∈ [0, 20], y1(t) ≤ 5.1 · 10−3. This property is
assumed to be satisfied.

BDU01 Bounded time, unsafe property: For all t ∈ [0, 20], y1(t) ≤ 4 · 10−3. This property
is assumed to be violated. Property BDU01 serves as a sanity check. A tool should be
run with the same accuracy settings on BLDF01-BDS01 and BLDF01-BDU01, returning
UNSAT on the former and SAT on the latter.

BDU02 Bounded time, unsafe property: The forbidden states are {y1(t) ≤ −0.78·10−3∧t = 20}.
This property is assumed to be violated for BLDF01 and satisfied for BLDC01. Property
BDU02 serves as a sanity check to confirm that time-varying inputs are taken into account.
A tool should be run with the same accuracy settings on BLDF01-BDU02 and BLDC01-
BDU02, returning UNSAT on the former and SAT on the latter.

3.4.3 Results

Results of the building benchmark for state x25 over time are shown in Fig. 8 and Fig. 9. The
computation times of various tools for the building benchmark are listed in Tab. 4.

Note CORA Since the dynamics of this example is dominated by the input after one second,
we use the step size 0.002 for t ∈ [0, 1] and the step size 0.01 for t ∈ [1, 20]. The zonotope order
is chosen as 100.

9cps-vo.org/node/34059

39

https://cps-vo.org/node/34059

ARCH-COMP18 Linear Dynamics Althoff et al.

Table 4: Computation Times for the Building Benchmark

computation time in [s] platform

BLDC01 BLDF01 machine

tool BDS01 BDS01 language (Sec. A)

CORA 1.64 1.85 MATLAB MCORA

CORA/SX 1.01 1.04 C++ MSpaceEx

C2E2 16.051 – C++ MC2E2

Flow* 14.7 14.3 C++ MFlow*

HyDRA 0.47 – C++ MHyDRA

SpaceEx 2.0 2.2 C++ MSpaceEx

JuliaReach 1.76 1.88 Julia MJuliaReach

discrete-time tools10

Hylaa 1.8 2.7 Python MHylaa

Hylaa-Continuous 0.8 1.2 Python MHylaa

JuliaReach 1.76 1.84 Julia MJuliaReach

Note C2E2 C2E2 is able to solve BLDC01. It cannot solve BLDF01 because arbitrarily
changing bounded inputs is currently not supported by the tool. The step size set in C2E2 is
0.001. Note that the result for C2E2 is not optimal since C2E2 is currently been updated.

Note Flow* The results from Flow* are computed using the C++ API while we ignore the
roundoff errors only in computing the product of two matrices with rational entries. We use
the same setting as that used in the last year except that the precision is set to be 200 which is
much higher. The time stepsize is 0.008, we firstly overapproximate the matrix exponential by
an order 25 TM, and then conservatively truncate it to order 3. The computed flowpipes are
initial set independent.

Note Hylaa Hylaa and Hylaa-continuous were run with a step size of 0.005. The plots for
Hylaa are at discrete points in time. They look continuous since the time-step used is fairly
small.

Note SpaceEx The accuracy of SpaceEx was set to the largest value possible that satisfies
the specification, here ε = 0.01. This means the tool can exploit any margin to reduce the
number of computations and/or the number of convex sets in the reach set. The resulting,
intentional lack of accuracy shows in the plot.

10Reachable sets computed in discrete-time are not generally conservative when embedded in continuous
time.

40

ARCH-COMP18 Linear Dynamics Althoff et al.

0 0.5 1

t

-6

-4

-2

0

2

4

6

x
2
5

10
-3

(a) CORA. (b) CORA/SX. (c) C2E2.

(d) Flow*. (e) Hylaa. (f) HyDRA.

(g) JuliaReach. (h) SpaceEx.

Figure 8: Building: Reachable sets of x25 plotted over time up to time 1. Some tools additionally
show possible trajectories.

41

ARCH-COMP18 Linear Dynamics Althoff et al.

0 10 20

t

-6

-4

-2

0

2

4

6

x
2
5

10
-3

(a) CORA. (b) CORA/SX. (c) C2E2.

(d) Flow*. (e) Hylaa. (f) HyDRA.

(g) JuliaReach. (h) SpaceEx.

Figure 9: Building: Reachable sets of x25 plotted over time up to time 20. Some tools addi-
tionally show possible trajectories.

42

ARCH-COMP18 Linear Dynamics Althoff et al.

3.5 Platooning Benchmark

3.5.1 Model

The platooning benchmark considers a platoon of three vehicles following each other. This
benchmark considers loss of communication between vehicles. The initial discrete state is qc.
Three scenarios are considered for the loss of communication:

PLAA01 (arbitrary loss) The loss of communication can occur at any time, see Fig. 10(a). This
includes the possibility of no communication at all.

PLADxy (loss at deterministic times) The loss of communication occurs at fixed points in
time, which are determined by clock constraints c1 and c2 in Fig. 10(b). Note that the
transitions have must-semantics, i.e., they take place as soon as possible.

PLAD01: c1 = c2 = 5.

PLANxy (loss at nondeterministic times) The loss of communication occurs at any time
t ∈ [tb, tc]. The clock t is reset when communication is lost, and communication is
reestablished at any time t ∈ [0, tr]. This scenario covers loss of communication after an
arbitrarily long time t ≥ tc, by reestablishing communication in zero time.

PLAN01: tb = 10, tc = 20, tr = 20.

The models are available in SpaceEx, KeYmaera, and MATLAB/Simulink format on the ARCH
website11.

Discussion The arbitrary-loss scenario (PLAA) subsumes the other two instances (PLAD,
PLAN). There seems to be no reason why the upper bound tc should be greater than tb. Loss
of communication after a time longer than tb is included by reestablishing communication in
zero time. Tools could possibly exploit this by minimizing the model before the analysis.

(a) Arbitrary switching.

(b) Controlled switching.

Figure 10: Two options presented in the original benchmark proposal [13]. On the left, the
system can switch arbitrarily between the modes, while on the right, mode switches are only
possible at given points in time.

11cps-vo.org/node/15096

43

https://cps-vo.org/node/15096

ARCH-COMP18 Linear Dynamics Althoff et al.

3.5.2 Specifications

The verification goal is to check whether the minimum distance between vehicles is preserved.
The choice of the coordinate system is such that the minimum distance is a negative value.

BNDxy Bounded time (no explicit bound on the number of transitions): For all t ∈ [0, 20] [s],
x1(t) ≥ −dmin [m], x4(t) ≥ −dmin [m], x7(t) ≥ −dmin [m], where dmin =xy [m].

BND50: dmin = 50.

BND42: dmin = 42.

BND30: dmin = 30.

UNBxy Unbounded time and unbounded switching: For all t ≥ 0 [s], x1(t) ≥ −dmin [m],
x4(t) ≥ −dmin [m], x7(t) ≥ −dmin [m], where dmin =xy [m].

UNB50: dmin = 50.

UNB42: dmin = 42.

UNB30: dmin = 30.

3.5.3 Different Paths to Success

CORA CORA can re-write the hybrid automaton as a purely continuous system with un-
certain parameters. This idea is also known as continuization [6, 7]. After introducing the
uncertain matrix

A = {αAc + (1− αAn)|α ∈ [0, 1]}

we can abstract Fig. 10(a) by
ẋ(t) ∈ Ax⊕ Ũ ,

where ⊕ denotes the Minkowski addition and Ũ = BcU (Bc = Bn). The tool CORA uses the
continuization approach to solve the system with arbitrary switching. Please note that the
exact reachable set of Fig. 10(a) encloses the one of Fig. 10(b), which is a special case.

3.5.4 Results

Results of the platoon benchmark for state x1 over time are shown in Fig. 11, Fig. 12, and
Fig. 13. The computation times of various tools for the platoon benchmark are listed in Tab. 5.

Note CORA For the unbounded case, the reachable set at t = 50 is increased by 1% and it
is checked when this set is re-entered.

Note Flow* The results are computed using the C++ API of Flow* such that time-triggered
jumps are much better handled by a new feature. In the last year, Flow* was not able to prove
the property BND30 on the model PLAD01, as we mentioned that much better results could be
obtained using the API. Therefore, we present much better results this year using the C++ API
of Flow*. All approximation errors as well as roundoff errors are included. For the property
BND42, we use the stepsize of 0.1, the TM order of 4, the cutof threshold [−10−12, 10−12], and
the precision of 100. The TM remainders of the flowpipes are kept every the other jump. While
for the property BND30, we use the same setting except that the TM remainders are kept in
all jumps.

44

ARCH-COMP18 Linear Dynamics Althoff et al.

Note HyDRA As HyDRA implements CEGAR-based path refinement, we can observe er-
roneous runs in the plot (see Figure 12(d)) which intersect the set of bad states (bottom, red).
The refined set of reachable states is depicted in a darker blue.

(a) CORA.

Figure 11: PLAA01: Reachable sets of x1 plotted over time. CORA additionally shows possible
trajectories.

Table 5: Computation Times for the Platoon Benchmark

computation time in [s] platform

PLAA01 PLAA01 PLAD01 PLAD01 PLAN01 machine

tool BND50 BND42 BND42 BND30 UNB50 language (Sec. A)

CORA 4.17 13.7 0.57 1.42 85.4 MATLAB MCORA

CORA/SX – – 0.41 – – C++ MSpaceEx

Flow* – – 0.91 5.20 – C++ MFlow*

HyDRA – – 3.6 – – C++ MHyDRA

SpaceEx – – 0.8 9.94 159.1 C++ MSpaceEx

XSpeed – – 0.98 8.89 29.41 C++ MXSpeed

45

ARCH-COMP18 Linear Dynamics Althoff et al.

(a) CORA (BND30). (b) CORA/SX (BND42). (c) Flow* (BND30).

(d) HyDRA (BND42). (e) SpaceEx (BND30). (f) XSpeed (BND30).

Figure 12: PLAD01: Reachable sets of x1 plotted over time. Some tools additionally show
possible trajectories.

(a) CORA (UNB50). (b) SpaceEx (UNB50). (c) XSpeed (UNB50).

Figure 13: PLAN01: Reachable sets of x1 plotted over time.

46

ARCH-COMP18 Linear Dynamics Althoff et al.

3.6 Gearbox Benchmark

3.6.1 Model

The gearbox benchmark models the motion of two meshing gears. When the gears collide, an
elastic impact takes place. As soon as the gears are close enough, the gear is considered meshed.
The model includes a monitor state that checks whether the gears are meshed or free and is
available in SpaceEx format12 and as a Simulink model13. Once the monitor reaches the state
meshed, it stays there indefinitely.

With four continuous state variables, the gearbox benchmark has a relatively low number
of continuous state variables. The challenging aspect of this benchmark is that the solution
heavily depends on the initial state as already pointed out in [16]. For some initial continuous
states, the target region is reached without any discrete transition, while for other initial states,
several discrete transitions are required.

In the original benchmark, the position uncertainty in the direction of the velocity vector
of the gear teeth (x-direction) is across the full width of the gear spline. Uncertainties of the
position and velocity in y-direction, which is perpendicular to the x-direction, are considered
to be smaller. Due to the sensitivity with respect to the initial set, we consider a smaller initial
set. The full uncertainty in x-direction could be considered by splitting the uncertainty in
x-direction and aggregating the individual results.

GRBX01: The initial set is X0 = 0× 0× [−0.0168,−0.0166]× [0.0029, 0.0031]× 0.

3.6.2 Specification

The goal is to show that the gears are meshed within a time frame of 0.2 [s] and that the bound
x5 ≤ 20 [Nm] of the cumulated impulse is met. Using the monitor states free and meshed , and a
global clock t, this can be expressed as a safety property as follows: For all t ≥ 0.2, the monitor
should be in meshed . Under nonblocking assumptions, this means that t < 0.2 whenever the
monitor is not in meshed , i.e., when it is in free.

MES01: forbidden states: (free ∧ t ≥ 0.2) ∨ (x5 ≥ 20)

3.6.3 Results

Results of the platoon benchmark for state x3 and x4 are shown in Fig. 14. The computation
times of various tools for the gearbox benchmark are listed in Tab. 6.

Table 6: Computation Times of the Gearbox Benchmark

computation time in [s] platform

tool GRBX01-MES01 language machine (Sec. A)

CORA 0.29 MATLAB MCORA

C2E2 0.30 C++ MC2E2

Flow* 0.23 C++ MFlow*

SpaceEx 0.14 C++ MSpaceEx

12cps-vo.org/node/34375
13cps-vo.org/node/34374

47

https://cps-vo.org/node/34375
https://cps-vo.org/node/34374

ARCH-COMP18 Linear Dynamics Althoff et al.

(a) CORA. (b) C2E2.

(c) Flow*. (d) SpaceEx.

Figure 14: Gearbox: Reachable sets of x3 and x4. Some tools additionally show possible
trajectories.

Note CORA CORA was run with a time step size of 0.0011s and a zonotope order of 20. The
intersections with the guard sets were calculated with the method of Girard and Le Guernic
[26]. In order to find suitable orthogonal directions for the method in [26], we perform the
following procedure: first, we project the last zonotope not intersecting the guard set onto the
guard set; second, we apply principal component analysis to the generators of the projected
zonotope, providing us with the orthogonal directions.

Note C2E2 C2E2 can only solve the model when the number of transition is limited to 4.
As the number of transition increases, over-bloating happens to the variables. C2E2 uses step
size 0.001 and K value 2000 while computing the reach tube. Note that the result for C2E2 is
not optimal since C2E2 is currently being updated.

48

ARCH-COMP18 Linear Dynamics Althoff et al.

Note Flow* The flowpipes are computed using the user interface of Flow*. All computational
parameters are same as those used in the last year: the step size is 0.001, the TM order is 3, and
the precision is 100 for floating-point numbers. Octagon overapproximations for the flowpipes
are plotted.

4 Conclusion and Outlook

This report presents the results on the second friendly competition for the formal verification
of continuous and hybrid systems with linear continuous dynamics as part of the ARCH’18
workshop. The reports of other categories can be found in the proceedings and on the ARCH
website: cps-vo.org/group/ARCH.

A major observation of the results is that participating tools have a much more favorable
scalability compared to the previous year. For instance, many tools could solve the international
space station benchmark in a few seconds although it has 270 state variables, which has more
than five times as many state variables as the largest benchmark from last year (building
benchmark). Another example is the powertrain benchmark, which many tools could verify
despite the fact that it is rather large (up to 51 state variables and hybrid). We expect that the
development of all tools is continuing so that we can solve even more challenging benchmarks
in the future.

We would also like to encourage other tool developers to consider participating next year.
All authors agree that although the participation consumes time, we have all learned about
new aspects that we would like to improve in the next releases. Also, we were able to fix small
inconsistencies between benchmark descriptions and the files attached to the benchmarks due to
their heavy use by several tools. Information about the competition in 2019 will be announced
on the ARCH website.

5 Acknowledgments

The authors gratefully acknowledge financial support by the European Commission project
UnCoVerCPS under grant number 643921, and by DST-SERB, Government of India, under
grant number YSS/2014/000623.

A Specification of Used Machines

A.1 MCORA

• Processor: Intel Core i7-7820HQ CPU @ 2.90GHz x 4

• Memory: 32 GB

• Average CPU Mark on www.cpubenchmark.net: 9409 (full), 2070 (single thread)

A.2 MC2E2

• Processor: Intel Core i5-3470 CPU @ 3.20GHz x 4

• Memory: 8 GB

• Average CPU Mark on www.cpubenchmark.net: 6680 (full), 1915 (single thread)

49

http://cps-vo.org/group/ARCH
www.cpubenchmark.net
www.cpubenchmark.net

ARCH-COMP18 Linear Dynamics Althoff et al.

A.3 MFlow*

Virtual machine on VMware Workstation 11 with a single core CPU and 4.0 GB memory. The
operating systems is Ubuntu 16.04 LTS. The physical CPU is given as below.

• Processor: Intel Xeon E3-1245 V3 @ 3.4GHz x 4

• Average CPU Mark on www.cpubenchmark.net: 9545 (full), 2155 (single thread)

A.4 MHyDRA

• Processor: Intel Core i7-4790K CPU @ 4.00GHz x 8

• Memory: 15.9 GB

• Average CPU Mark on www.cpubenchmark.net: 11185

A.5 MHylaa

• Processor: Intel Core i5-5300U @ 2.30GHz x 4

• Memory: 15.9 GB

• Average CPU Mark on www.cpubenchmark.net: 3755 (full), 1527 (single thread)

A.6 MJuliaReach

• Processor: Intel Core i5-7300HQ @ 3.50GHz x 4

• Memory: 15.4 GB

• Average CPU Mark on www.cpubenchmark.net: 6833 (full), 1879 (single thread)

A.7 MSpaceEx

• Processor: Intel Core i7-7920HQ CPU @ 3.1GHz x 4

• Memory: 16 GB

• Average CPU Mark on www.cpubenchmark.net: 10230 (full), 2161 (single thread)

A.8 MXSpeed

• Processor: Intel Core i7-4770 CPU @ 3.4GHz x 4

• Memory: 8 GB

• Average CPU Mark on www.cpubenchmark.net: 9806

50

www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net

ARCH-COMP18 Linear Dynamics Althoff et al.

References

[1] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 120–151, 2015.

[2] M. Althoff, S. Bak, D. Cattaruzza, X. Chen, G. Frehse, R. Ray, and S. Schupp. ARCH-COMP17
category report: Continuous and hybrid systems with linear continuous dynamics. In Proc. of the
4th International Workshop on Applied Verification for Continuous and Hybrid Systems, pages
143–159, 2017.

[3] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc.
of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 91–105, 2016.

[4] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of Taylor models in CORA
2018. In Proc. of the 5th International Workshop on Applied Verification for Continuous and
Hybrid Systems, 2018.

[5] M. Althoff and B. H. Krogh. Avoiding geometric intersection operations in reachability analysis
of hybrid systems. In Hybrid Systems: Computation and Control, pages 45–54, 2012.

[6] M. Althoff, C. Le Guernic, and B. H. Krogh. Reachable set computation for uncertain time-varying
linear systems. In Hybrid Systems: Computation and Control, pages 93–102, 2011.

[7] M. Althoff, A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li, and L. Pileggi. Formal verification of
phase-locked loops using reachability analysis and continuization. Communications of the ACM,
56(10):97–104, 2013.

[8] S. Bak, S. Bogomolov, and M. Althoff. Time-triggered conversion of guards for reachability analysis
of hybrid automata. In Proc. of the 15th International Conference on Formal Modelling and
Analysis of Timed Systems, pages 133–150, 2017.

[9] S. Bak and P. S. Duggirala. Hylaa: A tool for computing simulation-equivalent reachability for lin-
ear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation
and Control, pages 173–178. ACM, 2017.

[10] S. Bak and P. S. Duggirala. Rigorous simulation-based analysis of linear hybrid systems. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 555–572. Springer, 2017.

[11] S. Bak and P. S. Duggirala. Simulation-equivalent reachability of large linear systems with inputs.
In International Conference on Computer Aided Verification, pages 401–420. Springer, 2017.

[12] S. Bak, H.-D. Tran, and T. T. Johnson. Numerical verification of affine systems with up to a
billion dimensions. CoRR, abs/1804.01583, 2018.

[13] I. Ben Makhlouf and S. Kowalewski. Networked cooperative platoon of vehicles for testing methods
and verification tools. In Proc. of ARCH14-15. 1st and 2nd International Workshop on Applied
veRification for Continuous and Hybrid Systems, pages 37–42, 2015.

[14] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. Reach set approxima-
tion through decomposition with low-dimensional sets and high-dimensional matrices. In HSCC,
pages 41–50, 2018.

[15] N. Chan and S. Mitra. Verifying safety of an autonomous spacecraft rendezvous mission. In
ARCH17. 4th International Workshop on Applied Verification of Continuous and Hybrid Systems,
collocated with Cyber-Physical Systems Week (CPSWeek) on April 17, 2017 in Pittsburgh, PA,
USA, pages 20–32, 2017.

[16] H. Chen, S. Mitra, and G. Tian. Motor-transmission drive system: a benchmark example for safety
verification. In Proc. of ARCH14-15. 1st and 2nd International Workshop on Applied veRification
for Continuous and Hybrid Systems, pages 9–18, 2015.

[17] X. Chen. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models. PhD thesis,
RWTH Aachen University, 2015.

51

ARCH-COMP18 Linear Dynamics Althoff et al.

[18] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In Proc. of CAV’13, volume 8044 of LNCS, pages 258–263. Springer, 2013.

[19] X. Chen, S. Mover, and S. Sankaranarayanan. Compositional relational abstraction for nonlinear
hybrid systems. ACM Trans. Embedded Comput. Syst., 16(5):187:1–187:19, 2017.

[20] X. Chen and S. Sankaranarayanan. Model predictive real-time monitoring of linear systems. In
Proc. of RTSS’17, pages 297–306. IEEE Computer Society, 2017.

[21] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2e2: A verification tool for stateflow
models. In TACAS, 2015.

[22] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala. Automatic reachability analysis for
nonlinear hybrid models with c2e2. In Computer Aided Verification, pages 531–538, Cham, 2016.
Springer International Publishing.

[23] G. Frehse. Reachability of hybrid systems in space-time. In Alain Girault and Nan Guan, editors,
Proc. Int. Conf. Embedded Software, EMSOFT, Amsterdam, Netherlands, October 4-9, 2015, pages
41–50. IEEE, 2015.

[24] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid systems. In Proc. Int. Conf. Computer
Aided Verification, CAV, LNCS 6806, pages 379–395. Springer, 2011.

[25] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe approximation and clustering in space-time.
In C. Belta and F. Ivancic, editors, Proc. Int. Conf. Hybrid systems: computation and control,
HSCC, April 8-11, 2013, Philadelphia, PA, USA, pages 203–212. ACM, 2013.

[26] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for hybrid systems reachability
analysis. In Proc. of Hybrid Systems: Computation and Control, LNCS 4981, pages 215–228.
Springer, 2008.

[27] A. Gurung, A. Deka, E. Bartocci, S. Bogomolov, R. Grosu, and R. Ray. Parallel reachability
analysis for hybrid systems. In ACM/IEEE International Conference on Formal Methods and
Models for System Design, MEMOCODE, pages 12–22. IEEE, 2016.

[28] R. Ray and A. Gurung. Poster: Parallel state space exploration of linear systems with inputs
using xspeed. In Proc. of HSCC’15, pages 285–286. ACM, 2015.

[29] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu. XSpeed: Accelerating
reachability analysis on multi-core processors. In Proc. of HVC 2015, volume 9434 of LNCS, pages
3–18, 2015.

[30] S. Sankaranarayanan and A. Tiwari. Relational abstractions for continuous and hybrid systems.
In Proc. of CAV’11, volume 6806 of LNCS, pages 686–702. Springer, 2011.

[31] S. Schupp, E. Abraham, I. Ben Makhlouf, and S. Kowalewski. HyPro: A C++ library for state
set representations for hybrid systems reachability analysis. In Proc. NFM’17, volume 10227 of
LNCS, pages 288–294. Springer, 2017.

[32] H.-D. Tran, L. V. Nguyen, and T. T. Johnson. Large-scale linear systems from order-reduction. In
Proc. of ARCH16. 3rd International Workshop on Applied Verification for Continuous and Hybrid
Systems, 2017.

52

	Introduction
	Participating Tools
	Verification of Benchmarks
	International Space Station Benchmark
	Model
	Specifications
	Results

	Spacecraft Rendezvous Benchmark
	Model
	Specifications
	Results

	Powertrain with Backlash
	Model
	Specifications
	Results

	Building Benchmark
	Model
	Specifications
	Results

	Platooning Benchmark
	Model
	Specifications
	Different Paths to Success
	Results

	Gearbox Benchmark
	Model
	Specification
	Results

	Conclusion and Outlook
	Acknowledgments
	Specification of Used Machines
	MCORA
	MC2E2
	MFlow*
	MHyDRA
	MHylaa
	MJuliaReach
	MSpaceEx
	MXSpeed

