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The capacity of Homo sapiens for the intergenerational accumulation of complex technologies, practices, and beliefs

is central to contemporary accounts of human distinctiveness. However, the actual antiquity and evolutionary origins

of cumulative culture are not known. Here we propose and exemplify a research program for studying the origins of

cumulative culture using archaeological evidence. Our stepwise approach disentangles assessment of the observed fi-

delity of behavior reproduction from inferences regarding required learning mechanisms (e.g., teaching, imitation) and

the explanation of larger-scale patterns of change. It is empirically grounded in technological analysis of artifact as-

semblages using well-validated experimental models. We demonstrate with a case study using a toolmaking replication

experiment to assess evidence of behavior copying across three 2.6 Ma Oldowan sites from Gona, Ethiopia. Results fail

to reveal any effects of raw material size, shape, quality, or reduction intensity that could explain the observed details

of intersite technological variation in terms of individual learning across different local conditions. This supports the

view that relatively detailed copying of toolmaking methods was already a feature of Oldowan technological repro-

duction at ca. 2.6Ma.We conclude with a discussion of prospects and implications for further research on the evolution

of human cumulative culture.

Modern humans live in a culturally constructed niche includ-

ing complex adaptive technologies, practices, and beliefs ac-

cumulated, modified, and improved over generations. The ad-

vent of such cumulative culture is thought to have underwritten

the remarkable demographic success of modern humans, to

have been a key factor in hominin brain expansion, and to have

produced many of the cognitive and behavioral characteristics

that distinguish our species (Boyd, Richerson, and Henrich

2011; Tomasello 1999). There is thus intense interest in better

understanding the evolutionary origins of human cumulative

culture.

This has generally been pursued through the comparative

study of extant species (e.g., Dean et al. 2014). This method is

essential for identifying recurring evolutionary relationships

but cannot by itself reveal the contingencies of timing and con-

text that defined the particular path of human evolution (Stout

2018). Reconstructing the origins of human cumulative culture

will require archaeological and paleontological evidence of what

actually occurred in human evolution, combined with the eth-

nographic, ethological, and experimental analogies needed to in-

terpret this evidence (Henrich 2015; Stout and Hecht 2017).

Here we seek to advance this project through a case study using

a toolmaking replication experiment to assess evidence of tech-

nological reproduction in the earliestOldowan fromGona, Afar,

Ethiopia.

As with human uniqueness generally, there is spirited dis-

agreement over the degree of continuity between human (cu-

mulative) culture and the behavioral traditions of other ani-

mals. One influential view sees human culture as qualitatively

distinct in its dependence on evolved capacities for high-fidelity

social transmission that is absent in other species (Tennie, Call,

and Tomasello 2009; Tomasello 1999). The emergence of dis-

tinctly human cumulative culture is thus thought to have been

a relatively discrete event requiring “one and only one biolog-

ical adaptation” (Tomasello 1999:7). A competing perspective
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views the animal-human disjunction as one of degree rather

than kind, with some rudimentary cultural accumulation evi-

dent in other species (Dean et al. 2014; Vale et al. 2017). In this

account, humans are exceptional in the degree to which they

have enhanced a diverse portfolio of learning strategies shared

with other apes (Whiten 2011). This implies a more gradual

evolution of cumulative culture, likely involvingmultiple traits,

processes, and events (e.g., Pradhan, Tennie, and van Schaik

2012). Paleolithic archaeology is uniquely positioned to test

these opposing views over evolutionary time and across a range

of extinct hominins that may have represented conditions ab-

sent from the extant comparative sample.

Cumulative culture can be more specifically defined as “the

modification, over multiple transmission episodes, of cultural

traits (behavioral patterns transmitted through social learn-

ing) resulting in an increase in the complexity or efficiency of

those traits” (Dean et al. 2014:288), a process also known as

the “ratchet effect” (Tomasello 1999). Macroscale increases in

maximum observed technological complexity during the Pa-

leolithic might seem to provide prima facie evidence of cu-

mulative culture (Stout 2011), but this has been disputed. One

objection is that the pace of change appears too slow to reflect

cultural evolution (Richerson and Boyd 2005). However, it is

far from clear what pace should be considered indicative of

cumulative culture. Modeling indicates that early stages of cu-

mulative culture change can be quite slow (Enquist et al. 2008)

and that rates are sensitive to contextual variables such as pop-

ulation size and structure (Powell, Shennan, and Thomas 2009;

Pradhan, Tennie, and van Schaik 2012), whichmay themselves

be reciprocally impacted by cultural accumulation (Kolodny,

Creanza, and Feldman 2016). These complex dynamics can

generate periods of prolonged stasis and punctuated change

(Kolodny, Creanza, and Feldman 2016; Morgan 2016), even

given cumulative culture capacity.

A second objection is that the definition of cumulative cul-

ture presented above is too inclusive. Some researchers prefer

to maintain a qualitative animal-human boundary by restrict-

ing the term “cumulative” to culture-dependent traits that have

already been ratcheted beyond the possibility of individual

reinvention (e.g., Reindl et al. 2017). Impossibility is obviously

a more challenging standard of evidence and has been diffi-

cult to demonstrate for any animal behavior (Vale et al. 2017).

Tennie et al. (2016, 2017) apply this standard to Paleolithic ar-

chaeology as a thought experiment they term the “island test”:

only if it seems impossible for an individual isolated from birth

(e.g., on a remote island) to reinvent a behavior should it be

accepted as evidence of cumulative culture. They conclude that

Early Stone Age (ESA) technologies fail this test and that ob-

served patterns of technological change likely resulted from

individual learning influenced by “changes in the environ-

ment, low-level social learning mechanisms, and the psychol-

ogy and physiology of the species of interest” (Tennie et al.

2016:127) rather than cultural ratcheting.

Importantly, this stringent approach would reject actual

cases of ratcheting in which complexity had not (yet) accu-

mulated past the possibility of individual recapitulation. Such

cases are exactly what a gradualist perspective would predict for

the initial stages of cumulative culture evolution (e.g., Henrich

2015; Pradhan, Tennie, and van Schaik 2012). By excluding

them, the island test favors discontinuity and enforces the

theoretical stance that true cumulative culture requires unique

human capacities for high-fidelity social transmission via teach-

ing and imitation. The imperative is to avoid false positives

in which cultural status is assigned to behaviors reproducible

through low-fidelity mechanisms other than teaching or imi-

tation.

In our opinion, the inclusion of particular learning pro-

cesses as part of the definition of cumulative culture is prob-

lematic insofar as it introduces strong theoretical assumptions

into the interpretation of archaeological evidence. In fact, rel-

atively little is known about the fidelity and cumulative po-

tential of different social learning processes in the real world.

This should be a topic of investigation rather than a source of

axiomatic definitions. Even in the lab, there is evidence that

supposedly low-fidelity “end-state emulation” (i.e., reverse en-

gineering) is sufficient for cumulative improvement of simple

artifacts such as spaghetti towers (Reindl et al. 2017).

More broadly, a taxonomic approach to learning types may

not always map easily onto complex, real-world behaviors. For

example, so-called object-movement reenactment is consid-

ered a “fine-grained form of emulation” (Reindl et al. 2017)

rather than imitation because it involves copying themotion of

objects rather than bodies. However, it is not clear that copying

of particular body, as opposed to tool, movements is critical to

high-fidelity technological reproduction (e.g., Rein, Nonaka,

and Bril 2014). Indeed, a strict organism-environment distinc-

tion is difficult to maintain at a conceptual or neural level (Ma-

ravita and Iriki 2004) during the active manipulation of hand-

held tools, as occurs, for example, in stone knapping.

Similarly, the attempt to dichotomize process copying from

product copying (Tennie, Call, and Tomasello 2009) runs into

difficulty with technological behaviors that involve complex

sequences of nested subgoals and intermediate target forms and

are themselves embedded in a larger goal-oriented behavioral

context (Stout 2013). Which of the multiple levels of organi-

zation ranging from muscle contractions and joint synergies

to net caloric yields and manufactured social identities should

mark the boundary between process and product? Exact copy-

ing of bodily actions is obviously impossible across individuals

with different bodies (e.g., children and adults), and some de-

gree of goal abstraction will always be required (de Vignemont

and Haggard 2008). It is possible to design laboratory manip-

ulations that dichotomize bodies from tools and means from

ends, but in the real world these exist along a continuum with

poorly defined end points.

For these reasons, we have suggested that copying fidelity

should be assessed in terms of the degree of structural com-

plexity (Stout 2013) accurately reproduced (Stout 2011) rather

than the presence or absence of copying at a particular level of

organization or reliance on a particular type of learning. This

establishes a clear distinction between fidelity as an empirical

phenomenon and the possible mechanisms (social, genetic, en-
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vironmental, or otherwise) that may have produced it, allow-

ing for a more incremental and less theory-laden approach to

the evolution of cumulative culture.

A Stepwise Approach to Cumulative Culture Origins

Although behavior copying is commonly called social “trans-

mission,” this is misleading if it is taken to imply passive re-

ception of rules or recipes for action. In modern human knap-

ping and similar crafts, what is learned is a flexible skill rather

than an invariant formula. Such learning requires an extended

interaction between social inputs and motivated individual

practice (Stout 2013; Stout and Hecht 2017) better described

as behavioral “reproduction” (cf. “guided rediscovery”; Ingold

1998) rather than transmission (Nonaka, Bril, and Rein 2010).

This dialectic process, exemplified by coaching or apprentice-

ship, has recently been described by Whiten (2015) as a “he-

lical curriculum.” In such a curriculum, reproduction of ob-

served actions during practice is just one potentialmeans to the

end of discovering subtle task affordances not directly avail-

able to the naïve observer. Other facilitatory influences can

include the physical and social context (the learning niche)

created by ongoing technological activity as well as affective

feedback, attention direction, practice opportunity scaffolding,

and even intentional demonstration and instruction. These

complexities are increasingly recognized in more diverse and

inclusive conceptions of teaching and its evolutionary origins

(e.g., Gärdenfors and Högberg 2017).

The complexity of modern human skill learning suggests to

us that cumulative culture is unlikely to be a unitary capacity

arising from the punctuated appearance of one or two key

psychological innovations, and more likely is a complex trait

with a correspondingly complex evolutionary history of grad-

ual and/or piecemeal emergence (Henrich 2015; Stout and

Hecht 2017). But wemight be wrong. The best approach to the

archaeological record will thus be one that can recognize con-

tinuity or discontinuity from the evidence rather than presup-

posing one or the other by definition. To this end, we propose

a stepwise approach distinguishing assessment of copying fi-

delity from subsequent inferences regarding social learning

processes and attempts to explain diachronic patterns of change

or stability (fig. 1). Whereas fidelity can be assessed relatively

directly from archaeological reconstructions of technological

behavior, identifying past learning processes will require an

understanding of the technological implications of different

learning conditions that is only now beginning to be developed

(reviewed by Stout and Khreisheh 2015). Explaining patterns

of diachronic change is an even more distal goal, as it poten-

tially depends on these inferred learning processes as well as

other cognitive, demographic, and environmental factors (Ten-

nie et al. 2016).

The first step is to evaluate evidence of behavior reproduc-

tion. Although archaeological approaches to social transmis-

sion commonly focus on artifact morphology, this is a poten-

tially incomplete and/or misleading proxy for behavior (Lycett

and von Cramon-Taubadel 2015) given that similar forms can

be produced in diverse ways (Sharon 2009) and that variable

forms can result from shared methods (Toth 1985). Ideally,

identification of Paleolithic behavior reproduction should rely

on the recurrence of specific knappingmethods rather than the

Figure 1. A stepwise research program for investigating the evolutionary origins of human cumulative culture. A color version of this
figure is available online.
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presence, absence, or morphology of tool types. Identification

of these methods should in turn be based on well-validated

experimental models (Eren et al. 2016). With these in hand,

behavior reproduction would be indicated by particular meth-

ods’ prevalence, and fidelity would be assessed with respect to

their faithfully reproduced complexity (Stout 2011).

Actually investigating the processes responsible for behav-

ior reproduction is the second step in the research program and

requires identifying testable predictions of alternative expla-

nations for the specific patterns documented in step 1. For ex-

ample, behavior might be highly constrained by the limited

possibilities for action (affordances) provided by objects and

environments so that individuals with similar capacities and

goals are quite likely to independently rediscover the same so-

lutions. Tennie, Call, and Tomasello (2009) refer to this as

a “zone of latent solutions” (ZLS) within which individual

learning, niche construction, and low-fidelity copying of goals

or outcomes but not detailed means should be sufficient for

behavior reproduction. A testable implication is that the prev-

alence of individually rediscovered behavior details should be

determined by the degree of constraint on the solution space.

Thus, rediscovery and adoption of a particular detail should

be ubiquitous if local conditions (including conspecific behav-

ior; Fragaszy et al. 2013) bias individual learning toward that

specific solution. Tennie, Call, and Tomasello (2009) describe

this as a behavioral “founder effect.”Conversely, if a diversity of

more-or-less comparable alternative solutions present them-

selves, then we should expect commensurate diversity in the

particular methods discovered and adopted by individuals.

Where this prediction is violated, it is necessary to posit copy-

ing at the level of the particular behavior details in question.

Importantly, such evidence does not indicate that copied de-

tails are necessarily culture dependent (Reindl et al. 2017) in

the strong sense of being impossible for individuals to reinvent

and thus does not address the question of whether copying

was required for a particular technology (Tennie et al. 2017).

As outlined above, we think this is the wrong question to ask.

Instead our focus is on identifying evidence that detailed copy-

ing of particular means did in fact occur, whether or not it was

essential.

Here we test the proposal that ESA technological reproduc-

tion did not involve social reproduction of detailedmeans (Ten-

nie et al. 2016, 2017) by assessing the degree to which functional

constraints could explain the biased representation of particular

knapping methods at Gona. Attempting to explain rates and

patterns of ESA technological change (i.e., the third step in the

proposed research program) is largely premature at this point,

but we do present some speculative scenario building in service

of hypothesis generation in the “Discussion” section.

Case Study: Technological Reproduction at Gona

Stout et al. (2010) reported evidence of variation in knapping

methods across three initial Oldowan (2.6–2.5 Ma) lithic as-

semblages from the sites of East Gona (EG) 10 and 12 and

OundaGonaSouth (OGS)7 in theGonaResearchProject study

area of Ethiopia. The East Gona sites, located in close spatial

proximity (within approximately 300 m) and similar deposi-

tional contexts (proximal floodplain of the ancestral Awash

River), share a preponderance of unifacial reduction. This

method (fig. 2a, 2b), involves removal of flakes from a single

core surface or face and is indicated archaeologically by a high

percentage of cores bearing a unifacial scar pattern (EG-10 and

EG-12: 69% and 78%) and of flakes displaying the original

cobble exterior surface (the cortex) on their striking platforms

(79% and 81%). Site EG-10 consists of two distinct artifact

layers separated by 40 cm of sediment (Semaw 2000), suggest-

ing repeated occupation and some temporal persistence of the

unifacial technological preference.

Site OGS-7, located approximately 3 km south-southwest of

the EG sites and deposited in a channel bank or margin con-

text, shows a starkly different pattern of predominantly bi-/

multifacial reduction. This method (fig. 2c, 2d ) involves core

rotation between flake removals and is reflected by a predomi-

nance of cores showing bi-/multifacial scar patterns (82%) and

flakes with no cortex on their striking platforms (66%). Site

OGS-7 is remarkably preserved. Artifacts were recovered from

Figure 2. Unifacial core fromEG-12(a); corticalplatform(type III)
flake from EG-10 (b); multifacial core from OGS-7 (c); non-
cortical platform (type V) flake from OGS-7 (d ). Cortex indicated
by crosshatching (a, c) or stippling (b, d). Illustrations by Dom-
inique Cauche.
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a tightly restricted (!10 cm thick) layer located at a local con-

tact between coarse sand and bedded floodplain silts (Semaw

et al. 2003); more recent excavations (Rogers et al. 2013) sug-

gest the presence of a second artifact layer separated by 15–

20 cm of sediment that displays similar technological charac-

teristics, again implying temporal persistence. As described by

Stout et al. (2010), the nearby site of OGS-6 (Semaw et al. 2003)

has also yielded a small excavated assemblage consistent with

bi-/multifacial knapping (12 whole flakes, none with cortical

platforms) from a different depositional setting (floodplain).

Thus, there is a spatially patterned and temporally persistent

pattern of technological difference at Gona that needs to be

explained.

Step 1: Assessing Fidelity

The first step is to evaluate evidence of behavior reproduction

while remaining agnostic about learning processes, social or

otherwise. Using the criteria outlined above, the high preva-

lence of particular reduction strategies at different Gona sites

should indicate reproduction of these behavioral details across

individuals. We previously (Stout et al. 2010) identified these

different reduction strategies at Gona using published tech-

nological typologies (i.e., scar patterns) and generalized exper-

imental analogies (Toth 1987). Here we test our technological

interpretations in a context-specific knapping experiment de-

signed to see if the inferred methods actually do replicate key

features of the Gona assemblages such as core scar patterns and

reduction intensity as well as the size, shape, and frequencies

of debitage types.

By adopting this experimental approach, we are employing

an analogical argument that must be justified (Wylie 1985).

As detailed below, we attempted to strengthen this analogy by

matching raw materials and knapping methods as closely as

possible to those indicated by the archaeology. These efforts

serve to enhance what has been termed the source-side cred-

ibility (Wylie 1985) or external validity (Eren et al. 2016) of the

experimental model. Conversely, we sought to increase the in-

ternal validity (Eren et al. 2016) of our experiments by con-

trolling knapper skill, style, and technological goal and by re-

cording initial cobble attributes as well as the number and

relative location of all detachments that produced our experi-

mental samples (cf. Reti 2016). As with all early Paleolithic ex-

perimental archaeology, however, we face the problem of using

modern human performance to model the behavior of extinct

hominin species. In principle, it can never be ruled out that

subtle differences in technique, skill, unconscious bias, or some

other unanticipated factor on the part of either the particular

knapper or knappers ormodern humans in general could com-

promise the analogy. It is thus critical to test the actual perfor-

mance of the experimental model through direct comparison

with the archaeology. In other words, the validity of experi-

mental models must be assessed empirically in terms of their

success in accurately predicting additional subject-side (Wylie

1985) features of archaeological assemblages. Such recursive

testing is the gold standard for strengthening analogical ar-

guments. We thus present results of this comparison below.

Step 2: Inferring Learning Processes

Rather than behavior copying, different reduction strategies

at Gona might reflect locally optimum technological solutions

with a high likelihood of independent rediscovery. It would

then be necessary to attribute intersite variation in reduction

strategy to variation in raw material qualities and/or avail-

ability, differing technological goals, or differing hominin ana-

tomical and/or psychological capabilities. Insofar as there is no

known direct archaeological indicator of behavior copying ver-

sus rediscovery, these possibilities must be addressed through

an admittedly flawed (Byrne 2007) process of elimination. Ar-

chaeologists will be familiar with this logic from Glynn Isaac’s

(1984) “method of residuals,” which identifies culture as that

which is left over when all other possible explanations of var-

iation are exhausted.

This approach is problematic because the actual elimination

of all possible alternatives is a logical, not to mention prag-

matic, impossibility (see “Discussion”). A more particular

problem in the case of technological reproduction is that a high

potential for independent rediscovery does not exclude the

possibility that a particular behavior was, in practice, repro-

duced through action copying (Byrne 2007). Thus, an argu-

ment, by elimination, has weaknesses going in both directions

(confirmation and falsification) but is our only option until

experimental research identifies more direct indicators of pre-

historic learning processes (e.g., Schillinger, Mesoudi, and Ly-

cett 2015). With these caveats in mind, we can evaluate the

relative likelihood of different explanations for intersite varia-

tion at Gona.

Culture or biology? First, there is the possibility that bio-

logical differences between toolmakers at the various sites in,

for example, handmorphology or perceptuomotor capacity, led

to different task affordances and thus to different obvious so-

lutions on which individual learners converged. This possi-

bility cannot be dismissed, but it does require the onerous as-

sumption that two biologically distinct hominin populations

withdiffering innatecapacitiesbeganmaking theearliest known

Oldowan stone tools at roughly the same time andwithin about

3 km of one another.

The East Gona sites are dated to between 2.6–2.5 Ma (Se-

maw 1997), while OGS-6 and OGS-7 are even more tightly

constrained, to !2.58 Ma (Semaw et al. 2003). Together, they

represent the earliest known occurrences of characteristically

Oldowan technology. There are no hominin fossils from Gona

at ca. 2.5 Ma to support the presence or absence of multiple

species; however, earlyHomo has been reported at 2.8Ma from

the nearby Ledi-Geraru research area (Villmoare et al. 2015)

and at 2.3 Ma from Hadar (Kimbel et al. 1996), whereas Aus-

tralopithecus garhi is present at 2.5 Ma in the Middle Awash

(Asfaw et al. 1999). Unfortunately, none of these finds includes
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hand fossils, and only A. garhi provides evidence of brain size.

The fossil evidence of early hominin hand morphology in gen-

eral is quite limited and has yet to resolve the antiquity and

variability across species of human-like manipulative abilities,

although there are indications of pre-Homo origins (Kivell

2015).

Turning to the artifacts themselves,wehavepreviously noted

that similarities in core reduction intensity and flake mor-

phology across the Gona sites are inconsistent with marked

differences in basic competence (Stout et al. 2010), as might

perhaps be expected from different taxa such as small-brained

A. garhi and early Homo. None of the sites exhibits the in-

complete reduction, heavy core battering, and thin, side-struck

flakes characteristic of bonobo knapping (Toth, Schick, and

Semaw 2006), whereas all sites demonstrate abilities to iden-

tify, exploit, and maintain (sensu Moore 2011; Stout and Cha-

minade 2007) appropriate core angles for extensive reduction.

While it remains possible that some subtle differences in in-

nate aptitude of different hominin groups could have biased

individual learning to produce the observed variation in knap-

ping methods, we do not currently consider this to be a parsi-

monious explanation due to the multiple unsupported assump-

tions that are required.

Individual reinvention? . Another possibility is that intersite

differences at Gona are simply the summation of repeated in-

dividual adoption of similar responses to different local con-

ditions, such as the nature and local abundance of raw materi-

als or the intended function of tools. This explanation predicts

that the different knapping methods should produce different

outcomes under these conditions, thus providing some basis

for individual toolmakers to reliably favor one over another. In

other words, the alternatives should not be functionally neu-

tral. To test this implication, we conducted a knapping experi-

ment using cobbles collected from the local channel gravels

(now preserved as cobble conglomerates) that served as the raw

material source for Oldowan knappers at Gona (Stout et al.

2005). By systematically varying knapping method (unifacial,

bi-/multifacial) across a range of cobble shapes while holding

the knapper constant, we tested for technological effects of the

different methods on variables including the frequency, type,

and morphology of detached pieces per cobble. A similar ap-

proach was recently employed by Reti (2016) to study the ef-

fects of different Oldowan knappingmethods at Olduvai Gorge,

Tanzania.

Unfortunately for experimental replicators, the actual tech-

nological objectives of Oldowan knappers are not known. The

prevailing view is that reduction focused on the production of

detached pieces (Toth 1985) and specifically aimed to maxi-

mize the production of sharp edges useful for the cutting and/

or scraping of animal and plant tissues (Lemorini et al. 2014).

It is likely that Oldowan cores were also used as tools (Toth

1985), but there is no evidence that they were intentionally

shaped for particular functions. In the Gona assemblages spe-

cifically, it would be hard to reconcile the apparent intensity

of reduction (Toth, Schick, and Semaw [2006] estimated about

63% original weight removed at East Gona) with anything

other than a primary emphasis on detached piece production.

We thus set production of cutting edges on detached pieces as

the uniform goal throughout our experiment, while varying

knapping methods. Of detached pieces, whole flakes are gen-

erally considered to have the highest utility (Toth 1985); how-

ever, use-wear evidence indicates fragments were also used

(Lemorini et al. 2014), and we made no a priori assumptions

regarding the desirability of fragments versus whole flakes.

Instead, we evaluated all pieces using published methods for

calculating “utility” (i.e., cutting edge length relative to piece

size). Although they are theoretically motivated (Braun and

Harris 2003) and reflective of archaeological consensus (Mor-

gan et al. 2015), it is of course possible that these measures do

not fully capture the goals and preferences of Oldowan knap-

pers. This is a major issue for Early Stone Age archaeology and

lies beyond what can reasonably be resolved here. As an initial

step in this direction, however, we complemented our utility-

based analysis with a data-driven approach using our experi-

mental results to identify archaeologically underrepresented

artifact types and then asking if they had distinctive features

that might have led to their preferential removal for use else-

where on the landscape (Schick 1987; Toth, Schick, and Semaw

2006). These desirable features provided an alternative metric

of the functional relevance of different knapping methods.

Experimental Materials and Methods

Raw Materials

Cobbles approximating the size and fine-grained composition

exploited by the Gona toolmakers (Stout et al. 2005) were

selectively collected from local conglomerates. After initial col-

lection, a large sample of cobbles (1150) were visually divided

into four shape categories based on relative elongation and

thickness: (1) sphere, (2) disk (flattened sphere), (3) rod (elon-

gated sphere), or (4) tablet (elongated disk). During the exper-

iment, the knapper (Dietrich Stout) selected cobbles (n p 40)

from these categories in an attempt to balance the distribution

of size, shapes, and rawmaterial quality across bifacial and uni-

facial conditions. Knapping method was alternated over con-

secutive cobble reductions and was not contingent on selected

cobble properties. Note that shape categories were used as a

pragmatic aid during the experiment, but statistical analyses

were conducted on the continuous shape metrics summarized

below and detailed in the appendix (available online). As re-

ported in the supplementary methods in the appendix, we

found no significant differences in cobble size, shape, or texture

between the two experimental conditions; cobble shape dis-

tributions are depicted in figure S2 in the appendix (figs. S1–S4

are available online).

Raw material characteristics were recorded and analyzed to

ensure there were no systematic differences between the two

experimental conditions and that both provided a good ap-
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proximation of the archaeological materials. Experimental cob-

ble size and shape were recorded prior to reduction. Size mea-

sures were length, breadth, thickness, and weight. The three

linear measures were transformed into two dimensionless shape

variables by first dividing them by the geometric mean and then

performing a principal components analysis. Cobble angularity

was estimated from digital photographs, and the most acute

available angle (hereafter, Start Angle) was measured using a

goniometer. Rawmaterial quality was ranked after each reduc-

tion using the same three-point (glassy, smooth, rough) system

previously (Stout et al. 2005) applied to the archaeological as-

semblages.

Comparison between the experimental and archaeological

samples was somewhat more difficult. Initial cobble shape data

are not available for the archaeology, and starting weight had

to be estimated using the scar density index (SDIp scar count/

surface area) of Clarkson (2013). Nevertheless, we found that

our experimental sample, while likely not an exact match, pro-

vides a useful approximation of the original cobble size distri-

bution of the archaeological sample. Representative cores from

the experimental and archaeological samples are shown in fig-

ures 3 and 4. Hammerstone selection is discussed in the ap-

pendix.

Experimental Knapping

In order to control for individual variation in knapping skill

and style, all reductions were performed by the first author

(Dietrich Stout ) over the course of two consecutive days. Cob-

bles were photographed, weighed, and measured before and

after reduction. All detached pieces120mmwere collected and

numbered as they were produced. Each blow that produced

one or more such pieces was counted (Detachment Number)

and associated with the IDs of those pieces. Every such blow

was also classified in relation to the previous one, as laterally

adjacent (unifacial), alternating (bifacial), noncontiguous (mi-

grating), or initial (first detachment). Cores were reduced to

exhaustion using either an exclusively unifacial method (uni-

facial condition) or one in which bifacial alternation and mul-

tifacial migrationwere allowed (bi-/multifacial condition). The

unifacial experiment included 425 productive blows: 93% uni-

facial and 7% initial. The bi-/multifacial experiment included

403 productive blows: 42% unifacial, 45% bifacial, 8% migrat-

ing, and 5% initial. Exhaustion was defined as the point where

persistent effort (≥5 blows) failed to generate further removals

120 mm. Knapping method was alternated over consecutive

cobble reductions. As reported above, this protocol generated

Figure 3. Experimental cores from the unifacial (a) and bi-/
multifacial (b) experimental conditions. A color version of this
figure is available online.

Figure 4. Archaeological cores from East Gona (a) and Ounda
Gona South (b). A color version of this figure is available online.
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experimental samples that did not differ in initial cobble size,

shape, or texture.

Our two experimental knapping methods represent hypoth-

eses about the methods actually used at Gona. These hypoth-

eses derive from qualitative inspection and evaluation of scar

patterns on the Gona cores as well as application of a formal

scar pattern typology (Stout et al. 2010). As reported below, we

tested these technological hypotheses by directly comparing

experimentally generated cores and debitage to the archaeo-

logical assemblages.

Lithic Analysis

To permit comparison across conditions and with the archae-

ological assemblages, we assessed conventional discrete and

metric attributes for all detached pieces (classified as Whole

Flakes [WF], Split Flakes [SF], Proximal Sections [PS], or Frag-

ments [F]) and for cores before and after reduction. Whole

flakes were assigned to technological flake categories (Toth

1987) on the basis of presence of cortex on the platform and

dorsal surfaces (types I–VI: 1/1, 1/partial, 1/2, 2/1,

2/partial,2/2). Core reduction intensity was estimated using

the scar density index (SDI) of Clarkson (2013), calculated as

(scar count/surface area [mm2]) #10,000. In the absence of

3-D scans, we calculated surface area as a rectangular prism

(2ab 1 2ac 1 2bc), a formula Clarkson showed to be highly

predictive (r2 p 0.944) of 3-D surface area. As our hypothesis

concerned the production of sharp edges, we estimated the

length of useful edge (!507 [Gurtov and Eren 2014]) on all

detached pieces using a goniometer and calipers. Following

Morgan et al. (2015) and Putt (2015), we classified any piece

with useful edge 10 mm as “Viable.” We also calculated two

indices of utility for each piece: “Edge-to-Mass” (flake cutting

edge/mass1/3) (Braun and Harris 2003), and “Utility” (flake

cutting edge/flake mass1/3)# (1 2 exp[20.31# (flake max-

imum dimension – 1.81)]) (Morgan et al. 2015). The first

formula uses an exponent to account for the nonlinear rela-

tionship between edge and weight. The second formula addi-

tionally accounts for the influence of size on utility, using an

estimate of this relationship derived from the subjective ratings

of three expert coders. In essence, it rewards pieces for high

cutting edge and penalizes them for small size (Morgan et al.

2015). In our samples, these two measures were highly cor-

related (Pearson’s r p 0.819, P ! .001) and produced quali-

tatively similar results (table 2).

Statistical Analyses

To evaluate the association between various possible predic-

tors (knapping method, raw material size, shape and quality,

and reduction stage) and technological outcome, we adopted

an information-theoretic approach (Burnham and Anderson

2002), which is further described in the supplementary meth-

ods.Weused the correctedAkaike information criterion (AICc)

to rate each possible combination of predictors on the balance

between goodness of fit (likelihood of the data given themodel)

and parsimony (number of parameters). Parameter estimates

from alternative models were weighted and averaged to pro-

duce the most generalizable inference.

Experimental Results

Validating the Models

It is crucial to our analogy that the experimentally produced as-

semblages accurately recreate the archaeological assemblages.

Here we show that this is indeed the case. Forty cobbles were

reduced, producing 40 cores (18 bi-/multifacial), 3 core frag-

ments, and 829 detached pieces 120 mm in maximum dimen-

sion. We compared this sample to excavated collections com-

prising a total of 32 cores and 849 detached pieces 120 mm

from East Gona (EG-10 and EG-12) and Ounda Gona South

(OGS-7). Our experimental conditions were designed to rep-

licate specific reduction strategies rather than the actual ar-

chaeological samples, which reflect mixtures of cores reduced

by these methods. To generate archaeological predictions, we

modeled artifact type frequencies and mean metric attributes

as weighted averages of the values produced by our two exper-

imental conditions (uni- vs. bi-/multifacial: EG modelp 0.72

vs. 0.28, OGS model p 0.14 vs. 0.86). Notional artifact type

counts were generated from these proportions by setting the

total number of artifacts equal to the archaeological samples.

Artifact type frequencies (table 1) predicted by the models

closely approximate the actual archaeological samples, par-

Table 1. Artifact type frequencies

Artifacts

Total (%)Whole flakes (%) Split flakes (%) Proximal sections (%) Fragments (%) Cores (%)

Experiment:

Unifacial 124 (27.7) 140 (31.3) 39 (8.7) 122 (27.3) 22 (4.9) 447 (100)

Bi-/multifacial 189 (44.8) 75 (17.8) 32 (7.6) 108 (25.6) 18 (4.3) 422 (100)

Experimental model:

East Gona 199 (32.5) 168 (27.5) 51 (8.4) 164 (26.8) 29 (4.7) 611 (100)

Ounda Gona South 115 (42.4) 53 (19.7) 21 (7.8) 70 (25.8) 12 (4.4) 271 (100)

Excavated sample:

East Gona 153 (25.0) 102 (16.7) 4 (.7) 327 (53.5) 25 (4.1) 611 (100)

Ounda Gona South 97 (35.9) 31 (11.5) 2 (.7) 133 (49.3) 7 (2.6) 270 (100)
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ticularly with respect to the direction and magnitude of dif-

ferences between East Gona and Ounda Gona South (fig. 5a).

Notably, the experimental models consistently predict higher

frequencies of whole flakes and identifiable fragments (SF, PS),

whereas the archaeological samples contain correspondingly

higher frequencies of unidentifiable fragments. The largest de-

viation is the overestimation (by about 11%) of split flakes from

East Gona. Toth, Schick, and Semaw (2006) observed a similar

pattern in their replication experiment and suggested that it

likely reflects the impact of postdepositional fragmentation

and/or the greater difficulty of identifying diagnostic mor-

phology on weathered archaeological specimens. Measures of

debitage size and shape support the former interpretation. We

found that East Gona split flakes are absolutely larger (fig. 5b)

and relatively thicker (fig. 5c) than predicted, consistent with

the selective deletion of small, thin pieces by postdepositional

fragmentation. Furthermore, unidentifiable fragments have the

lowest relative thickness among experimental detached pieces

(i.e., reflecting the fact that relatively thin flakes are more likely

to break during detachment) but the greatest relative thickness

among the archaeological samples. This is expected if archae-

ological fragment counts were inflated substantially by post-

depositional fragmentation, which typically involves snaps that

reduce length and/or breadth while preserving thickness and

thus systematically increase relative thickness. In contrast, such

fragmentation is expected to have a random rather than sys-

tematic effect on elongation (Length/Breadth), leading to accu-

rate prediction of themean by the experimentalmodels (fig. 5d).

With respect to core attributes, we considered measures of

size (weight), shape (Length/Breadth; Breadth/Thickness), and

reduction intensity (SDI). A multiple ANOVA of these four

variables across our experimental and archaeological samples

Figure 5. Experimental prediction of artifact type frequencies (a), size (b), relative thickness (c), and shape (d ). A color version of this
figure is available online.
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found a significant effect (Wilks’slp 0.607, F (12, 166.974)p

2.892, P p .001), driven by between-samples effects on SDI

(Pp .001) andweight (Pp .001) but not shape (Length/Breadth

P p .001; Breadth/Thickness P p .292). Considering the for-

mer (fig. 6), we find that the experimental models accurately

predict SDI as well as the relative core size difference between

East Gona and Ounda Gona South but overestimate core size

generally. This parallels general model overestimation of the

size of debitage (fig. 5b) and may reflect somewhat larger initial

cobble size in the experimental samples.

Importantly, the success of our models in predicting re-

duction intensity (SDI) for East Gona and Ounda Gona South

argues against the possibility that differing knapping methods

across these sites simply reflect different points along a con-

tinuum of reduction (cf. Toth 1985). As discussed above, both

East Gona and Ounda Gona South cores appear extensively

reduced (Stout et al. 2010; Toth, Schick, and Semaw 2006). Our

experimental results now show that such differences as do ex-

ist between the sites match those generated by variation in

knapping method across cores reduced to a uniform criterion

of exhaustion. This is consistent with evidence of technological

flake category (Stout et al. 2010) and debitage type frequencies.

Results thus show that our experimental models are suc-

cessful in predicting features of the archaeological samples

ranging from artifact type frequencies to core reduction in-

tensity. The models are especially successful in predicting the

direction andmagnitude of differences between East Gona and

Ounda Gona South, which are the focus of our research ques-

tions. We conclude that an analogy between the technological

effects of knapping method in our experiments and in the ar-

chaeological sample is warranted.

Effects of Knapping Method

As expected, unifacial flaking produced a higher proportion

of cortical platform flakes (especially type II) compared to

the noncortical platform flakes (especially type V) produced by

bifacial flaking (fig. 7). The difference between flake type dis-

tributions was highly significant (x2
p 220.9, dfp 5, np 307,

P ! .001). Unifacial flaking also produced a higher proportion

of split flakes, and correspondingly fewer whole flakes, com-

pared to bifacial flaking (table 1; x2
p 34.2, df p 3, n p 829,

P ! .001). As reported above, this result is echoed by the higher

proportion of split flakes in the East Gona versus Ounda Gona

South archaeological samples (fig. 5a).

Unifacial cores were less completely reduced as indicated by

both the scar density index (fig. 6a) and the actual proportion

of weight removed (table 2). As seen in table 2, apparent trends

for unifacial flaking to produce fewer total pieces and fewer

Viable pieces per cobble did not achieve significance. However,

unifacial flaking did produce a significantly lower proportion

of Viable pieces, lower total Utility (measured by summed

Utility and Edge-to-Mass values for all detached pieces), and

less utility per gram of original cobble (asmeasured by summed

Utility and Edge-to-Mass divided by start weight). This sug-

gests that unifacial flaking is generally less efficient in produc-

ing useful pieces and sharp edges from a given cobble. Results

presented in tables 1 and 2 further suggest this is due to a ten-

dency for unifacial flaking to produce a higher rate of frag-

mentation. Importantly, this difference in fragmentation rate

is also seen across the archaeological samples. However, these

results do not yet take into account possible effects of raw ma-

terial variation that might result in advantages for unifacial

knapping under certain conditions.

Core analysis. To address possible effects of raw material

variation, we first considered productivity per coremeasured as

Utility generated per unit of cobble starting weight. As shown

in table 2, various alternative measures behave similarly. We

selected this particular measure because (1) we find it to be the

most theoretically justified and (2) it produced the largest ef-

fect on the sample means in table 2, and we wished to maxi-

mize the chance of discovering differences between the two

knapping methods.

To analyze which factors best predict Utility/Weight (nor-

malized through log transformation) from a given core, we con-

sidered a suite of core traits and their interactions with knap-

ping method, resulting in the following full model, wherein

each core provides one data point:

ln(Utility by Weight) ∼ Method# Raw Material Quality

1Method# Shape PC11Method# Shape PC2

1Method# Solidity1Method# Start Angle:

Figure 6. Experimental prediction of core reduction intensity
(SDI; a) and size (weight; b). A color version of this figure is avail-
able online.
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Continuous predictors (Shape PCs [PC p principal com-

ponent analysis], Solidity, and Start Angle) were centered such

that zero represents the sample average, and units are standard

deviations. The full model was fit with the lm function in

R 3.2.3, and the MuMIn package (Bartoń 2015) was used for

automatedmodel comparison. The averagemodel is presented

in table 3, wherein baseline refers to Methodp unifacial, Raw

Material Quality p glassy, with all continuous predictors at

the sample average. The other parameters represent devia-

tions from this baseline; for example, the predicted Utility for

Method p bi-/multifacial is 23.72 1 0.42. The parameter

estimates for the continuous predictors reflect the expected

change inutility for1 standarddeviationchange in thepredictor

variable. Significant decreases in utility were found for cores of

lowerqualityandhigher start anglebutnot for the twoknapping

methods, regardless of core quality, start angle, shape, or so-

lidity. Keeping all continuous predictors at the sample mean,

figure 8A shows the predicted effects (595% CI; CI p confi-

dence interval) of flaking method and raw material quality on

Utility, wherein point size and line width are proportional to

the number of cores in each category. There are no significant

differences in Utility produced by unifacial and bi-/multifacial

methods at any level of quality. Knapping method similarly

hadnoeffect on the relationshipbetweenStartAngleandUtility

Figure 7. Technological flake type (defined by presence of cortex on the platform/dorsal surfaces: type I:1/1; type II:1/partial; type III:
1/2; type IV: 2/1; type V: 2/partial; type VI: 2/2) frequencies for experimental and archaeological samples, including modeled
modifications of the experimental samples.

Table 2. Reduction statistics by core

Proportion

weight

removed

Total pieces

produced

Viable pieces

produced

Proportion

viable

Sum of

utility

values

Utility/start

weight

Sum of

edge/mass

values

(Edge/

mass)/start

weight

Unifacial (n p 22):

Mean .51 19.4 16.0 .80 10.13 .018 222.15 .42

Median .56 19.0 15.5 .84 8.64 .018 194.09 .34

Bi-/multifacial (n p 18):

Mean .66 22.4 19.83 .88 15.67 .032 341.58 .69

Median .67 20.0 18.0 .89 13.67 .026 287.96 .53

t-test sig. (2-tailed) .013 .327 .192 .012 .028 .012 .049 .042

Mann-Whitney U .039 .338 .180 .010 .022 .011 .032 .014
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(fig. 8B) and did not interact with cobble shape PCs or solidity.

Indeed, model estimates for all these possible shape effects dis-

play narrow confidence intervals centered near 0, with all P 1

.80. These experimental results thus fail to provide any sug-

gestion that local variation in rawmaterial availability/selection

could have favored one knapping method over another.

Debitage viability. We next considered the production of

minimally Viable flakes. To analyze what factors—knapping

method, material traits, and their interactions—best explained

whether a given flake was Viable or not, we began with the fol-

lowing full model:

Viable(yes=no) ∼ Method# Raw Material Quality

1Method# Debitage Type1 Raw Material Quality

#Debitage Type1 Cobble Weight1 Detachment Number

1Method# Shape PC11Method# Shape PC2

1Method# Solidity1Method

# Start angle1 random effect for Cobble:

Again, all continuous predictors were centered. The full

model was fit using the MCMCglmm package (Hadfield 2010)

in R 3.2.3 with a logit link function, slice sampling, a weak

Table 3. Average model predicting core utility/weight

Estimate Adjusted SE Z P Lower 95% CI Upper 95% CI

Baseline (unifacial; glassy) 22.91 .64 4.54 !.001 24.16 21.65

Deviation from baseline:

Method p bi-/multifacial 2.04 .71 .06 .95 21.44 1.36

Quality p smooth 21.26 .65 1.93 .053 22.55 .02

Quality p coarse 21.58 .73 2.17 .030 23.01 2.16

Start angle (11 SD) 2.32 .1 2.82 .005 2.55 2.10

Shape PC1 (11 SD) .03 .08 .34 .73 2.13 .18

Shape PC2 (11 SD) 2.01 .05 .12 .91 2.10 .09

Solidity (11 SD) .02 .06 .35 .73 2.10 .15

Method p bi-/multifacial; quality p smooth .47 .74 .64 .52 2.98 1.92

Method p bi-/multifacial; quality p coarse .57 .87 .65 .52 21.15 2.28

Method p bi-/multifacial; start angle (11 SD) 2.02 .10 .24 .81 2.21 .17

Method p bi-/multifacial; shape PC1 (11 SD) 2.01 .06 .13 .90 2.12 .11

Method p bi-/multifacial; shape PC2 (11 SD) 2.01 .06 .15 .88 2.12 .10

Method p bi-/multifacial; solidity (11 SD) .00 .04 .03 .97 2.08 .07

Note. Cores of lower quality and with greater start angles produce lower utility, but utility does not vary according to knapping method.

Figure 8. Significant effects of raw material quality (A) and start angle (B) on utility generated per unit cobble weight. Knapping
methods had no significant interaction with either effect. A color version of this figure is available online.
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Cauchy prior (variance p 1,000) for the random effect, and

residual variance fixed to 10 (Hadfield 2014). Chains were run

for 50,000 iterations and sampled at every tenth iteration after

a burn-in of 10,000; convergence was satisfactory as assessed

visually.

The cobble-level random effect contributed relatively little

to explaining viability; compared to the samemodelwithout the

cobble-level random effect, the full model had essentially the

same AICc (371.5 vs. 371.2; comparison of Deviance Informa-

tion Criteria yielded the same inference); hence we proceeded

without the random effect and refit the model using the glm

function. The absence of a substantial cobble-level random ef-

fect provides reassurance that our selection of cobble form and

quality variables has not neglected major sources of variation

relevant to Utility.

In the averagedmodel (table 4), baseline refers toMethodp

unifacial, DebitageTypepwholeflakes,Qualityp glassy, with

continuous predictors at the sample average. All other rows

represent deviations from this baseline, and all parameters are

presented as the probability of producing a Viable flake. De-

bitage Types other than whole flakes significantly lower the

probability of a piece being Viable. There was a trend toward

higher Viability with increasing shape PC2 (i.e., less elongated

cobbles, Pp .092) and some suggestion of a small general ad-

vantage for bi-/multifacial flaking (Pp .244). It is plausible to

speculate that these are real effects that might achieve signifi-

cance with a sufficiently large sample. Critically, however, there

was again no suggestion of an interaction between knapping

method and any raw material shape or quality variable (P

range p .65–.83) regardless of debitage type (P p .82–1.00).

Figure 9A presents a visualization of the probability of pro-

ducing a Viable piece (595%CI) as a function of debitage type

and knapping method. The probability declines with each

change in debitage type, and at each type bi-/multifacial knap-

ping has a slightly higher probability of Viability. Our Viability

results indicate that the archaeologically observed variation in

knapping method is either functionally neutral or provides a

small overall advantage for bi-/multifacial knapping regardless

of raw material and debitage type variation. Thus, there is no

suggestion of any local conditions that could have favored in-

dividual adoption of unifacial flaking at East Gona.

Utility of viable debitage. Finally, we considered variation in

the Utility of Viable pieces. The Utility distribution is highly

Table 4. Average model predicting the probability that detached pieces are viable

Estimate Adjusted SE Z P Lower 95% Upper 95%

Baseline (unifacial; glassy; whole flakes) 2.64 (.93) .41 6.43 !.001 1.83 3.44

Deviation from baseline:

Method p bi-/multifacial .53 (.96) .46 1.17 .244 2.36 (.91) 1.43 (.98)

Debitage p split flakes 2.86 (.86) .43 2.00 .046 21.71 (.75) 2.02 (.92)

Debitage p proximal sections 21.24 (.80) .54 2.28 .022 22.31 (.59) 2.18 (.92)

Debitage p fragments 21.88 (.68) .40 4.66 !.001 22.66 (.52) 21.09 (.81)

Shape PC1 (11 SD) 2.06 (.93) .13 .48 .63 2.32 (.85) .19 (.97)

Shape PC2 (11 SD) .23 (.95) .14 1.69 .092 2.04 (.89) .50 (.98)

Solidity (11 SD) 2.16 (.92) .15 1.04 .30 2.46 (.84) .14 (.97)

Core weight (11 SD) 2.07 (.93) .11 .61 .54 2.28 (.85) .15 (.97)

Detachment (11 SD) .05 (.94) .10 .54 .59 2.14 (.87) .25 (.97)

Start angle (11 SD) .04 (.94) .11 .39 .70 2.17 (.87) .26 (.97)

Quality p smooth 2.01 (.93) .37 .03 .97 2.74 (.88) .71 (.96)

Quality p Coarse 2.03 (.93) .47 .06 .95 2.95 (.84) .90 (.97)

Method p bi-/multifacial; solidity (11 SD) 2.09 (.95) .19 .45 .65 2.47 (.88) .29 (.98)

Method p bi-/multifacial; shape PC2 (11 SD) 2.05 (.97) .15 .35 .73 2.34 (.92) .24 (.99)

Method p bi-/multifacial; start angle (11 SD) 2.03 (.96) .12 .26 .80 2.26 (.91) .20 (.98)

Method p bi-/multifacial; shape PC1 (11 SD) .02 (.96) .11 .22 .83 2.20 (.90) .25 (.98)

Method p bi-/multifacial; quality p smooth (11 SD) 2.11 (.95) .42 .26 .79 2.92 (.92) .71 (.97)

Method p bi-/multifacial; quality p rough (11 SD) 2.10 (.95) .40 .24 .81 2.88 (.89) .69 (.98)

Quality p smooth; debitage p split flakes .07 (.86) .36 .19 .85 2.64 (.80) .77 (.91)

Quality p coarse; debitage p split flakes 2.04 (.85) .40 .09 .93 2.82 (.75) .75 (.91)

Quality p smooth; debitage p proximal sections .01 (.80) .36 .04 .97 2.70 (.66) .73 (.89)

Quality p coarse; debitage p proximal sections 2.22 (.76) .95 .23 .82 22.07 (.46) 1.63 (.92)

Quality p smooth; debitage p fragments .07 (.69) .34 .19 .85 2.61 (.60) .74 (.77)

Quality p coarse; debitage p fragments 2.03 (.67) .38 .09 .93 2.78 (.54) .71 (.78)

Method p bi-/multifacial; debitage p split flakes .00 (.91) .14 .00 1.00 2.27 (.81) .27 (.96)

Method p bi-/multifacial; debitage p proximal sections .00 (.87) .18 .01 .99 2.35 (.68) .35 (.96)

Method p bi-/multifacial; debitage p fragments .01 (.79) .12 .04 .97 2.24 (.64) .25 (.88)

Note. Fragments have a significantly lower probability of producing viable pieces, independent of knapping method. Note that parameter estimates are

in logit space, and transformed values in natural probability units are given in parentheses. For instance, the probability of a glassy whole flake

producing a viable flake with bi-/multifacial knapping is the logistic of (2.64 1 .53) p .96.
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skewed; exploratory analyses showed it to be most effectively

normalized through a cube root transformation (Shapiro-

Wilkp 0.997, dfp 709, Pp .177). We began with the same

full model. The cobble-level random effect again contributed

very little to explaining variation in Utility; the same model

fit without the random effect had a substantially lower AICc

(2145 vs. 2309), and we focus on this simpler model from

now on.

In the averaged model (table 5), debitage types other than

whole flakes produced lower Utility. There were trends for

heavier (P p .081) and higher quality (P p .085) cores to

produce pieces with higher Uility and for higher start angles

(Pp .053) to result in lower Utility (fig. S3). There was, how-

ever, no indication of an effect of knapping method (Pp .94)

nor any suggestion of an interaction with raw material vari-

ables (Pp .49–.99). These results once more indicate that the

technological variation at Gona was functionally neutral and

independent of any effects of hypothetical variation in local

raw materials.

“Missing” flakes and hominin preferences. As shown in fig-

ure 7, our experimental model yielded a very close approxi-

mation of the actual Ounda Gona South flake category dis-

tribution. This supports the validity of our experimental model

as well as our previous (Stout et al. 2010) conclusion that there

is an equal representation of all reduction stages at OGS-7.

In contrast, the experimental model underestimates the

frequency of type III flakes in the East Gona sample. A previous

replication experiment by Toth, Schick, and Semaw (2006)

produced the same discrepancy, which the authors successfully

modeled as a product of predominantly late-stage reduction

combined with the selective removal of the most useful (based

on expert appraisal) flakes. Our experiment is limited by a rel-

atively small sample size for late-stage unifacial whole flakes but

similarly suggests that the relative frequency of type III flakes

increases in later reduction (fig. S4). In contrast to Toth, Schick,

and Semaw (2006), however, we found that accounting for this

effect failed to recreate the greater frequency of type III versus

type II flakes and dramatically overestimated the representa-

tion of type V flakes (26% vs. 12%). We thus considered se-

lective removal as an alternative explanation.

To generate an objective criterion for preferential removal

of type II versus type III flakes, we ran a stepwise discriminant

function analysis (DFA) on the unifacial experimental sample

with flake type (II vs. III) as the grouping variable and a range

of size and shapemeasures as the dependent variables (Weight,

MaximumDimension,Length,Breadth,Thickness,EdgeLength,

Platform Thickness, Platform Breadth, and Utility, as well as

Length,Breadth,andThicknessdividedbytheirgeometricmean).

The resulting function (0.042#Length1 0.186#Thickness–

0.087 # Platform Breadth 2 1.749), hereafter referred to as

“Favor,” characterizes type II flakes as absolutely longer and

thicker, with narrow platforms. It successfully classifies 77% of

cases. Applying the function to all experimental flakes and us-

ing21.0 (visually selected from distributions) as the cut point

abovewhichflakes are removed results in the deletion of 79%of

wholeflakes andproduces a “left behind”model quite similar to

the distribution observed at EastGona (fig. 7). Importantly, this

also produces more accurate estimates of types I and V flake

representations, despite the fact that our function was built to

Figure 9. Significant effects of debitage type on viability (A) and utility (B). There were no significant effects of or interactions with
knapping method. A color version of this figure is available online.
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distinguish types II versus III only. This suggests that Favor

really is capturing hominin-valued flake qualities independent

of technological flake categories.

To see if Favor could produce an otherwise unrecognized

advantage for one or another knappingmethod, we began with

the same full model employed in the analysis of debitage Util-

ity. The cobble-level random effect again contributed relatively

little to explaining variation in Favor; the same model fit with-

out the random effect had a substantially lower AICc (891 vs.

865), and we focus on this simpler model from now on.

Neither knapping methods nor any material traits or their

interactions significantly influenced a flake’s Favor, although

later-stagedetachments exhibit a trend toward lowerFavor (Pp

.79; table S1, available online). The Favor function includes

Platform Breadth, which is not relevant to debitage types other

than Whole Flakes. However, Split Flakes, Proximal Sections,

and Fragments all tend to have lesser lengths and thicknesses

than Whole Flakes (by post hoc Tukey tests, all Pp .001) and

presumably would have been less preferred on that basis. As

we have seen, they also have lower Utility and Viability rates

(fig. 9). Thus, there is little to suggest that types other than

whole flakes would have been preferred products, and again no

indication of functional difference between knappingmethods.

Discussion

Results of our experiment do not support the hypothesis that

the reproduction of particular behavioral forms (knapping

methods) at Gona was accomplished solely through individual

learning. Explaining the observed pattern of within-site ho-

mogeneity and between-site difference in terms of repeated

individual rediscovery of particular technical solutions appro-

priate to different contexts would require that the different

knapping methods actually yield differential benefits across

these contexts. To test this expectation, we conducted a wide

range of comparisons between knapping methods, taking into

account variation in raw material size, shape, and quality. An

absenceof substantial cobble-level randomeffects indicates that

our raw material variables successfully capture the variation

relevant to our outcome metrics, which include theory-driven

measures of reduction intensity and detached piece utility as

well as a data-driven measure of Favor derived from the ap-

parent preference of Gona toolmakers for long, thick flakes.

Contradicting the expectations of the individual-learning

hypothesis, we found no significant differences between the

two knappingmethods for any outcome, regardless of any mea-

surable features of the material.While this inference is of course

Table 5. Average model predicting the utility of viable detached pieces

Estimate Adjusted SE Z P Lower 95% Upper 95%

Baseline (unifacial; glassy; whole flakes) .97 .03 33.70 !.001 .92 1.03

Deviations from baseline:

Method p bi-/multifacial .00 .03 .07 .94 2.05 .06

Quality p smooth 2.02 .03 .69 .49 2.07 .03

Quality p coarse 2.07 .04 1.72 .085 2.15 .01

Core weight (11 SD) .02 .01 1.75 .081 .00 .04

Debitage p split flakes 2.19 .03 6.33 !.001 2.25 2.13

Debitage p proximal sections 2.23 .04 5.85 !.001 2.31 2.16

Debitage p fragments 2.23 .03 6.92 !.001 2.30 2.17

Detachment (11 SD) 2.01 .01 1.21 .23 2.03 .01

Start angle (11 SD) 2.02 .01 1.93 .053 2.05 .00

Shape PC2 (11 SD) .00 .01 .56 .58 2.02 .01

Solidity (11 SD) .00 .01 .32 .75 2.02 .01

Shape PC1 (11 SD) .00 .01 .01 .99 2.01 .01

Method p bi-/multifacial; debitage p split flakes .06 .05 1.29 .20 2.03 .15

Method p bi-/multifacial; debitage p proximal sections 2.04 .05 .73 .47 2.15 .07

Method p bi-/multifacial; debitage p fragments .05 .04 1.22 .22 2.03 .14

Method p bi-/multifacial; start angle (11 SD) 2.01 .02 .69 .49 2.04 .02

Method p bi-/multifacial; shape PC2 (11 SD) .00 .01 .25 .81 2.02 .01

Method p bi-/multifacial; solidity (11 SD) .00 .01 .24 .81 2.02 .01

Method p bi-/multifacial; quality p smooth .00 .02 .07 .94 2.03 .03

Method p bi-/multifacial; quality p coarse .00 .02 .20 .84 2.04 .05

Method p bi-/multifacial; shape PC1 (11 SD) .00 .01 .01 .99 2.01 .01

Quality p smooth; debitage p split flakes .00 .01 .14 .89 2.03 .03

Quality p coarse; debitage p split flakes .00 .01 .00 1.00 2.02 .02

Quality p smooth; debitage p proximal sections .00 .02 .12 .90 2.03 .03

Quality p coarse; debitage p proximal sections .00 .03 .09 .93 2.05 .05

Quality p smooth; debitage p fragments .00 .01 .13 .90 2.03 .03

Quality p coarse; debitage p fragments .00 .02 .14 .89 2.04 .04

Note. Debitage types other than whole flakes, cores of coarse quality, heavier weight, and greater start angle have lower utility.
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contingent on our sample and statistical models, it is important

to reiterate that information-theoretic model comparison and

averaging was designed to maximize out-of-sample predictive

accuracy, and thus generalizability, of statistical models (Burn-

ham and Anderson 2002). This procedure makes the best use

of the available data, and our inferences of no difference be-

tween the two methods are not based on a single, arbitrarily

selected model that might fail to control for crucial predictors.

If anything, our averaged models generally predicted small

advantages for bi-/multifacial knapping irrespective of raw

material variation, but with 95% confidence intervals that did

not exclude values of no difference between the two methods

(see figs. 8, 9). While it is possible that a future study with a

larger sample would identify a significant advantage for bi-/

multifacial knapping in general, our results contain no sug-

gestion of any interaction between knapping methods and raw

material variation of the kind that would be needed to explain

intersite variation at Gona.

We did not collect data on energy expenditure or produc-

tivity per unit time; however, we have assessed efficiency in

terms of utility per gram of raw material (relevant to transport

and handling costs including time and effort) and the pro-

portion of Viable pieces generated (i.e., rate of payoff from

effort invested in percussion), both of which fail to provide any

evidence of unifacial advantage. Furthermore, at the level of

individual knapping actions, unifacial flaking produced an

average of only 0.83 viable flakes and 0.524 total utility per

blow, whereas bi-/multifacial flaking produced 0.92 and 0.738,

respectively. Any putative unifacial time and effort savings

fromminimizing the (relatively rapid) process of core rotation

thus seem likely to be offset by greater costs in terms of raw

material economy and a lower rate of useful flake generation

per blow.

Our results thus offer some mixed support for the possi-

bility of a small across-the-board advantage for bi-/multifacial

flaking, but they fail to provide any basis for explaining the

predominance of unifacial flaking at two out of three Gona

sites, in terms of reliable individual rediscovery of a locally

advantageous technical solution.While we would certainly not

argue that Oldowan technology was beyond the ability of an

individual to reinvent in a lifetime, we nevertheless contend

that the observed recurrence of functionally underdetermined

knapping variants indicates social reproduction of these par-

ticular action details.

There are three caveats to this conclusion. First, we do not

actually know how many individuals contributed to each as-

semblage (see Claudio Tennie’s reply in Tennie et al. 2017).

However, even if we posit a minimal group size of two and

consider only two alternative flaking methods as possible (i.e.,

50-50 chance, equivalently conceptualized as 100% individual

commitment to one or another method or an unbiased dis-

tribution of individual mixtures of methods), we find that the

observed frequencies are unlikely to occur by chance (OGS-7:

z p 0.901, P p .18; EG-10: z p 0.536, P p .30; EG-12: z p

0.79, P p .21). Furthermore, the likelihood of observing all

three sites together is only 1% (0.18# 0.30# 0.21p 0.011).

Increasing the number of individuals or recognizing that al-

ternative reduction strategies reported from other Oldowan

sites were possible solutions despite being poorly represented

at Gona (Stout et al. 2010) only serves to make the observed

pattern even more unlikely (e.g., for np 4 individuals: 0.10#

0.22# 0.13p 0.003). We thus conclude that individual tool-

makers at Gona typically reproduced not only the basic means

(hard-hammer percussion) and overall outcome (efficient flake

production; see discussion below) of knapping but also par-

ticular methods for achieving this outcome.

Second, our conclusion depends on an analogy between our

modern experiments and ancient knapping at Gona. Such an-

alogical inference, though fallible, plays an essential role in ar-

chaeology and can be rendered more reliable through appro-

priate design and validation (Eren et al. 2016; Wylie 1985). We

validated our experimental models against the archaeological

samples, finding that they successfully predicted assemblage

characteristics ranging from flake fragmentation rates to core

reduction intensity. Both positive and negative (dis-)analogies

were observed and in each case were explicable in terms of

known casual relations (e.g., excessive force and fragmenta-

tion, differential postdepositional breakage). Furthermore, our

analyses of the experimental samples indicated that the var-

iables most strongly influencing Utility across methods (core

reduction intensity, flake fragmentation rate) are precisely those

that our models most successfully predicted in the archaeo-

logical samples. We conclude that the experimental analogy is

warranted.

Finally, we have employed an argument by elimination. As

a form of inductive inference, the progressive elimination

of alternatives can only ever lead to increasing confidence, not

certainty. Indeed, it is logically impossible to test or even to

enumerate every possible alternative condition orobjective that

might provide an advantage for unifacial flaking. For example,

it is possible that East Gona toolmakers were motivated to

maximize the production of split flakes for an unknown rea-

son and that this resulted in preference for the fracture-prone

unifacial method. However, our experiment did exhaustively

test implications of the current consensus that Oldowan tech-

nology sought to maximize the production of cutting edge.

Pending a major revision of this consensus, we assign a high

level of confidence to our technological conclusions. Similarly,

it remains possible that intersite differences are explained by

biological differences in the anatomy or psychology of the tool-

makers. As discussed above, however, there is no independent

evidence to suggest this possibility and it requires a wide array

of untested auxiliary assumptions. Last, there is the possibility

that various different knapping methods already existed as

evolved tendencies in the motor repertoires of Gona hominins

and were simply released through social response facilitation

(e.g., like yawning) rather than acquired through copying.

Although something similar has recently been proposed for
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Acheulean technology (Corbey et al. 2016), it is difficult to see

how multiple, highly specific yet functionally neutral, alterna-

tive behavioral programs could have been constructed by nat-

ural selection in the earliest knownOldowan knappers. Perhaps

the most plausible mechanism would be some form of Bald-

winian genetic assimilation (Stout and Hecht 2017; Weber and

Depew 2003), but this would itself presuppose an earlier stage

in which behaviors were learned rather than innate. In sum, we

thus consider social learning to be the most convincing and

parsimonious explanation for the evidence currently available.

Researchers will, however, reasonably differ on the degree of

confidence they require to accept the presence of detailed be-

havior copying in the Oldowan, in part due to broader theo-

retical commitments reviewed in the introduction. To promote

debate on this important topic, we will (briefly) develop our

interpretation of the evidence and speculate about its evolu-

tionary implications.

Interpretation and Implications

Even “simple” flake production is a challenging perceptual-

motor skill that must be acquired through practice (Nonaka,

Bril, and Rein 2010). For many modern humans, basic com-

petence can be achieved within a few hours (Putt 2015; Stout

and Khreisheh 2015; Stout and Semaw 2006), but greater ex-

pertise is required to reproduce the more patterned and ex-

haustive flaking seen at many Oldowan sites (Stout et al. 2008).

It has been argued that core maintenance techniques required

for such flaking are difficult and subtle enough that their reli-

able reproduction required intentional demonstration and im-

itation (Gärdenfors and Högberg 2017), and there is experi-

mental evidence that teaching facilitates rapid learning of basic

knapping (Morgan et al. 2015). However, an alternative view is

that core maintenance is enabled by the same basic skills that

allow relatively large individual flake removals (Moore 2011;

Stout and Chaminade 2007) and thus is readily discoverable

over realistic practice times. The latter is consistentwith current

experimental results, which successfully modeled the OGS-7

assemblage using a least-effort flaking strategy (see below), but

it remains to be experimentally demonstrated how reliably mo-

tivated modern humans would rediscover effective core main-

tenance given longer practice times.

In contrast, evidence available from apes and monkeys in-

dicates that they can produce examples of Oldowan-like ar-

tifacts (including by accident; Proffitt et al. 2016), but have yet

to generate Oldowan-like assemblages indicative of skilled flak-

ing and core maintenance even given years of practice, dem-

onstration, motivation, assistance, and feedback (Toth, Schick,

and Semaw 2006). Humans, meanwhile, have relatively little

difficulty mastering chimpanzee-like nut cracking (Bril, Parry,

and Dietrich 2015), and 2- to 3.5-year-old children take less

than 3 minutes to spontaneously solve tasks approximating

wild chimpanzee and orangutan tool-use behaviors (Reindl

et al. 2016). This is particularly striking given that children up

to 8 years of age are very poor at tool innovation relative to

adults (Cutting et al. 2014). We might reasonably expect Plio-

Pleistocene hominins to fall somewhere between these ex-

tremes in aptitude, which raises the intriguing possibility that

knapping skills easily reinvented by modern human adults

might not have been so obvious for early Oldowan toolmakers

at Gona (Tennie et al. 2016).

Tool making at OGS-7, as successfully modeled by our ex-

periments, corresponds to what Early Stone Age archaeolo-

gists call least-effort flaking: the efficient production of flakes

through hard-hammer percussion without stylistic constraint

or strategic elaboration. Such ad hoc knapping is a simple

process of finding a viable platform, removing a flake, and

then repeating the procedure. It is generally regarded as a null

model (Reti 2016) for the most obvious and natural form of

flaking. In fact, when a modern knapper identifies all viable

platforms on a core, even complete randomization of actual

platform selection will typically result in a bifacial flaking pat-

tern (Moore and Perston 2016). All of this, however, assumes

human-like capacities for the perception and exploitation of

core affordances. Least-effort flaking is demonstrably not an

obvious solution for modern bonobos (Toth, Schick, and Se-

maw 2006) and may not have been for the Gona toolmakers

either. Indeed, least-effort knapping by modern humans is

known to be especially demanding of visual-motor and atten-

tional systems (Stout and Chaminade 2007) that have evolved

substantially since the human-chimpanzee split (Stout and

Hecht 2017). Inverting the widespread assumption that imi-

tation is more psychologically and phylogenetically advanced

than individual learning, early Oldowan hominins may actu-

ally have been better at copying such behaviors than rediscov-

ering them independently.

This would be consistent with evidence that chimpanzees

will copy large-scale body movements and object manipula-

tions with sufficient fidelity to maintain stable behavioral tra-

ditions (Whiten and van de Waal 2016, but see Tennie, Call,

and Tomasello [2012]for an alternative view) but appear to

have a limited capacity and/or willingness to search for non-

obvious functional properties of objects (Povinelli and Frey

2016). In a helical curriculum, copying actions (e.g., core ro-

tation and inspection) in this way can provide valuable aid to

discovery of object affordances, casual relations, and task struc-

ture. Importantly with respect to the critique of Tennie, Call,

and Tomasello (2012), we suggest that substantively new ac-

tions can thus be learned by iterative practice and refinement of

a loose initial approximation constructed entirely from familiar

action elements applied to a new context (Byrne 1999; Stout

2013). In fact, it seems likely that all nontrivial skills rely to

some degree on this kind of iterative learning and refinement.

This suggests an evolutionary scenario similar to those pre-

sented by Pradhan, Tennie, and van Schaik (2012) andHenrich

(2015), in which early Oldowan technology was located at or

near the limits of contemporary hominin innovative capacities
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and thus was heavily reliant on socially mediated learning, in-

cluding (as we have argued here) reproduction of detailed be-

havioralmeans.This implieshigh learning costs (Morgan2016)

in terms of time, effort, and possible failure of skill acquisition.

These costs would impose a ceiling on the ratcheting of tech-

nological complexity (Pradhan, Tennie, and van Schaik 2012)

and reduce chances of reinvention if the skill were stochasti-

cally lost in small and poorly connected hominin communities

(Powell, Shennan, and Thomas 2009). However, if social learn-

ing nevertheless did maintain toolmaking in a population (and

toolmaking carried fitness benefits), high learning costs would

then generate selective pressure favoring cognitive or perceptual-

motor adaptations to make social learning easier or more reli-

able (Morgan 2016). To the extent that such adaptations are also

expected to enhance individual learning (Heyes 2012, and re-

view in Stout and Hecht [2017]), this would decrease obligate

reliance on social inputs and make individual rediscovery,

modification, and innovation of technological behaviors more

likely.

Such a biocultural feedback process wouldmake sense of the

fact that Oldowan tools predate evidence of significant brain

expansion by hundreds of thousands of years, during which

their occurrence was extremely patchy, discontinuous, and lack-

ing in evidence of progressive change (Antón, Potts, and Aiello

2014; Plummer and Bishop 2016). It is only after approximately

2.0 Ma that Oldowan toolmaking becomes geographically wide-

spread, with sites that occur in a wider variety of habitats, are

more temporally persistent, anddisplay both longer rawmaterial

transport distances and amore regular appearance of least-effort

flaking methods (Plummer and Bishop 2016; Stout et al. 2010).

This is closely coincident with the first appearance of larger-

brained and larger-bodiedHomo erectus by about 1.9Ma and is

rapidly followed by the invention of early Acheulean technol-

ogy by 1.76Ma (Antón, Potts, and Aiello 2014). It is not known

what occasioned this shift in tempo at ca. 2.0 Ma. An enhance-

ment to social learning is one obvious possibility, as are ex-

ternally driven habitat shifts (Antón, Potts, and Aiello 2014;

Henrich 2015). As an alternative or addition to these hypoth-

eses, we suggest that already existing capacities for high-fidelity

technological reproduction at 2.6 Ma supported cultural niche

construction (Laland et al. 2015) that eventually stimulated

Baldwinian behavior-led (e.g., Hecht et al. 2014) biological evo-

lution of enhanced cognitive or perceptual-motor capacities

for skill acquisition (Henrich 2015). By decreasing the cost of

maintaining Oldowan technology, this would have expanded

the range of ecological contexts in which it provided a net en-

ergetic benefit. By enhancing individual learning and innova-

tive potential, it would also have enhanced technological per-

sistence, flexibility, and innovation leading to further change

and adaptation. One prediction of this hypothesis is that Ol-

dowan technology should display a temporal trend toward in-

creasing within-assemblage technological diversity and flexible

adaptation of knapping methods across a greater range of raw

materials. This prediction has some initial support (e.g., Braun

et al. 2009) but requires further investigation.

Conclusion

In our view, the origins of human cumulative culture are best

approached from an agnostic stance that does not presuppose

continuity or discontinuity nor assume the necessity of par-

ticular learning types. To this end, we advocate a stepwise re-

search program that disentangles archaeological evidence of

reproductive fidelity from the identification of learning pro-

cesses and the explanation of larger-scale patterns of change.

This program emphasizes the real-world complexity of skill

learning and the fact that rates and patterns of cultural evolu-

tion are historically contingent products of dynamic interac-

tions between diverse influences. It thus calls for a bottom-up

approach grounded in detailed empirical study of particular

archaeological cases rather than top-down interpretation of

broad syntheses. This further implies that experimental studies

of technological reproduction (Morganet al. 2015; Putt,Woods,

andFranciscus 2014; Schillinger,Mesoudi, andLycett 2015)will

be most profitable if they employ behavioral models that have

been validated against actual archaeological occurrences.

To demonstrate this approach, we presented a case study of

technological variation at Gona employing an archaeologically

validated experimental model to test predictions about social

learning processes. This provided support for the view that

copying of detailed knapping methods was already a feature of

Oldowan technological reproduction at ca. 2.6 Ma. Such copy-

ing was not, however, associated with evidence of increased

rates of technological change or ratcheting, suggesting that

explanations for the emergence of human cumulative culture

should not focus narrowly on social learning mechanisms but

should instead address a range of factors also including indi-

vidual cognitive and perceptual-motor capacities, levels of so-

ciability, the internal dynamics of cultural evolution, and bio-

cultural coevolutionary processes. In particular, we suggested

a scenario in which cultural niche construction enabled by so-

cially supported skill acquisition led to a new selective context

favoring cognitive and perceptual-motor adaptations for en-

hanced learning that then fostered further technological flexi-

bility and innovation.
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Separating Social Learning from Technical Skill
Provides a New Perspective on the Record
of Hominin Tool Use

Stout, Rogers, Jaeggi, and Semaw conduct a thorough, rigor-

ous, and convincing experimental exploration of two major

methods of Oldowan tool production. They conclude that at

three 2.6-million-year-old sites, toolmaking was not invented

repeatedly and independently by individuals but, rather, was

most likely acquired through learning from conspecifics. In

our view, the primary importance of the study is in its tour de

force demonstration of the applicability of the experimental

paradigm to the study of prehistoric hominin use of stone tools.

One way to place this work in a broader context would be to

appraise its goal from the perspective of evolutionary biology.

The authors examine variation in toolmaking products at

several sites and ask whether tools within each site are similar

due to homology in their method of production—the methods

used by different knappers share a common origin—or anal-

ogy—the method was reinvented independently by each knap-

per in response to common selective pressures. Their study

compares two knapping methods in detail and finds that nei-

ther seems better suited to local conditions, suggesting homol-

ogy as a parsimonious explanation. In evolutionary terms, Stout

et al. argue that the observed variation in knapping methods is

selectively neutral, by showing that unifacial and bifacial knap-

ping led to similarly effective products at a similar duration of

time and expenditure of effort when using raw material from

any of the sites. They then evaluate the relative likelihood of

phylogenies of toolmaking methods that represent convergent

evolution and those that represent common ancestry. In show-

ing that the stone tool variation is selectively neutral, Stout et al.

also demonstrate by extension that this variation could be in-

formative about the phylogenetic relationships among stone

tools. Neutral variants can be particularly reliable for phyloge-

netic inference, because they are likely to be uncorrelated with

one another, and because modeling the stochasticity of the

evolutionary process is more tractable without the additional

effects of selection.

The importance of neutral variation for inference about

genetic phylogenies (Cavalli-Svorza and Edwards 1967; Felsen-

stein 2004; Steel 2016) has long been appreciated. More re-

cently, phylogenetic inference methods have also been applied

to cultural traits under the influence of both cultural and bi-

ological selection (Gray, Greenhill, and Ross 2007; Mace and

Holden 2005; Mace, Holden, and Shennan 2005; Mendoza

Straffon 2016). For language phylogenies in particular, re-

searchers have constructed well-resolved cultural phylogenies

using multiple traits, and Bayesian analysis of these phyloge-

nies has enabled specific hypotheses about the age and original

location of particular linguistic clades to be tested (Bouckaert

et al. 2012; Gray and Atkinson 2003; Gray et al. 2009; Lee and

Hasegawa 2011). The approach proposed by Stout et al. might

be further strengthened by adopting the well-developed meth-

ods of phylogenetic inference from evolutionary biology.

Cultural transmission of behavioral sequences is not unique

to humans. Behavioral ecologists have recently designed tasks

that target neutral variation of behavioral sequences in order to

disentangle social learning from independent arrival at solu-

tions. Thus, for example, sparrow fledglings have been shown

to learn from their mothers not only where to find food, which

would be expected to have a selective advantage, but also the

specificmethod of reaching it: they can choose to peck through

an artificial leaf or shift it aside, alternatives that are similar

in their cost and effectiveness (Truskanov and Lotem 2017).

Learning of behavioral sequences has been observed in many

other animals, such as black rats (Aisner and Terkel 1992),

great tits (Aplin et al. 2013, 2015), and nonhuman primates

(Voelkl and Huber 2000; Whiten 1998; Whiten, Horner, and

de Waal 2005; Whiten et al. 1999). That many organisms ac-

quire behavioral sequences through social learning makes the

notion that early hominins routinely learned behavioral se-

quences from one another very plausible. In fact, from this

perspective, it would have been surprising if the authors’ ex-

ploration had concluded otherwise.

Studies of behavioral ecology also suggest that social learn-

ing is common across the animal kingdom but that elaborate

tool manipulation is much less so (Bentley-Condit and Smith

2010; Galef and Giraldeau 2001; Hoppitt and Laland 2008;

Shettleworth 2010). Therefore, one might argue that, from

an evolutionary perspective, social learning of behavioral se-

quences likely preceded tool manipulation, and the former

may rely on somewhat less specific cognitive abilities. This

supports an interesting and important suggestion made by

Stout et al., that social learning and tool manipulation, fun-

damental aspects of hominin cultural evolution, be viewed as

distinct, and perhaps initially uncorrelated, traits. They spec-

ulate that to the early hominins at Gona, copying unifacial or

bifacial knapping verbatimwas easier than learning the general

idea and then individually reaching an effective method via

trial and error. This is a nontrivial point, particularly because,

as the authors point out, for modern human adults the op-

posite is likely to be true. This difference may skew our intu-

ition about the likelihood of analogy, as opposed to homology,

for production methods at different sites and by different in-

dividuals. The authors’ view of social learning as a process in-
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volving both social and individual learning, which may draw

upon different skill sets, resembles similar approaches that were

recently suggested in the behavioral ecology literature (Galef

2013, 2015; Truskanov and Lotem 2017; Truskanov and Prat

2018).

Stout et al. suggest that preexisting learning capacities al-

lowed the initial behavioral interaction of hominins with tool

manipulation, leading to a Baldwin effect situation in which

social learning made it possible for natural selection to act

directly on genetic or cultural variation underlying toolmaking

skills (see also van Schaik and Burkart 2011). We find this a

reasonable hypothesis that suggests a mechanism for one of

the key evolutionary developments in hominins. It also pro-

vides a nonintuitive prediction, namely, that we should ex-

pect a “decrease in the variation” in quality or precision of tool

products over time, as selection acts to improve the perfor-

mance of toolmaking, while at the same time we should ex-

pect an “increase in the subtle variation” in methods used to

manufacture these tools, as individual trial and error becomes

more prominent in the learning process relative to exclusively

verbatim copying. This prediction can be evaluated against the

archaeological record, and analysis of variation in tool pro-

duction methods and tool quality from this perspective may

provide insights into human evolution.

Although the Baldwin effect is plausible in these circum-

stances, we suggest that the behavioral plasticity afforded by

social learning may also have acted in the opposite direction,

creating an effect similar to the “reverse Baldwin effect” (Dea-

con 2003), in which efficient social learning masks indepen-

dent innovation from being culturally or genetically selected,

slowing down the evolutionary process. If indeed the ability of

early hominins to learn behavioral sequences was greater than

their ability to innovate in tool manipulation, the efficacy of

precise tool production through copying would have reduced

the likelihood of innovation of other tools or other methods

through trial and error once a behavioral goal, such as the

manufacturing of a particular tool, had been achieved. This

reduction may explain what seems to be a puzzling discrep-

ancy between the complexity of certain material cultures, such

as the Acheulean (Ayebare et al. 2011), and the long period in

which no major technological innovation took place, innova-

tion that we otherwise might expect from hominins capable of

executing the complex behavioral sequences needed to pro-

duce Acheulean tools. The early arrival at a fairly complex se-

quence of behavior that achieves a well-defined goal (e.g., pro-

ducing a tool) may cause entrenchment of that sequence in the

population, even if it is suboptimal, and hinder the emergence

of alternative, perhaps more efficient, solutions. Some studies

in behavioral ecology have attempted to address such questions

(e.g., Hrubesch, Preuschoft, and van Schaik 2009; Marshall-

Pescini and Whiten 2008); further experiments with apes or

humans at different ages may provide insight into how such

processes might have occurred in early human evolution.

The two opposing hypotheses—that preexisting social learn-

ing abilities could have accelerated or impeded technological

cultural evolution—may provide a productive avenue for in-

vestigating critical steps in hominin evolution. These processes

may have left their mark on the archaeological record. A Bald-

win effect speedup or a reverse-Baldwin slowdown could have

acted both on the rate of adaptive evolution in the genetics that

underlie motor and cognitive aspects of toolmaking and on the

rate of cultural evolution independent of its underlying ge-

netics. As suggested above, further study of these effects may

help explain long periods of surprisingly little cultural change in

stone tool technology as well as periods of sudden rapid change.

Importantly, the two hypotheses are mutually exclusive only in

a certain context; it is quite possible that the proposed Bald-

win effect operated in some contexts and its reverse in others,

particularly during different cultural and genetic evolutionary

phases along the hominin lineage. Because the baseline for

these rates (in the absence of any Baldwin-type effect) is un-

known, the archaeological record can, most likely, only be in-

terpreted from this perspective by a comparison of relative rates

across periods or regions.
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Cumulative Culture: An Integrated Perspective

Notions of a few revolutionary leaps in hominin evolution

ultimately resulting in Homo sapiens behavior (Coolidge and

Wynn 2009; Klein 2000) are increasingly being challenged and

replaced by the understanding that cultural evolution is cu-

mulative, developing gradually over extended periods (Garo-

foli 2016; Haidle et al. 2015). Part of the “leap paradigm” has

been that there are no substantial differences between chim-

panzee and Oldowan tool behavior (Wynn et al. 2011). It is in

this context that we welcome the effort by Stout, Rogers, Jaeggi,

and Semaw to provide a detailed empirical approach to sub-
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stantiate the gradual-progression position in which they ar-

gue that Oldowan technology cannot be “accomplished solely

through individual learning.”

According to some critics, few experiments can convinc-

ingly assess nonextant hominin tool behavior (Coolidge and

Wynn 2016). The experiments presented by Stout et al. are,

however, a thorough attempt to reconstruct past hominin tool

behavior. Their commitment to design experiments that can

be reproduced and elaborated on by others is commendable.

We further appreciate their efforts to reduce variables in their

experimental setup, but we find the separation between func-

tional and cultural explanations restricting in the effort to un-

derstand the emergence of new learning capacities within the

hominin lineage (fig. 1).

Although Stout et al. acknowledge that the functional cri-

terion of knapping with the aim to obtain as much cutting edge

as possible out of a core is insufficient to explore the full rep-

ertoire of Oldowan knapping, they continue to base their ex-

periments and arguments on it. Thus, although they argue for

a bottom-up approach, they still rely on a top-down “theory of

function” (Arthur 2018). Further, their argument by elimina-

tion builds on the assumption that “culture is what is left over

when all other possible explanations of variation are exhausted”

(Arthur 2018:12). Among other things, this line of thinking

makes it problematic to claim that chimpanzees have culture.

Their approach works well until the argument by elimina-

tion in the second step of figure 1. In our opinion, to proceed

with their point regarding “ecologically valid studies of dif-

ferent learning processes” in step 2, other theoreticalmodels on

the evolution of learning processes and cumulative culture are

necessary already here instead of being left to step 3. Thus, as

an alternative to the either-or approach regarding bottom-up/

top-down, we suggest a continuous integration of theory and

data. Any model of cultural evolution has to explain the cause

of changes in cultural capacities such as learning and social

transmission of information. We next turn to two such models

that might be useful in the context of the arguments presented

by Stout et al.

By reconstructing modes of teaching from the archaeo-

logical record, Gärdenfors and Högberg (2017) came to the

conclusion that the learning functions of copying, evaluative

feedback, and, in particular, demonstration, were involved in

intergenerational knowledge transmission during the Oldowan

at Lokalalei 2C at ca. 2.34 Ma. The latter modes of teaching

build on different forms of mind reading that involve much

more than copying, because a teachermust understand that the

learner does not have the necessary knapping knowledge to

produce a tool (Gärdenfors and Högberg 2017). Working with

material from the sites of Gona dated to ca. 2.6 Ma, Stout et al.

focus on copying. There are, however, marked differences be-

tween Gona and Lokalalei 2C in terms of technological com-

plexity. As opposed to Gona, there is evidence for core main-

tenance at Lokalalei 2C. This indicates variation, and possibly

progression, in the processes of social transmission during the

Oldowan.

We find it interesting to position the results obtained by

Stout et al. between the observations made by Gärdenfors and

Högberg regarding the Lokalalei 2C Oldowan and the pre-

Oldowan of Lomekwi 3 with an age estimate of 3.3 Ma (Har-

mand et al. 2015; Lewis and Harmand 2016). For the bipolar

technique practiced at Lomekwi 3, Lombard, Högberg, and

Haidle (forthcoming) suggest that at least the nonintentional

teaching modes of enhancement and intentional evaluative

feedback were already in play. This would require that a prac-

ticed knapper draws attention to the different objects and

aspects that have to be controlled. At a minimum, this neces-

sitates joint attention and possibly also joint intention (Gär-

denfors and Högberg 2017). According to their analysis, this

type of teaching is absent in chimpanzee nut-cracking culture,

which can be accomplished with joint attention only. Lom-

bard, Högberg, and Haidle (forthcoming) therefore find a dis-

tinction already between the learning processes in chimpanzee

nut cracking and Lomekwi 3 bipolar knapping. Cumulatively,

the Stout et al., Gärdenfors and Högberg, and Lombard, Hög-

berg, and Haidle et al. studies bolster the view of a long, varied,

and gradual process of cultural accumulation along the homi-

nin line, which links to Shea’s (2017) argument for the devel-

opment of early technologies from occasional to habitual.

The evolution of cumulative culture depends on the trans-

mission of information that is inherent in models of the evolu-

tionof cultural capacities.Oursecondexample is theeight-grade

model of Haidle et al. (2015), who hypothesize that chim-

panzee culture is limited to basic social information structures,

whereas the Oldowan technology represents the modular trans-

mission of sets of cultural units. Suchmodularity is, for example,

represented in using tools to make tools. The study by Stout

et al. feeds into such an integrated theoretical approach and

serves to further distinguish between nonhominin and early

hominin technologies by contributing experimental data. We

thus agree that “the emergence of human cumulative culture

should not focus narrowly on social learning mechanisms but

should instead address a range of factors also including indi-

vidual cognitive and perceptual-motor capacities, levels of so-

ciability, the internal dynamics of cultural evolution, and bio-

cultural coevolutionary processes.” Here we draw attention to

the model presented by Haidle et al. (2015) that considers all

of these factors in an attempt to explore and explain the evo-

lution and expansion of cultural capacities in hominins and

other animals.

Finally, Stout et al. entertain the idea that each generation

might have reinvented the skill of knapping early tools. How-

ever, for an invention to become “culture,” as it did during the

Oldowan, it requires that the technology is socially accepted

and consistently performed throughout groups and genera-

tions (Högberg 2009). The skill thus transitions from “I can

do it” to “we do it.” We therefore argue that key to develop-

ment in hominin cultural evolution was not individual tool

production and use in itself but the traditions that emerged

when the technology used to make sharp flakes became inten-

tionally taught between groups and generations.
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Stout, Rogers, Jaeggi, and Semaw make a contribution to the

debate about the antiquity of cumulative culture by showing

through an experimental research program that particular knap-

ping procedures (the particular actions on matter) in the 2.6–

2.5 Ma archaeological assemblages from Gona were function-

ally neutral. For the archaeologist, a major strength of this

contribution is the structuring of a “bottom-up” research ap-

proach that builds on the strengths of prehistoric archaeology.

The paper focuses on details of the variation of perceptual-

motor skills of the ancient stone toolmakers, as reflected by

artifacts, rather than on the more nebulous concepts of social

learning. Stout et al. then infer that the observed intra- and inter-

assemblage variation is consistent with social learning through

detailed copying rather than individual reinvention. This inter-

pretation of the Gona assemblages is reasonable. Social learning

exists in many nonhuman species (e.g., Galef 2012), and it is not

surprising that hominins possessed capacity for it. Indeed, the

emergence of cultural traditions (within-group socially learned

and persistent behaviors) is a parsimonious explanation for the

patterns so neatly laid out by the experimental and archaeological

analyses. How this informs us of the antiquity of cumulative cul-

ture, considered a hallmark of our species (e.g., Henrich 2015),

remains unclear.

While the Oldowan is not the earliest stone tool technology

known to us (Harmand et al. 2015; Lewis and Harmand 2016;

see Panger et al. 2002), it is revolutionary for archaeologists

because it marks the beginning of persistent, archaeologically

visible technological behavior, in turn enabling for the first

time identifying, observing, and interpreting variation in lithic

technological procedures. The successful knapping and use of

Oldowan stone tools indeed required understanding of me-

chanical forces and geometric relationship and their interac-

tion (e.g., Delagnes and Roche 2005; Goldman-Neuman and

Hovers 2012; Hovers 2009; Stout 2011, fig. 1; Stout et al. 2010).

Still, the “invention” of stone toolmaking by freehand direct

percussion enlisted preexisting cognitive as well as anatomical

characteristics involved in technological tasks (Read and van

der Leeuw 2008) and their reconfiguration as a novel behavior,

while other behaviors continued from the last common an-

cestor.1 The procedural elements of Oldowan knapping—

evenwhenusingbi-/mutifacial reduction—involvedbasic skills

(Moore 2011; Moore and Perston 2016; Stout 2011; Stout and

Chaminade 2007) and may have been used in unrelated, pos-

sibly even “primitive” tasks outside of the domain of lithic

material culture.AsStoutetal.note, the revolutionaryeffect that

Oldowan technology had on human cultural (and biological)

evolution occurred gradually in a Baldwinian mode—much

after the onset of the Oldowan (see, e.g., Morgan et al. 2015;

Tocheri et al. 2008; Wynn et al. 2011).

It is also important to consider that flaking stone may not

have been the exclusivewayof obtaining functional edges or the

preferred option under all circumstances, even if social learn-

ing offset the costs and risks involved (Morgan 2016). Less

costly but still functional cutting edges could be obtained by,

for example, using sharp-edged, naturally fragmented stones.

This is especially reasonable if toolmakers of some of the Ol-

dowan assemblages differed from Homo, given that the hand

anatomy of other contemporaneous hominin genera was not

suited for freehand knapping (Rolian, Lieberman, and Zer-

meno 2011). A plausible hypothesis is that detailed copying

was not restricted to stone knapping and therefore could be

operationalized toward this particular goal when conditions

favored this behavior. Even if Oldowan toolmakers were cog-

nitively constrained and at the limit of innovative capacities

(e.g., Andersson 2011; Pradhan, Tennie, and van Schaik 2012),

some if not all the motor and perception skills could be readily

called upon to execute a socially learned procedure or “rein-

vent, through individual learning by trial and error, the lim-

ited repertoire of gestures and spatial relationships involved

in Oldowan flaking.” Such “mundane creativity” (see Hovers

2012) would fall within the “zone of latent solutions” (Tennie

et al. 2016) for the limited range of problems that Oldowan

stone tools aimed to solve.

As archaeologists, we also need to consider context (Hovers

2012; and see the comment by Ignacio de la Torre in Tennie

et al. 2017). The archaeological record of deep time is noto-

riously incomplete and fragmented. With this caveat in mind,

one has to wonder whether social learning among small groups

that were dispersed over large temporal (slightly less than a

million years) and spatial (eastern and southern Africa) dimen-

sions could give rise to cumulative culture. While we are far

from understanding the demography of Oldowan toolmakers,

it is consensually accepted that they lived in small groups and

may not have reached the effective cultural population size

(either demographically or due to reduced connectivity) nec-

essary to sustain a cumulative cultural system (Kolodny,Creanza,

and Feldman 2015).

Detailed copying as well as reinvention through individual

trial and error likely occurred at different temporal, social, and

demographic scales throughout the nearly million years of the

Oldowan. I agree with Stout et al. that explanations for the

emergence of cumulative culture must incorporate a range of

factors at the individual level, degree of sociality, and the in-

ternal dynamics of cultural evolution (Kolodny, Creanza, and

Feldman 2015, 2016). It is for this reason that the present study

does not lead to a better understanding of cultural “ratchet-

ing” (Tennie, Call, and Tomasello 2009) or of whether the

Oldowan can be considered as its time of emergence except

in the very broad sense. The effects of the various modes of

information transmission are not easily pried apart archaeo-

logically, and hypotheses such as those structured by Stout

et al. may not be amenable to rigorous testing beyond pattern

recognition in the archaeological record. Nevertheless, Stout

1. Campbell Rolian and Susana Carvalho, “Tool Use and Manufac-

ture in the Last Common Ancestor of Pan and Homo,” unpublished

manuscript.
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et al. have taken an important step toward bringing closer

bottom-up and top-down accounts of the evolution of human

culture.
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Stout, Rogers, Jaeggi, and Semaw draw important and neces-

sary attention to the earliest forms of cultural transmission in

the hominin lineage. While Oldowan technology is commonly

discussed in terms of raw material economics and transport,

functionality, and production, it is only recently that we have

begun the discussion of cultural transmission within the Ol-

dowan. Creating experimental models for the Gona material

allows for a glimpse of what early cumulative culture, likely in

the form of behavioral reproduction, looks like. Stout et al.

provide a discussion that outlines the various implications of

cultural transmission in the Oldowan, and these discussions

offer valuable perspectives on the limitations and motivations

for such early cultural transmission.

Focus on flake production in the formof unifacial cores from

East Gona versus bifacial cores at Ounda Gona South provides

an effective case study for testing variation in behavioral re-

production amongGonahominins. Stout et al.model the effects

of rawmaterial economics,flake viability, and coremorphology

as potential reasons for differences in stone tool production

strategies. Their results indicate that production behavior (uni-

facial vs. bifacial core reduction) does not yield significantly

different assemblages in terms of efficiency. It stands to reason,

then, that aspects of behavioral reproduction or cultural trans-

mission could be the reason for such variation.

The authors also make a refreshing explanation concerning

how early forms of cultural transmission may have operated

in the hominin lineage: “copying [detailed knapping methods

in the Oldowan] was not, however, associated with evidence of

increased rates of technological change or ratcheting, suggest-

ing that explanations for the emergence of human cumulative

culture should not focus narrowly on social learning mecha-

nisms but should instead address a range of factors.” Thinking

about cumulative culture outside of the normal “ratcheting ef-

fect” assumptions helps to frameOldowan production patterns

as unique unto themselves, leading to cultural niche construc-

tion but not necessarily immediately more complex technolo-

gies. Such conclusions help to frame perceived periods of tech-

nological stasis as important evolutionary events and justify

further research to identify and quantify subtle patterns of

technological variability throughout the Oldowan.

A logical outgrowth of these conclusions is to compare pro-

duction patterns found at Gona with other Oldowan assem-

blages, both temporally and geographically. Are the cultural

patterns that Stout et al. identify unique to Gona, its raw ma-

terials, and the environment in which they were created? Or is

the pattern recognized at Gona indicative of a broader behav-

ioral trend among Oldowan producing hominins? Might these

behaviors be seen even earlier in time, with assemblages such as

Lomekwi (an important site and relevant line of evidence that

was not discussed in this article [Harmand et al. 2015])?

My own research focuses on regional variation within Ol-

dowan assemblages at Olduvai Gorge (Reti 2016) and Koobi

Fora (Reti 2013), and I am encouraged to see Stout et al. fram-

ing the Gona material in a cultural light. I immediately think

of statistically comparing diverse assemblages (both experi-

mental and archaeological) from Gona, Lokalalei, Koobi Fora,

Kanjera, and Olduvai Gorge in order to assess the diversity of

cultural transmission, production techniques, and economic

strategies. In order to do this, we must work together to stan-

dardize experimental practices and data sets and be open to

data sharing of these data sets and assemblages. It is only with

such data sharing that the broader patterns of early human

evolutionary cultural transmission will be identified. I hypoth-

esize that the broader pattern of cultural transmission in the

Oldowan is due primarily to economic factors of raw material

quality, transport, and related costs. However, there are many

possible ways tomitigate these economic factors, andOldowan

producing hominins across East Africa may have addressed

these problems using different culturally constructed niche sys-

tems. Broader comparisons between Oldowan technologies

will allow evolutionary archaeology to quantify these behav-

ioral responses to rawmaterial economics and to compare hom-

inin strategies of stone procurement and production.

By drawing attention to questions of cultural transmission,

Stout et al. elaborate the argument made by many others that

the Oldowan represents a complex and plastic adaptive skill

set. It is my hope that this article begins a dynamic and col-

laborative discussion among Paleolithic archaeologists in or-

der to address (1) the broader implications of cultural trans-

mission beginning in the Oldowan, (2) differential patterns of

cultural transmission in the Oldowan, (3) how cultural niche

construction in the Oldowan ultimately leads to technological

change over time, (4) primate comparisons of Stout et al.’s

methods to address the uniqueness of behavioral reproduction

at Gona versus primate models and older archaeological as-

semblages such as those from Lomekwi, and (5) standardiza-

tion of experimental models in Paleolithic archaeology for the

purpose of producing comparable experimental data sets.

Claudio Tennie
Department for Early Prehistory and Quaternary Ecology, Uni-
versity of Tübingen, 72070 Tübingen, Germany (claudio.tennie@
uni-tuebingen.de). 10 IX 18

The Zone of Latent Solutions Account Remains the
Most Parsimonious Explanation for Early Stone Tools

The main new claims deducible from Stout, Rogers, Jaeggi,

and Semaw are (a) that core rotation versus nonrotation was
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influenced by some variant of social learning (“rotation cul-

ture”); (b) that action copying has to be the specific variant in

such cases; and (c) that a and b together disprove Tennie et al.’s

(2016, 2017) zone of latent solutions (ZLS) account for early

stone tools.

Only claim a (“rotation culture”) finds initial support. Early

Stone Age toolmakers thus join many species in showing var-

iants of social learning. They also join nonhuman great apes

(henceforth, apes) in showing population-level differences not

readily traceable to genetic and/or environmental differences—

that is, culture (Whiten et al. 1999). But this leaves open which

variant(s) of social learning, and it also does not exclude latent

solutions—not least because the ZLS hypothesis is designed as

a possible explanation for exactly such patterns (Tennie, Call,

and Tomasello 2009; opposing claims b and c).

Contra Stout et al., the latent solution founder effect does not

consist of independent individual responses to environmental

pressures.2 As explained by Tennie, Call, and Tomasello (2009;

also Bandini and Tennie 2017), at the beginning of the latent

solution founder effect, behaviors from within the ZLS are

shown by one or more individuals in a population that does

not yet express any latent solution to the particular problem.

Which behavior is chosen can indeed depend on chance; for

example, the first individual(s) may stumble upon tool material

A rather than B and thus express latent solution A (see the

multiple independent similar innovations in Hobaiter et al.

[2014]). Next, others are socially biased toward developing a

similar latent solution—for example, as an individual conse-

quence of attending more to A. Therefore, perhaps counter-

intuitively (and against claim b), cultural patterns do not re-

quire action copying (or action teaching).3

Stout et al.’s approach over-infers copying due to a focus on

similarity. Consider an uncontroversial case: if you see me

yawn, you might also yawn—in a similar form (using similar

sounds/actions). Yet, typically, you did not copy my “yawn

form” at all. Stout et al.’s approach, however, judges your yawn

a “behavior reproduction”—a phrase that connotes copying.

The ZLS hypothesis instead clearly distinguishes between the

“transmission of a form”
4 and “social influences on the fre-

quency of a form”5 (Bandini and Tennie 2017). While the

former requires copying, the latter may or may not involve any

copying but can also produce cultures (Bandini and Tennie

2017 and references therein). Hence, data in support of claim

a cannot—by itself—support claims b or c.

We can already infer that action copying is not necessary

for rotation culture (contra claim b) because Stout et al. re-

created the underlying actions without ever having observed

the actions of the original makers. Instead, the social learning

variant we should infer is “object movement re-enactment”

(OMR; Custance, Whiten, and Freden 1999).6 This inference

is most parsimonious also because OMR underlies ape learn-

ing in so-called two-target tasks where there is a similar re-

quirement:7 to recreate one of two object movements (Tennie,

Call, and Tomasello 2006; OMR pinpointed in Hopper et al.

[2008]). Crucially, all recreations (here core movement vs.

no core movement) can be latent solutions.8 Our account in-

deed predicts that both variants of rotation culture will also be

found in culturally unconnected populations (similar to the

ape cultures so far examined; Tennie et al. 2016, 2017).

Because the cultural models they cite report stasis as an

outcome of copying, Stout et al. conclude that any variant of

copying can fit observed stasis. However, those models ex-

cluded the fine-grained copying used within the verbal cultural

model of Stout et al. This copying variant has unavoidable

copying error (see Eerkens and Lipo 2005). For tasks involving

proportional error, even this copying can lead to stasis (Ham-

ilton and Buchanan 2009).9 But Stout et al.’s specific model (ap-

proximately based on action details) lacks proportional error

and therefore fails to fit overall stasis (Tennie et al. 2016, 2017).

Stout et al. also claim that emulation alone can lead to cu-

mulative culture, but when we tested this in children, it did not

(Reindl and Tennie 2018). They also claim that the distinction

between emulation and imitation is meaningless and should

be collapsed, but then why do untrained apes emulate pure

environmental results (Hopper et al. 2008) but fail to imitate

pure actions (Clay and Tennie 2017)? Why do they not solve

difficult tasks better after seeing both actions and results un-

derlying the solution than when theymerely see the underlying

results (Tennie, Call, and Tomasello 2010)? Why is training

required for apes to enable action copying, and why does this

lead to brain changes that are linked to action copying (Pope

et al. 2018)? The best answer is that apes are not good natural

imitators (action copiers). Instead, they are emulators. Hu-

mans emulate and imitate (Tennie,Call, andTomasello2009),10

and these simultaneous copying skills enable special forms

of error correction that can increase copying fidelity beyond

the level required to escape the ZLS (Acerbi and Tennie 2016;

cf. Lewis and Laland 2012).

I am pleased that archaeologists examine when human-like

culture first arose. However, for the reasons above and in

Tennie et al. (2016, 2017), I am still of the opinion that the

latent solutions account remains the most parsimonious hy-

pothesis for Early Stone Age toolmakers: not least because it

does not involve detailed copying—and thus predicts the ob-

served stasis.11

2. This is notwithstanding the fact that, where environmental and/or

genetic biases do exist, they can influence the likely direction of the latent

solution founder effect.

3. In the example I used here, “stimulus enhancement” sufficed.

4. Or “fidelity” in yawning contagion p ~0.

5. In yawning contagion p high.

6. The clue is in the name.

7. Often erroneously called “two action” tasks.

8. And so, not every case of copying escapes the ZLS (contra claim C).

9. Because its mean and variance decrease across generations. Many

thanks to Luke Premo, who opened my eyes on this.

10. In humans this is perhaps the outcome of another, continuing

triple inheritance feedback loop; cf. Heyes (2018).

11. But also because it includes exaptations.
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Andrew Whiten
Centre for Social Learning and Cognitive Evolution, School of Psy-
chology and Neuroscience, University of St. Andrews, St. Andrews
KY16 9JP, United Kingdom (a.whiten@st-andrews.ac.uk). 27 IX 18

Culture in the Stone Age

Stout, Rogers, Jaeggi, and Semaw present a sophisticated and

revealing empirical approach to reconstructing the nature of

early hominin lithic cultures. They offer meticulous methods,

well-reasoned conclusions and a thoughtful stepwise rationale

for their study. In the first two steps of this, the authors offer

compelling evidence for significant differences in the artifacts

at the EG-10 and EG-12 versus OGS-7 sites, and the experi-

mentally verified, corresponding flaking techniques. As the au-

thors acknowledge, their further conclusions about the likeli-

hood that such differences in technique were socially learned

rest on arguments by elimination, with inherent risks of too-

hasty falsification or, alternatively, hypothesis confirmation.

That said, the working conclusion that the differences in tech-

nique were likely culturally based is compelling and offers strong

justification for further investment in experiments dissecting the

social learning processes at work, building on the few existing

experimental explorations by our own group (Morgan et al.

2015) and others such as Putt et al. (2015).

Applying to the Oldowan what we have learned of chim-

panzee cultural variation across Africa, Whiten, Schick, and

Toth (2009) concluded that early hominin communities sep-

arated by around 700 km could be expected to have about half

their technological traditions in common and half not. Against

these kinds of distances, it might seem implausible that sites

like those at Gona, separated by just 3 km, would generate quite

different cultural modes of lithic technique. However, a range

of types of evidence shows that the percussive behavior of chim-

panzees most similar to knapping—nut-cracking with natural

hammers—is culturally transmitted (Whiten 2015), and ele-

ments of these traditions may differ over just a few kilometers.

Luncz and Boesch (2014) showed that one community of chim-

panzees in the Tai Forest prefer to employ stone tools all year,

unlike two neighboring groups that exhibit seasonal shifts to

wooden versus stone hammers. These authors add evidence that

dispersing females conform to what is the locally common ap-

proach. We may never know if such effects occurred in Oldo-

wan toolmakers, but these comparative data are compatible

with the differences between the Gona communities being cul-

turally based.

Turning to focus on the next step, the identification of social

learning processes, the authors cite the model of culturally

enabled skill development that I dubbed a “helical curriculum”

by analogy with the “spiral curriculum” concept of education

theory, where a topic is revisited repeatedly at rising levels of

sophistication as the learner accumulates knowledge (Whiten

2015). Primatological observations suggest this process under-

lies the development of percussive tool use and probably occurs

in other culturally transmitted skills that are challenging to

master. In a conceptual graphic of the model (fig. 10a), along

Figure 10. Conceptual graphic illustration of helical curriculum model of skill development and counterparts in cumulative cultural
evolution. a, “Helical curriculum” model (after Whiten 2015). Each turn in the helix is marked by a succession of episodes of social
learning from a model and individual learning, including practice and exploration, each facilitating progress in the next episode of the
other, with skill, hence rising through notional levels 1–5. b, Comparable processes in cumulative cultural evolution, likewise driven
by alternation of episodes of social learning from previous generations and further elaborations to this by rare individuals. Here each
turn of the helix represents a generation, with lithic sophistication rising through levels 1–5. The illustration is of gestural teaching,
but different forms of social learning could be in play during different historical phases. The processes conceptualized in figure 1a
would actually run along the thread of the helix in figure 2b, as such ontogenetic helixes mark the generations represented in the
evolutionary helix. See text for further explanation and discussion of a and b.
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each turn of the developmental helix there are episodes of

social learning, followed by individual practice and explora-

tion. Another turn is then marked by further social learning,

in which the personal-level learning that has taken place al-

lows the learner to extract more information than was possible

earlier. If further research supports the reality of this model, it

follows that it will be important to facilitate its operation in

the “ecologically valid studies of different learning processes

(to be developed)” advocated in Stout et al.’s figure 1, which I

agree should play a key role in the broad endeavor covered by

the figure.

As Stout et al. note, this iterative model may apply to the

development of “all nontrivial skills,” particularly where ob-

servational learning can provide only outline information on

what to do, because some key elements of the skill are simply

not visible. In fact, flint knapping is a paradigmatic illustration

of this, in which how the raw material will behave (fracture) is

not intuitively obvious (arguably counterintuitive), as evident

in the inept efforts of novices attempting to knap a hand axe

informed only by seeing an already-worked example (Geribas

and Verges 2010). The repeated alternation between social and

personal learning in the helix ameliorates such problems be-

cause as the learner initially relatively blindly tries to copywhat

the model did, they discover the significance of some of the

opaque elements like fracture dynamics.

There may be significant resemblances here with a phe-

nomenon recently much studied in developmental psychology:

over-imitation (Whiten et al. 2009). In over-imitation, young

children copy much of what they see a trusted model perform,

including elements whose causal relevance is opaque or even

downright implausible. Lyons, Young, and Keil (2007) chris-

tened this over-imitation and suggested it is an automatic social

learning process that aids learning the use of the numerous

causally opaque artifacts in a child’s world, because as the child

imitates, she discovers some of the underlying causal relations

that were not visible. Over-imitation turns out to be more

contextually flexible than the automaticity these authors sug-

gested, but they probably identified an important functional

role for this process, that Whiten, Horner, and de Waal (2005)

had characterized as a “copy all, refine later” strategy. Over-

imitation has been documented in adults as well as in children

(Whiten et al. 2016) and in a substantial diversity of cultures

(e.g., Nielsen and Tomaselli 2010). The complementary roles

of social, followed by individual, learning map closely to those

discussed in the paragraph above, under the heading of longer-

term ontogenetic skill learning, and suggest some potentially

shared fundamental principles of cultural transmission of com-

plexbehavior(seeShiptonandNielsen[2015]for fullerdiscussion

of over-imitation in relation to the Oldowan and Acheulian).

The final step in the authors’ scheme brings us from this to

the macrolevel and cumulative culture. I endorse the authors’

view that it is not productive to define cumulative culture in

terms of the supposed social learning processes necessary to it.

Cumulative culture is best defined simply as culture that cu-

mulatively builds on what came before, and we can then tackle

empirical questions about underlying social learning processes.

However, I suggest that the helical cycles discussed for the mi-

crolevel processes above recur in important guises at the mac-

rolevel of cumulative culture, and accordingly I explore this

through the comparable figure 10b.

One final question: Why no mention of the prior Lomek-

wian period?

Reply

We are honored by the quality of commentary on our article,

and encouraged by numerous productive suggestions for the

road forward. There is room for reasonable disagreement on

this topic, and we are gratified that this is captured by the com-

mentaries. Some see our interpretation as clearly wrong (Ten-

nie), others as convincing (Reti) but unsurprising (Greenbaum

et al., Hovers, Whiten). Some even feel it does not go far enough

(Högberg, Lombard, and Gärdenfors).

A Zone of Latent Solutions (ZLS) Account?

Tennie asserts that the technological pattern observed at Gona

is explicable in terms of a “latent solutions founder effect.”

Tennie, Call, and Tomasello (2009:2407) explain this effect as

follows: “if an individual in a given chimpanzee population, by

chance, inventsaway tocracknutswithawoodenstick, then the

others in its group—by virtue of their exposure to sticks and

open nuts in close proximity—will be exposed to learning

conditions favouring the individual discovery of stick use.”

The actual details of stick use are thus filled in by individual

learning, with any similarities in “behavioral form” being due

to biased/constrained learning conditions (e.g., the affordances

of sticks). This is precisely the possibility we addressed with

our experiment by testing whether bias toward a particular raw

material form would be sufficient to elicit the observed flaking

patterns. We found no support for this hypothesis. Insofar as

Tennie does not dispute these findings, the disagreement

seems largely to be about terminology (see my comment,

Dietrich Stout in Tennie et al. 2017:661–662).

Tennie agrees that social learning is implicated at Gona

but argues that the particular variant is object movement re-

enactment (OMR). Because OMR is classified as a form of

emulation (Custance, Whiten, and Freden 1999; Whiten et al.

2009), Tennie assumes it is a low-fidelity transmission mech-

anism indicative of ZLS learning. We question the assumption

that copying object movements is an inaccurate way to learn

how to use objects. Research going back to the 1930s dem-

onstrates the intuitive point that skilled tool use is character-

ized by accurate reproduction of working point (e.g., hammer

head) rather than body part trajectories (Bernstein 1996). Nor
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does the assumption follow from the original identification of

OMR as a distinct learning process (Custance, Whiten, and

Freden 1999) as this distinction focused on cognitive mecha-

nisms rather than reproductive fidelity. The assumption instead

appears to reflect confusion with the quite distinct conception

of emulation learning developed by Michael Tomasello.

Tomasello (1996:321) described emulation as an animal

“learning some affordance or change of state of the inanimate

world as a result of the behavior of another animal, and then

using what it has learned to devise its own behavioral strate-

gies.” Emulation in this sense fits well with the example of a

latent solutions finder effect quoted above and is low fidelity

because particular behavioral strategies are reinvented by each

individual. In contrast, Tomasello defined “imitation” as learn-

ing organized around the reproduction of action intentions.

This is thought to enable higher-fidelity copying, including

the reproduction of intentional actions that the observer does

not understand causally (Tomasello 1998). These implications

regarding transmission fidelity do not, however, transfer to the

alternative taxonomic system that includes OMR (e.g., Whiten

et al. 2004). Here, Tomasello’s emulation would be termed “af-

fordance learning,” whereas “emulation” includes the copy-

ing of action goals or outcomes and thus substantially over-

laps with Tomasello’s sense of imitation (to which Tomasello

[1996, 1998] objected). The definition of “imitation” is cor-

respondingly narrowed from behavior copying generally to

reproduction of bodily movements specifically (Tomasello’s

[1996] “mimicry”), thus creating space for OMR as an inter-

mediate learning process. The restriction to bodily movements

is intended to align “imitation” with requirements for visual-

motor cross-modal processing that are posited to be more cog-

nitively demanding than the visual-visual matching hypothe-

sized to account for emulation (including OMR; Custance,

Whiten, and Freden 1999). This scheme defines imitation and

emulation as two poles along a behavioral continuum with no

particular implications regarding relative fidelity (Whiten et al.

2009), which is the point we make in our article. We do not

advocate one taxonomy over the other but note that blending

the two produces confusion.

For example, Tennie, Call, and Tomasello (2009) test the

ZLS hypothesis using a task in which participants learn from

observation to form a string into a loop in order to retrieve a

baited platform. This is pretty clearly imitation in Tomasello’s

sense, and children’s success was taken as evidence of a

uniquely human capacity for process copying outside the ZLS.

However, it might alternatively be described as OMR or even

end-state emulation since it is actually the string configuration,

rather than specific finger movements, that must be repro-

duced. Indeed, this is the stance Tennie takes in attributing core

manipulation patterns at Gona to OMR. This is an atypical use

of OMR, which normally refers to large-scale object trajecto-

ries (e.g., movement of the platform rather than the string in

Tennie, Call, and Tomasello [2009]) rather than in-hand ma-

nipulation. This usage raises interesting issues regarding the

neurocognitive mechanisms of “in-hand” OMR, which may

not be simple or unimodal (Arbib et al. 2009; Stout 2013) but

has no implications for reproductive fidelity or cumulative

potential.

The argument we present does not rely on any assumptions

about the social learning capacities of nonhuman apes. Nev-

ertheless, Greenbaum et al., Hovers, and Whiten all suggest

that our conclusions are unsurprising given comparative ex-

pectations for a chimpanzee-human common ancestor. In-

terestingly, Tennie accepts that apes can learn to imitate al-

though they find it difficult and are not inclined to do so. This

does not seem like a large gulf to be covered by incremental

evolutionary change along the hominin line, and it aligns

quite well with the extended evolutionary account we elaborate

elsewhere (Stout and Hecht 2017). Methodologically, we are

concerned that a taxonomic approach to designing social learn-

ing experiments can draw attention away from other relevant

details of the tasks and contexts being studied and may lie at

the root of some of the more persistent controversies in the

comparative psychology literature. This is why we call for an

emphasis on ecologically valid experiments moving forward,

a suggestion strongly supported by Whiten.

Tennie also suggests that archaeologists’ success in reverse

engineering ancient technologies argues against social trans-

mission of action details in the past. We already presented an

extended argument against this criterion of “possibility,” but it

is interesting to speculate about reverse engineering end-state

emulation (Whiten et al. 2004) as a mechanism. As we found

no functional differences between alternate tool forms that

might bias copying, any such reverse engineering effort can

only be seen as an attempt to reproduce the perceived (and

causally opaque) morphological goals of the knapper. In other

words, this would be what Tomasello terms “imitation” and

archaeologists have called “the imposition of arbitrary form”

(Holloway 1969) and hailed as a hallmark of human culture

(Isaac 1976). Perhaps the theoretical exchange between com-

parative psychology and archaeology can profitably flow in

both directions.

Skill Reproduction

Whiten describes knapping as a “paradigmatic” example of

an opaque skill requiring repeated alternation of social (imi-

tation/goal emulation) and individual (trial and error) learn-

ing (see also Isaac 1986; Stout 2013). Greenbaum et al. call

attention to similar ideas in recent behavioral ecology litera-

ture. This includes formal modeling from Truskanov and Prat

(2018) showing that, in realistically variable environments,

the inclusion of individual trial-and-error learning during

cultural transmission increases fidelity, whereas exact copying

is fragile. We went so far as to argue that exact action copying

is literally impossible (not to mention undesirable) in the real

world and that some degree of goal-directed approximation

is always necessary (de Vignemont and Haggard 2008). Cer-
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tainly this is the case with stone knapping, in which consis-

tent results must be produced from variable materials and

skill acquisition requires extended individual practice (Stout

2013). This account of skill reproduction evokes Tomasello’s

intention-based concept of imitation while emphasizing that

intentions exist across multiple levels of abstraction (Byrne

and Russon 1998; Stout 2011). Formal (Mesoudi and O’Brien

2008; Truskanov and Prat 2018) and verbal (Stout 2013) mod-

els suggest that such multilevel organization is critical to both

the learnability and the evolvability of cultural traits.

Due to the abstraction and flexibility of the behavior ele-

ments being copied (e.g., unifacial method), evolutionarymod-

els cited by Tennie that address the accumulation of small

perceptual errors in functionally neutral metric attributes of

artifact morphology are not relevant. We instead point to the

multifaceted “quantitative genetic” approach of Lycett and von

Cramon-Taubadel (2015) that recognizes the complex rela-

tions between knapping behaviors and observed artifact form

as influenced by production methods, reuse, and discard as

well as functional and raw material constraints. Thus, while

Greenbaum et al. advocate the application of phylogenetic

methods to Oldowan variation (as has been done for later time

periods; e.g., O’Brien, Darwent, and Lyman 2001), we are con-

cerned that substantial questions about the proper units of

analysis for Early Stone Age technology remain to be ad-

dressed. Some combination of the site comparison approach

cited by Whiten (Whiten, Schick, and Toth 2009) with the

standardized, multisite collaborative research program advo-

cated by Reti may be a promising direction.

Cumulative Culture Origins

As Hovers notes, our article does not demonstrate the pres-

ence or absence of cultural ratcheting in the Oldowan. This

is beyond current evidence and methods. Instead, we sought

to “propose and exemplify a research program” for investi-

gating such questions. Greenbaum et al., Högberg, Lombard,

and Gärdenfors, and Reti endorse our gradualistic approach,

which sees cumulative culture as a complex phenomenon with

multiple contributing elements interacting in complicated

ways. Reti highlights economic factors as drivers of techno-

logical change, stability, and variation, while Greenbaum et al.

discuss the potential for social learning to either accelerate

(Baldwin effect) or slow (reverse Baldwin) the biological evo-

lution of toolmaking skills. Both comments align with our sce-

nario’s focus on the costs and benefits of investment in skill

learning, which are themselves contingent on bioculturally

evolving learning aptitudes, adaptive strategies, life-history,

and technological systems (Isler and van Schaik 2014; Ko-

lodny, Creanza, and Feldman 2015; Stout 2011; Stout and

Hecht 2017). We favor the hypothesis that social and indi-

vidual learning overlap cognitively and developmentally and

so tend to evolve together (Heyes 2012; Stout and Hecht 2017;

van Schaik and Burkart 2011). This would argue against a

reverse Baldwin effect insofar as innovative potential might

be linked to other capacities that remain visible to selection.

More broadly, it suggests a kind of “biocultural ratchet effect”

producing unidirectional or equifinal evolutionary responses

to diverse and shifting selection pressures. As suggested by

Greenbaum et al., the interaction between social and individ-

ual learning is a key question for further biological and cultural

evolutionary research.Adiscrete “time of emergence” (Hovers)

for cumulative culture may or may not ultimately be identi-

fiable in the record, but Whiten’s suggestion that cumulative

culture should be defined “simply as culture that cumulatively

builds on what came before” at least provides an empirically

tractable criterion.

Archaeological Evidence of Teaching and Learning?

In various publications (Stout 2002, 2005; Stout and Hecht

2017; Stout and Khreisheh 2015), we have explored the extent

to which the demands of knapping skill acquisition might

imply social support ranging from incidental “learning niche”

construction to direct, active teaching. We are sympathetic to

the suggestion from Högberg, Lombard, and Gärdenfors that

evaluative feedback and intentional demonstration were pres-

ent in the Oldowan but are concerned that this remains dif-

ficult to establish with confidence. As we argued in the article,

competent flaking plus simple heuristics can support exhaus-

tive and systematic core reduction (Moore 2011; Moore and

Perston 2016), as seen at both Gona (Stout et al. 2010) and

Lokalalei 2C (Delagnes and Roche 2005). Further experimen-

tal work is needed to evaluate the likelihood of developing

these heuristics under different learning conditions (“ecolog-

ically valid studies” in fig. 1, step 2). As suggested by Reti, this

experimental program needs to be integrated with systematic,

quantitative comparisons across sites using standardizedmeth-

odology. Obviously, this is a major undertaking but should

be our objective.

For similar reasons, we did not have much to say about

Lomekwian toolmaking (thus disappointing Högberg, Lom-

bard, and Gärdenfors, Reti, and Whiten). As Hovers explains,

we simply have far more information about Oldowan tool-

making. We might speculate that the bipolar and passive

hammer techniques described at Lomekwi 3 (Harmand et al.

2015; Lewis and Harmand 2016) allow expedient flake pro-

duction (Putt 2015) with lower investments in skill acquisi-

tion. This would be consistent with our suggestion that the

rarity of stone tool sites prior to 2.0 Ma may be related to high

learning costs and low marginal values for lithic technology.

However, robust interpretation awaits publication of more ex-

tensive technological analyses, experimental replication, and

expanded excavations. The latter might also lay to rest any lin-

gering concerns about artifact context (Domínguez-Rodrigo

and Alcalá 2016).

We share the concerns of Högberg, Lombard, and Gär-

denfors and Whiten regarding the limitations of argument by

elimination, which we consider to be the “least worst” solu-

tion currently available. However, we are encouraged by broad
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support for our bottom-up approach (Högberg, Lombard, and

Gärdenfors, Hovers, and Reti). To clarify, we did not state that

the goal of efficient edge production was insufficient to explain

Oldowan technology (Högberg, Lombard, andGärdenfors) but

simply that this is not known with certainty. There is substantial

bottom-up evidence supporting the inference, and our analysis

of “Favor”was an attempt to add to this.More generally, we agree

with Greenbaum et al., Reti, and Whiten that a broad-based

empirical research program is the best way forward.

—Dietrich Stout, Michael J. Rogers, Adrian V. Jaeggi,

and Sileshi Semaw
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