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Abstract: We examine the historical behaviour of interest rate movements  
in seven major currencies AUD, CAD, CHF, EUR, GBP, JPY and USD.  
We apply principle components analysis and hierarchical cluster analysis to 
illustrate, understand and model the past collective movements of yield curves. 
We show that simple correlations are not able to capture the complex behaviour 
observed in the data set. In order to model risk factors that are intimately 
connected, we propose so-called archetypes of collective movements as 
building blocks. Thus, we start from collective movements that are coherent 
from a historical perspective. A set of risk factor forecasts is then generated by 
adapting an archetype rather than building single risk factor forecasts from 
scratch. This approach opens the door to integrated, coherent forecasts created 
from complex building blocks. The methods may be applied within scenario 
simulations, forecasting, filtering techniques and technical analysis. 
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1 Introduction 

The financial services industry is a large driver of innovation with respect to methods 

and technology. One of the reason is that there are various regulatory requirements 

imposed on the industry that enforce the implementation of appropriate risk management 

techniques and procedures. Risk management methodologies that have been initially 

developed for the banking industry are adopted by non-financial corporations, see for 

example, Smithson and Simkins (2005) and Glaum (2000). Interest rates (IR) and 
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exchange rates (FX) are the two major market risk factors relevant to corporate treasury. 

IR plays an important role because corporations have to control and manage their 

funding and liquidity requirements. FX is relevant whenever the above funds and  

cash-flows are denominated in different currencies, for example, for cross-border 

revenues. 

Managing IR risk in different currencies requires addressing the problem that  

future scenarios have to be plausible and consistent with respect to comovements of 

different markets. 

The large dimensionality of the problem requires appropriate techniques to reduce the 

complexity without the loss of relevant information. The most prominent technique to 

address this problem is PCA. It has been applied to various modelling and analysis tasks, 

see for example, Litterman and Scheinkman (1991), Jamshidian and Zhu (1997), 

Rodrigues (1997) and Lardic et al. (2003). 

Considering a set of n risk factors ri (t) we may represent the movement over a period 

∆t by the absolute change over ∆t = t
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Each historical chance of the n risk factors at a given point in time is therefore 

represented by a n-dimensional data vector. The set of movements over time form a  

n-dimensional data cloud. The number of observations defines the number of data 

vectors in the cloud. Generally, the data cloud may only cover a subspace of the 

complete space. Areas outside the cloud represent the movements that have not been 

observed in the past. For the special case of a correlation coefficient of one among all 

risk factors, the subspace is a one-dimensional manifold, namely the diagonal axis 

through the origin of the data space. In case the data cloud is embedded in a  

m-dimensional subspace of lower dimension, for example, m < n, PCA is a powerful tool 

to reduce the complexity of a data set. PCA is a linear base transformation of the 

orthogonal coordinate systems such that the axes of the new coordinate system are 

aligned along the directions of largest variation in descending order. The old base A of 

the n-dimensional space is transformed into the new orthonormal base B: 

{ } { }1 1, , , ,n nA A a a B e e= = … ⇒ = … . 

The vectors ei of the new base are the eigenvectors. The data vector x is represented in 

the new base as follows: 

i n
b

i i

i

x f e
1

,
=

=

=∑  (2) 

where the factors fi are given by the scalar product of the original vector x and 

eigenvector e
i
 in the base A according to 

.= ×i if x e  (3) 

The set of factors fi for a component i is called factor loading. The standard deviation of 

the data set along each eigenvector is the corresponding eigenvalue. If the eigenvalues 
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quickly drop towards zero for an increasing order of eigenvectors, the sum in  

Equation (2) may be truncated at i
max 

< n without a significant loss of information. 

Thus, PCA may be interpreted as a function approximation by a series of basic 

functions. Here, the basis functions are derived in a data-driven fashion, rather than 

predefined, for example, like in a Taylor series expansion. In this paper, a PCA 

transformation is applied to the movements of IR in seven different currencies. 

Representing each yield curve by 13 maturities will result in a 91-dimensional space 

of collective yield curve movements. The first three PCA components of yield curve 

movements for a single currency can be interpreted as level, slope and curvature.  

For a detailed discussion, please see, for example, Littermann and Scheinkman (1991), 

Jamshidian and Zhu (1997), Rodrigues (1997) and Lardic et al. (2003). Our analysis 

shows that a similar eigenvector base is obtained, if we perform a PCA on a space that 

combines movements of all currencies as compared to a PCA on yield movements in a 

single currency. Here, PCA helps to reduce the dimension of the data space by a factor of 

over four. 

An analysis of the intra- and inter-yield curve factor dynamic shows a significant 

correlation. However, in a business cycle, we observe regimes of different synchronous 

and asynchronous risk factor movements. Modelling the co-movements by linear 

correlations will draw a too much rigid image. Thus, we prefer to focus on  

co-movements that reappear over time with a given statistical significance and 

persistence. Such patterns are called archetypes (Dersch, 2006). Different archetypes 

may represent correlated or anti-correlated movements. 

In order to derive archetypes from the data set, we apply a second statistical 

technique namely Hierarchical Cluster Analysis (HCA), Rose et al. (1992). Here, we use 

a technique that has been thoroughly analysed (Dersch, 1996) and applied in many  

areas of statistical data analysis, for example, speech and image processing and  

financial data analysis. The algorithm belongs to the class of hierarchical cluster 

techniques. It is a powerful tool to find structural information in a high-dimensional data 

space on multiple length scales by means of a mathematical optimisation process (Dersch 

and Tavan, 1992). 

The main feature of this algorithm is that it maps a set of data vectors X = {x
1
,…,xk} 

onto a smaller set of cluster centres – or as we call them – archetypes. The archetypes 

represent the local data density on a given length scale. In the course of an annealing 

process, the data structure is resolved on an increasing finer length scale and areas with a 

high local data density – become apparent. In this publication, we apply the HCA to 

identify typical IR movements for different currencies. Besides the static properties of 

the data set, HCA also provides insight into the dynamic aspects of a process.  

By assigning a representative label to each archetype, for example, ‘rise’, ‘fall’, we are 

able to generate a sequence of symbolic labels from our data set. This is achieved by 

assigning each data vector the label of the next neighbour archetype (hard clustering).  

In a fuzzy clustering case, we assign each data vector with a given probability to a label 

of a neighbouring archetype. Given the sequence of labels, we may investigate the 

dynamic behaviour of the process. 

The analysis based on HCA provides insight that goes beyond the results obtained 

from linear correlations. The remainder of this paper is organised as follows: in the  

next section, we explain the data set and methodology. Sections 3 and 4 show the  

results for the PCA analysis and HCA, respectively, Section 5 shows the conclusions and 

an outlook. 



   

 

   

   

 

   

   

 

   

   102 D.R. Dersch    
 

    

 

 

   

   

 

   

   

 

   

       
 

2 Data set and methodology 

2.1 Data set 

We use historical daily data from Bloomberg data services of government zero rates  

for the period from 30 December 1994 to 2 March 2007 with a total number of  

3,165 observations. We consider yield curves in the following currencies: AUD, CAD, 

CHF, EUR, GBP, JPY and USD on a maturity grid: 1–10 years, 15 years, 20 years and 

30 years. For each point in time, we calculate the yield curve movements based on  

the 60-day absolute changes according to Equation (1) representing approximately three 

month changes. The collective movements of the seven yield curves are therefore 

represented by a 91-dimensional data vector (7 currencies multiplied by 13 maturity grid 

points). In order to reduce the complexity of the data set, we first apply a PCA on the 

data set. 

2.2 PCA 

In this publication, we show evidence that a description of the collective movements by a 

single eigenvector base of the first three components results in a good approximation. 

2.2.1 Single PCA space 

In order to do this, we first derive eigenvector bases calculated from yield curve 

movements from each of the 7 currencies. This involves performing individual PCA 

transformations on seven different data sets of 3,105 13-dimensional data vectors. 

2.2.2 Joint PCA space 

In order to do this, we first derive eigenvector bases calculated from yield curve 

movements from each of the 7 currencies. This involves performing individual PCA 

transformations on seven different data sets of 3,105 13-dimensional data vectors. 

We compare the above result with an analysis where all movements are represented 

by a single eigenvector base. This is achieved by first creating a joint data space of 

21,735 (7 × 3,165) 13-dimensional vectors and then performing a PCA on the joint  

data space. 

A comparison of the eigenvectors for the two different approaches and of the 

observed error between the original data and the reduced representation justifies the 

approach to represent all movements by just one common eigenvector base. A detailed 

analysis is shown below. 

As a result, we may represent multiyield curve movements by the first three 

components in each of the seven currencies. We therefore achieve a data reduction  

by a factor of 4.3, that is, from 91-dimensions to just 21-dimensions. In this 

representation, the movements are approximated by linear combinations of the first three 

eigenvectors. A joint vector base is a prerequisite for a direct comparison of the factor 

dynamics between the three factors of each currency as well as between the same factors 

of different currencies. The analysis of correlations of inter- and intra- factor dynamics 

gives an insight into the average overall shape and dependencies of yield curve 

movements. 



   

 

   

   

 

   

   

 

   

    Archetypes of collective yield curve movements 103    
 

    

 

 

   

   

 

   

   

 

   

       
 

2.3 HCA 

In order to analyse the comovements in different currencies, Jamshidian and Zhu (1997) 

and Rodrigues (1997) studied the correlation coefficients of the factor dynamics.  

We focus rather on archetypes that allow us to model movements representing individual 

correlation patterns. 

2 3.1 Static analysis 

In the following section, we apply HCA to the 21-dimensional data space of factor 

dynamics by using 7 archetypes. In the course of the above-described annealing process, 

the data space is resolved on a successive finer length scale until the set of seven well 

separated archetypes is obtained. The archetypes are analysed and compared with results 

derived from simple linear correlations of factor dynamics. 

2.3.2 Dynamic analysis 

We further investigate the dynamic properties of movements by analysing the time 

dependent structure of archetype association. This is achieved in the following way. Each 

data vector is assigned with a given probability to the set of archetypes. The time-series 

may thus be mapped on a sequence of archetypes labels. The analysis of the label 

sequence gives an insight into the transition of movements and the appearance of the 

archetypical patterns in a historic context. 

3 Analysis results: PCA 

3.1 PCA analysis: single currencies versus joint currency space 

In the first analysis, we show the results of single currency PCA compared to a PCA on 

the joint data space. Figure 1 shows the first eigenvector for the single currency PCA 

(full lines) and the first eigenvector derived from the joint currency space (broken line). 

Figure 1 First eigenvector for individual and joint PCA (see online version for colours) 
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Figures 2 and 3 show the second and third eigenvectors. Please note that, due to the fact 

that the eigenvectors are orthonormal, all eigenvectors have the same Euclidean length 

and therefore fall in a similar range. 

Figures 1–3 illustrate two important findings: 

1 The shape of the eigenvectors follow the well known picture of ‘level’, ‘slope’ 
and ‘curvature’ already discussed in the literature. 

2 The eigenvector of the joint space is a smooth interpolation of the single space 
eigenvectors. 

Figure 2 Second eigenvector for individual and joint PCA (see online version for colours) 

 

Figure 3 Third eigenvector for individual and joint PCA (see online version for colours) 
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The first result is expected as it has been reported before (see references in  

the introduction). Nevertheless, it is not obvious as data sets and preprocessing of  

yield curves described in the literature vary significantly. They cover different  

phases of business cycles (both pre and post Euro era), different currency sets,  

different maturity grids and different representations like zero rates or daily rate  

changes. In our study, we used three month absolute changes on a data set of more than 

12 years. 

The second finding confirms that the PCA decomposes the movements – independent 

of the currency into very similar shapes. The third eigenvector shows some variation in 

the location of the minima. For the AUD and the CHF, the minima are located around  

a maturity of 10 years, whereas the minimum for the remaining currencies is located  

at lower maturities. The joint PCA eigenvector smoothly interpolates between  

these shapes. 

We conclude that a common eigenvector base is a good description for the joint 

movements. This is also confirmed by the analysis of the mean squared error derived 

from the difference between the original yield curve movement and a reduced 

representation by the first three components only as described by Equation (2)  

(i = 1, 2, 3). Table 1 gives the Mean Squared Error (MSE) between the original data set 

and the reduced representation using the first three PCA components. The first seven 

columns show the MSE for the PCA of each individual currency, the last column (ALL) 

shows the PCA on the joint movements. 

Table 1 MSE in percent using the first three PCA components for the individual currencies 
(column 1–7) and the PCA on the joint space (column 8) 

Curr AUD CAD CHF EUR GBP JPY USD ALL 

MSE 1.55 1.81 2.56 2.17 1.04 1.56 0.53 1.65 

The observed error of 1.65% is very close to the average error of the single currencies 

(1.60%). The standard deviation of the 60-day movements varies for different currencies 

between 34 bp for the CHF and 53 bp for the AUD. The MSE is therefore in the range of 

around 1 bp only. The variation of the standard deviation for different maturities within 

the same currency is relatively low. 

As a result of the above analysis, we therefore, use the joint PCA representation for 

the remainder of this paper. 

3.2 Statistical analysis of the joint PCA representation 

Table 2 gives the correlation coefficients within the first (upper), second (middle) and 

third (lower) components of different currencies. The correlations are calculated from the 

factor loadings fi (compare Equation (3)) for i = 1, 2, 3. The upper right half of the 

correlation matrix and the diagonal elements are shaded because they carry redundant 

information. The dependency between the first, second and third PCA component are 

discussed in the following. 
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Table 2 Correlation in percent between first (upper number, i = 1), second (middle number,  

i = 2) and third (lower number, i = 3) PCA components. The upper right triangle and 
the diagonal element carry redundant information and are therefore shaded in grey 

Curr i AUD CAD CHF EUR GBP JPY USD 

AUD 1 

2 

3 

100 

100 

100 

81.2 

38.5 

25.7 

53.3 

23.7 

1.7 

71.1 

37.4 

13.8 

71.6 

29.7 

27.3 

48.6 

0.9 

–10.2 

77.8 

41.9 

25.0 

CAD 1 

2 

3 

81.2 

38.5 

25.7 

100 

100 

100 

58.6 

44.0 

12.2 

70.6 

54.0 

43.3 

62.7 

39.2 

7.1 

44.6 

6.5 

–2.5 

78.6 

66.5 

59.7 

CHF 1 

2 

3 

53.3 

23.7 

1.7 

58.6 

44.0 

12.2 

100 

100 

100 

77.0 

65.1 

15.1 

65.0 

35.0 

8.7 

39.8 

2.6 

5.2 

61.9 

54.3 

15.3 

EUR 1 

2 

3 

71.1 

37.4 

13.8 

70.6 

54.0 

43.3 

77.0 

65.1 

15.1 

100 

100 

100 

65.0 

35.0 

8.7 

36.8 

12.7 

9.3 

70.5 

53.7 

56.2 

GBP 1 

2 

3 

71.6 

29.7 

27.3 

62.7 

39.2 

7.1 

65.0 

35.0 

8.7 

82.4 

46.3 

28.3 

100 

100 

100 

33.0 

1.7 

–8.3 

71.6 

38.8 

16.2 

JPY 1 

2 

3 

48.6 

0.9 

–10.2 

44.6 

6.5 

–2.5 

39.8 

2.6 

5.2 

36.8 

12.7 

9.3 

33.0 

1.7 

–8.3 

100 

100 

100 

50.2 

–1.4 

7.6 

USD 1 

2 

3 

77.8 

41.9 

25.0 

78.6 

66.5 

59.7 

61.9 

54.3 

15.3 

70.5 

53.7 

56.2 

71.6 

38.8 

16.2 

50.2 

–1.4 

7.6 

100 

100 

100 

3.2.1 Inter-currency correlation: first PCA component 

The first component represents parallel shifts. The top number in each cell describes the 

correlations between the first PCA components of different currencies. They show a 

strong positive correlation between all currencies. The largest value of 82.4% is observed 

between GBP and EUR. This number is the top number in cell GBP/EUR (row/column). 

Similar large values are observed for the pairs CAD/AUD, USD/CAD, USD/AUD and 

EUR/CHF. The first PCA component of the JPY shows the lowest correlation to all the 

other currencies (minimum 33.0% to GBP and maximum 50.2% to USD). EUR and USD 

show a large overall correlation to the remaining currencies. It is interesting to note that 

very similar correlations are observed between the three month shifts of the five year 

zero rates (results not shown). 
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3.2.2 Inter-currency correlation: second PCA component 

The second PCA component – representing twists – shows a similar result, but much 

smaller in magnitude. The largest values are observed for CAD/USD (66.5%), 

EUR/CHF, USD/CHF, EUR/CAD and USD/EUR. Some of these pairs also show strong 

correlations in the first components. Again the JPY shows overall the smallest correlation 

to the remaining currencies with USD/JPY being the smallest (–1.6%). 

3.2.3 Inter-currency correlation: third PCA component 

The third components describing curvature are again much smaller in magnitude as 

compared to the first and second component. The largest values are observed for the 

pairs CAD/USD, EUR/USD and CAD/EUR. These pairs show also overall a large 

correlation to the first and second components. 

3.2.4 Intra-currency correlation 

The correlations between PCA components 1–3, within the same currency, are presented 

in Table 3. For the sake of a more condensed representation, results for different 

currencies are combined in single lines in Table 3. The CHF shows a negative correlation 

of –46.6% between component one and two. This corresponds to cooccurrence of IR rise 

accompanied by a flattening of the curve and an IR fall accompanied by a steepening of 

the curve. Similar behaviour, but different in magnitude is observed for the other 

currencies except the JPY. Here, we observe an IR rise accompanied by a steepening and 

vice versa. The correlation coefficient indicates a fairly strong relation between shift and 

steepening (47.6% for factor one and two) for the JPY. 

Table 3 Correlation coefficient in percent between different PCA components  
(1 & 2, 1 & 3 and 2 & 3) each within the same currency 

I Factor; Curr; factor 1 2 

2 AUD; CAD 

CHF; EUR 

GBP; JPY; USD 

–16.6; –42.2 

–46.6; –22.0 

–31.1; 47.6; –26.2 

 

3 AUD; CAD 

CHF; EUR 

GBP; JPY; USD 

3.6; 4.4 

23.8; –12.9 

–20.4; 15.5; –27.3 

11.7; –53.7 

–26.2; –10.6 

–13.7; 48.4; –29.1 

The above analysis of linear correlations already illustrates the complex relationship of 

movements between different currencies and different shape components. Furthermore, it 

is not clear whether these relationships are stable over time. In order to shed further light 

on the complex relationship, we apply HCA on the data space of factor dynamics.  

The following section illustrates the results. 

4 Analysis results: HCA 

We perform a HCA on the data set of 3,105 21-dimensional vectors representing the 

factor dynamics of seven currencies. In the course of the annealing process, the set of 

archetypes undergoes a transition process of one, two, four, six and seven archetypes.  



   

 

   

   

 

   

   

 

   

   108 D.R. Dersch    
 

    

 

 

   

   

 

   

   

 

   

       
 

A detailed analysis of the complete annealing process goes beyond the scope of this 

paper. However, we find archetypes that represent combinations of ‘fall’ and ‘rise’ 

categories with increasing finer substructure. In the following, we illustrate the results on 

the level of seven different archetypes. 

4.1 Archetypical joint movements 

HCA provides seven archetypes, each coded by a 21-dimensional vector. Using  

Equation (2) we transform the collective movements back into yield curve shifts for each 

maturity. 

The seven archetypes describe a partitioning of the data set. We derive a statistical 

weight for each archetype by assigning each data vector to the next archetype. Table 4 

summarises the statistical weight for each archetype. The archetypes are placed in 

descending order with respect to the 5-year movements shown in Figure 4. 

Table 4 Statistical weights of each archetype in percent. A weight of 10.3% of archetypes  
A1 means that 10.3% of all data vectors are next neighbours to archetype A1 in a 
Euclidian metric 

Archetype A1 A3 A2 A5 A6 A4 A7 Sum 

Stat. weight 10.3 18.5 8.0 25.3 20.2 6.8 10.9 100 

Figure 4 The seven archetypes of the EUR yield curve movements (see online version  
for colours) 

 

As an example, Figure 4 shows the EUR component of the seven archetypes. We find 

seven curves that differ in the absolute level and shape. There are three different rise and 

four fall movements. The rises differentiate into two fairly flat rises of different 

magnitude – except a small curvature (A1) and a small flattening (A3). The third rise 

scenario (A2) actually exhibits a slight fall for maturities shorter than two years.  

It describes an overall steeping of the yield curve of about 30 bp. A2 is almost mirrored 
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by A5 which shows a slight fall and flattening. It is interesting to note that the statistical 

weight of A5 is about four times higher than the weight of A2 (compare Table 4). 

Overall, the three rise movements account for only 36.8% of all movements. This 

reflects the fact that the IR fell over the observed historical period. 

The remaining three fall movements show an additional differentiation in terms  

of magnitude of shifts and of shape. There are two moderate fall movements that differ 

only slightly in the levels but show different shapes. The first (A6) exhibits curvature, 

whereas the other one is almost completely flat (A4). The last and strongest fall (A7) is 

characterised by a level of about 60 bp and a significant steepening of close to 40 bp. 

This curve – together with A3 – is consistent with the behaviour expected from the 

correlation of factor one and two (compare Table 2). However, the symmetric twin 

scenario (numbers A2 and A5) exhibiting a slight rise and a fall show an opposite 

picture. Although the levels are not exactly symmetric around zero, A1 and A6 are also 

almost mirrored images of each other. They are consistent with the anticorrelation 

between level and curvature (Table 3, EUR, correlation between factors 1 and 2 –12.9%). 

This may suggest that the correlations between level, slope and curvature are conditioned 

on the absolute strength and direction of the shift. This behaviour may not be anticipated 

from the analysis of correlations only! 

Figures 5–7 illustrates representative archetypes. Figure 5 shows A3 which may be 

labelled moderate rise and flattening. This archetype is in line with the behaviour 

anticipated from the linear correlations. The strongest rise is observed for the USD.  

The JPY shows the smallest rise and is almost flat in the range from 1–10 years. Figure 6 

shows A5 which may be labelled moderate fall and flattening. This archetype is in line 

with the behaviour anticipated from the linear correlations of JPY only. The weakest fall 

is observed for the CHF and looks more like a pure twist (flattening). 

Figure 5 The archetype A3 (see online version for colours) 
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Figure 6 The archetype A5 (see online version for colours) 

 

Figure 7 shows A7 which may be labelled strong fall and steepening. This archetype is 

consistent with the behaviour anticipated from the linear correlations. 

Figure 7 The archetype A7 (see online version for colours) 

 

Figure 8 depicts a very interesting behavior. This archetype consists of three different 

sub sets. The first set is the JPY. It shows a rise and a fairly strong steepening of 

approximately 40 bp. 
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Figure 8 The archetype A4 (see online version for colours) 

 

The second set consists of the three dollar currencies: AUD, CAD and USD.  

They describe a slight flattening around a zero level change (USD and CAD) or  

stay completely flat at zero level (AUD). The third set consists of the three European 

currencies EUR, CHF and GBP. They show a moderate fall at a level of 40 bp and  

slight curvature (CHF) or steepening (EUR, GBP). The archetype A4 describes a 

decoupled movement of dollar versus European currencies. A4 has a relative low 

statistical weight of 6.8%. Interestingly, the grouping of currencies is consistent with the 

results derived from inter-currency linear correlations (please compare Table 2, 

correlations of level). In the next sub section, we explore the appearance of archetype A4 

in the data set. 

4.2 Dynamic properties of archetypical movements 

Figure 9 shows the projection of the data set (grey diamonds) and the archetypes  

(red squares) onto the plane defined by the first PCA component of GBP and EUR.  

The last 100 data vectors in the time series are plotted in red triangles. The first  

PCA component describes a shift of the yield curves. Data vectors in the lower  

left corner of Figure 9 therefore illustrate a synchronous downward movement  

whereas data vectors in the upper right corner a synchronous upward movement of GBP 

and EUR. 

Figure 9 shows an impression about the trajectory of the data set with respect to the 

position of the archetypes. Depending on the relative distance of a data vector to  

the archetypes, we may derive an association probability for each data vector. In fact,  

the HCA already provides these probabilities (Dersch, 1996). In this example, we get a 

seven dimensional hypothesis vector of association probabilities. The probabilities of 

association for archetype A4 as a function of time is shown in Figure 10. A4 showed a 

very interesting behaviour because of the differentiation between currency sets  

(compare Figure 8). 
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Figure 9 A two-dimensional projection of the data set (black diamonds) and the archetypes  
(pink circles) onto the first PCA component of GBP and EUR. The red triangles  
show the last 100 data vectors (13 October 2006 to 2 March 2007) (see online  
version for colours) 

 

Figure 10 The historical association probability of A4 to a data vector. The dashed-line  
indicates the 75% probability line (see online version for colours) 

 

Figure 10 shows the periods where A4 is closest to the trajectory. From Table 4, we 

already know that this is the case in only 6.8% of the overall time. Time steps where A4 

possesses an association probability above 75% (above dashed line in Figure 10)  

are: Sept. 1995, Feb. 1997, Feb. and Aug. 1998, Jan. 1999, Feb. 2003 and Dec. 2004.  

These findings confirm an important necessary condition required for archetypes: they 

reappear over time. As shown above, the archetype A4 describes a decoupling of the 

dollar (USD, CAD and AUD) versus the European (EUR, CHF and GBP) market.  

Figure 10 shows the historical periods when this happened and therefore allows 

segmenting the time series in a complete data driven fashion. 

Further work is required to link these findings to economic factors in a business 

cycle. In a previous paper, these have been done for combined IR/FX movements 

(Dersch, 2006). 
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5 Conclusion and outlook 

In this paper, we applied the novel concept of archetypes to analyse the complex 

movements of 91 risk factors. We showed that our findings are consistent with  

results derived from linear correlations, but draw a much more detailed picture. In the 

remainder of this section, we would like to provide an outlook on how this scheme may 

assist in various areas like scenario simulation, forecasting, segmentation or novelty 

detection. The foundation of these applications is a set of archetypes calibrated on a 

historical data set. 

5.1 Scenario simulations 

Jamshidian et al. (1997) applied a PCA to speed-up VaR calculations. Scenarios are 

generated using linear correlations and a discretisation of states based on a binomial 

distribution. As a promising alternative, we propose a set of archetypes as a basis for 

scenario simulations. Scenarios may be generated from single archetypes, their linear 

combinations or even by stretching given archetypes. The latter allows generating stress 

scenarios not observed in the past. Different statistical weights and transition 

probabilities may also be incorporated in this approach. It allows generating scenarios 

that are consistent and plausible with respect to the historical behaviour and may 

represent different correlation regimes. 

5.2 Risk factor forecasting 

In a similar way as described above, we may apply the concept of archetype to generate 

historical plausible forecasts. The big advantage as compared to bottom-up built 

forecasts is that we do not have to come up with an estimate for all individual  

risk factors. There is no need to explicitly make sure that individual forecasts are 

coherent from a historical point of view, as this is already built into the construction of 

archetypes. We want to illustrate this with a very simple example. Assume an analyst 

expects the EUR curve to rise by 20 bp with a flattening on the long end of the curve in 

the next three months. He may choose A3 from the set of archetypes (compare Figure 4) 

to define the movement of the EUR curve. Without any further opinion on the other 

markets, he may just choose A3 as forecasts for the remaining six markets. A further 

extension of this approach is to use linear combinations of archetypes rather than just one 

archetype or sets or archetypes each assigned with a given probability. 

5.3 Financial time series segmentation 

Time series segmentation is a special case of filtering. As outlined in Section 4.2 

(compare Figure 10), our approach creates the opportunity to label and segment a 

financial time series. The mapping of a time series onto a stream of symbols is a first step 

toward pattern recognition or time series analysis (Weigend and Gershenfeld, 1993).  

In a previous study, we investigated archetypes of FX and IR movements and found that 

archetypes link to different stages in business cycles (Dersch, 2006). In addition, the 

segmentation might be a first step towards technical analysis applications. 
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5.4 Novelty detection 

The analysis of A4 illustrates that the concept of archetypes may help to find 

relationships in data sets that are not obvious at first. A4 teaches us that temporary 

decoupling of different markets reoccurs over time. Thus, different points in time are put 

into a relation. An analysis of these periods may provide a deeper understanding of the 

mechanics of IR markets. 
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