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INTRODUCTION

The archimedean equivalence on an ordered semigroup has been defined by the
author [6], [7] and B. PonDELICEK [3]. But the difficulty occurs because of the fact
that the archimedean equivalence is not necessarily a congruence relation, that is,
the set product of two archimedean classes is not always contained in a single
archimedean class.

The behavior of set products of archimedean classes has been studied by the author
[9] for nonnegatively ordered semigroups. In the present paper we generalise the
theory for general ordered semigroups. As in the previous paper, we define the
operation * between archimedean classes so that the set of archimedean classes forms
an ordered idempotent semigroup. Then we show that the set products of archimedean
classes are determined in some extent in terms of the operation *. These final results
are given in § 6.

1. PRELIMINARIES

We use the terminology and notation in CLIFFORD and PRESTON [2] freely. By an
ordered semigroup we mean a semigroup S with a simple order < which satisfies

for x,y,zeS, x<y implies xz <yz and zx £ zy.

Let S be an ordered semigroup. An element x of S is called positive [negative;
nonnegative; nonpositive] if x < x* [x* < x; x £ x*; x> £ x]. The number of
distinct natural powers of an element x of S is called the order of x. Thus x is an
element of finite order m if and only if there is a natural number n such that x" =
= x"*1 and m is the least in the set of natural numbers n satisfying this condition.
An ordered semigroup S is called nonnegatively [nonpositively] ordered if every

element of S is nonnegative [nonpositive].
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The archimedean equivalence </ on an ordered semigroup S is defined by:
for x,yeS, x.«y ifand only if there exist natural numbers
p.q,r and s suchthat x? £ y? and " < x°.

In our papers [6] and [7], we gave the following results:

Lemma 1.1. The archimedean equivalence </ on an ordered semigroup S is an
equivalence relation on S.

Lemma 1.2. For elements x and y in an ordered semigroup S, the following
conditions are equivalent: '

(1) x o y;
(2) there exist natural numbers p, q and r such that x? < y* <
(3) there exist natural numbers p, q and r such that y» < x? < y".

An equivalence class of an ordered semigroup S modulo the archimedean equi-
valence «/ is called an archimedean class.

Lemma 1.3. Each archimedean class of an ordered semigroup S is a convex
subsemigroup of S.

Lemma 1.4. Each archimedean class of an ordered semigroup S has at most one
idempotent. For an archimedean class C of S, the following conditions are equi-
valent:

(1) C contains an idempotent;

(2) the set of all nonnegative elements of C is nonempty and has the greatest
element;

(3) the set of all nonpositive elements of C is nonempty and has the least element;

(4) C has the zero element;

(5) every element of C is an element of finite order;

(6) C contains an element of finite order;

(7) C contains at least one nonnegative element and at least one nonpositive
element.

Moreover, for an element e of C, the following conditions are equivalent;

(8) e is an idempotent of C;

(9) e is the greatest nonnegative element of C;
(10) e is the least nonpositive element of C,
(11) e ist the zero element of C.

If an archimedean class C of an ordered semigroup S satisfies one of the equivalent
conditions (1)—(7) in Lemma 1.4, then C is called periodic. An archimedean class C
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of Sis called torsion-free if it is not periodic. If C is a torsion-free archimedean class,
then either every element of C is positive or every element of C is negative. In the
former case, C is called a positive torsion-free archimedean class and, in the latter
case, C is called a negative torsion-free archimedean class of S.

Also in [4] and [5], we gave the following results:

Lemma 1.5. An idempotent semigroup E is a semilattice of rectangular bands.
Every rectangular band which is a constituent of the decomposition is a 9-class of E.

Lemma 1.6. The set of all idempotents of an ordered semigroup S is a subsemi-
group of S, if it is nonvoid.

Lemma 1.7. In an ordered idempotent semigroup E, each D-class consists of
either only one ¥-class or only one #-class.

Let S be an ordered semigroup. By Lemma 1.5, the set E of all idempotents of S
is a subsemigroup of S, if it is nonvoid. The Z-equivalence in the semigroup E is
denoted by Z-equivalence. Let D be a P-class of an ordered idempotent semi-
group E. By Lemma 1.7, D consists of either only one #-class or only one #-class
in E. In the former case D is called of L-type and in the latter case D is called of R-ty pe.

Let P be a simply ordered set. An element b of P is said to lie between two
elements a and c of Pif eithera £ b < core £ b L a.

Let Lbe a semilattice with respect to the order <. Lis called a tree semilattice, if
for every a € L, the set {x; x =< a} forms a simply ordered subset of L.

Finally we give a result from [9].

Lemma 1.8. Let A and B be archimedean classes in a nonnegatively ordered
semigroup S such that A < B. Suppose that the set product BA[AB] is not con-
tained in a single archimedean class. Then

(1) B is a periodic archimedean class with idempotent, say e, B\ {e} + [ and
every element of B\ {e} is of order 2;

(2) the Dg-class eDy is of L-type [R-type] and there exists an idempotent f of S
such that f < e, f 7, e and f and e are consecutive in eZ g,

(3) there exists a periedic archimedean class C with idempotent, say g, which
satisfies the following conditions:
(@) g Dge and g < f;
(b) 4 £ C;
(¢) AC,CA = C;
(d) Bg = {f. e} [gB = {/, el];
(4) BA< {f} UB[AB = {f} u B].
In the rest of this paper, we denote always by S an ordered semigroup, by E the
set of all idempotents of S and by ¥ the set of all archimedean classes in S.

220



2. THE RELATION y ON ¥
We define the binary relation y on € by:
for A,Be¥, Ay B ifandonlyifeitherr ABNn A+ [] or BAn A=+ [].

Lemma 2.1. Let A, Be & such that Ay B. If A is positive [negative] torsion-free,
then B < A[A < BJ.

Proof. Suppose A is positive torsion-free. Since A y B, there exist ae 4 and be B
such that either ab € 4 or ba € A. Since A is positive torsion-free, there exists a natural
number n such that either ab < a" < a"*? or ba £ a" < a"*!
b < a"and so B £ A.

. Hence we have

Lemma 2.2. Let A, Be ¢ such that A is torsion-free and let ac A and be B.
Then abe A if and only if ba € A.

Proof. We consider only the case when A is positive torsion-free. First suppose
that ab € A. Then there exists a natural number n such that ab < a" < a"*!. Hence
b < a" and so ba < a"**. Also, since a2, ab € A, there exists a natural number m
such that a® < (ab)”. Hence ¢* < a® < (ab)" a = a(ba)" and so a < (ba)". Thus
we have a o7 ha and so ba € A. Similarly we can prove that ba € A implies ab € A.

Lemma 2.3. Let A, Be € such that A is torsion-free and let ae A and b e B.
Then the following conditions are equivalent:

(1) abe 4;

(2) a™b™ € A for every natural number m;

(3) a™b™e A for some natural number m;

(4) bae 4;

(5) b™a™e A for every natural number m;

(6) b"a" e A for some natural number m.

Proof. We consider only the case when A is positive torsion-free and ab < ba.

(1) = (2). Suppose abe A. By Lemma 2.1, we have B £ A and so there exists
a natural number n such that b < a". Hence

(’ab)m é bmam é a™am = amn+m

with (ab)", a™ "™ e A. Hence b™a™ € A and so, by Lemma 2.2, a"b" € 4.

(2) = (3). Evident.

(3) = (1). Suppose a"b™ € A for some natural number m. Then, by Lemma 2.2,
b"a™ e A. Also we have a"b™ < (ab)" < b™a™. Hence (ab)" € 4 and so abe A.

By Lemma 2.2, (1) <> (4), (2) < (5) and (3) < (6).
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Theorem 2.4. Let A, Be € such that A is torsion-free. Then the following condi-
tions are equivalent:

(1) Ay B;

(2) ABn A + [O;

(3) for every ae A and b € B, there exists a natural number n such that a"b € A,

(4) BAn A+ [J;

(5) for every ac A and b € B, there exists a natural number n such that ba" € A.

Proof. By Lemma 2.2, (2) <> (4) and so the conditions (1), (2) and (4) are mutually
equivalent. Also, by Lemma 2.2, (3) <> (5) and clearly (3) = (2). Finally we assume
the condition (2). Then there exist a’€ 4 and b’ e B such that a’b’e A. Let ae 4
and be B. We consider only the case when A is positive torsion-free. Then, by
Lemma 2.1, B £ A and so there exists a natural number m such that b < a™. Since
b, b’ € B, there exist natural numbers p and g such that b’ < b?. Also, since a, a’ € 4,
there exists a natural number r such that a’ < a". We take a natural number n such
that pr < ngq. Then

dPh < a"bt < g”a™ = qrtm
Here a”*™ € A and, by Lemma 2.3, a’?b’? € A. Hence a” b € A and so
a"b? = q"l PaPhic A .
Therefore, again by Lemma 2.3, we have a"b € A. This proves (2) = (3).

Lemma 2.5. Let a be an element of S and let e be an idempotent of S. Then
ea™e = (eae)" for every natural number m.

Proof. First suppose ea < ae. Then
(eae)™ = e(ae)" < e(a™e™) = ea™e = (¢™a™) e < (ea)" e = (eae)"
and so (eae)™ = ea™e. In the case when ae < ea, we can prove the same conclusion
in a similar way.
Lemma 2.6. Suppose that a = ab™[a = b™a] for some a, b€ S and some natural
number m. Then a = ab[a = bal].

Proof. By way of contradiction, we assume that @ + ab. Then a < abor ab < a.
If a < ab, then

a<ab<ab><... < ab™,

which is a contradiction. In a similar way, we can prove that ab < a implies a con-
tradiction.
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Theorem 2.7. Let A, Be % such that A is periodic with idempotent e. Then the
following conditions are equivalent:

(1) Ay B;

(2) eb = e or be = e for some be B;

(3) if the Dy-class ey, is of L-type, then eb = e for all be B and, if eZy is of
R-type, then be = e for all be B;

(4) ebe = e for some be B,

(5) ebe = e for all be B.

Proof. (1) = (2). Suppose Ay B. Then either ABN A + [[] or BAn A + [J.
First we suppose AB n A # [J. Then there exist ae A and b € B such that ab € 4.
Also there exists a natural number m such that a” = e. Hence eb = a®"b =
= a®™ 'abe A. But, by Lemma 1.4, e is the zero element of A. Hence e = e(eb) =
= eb. When B4 n 4 + [, we can prove in a similar way that there exists be B
such that be = e.

(2) = (4). Clear.

(4) = (5). Suppose ebe = e for some b e B. Let x be an arbitrary element of B.
Then there exist natural numbers r, s and ¢ such that b" < x* < b’. Then, by Lemma
2.5,

e = (ebe) = eb’e < ex’e < eb'e = (ebe) = e

and so, again by Lemma 2.5, ¢ = ex’e = e(exe)s. Hence, by Lemma 2.6, we have
e = e(exe) = exe.

(5) = (3). Suppose ebe = e for all be B. First suppose eZy is of L-type. Then
both eb and e are idempotents. Also e(eb) = eb and (eb) e = e. Hence eb and e
are #-equivalent in the semigroup E. But, since eZy is of L-type, we have e = eb.
In the case when e% is of R-type, we can prove in a similar way that e = be for all
beB.

(3) = (1). Clear.

Theorem 2.8. y is a quasi-order on €.

Proof. The reflexivity of y is clear. In order to prove the transitivity, we suppose
that A, B,Ce ¥, Ay Band By C.

First suppose that A is torsion-free. Since By C, either BCn B & [JorCBn B %
#+ [. First suppose BC n B + 1. Then there exist b € B and ¢ € C such that bc € B.
Since A y B, it follows from Theorem 2.4 that there exist natural numbers m and n
such that a”bc, a"h e A. Then a”*"b = a™(a"b) e A and (a™*"b) c = a"(a™bc)e A.
Hence Ay C. In the case when CB n B # [], we can prove in a similar way that
Ay C.

Next suppose A4 is periodic with idempotent e and B is torsion-free. First suppose
that the D p-class ey is of L-type. Since By C, it follows from Theorem 2.4 that
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BC n B #+ []. Hence there exist b € B and ¢ € C such that bc € B. Hence, by Theorem
2.7, we have ebc = e = ¢b. Hence ec = ebc = e. Hence, again by Theorem 2.7,
we have 4 y C. In the case when e% is of R-type, we can prove in a similar way that
Ay C.

Finally suppose that A is periodic with idempotent ¢ and B is periodic with
idempotent f. Let ¢ € C. Then, by Theorem 2.7, we have f¢f = f. Hence fc € E and,
since (fc) f(fe) = fc and f(fc) f = f, we have fc @ f. Since Ay B, it follows from
Theorem 2.7, we have either ef = e or fe = e. First we suppose ef = e. Then ec =
= efc = ¢(fc)e E. By Lemma .5, E[9 forms a semilattice and in this semilattice,

(ec) Dg = (e(fc)) Zi = (eZx) A ((fe) Z)
=(e2;) A (fPg) = (ef ) D = Ty .

Since eZ; forms a rectangular band in E, we have e = ¢{ec) e = ece. Hence Ay C.
In the case when fe = e, we can prove in a similar way that 4 y C.

3. THE RELATION ¢ ON %

We define the binary relation 5 on € by:
for A,Be¥, ASB ifandonlyif 47yB and By A.

Since y is a quasi-order on %, the following theorem is a consequence of a well-
known result about quasi-ordered set (cf. [1] p. 21).

Theorem 3.1. (1) 6 is an equivalence relation on 6:
2) the quotient set €| is a partially ordered set if, for 7. Z,€ %[5, 2, 22
1 1 = 2
is defined to mean Ay B for some A€ 2, and Be 9,.
3)if 9, X9, for D,,D,€ %[5, then Ay B for all Ac %, and Be D,.
1 1

Theorem 3.2. Suppose A, Be € and A S B. Then

(1) A is torsion-free if and only if B is torsion-free;
(2) A is periodic if and only if B is periodic.

Proof. (1) Suppose A is torsion-free. By way of contradiction, we assume B is
periodic with idempotent f. Let a € A. Then, since By A, it follows from Theorem
2.7 that af = for fa = f. First suppose af = f. Since A y B. it follows from Theorem
2.4 that a"f € A for some natural number n. Hence

f=af =..=dfeAnB

and so 4 = B, which is a contradiction. In the case when fa = f, we obtain a contra-
diction in a similar way. This proves that if A is torsion-free, then B is torsion-free.
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By symmetry, if B is torsion-free, then A is torsion-free. (2) is an immediate con-
sequence of (1).

Let 2 be a d-class in 4. By Theorem 3.2, either all archimedean classes contained
in @ are periodic or all archimedean classes contained in 2 are torsion-free. 2 is
called a periodic -class in the former case and is called a torsion-free d-class in the
latter case.

Theorem 3.3, Let A, Be € such that A is periodic with idempotent ¢ and B is
periodic with idempotent f. Then A B if and only if e D f.

Prcof. It follows from Theorem 2.7 that 46 B is equivalent to efe = e and
fef = f, which is equivalent to e 9 f.

Lemma 3.4. Let A, Be % such that both A and B are torsion-free, A B and
A < B. Then A is negative torsion-free and B is positive torsion-free.

Proof. Let a e A and b € B. Then, by Theorem 2.4, there exist natural numbers m
and n such that a"b € A and ab” € B. Hence, by Lemma 2.3, a™b" € A and a™b™ € B.
Since A < B, we have a™b"” < ab" and a™b < a™b™'. Hence a™ < a and b < b™.
Therefore mn > 1, a is negative and b is positive.

Theorem 3.3. A torsion-free d-class & contains at most two elements of €. If 9
contains exactly two elements of €, then the lesser element of & is a negative
torsion-free archimedean class of S and the greater element of 2 is a positive
torsion-free archimedean class of S.

Proof. By way of contradiction, we assume that & contains three elements 4, B
and C such that A < B < C. Then, by Lemma 3.4, B is positive torsion-free and is
negative torsion-free at the same time, which is absurd. The second assertion is only
the restatement of Lemma 3.4.

4. THE OPERATION ON %/

The negation of the relation Ay B and A 6 B are denoted by 4 nony B and
A non § B, respectively.

Lemma 4.1, Let A, Be € such that Anony B, BnonyA and A £ B. Then the
product set AB in S consists of only one idempotent, say e, BA consists of only one
idempotent, say f, such that e Z;f. Let C and D be archimedean classes of S
containing e and f, respectively. Then A < C < B, A<D < B, CéD, CyA,
CyB, Dy Aand DyB.

Proof. Let ae A and be B. Then, since A < B and A non y B, we have a < ab
and a < ba?. But, if ab < ba, then a’b < aba and, if ba < ab, then ba® < aba.
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Hence we have a < aba. Similarly it follows from 4 < Band B non y A that b%a < b,
ab? < b and bab < b. Hence

ab < (aba) b = (ab)* = a(bab) < ab, ba

IIA

b(aba) = (ba)* = (bab)a < ba,
and so ab and ba are idempotents. We put ab = e and ba = f. Also we have
ab < (a*h) b = a*b* = a(ab?) < ab, ba < b(ba®) = b*a® = (b%a)a < ba
and so ab = a®b? and ba = b%a*. Hence
efe = ab*a’b = abab = ab = e, fef = ba*b*a = baba = ba = f.

Hence e 9, f. Now we suppose that the & -class e% is of L-type. Replacing a by a*
and b by b?, we see that a’b, ba?, ab? and b%a are idempotents. Also we have

(ab) (ab?®) = (ab)* b = (ab) b = ab*, (ab?)(a’b) = a(b*a®) b = a(ba) b = ab

and so e = ab # ab? in the semigroup E. Hence ab = ab? and, similarly we have
ba = ba®. Also

ab = a*b* = a(ab?) = a(ab) = a’b, ba = b*a® = b(ba*) = b(ba) = b*a .
In the case when eZy, is of R-type, we can prove
ab = ab? = a*b, ba = ba* = b*a
in a similar way. Thus we have
ab = da'b’, ba = bia’

for every natural numbers i and j. Now we take an arbitrary element a'b’ € AB
with a’ € A and b’ € B. Then there exist natural numbers p, q, r, s, t and u such that
a’ < a?<a and b° £ b < b*. Hence

ab = a’b® < @' < a'b¥ = ab

andso a'b’ = a’%'"* = ab = e. This proves that AB consists of only one idempotent e
and similarly BA consists of only one idempotent f. By Theorem 3.3, we have C 6 D.
Since a? £ ab = ¢ < b?, we have 4 £ C £ B. But, since 4 non y B and B non yA,
we have abé¢ A and ab¢ B. Hence A < C < B. Since ab = a’he C n AC and
ab = ab*e€ C n CB, we have Cy A4 and Cy B. Similarly we can prove that 4 <
<D< B,DyAand Dy B.

Corollary 4.2. Let A, Be %. Then there exists X € € such that X lies between A
and B, Xy A and X y B.
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Proof. Without loss of generality, we assume that 4 < B. If A4y B, then A
satisfies the condition for X and, if By A, then B satisfies the condition for X. If
A nony B and B non y A4, then either one of C and D given in Lemma 4.1 satisfies
the condition for X.

Lemma 4.3. Let A, B,C, De ¥ such that Cy A, CyB and A < D < B. Then
CyD.

Proof. Let d e D. Then there exist a € A and b e B such that a < d < b. First
we suppose that C is torsion-free. Then, by Theorem 2.4, there exist natural numbers p
and g such that ac? € C and bc? € C. We put r = max {p, q}‘ Then ac” < dc" < bc"
with ac”, bc" e C. Hence dc" e C and so we have C y D. Next we suppose that C is
periodic with idempotent g. Then, by Theorem 2.7, we have

g =gag < gdg <gbg =g

and so gdg = ¢g. Hence we have Cy D.
We define the operation A on 4/6 by:

for 2,,92,, 96(6/5 s, 9Dy N D, =2 if and only if there exist
Ae2,, BeZ, and CeZ such that C lies between 4 and B,
CyA and C7yB.
Theorem 4.4. A is a binary operation on ‘6/0

Proof. Let 9, and &, be arbitrary elements of ¢/5. We take A€ 2, and Be 2,
arbitrarily. Then, by Corollary 4.2, there exists C € € such that C lies between A
and B, C y A and C y B. Then the d-class Cdis Z, A Z,, by definition. Next we show
that 2, A 2, is determined uniquely irrespective of the choice of 4, B and C in the
definition. In fact, suppose that A, A, e Z, B, BjeZ,, Cy A, Cy B, C; y A,
C, v By, C lies between A and B and C; lies between 4, and B;. Then Cy A J 4,
and Cy B B, and so, by Lemma 4.3, we have Cy C,. Similarly we have C, y C.
Hence Co = C,0.

In the proof of Theorem 4.4, we have shown

Corollary 4.5. For every A€ 9, and Be 9,, there exists Ce 2, n D, such that
Cy A, Cy B and C lies between A and B.

Theorem 4.6. /6 is a commutative idempotent semigroup with respect to the
operation A.

Proof. First we show the associativity of the operation A. Let 2,, 2,, 75 € ¢/s.
We take A€ &, Be &, and C € Z,. Then, by Corollary 4.5, there exists D€ 9, A
A D, such that D lies between 4 and B, Dy A and Dy B. Further there exists
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Fe(2, A 2,) A @, such that F lies between D and C, Fy D and FyC. Also
there exist Ge D, A D3 and He D, A (2, A @3) such that G lies between B
and C, H lies between A and G, Gy B, GyC, Hy A and Hy G. Since Hy A and
Hy Gy B, it follows from Lemma 4.3 that Hy D. Moreover, since Hy Gy C, it
follows again from Lemma 4.3 that H y F. Similarly we can prove that F y H. Hence

(P ADY)ANDy=F5=HS=9, A (D, A D3).

The commutativity and the idempotency of the operation A follows immediately
from the definition.
. By Theorem 4.6, with respect to the relation <X on %/5 defined by

g, 29, fandonlyif @, A2, =2,

(€0, <) is a meet semilattice and 2, A @, is the greatest lower bound of Z, and 2,
(cf. [1] p. 10).

Lemma 4.7. For &%, &, € G[d, the following conditions are equivalent:

(l) 229D

(2) there exist Ae 9, and Be @, such that Ay B;

(3) Ay B for every Ae 2, and Be Z,.

Proof. First suppose that the condition (1) holds. Then 2, A 2, = 2, and so
there exist A, C € &, and B e &, such that C lies between 4 and B, Cy A and C y B.
Hence 45 Cy B and so Ay B. Next suppose that the condition (2) holds. Let
A, €2, and B, € &,. Then, since A; 3 Ay BJ B, we have A4, y B,. It is clear that
(3) implies (1).

Theorem 4.8. The semilattice (¢/0, <) is a tree semilattice.

Proof. Suppose 2,,2,, 2 € €/5 such that 2, < 2 and 9, < 2. Let Ae D,
BeZ, and Ce%. Then, by Lemma 4.7, we have Ay C and By C. Without
loss of generality, we assume A < B. By Corollary 4.5, there exists De 9, A 2,
suchthat A < D £ B,D y Aand Dy B.First suppose C £ D. Then,since C<D<B
with By C and By B, it follows from Lemma 4.3 that By D. Hence B é D and so

D AG,=DS=B5=9,.

Therefore 9, < 9,. In the case when D £ C, we can prove 2; X 2, in a similar
way.
5. THE OPERATION % ON %
Lemma 5.1. Let A, C € % such that C is positive [negative] torsion-free, Cy A
and C < A[A £ C]. Then C = A.

Proof. Letae A and c e C. Then, by Theorem 2.4, there exists a natural number n
such that ac" e C. Since C is positive torsion-free, there exists a natural number m
such that ac”"<¢™ Hence ac”"<c™<¢™*" and so a<c™. Hence ASC andso A=C.
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Lemma 5.2. Let A, Ce ¥ such that C is periodic with idempotent g, C y A,
Anony Cand A £ C[C £ A]. Then, for ae A, h = aga is an idempotent which is
determined irrespective of the choice of ae A. Also if g@¢ is of L-type, then h = ag
and if g Py is of R-type, then h = ga. Moreover the archimedean class D of S
which contains the idempotent h is the least [greatest] element in the set

{Xe%, ASX and X6C}[{Xeb; X <A and X5C}].

Proof. We consider only the case when g% is of L-type. Let ae A. Then, by
Theorem 2.7, ga = g and so aga = ag. Also agag = ag and so h = aga = ag
is an idempotent. Moreover hg = agg = ag = h and gh = gag = g. Hence
h @ g and so, by Theorem 3.3, the archimedean class D containing the element h
is é-equivalent to C. Moreover, since A nony C and A £ C, we have a < g and so
a? < ag = h. Hence A £ D. Since a? € A, it follows from a similar argument that
h, = a’g is an idempotent and the archimedean class D, containing the idempotent
h, satisfies the condition that D, 6 C and 4 < D,. Since Anony C, we have
AnonyD and AnonyD,. Hence a> < h =ag and a < h; = a’g. Therefore
h, = a*g <(ag)g = h = ag < (a’g)g = h,. Hence ag = h = h; = a’g and so
h = ag = a"g for every natural number n. Let a, be an arbitrary element of A.
Then similarly we have a,g = a,ga, and a,g = a'ig for every natural number n.
Since a, a, € A, there exist natural numbers p, g, » and s such that a? < g% and
a’y £ a’. Hence

ag = a’g < afg =a;g = ajg < a’g =ag.

Hence aga = ag = a,9 = a,;ga,. Thus aga is determined irrespective of the choice
of ae A.

Now let X € ¢ such that 4 < X and X 6 C. Then X is a periodic archimedean class
with idempotent, say k. Since 4 nony C, we have A nony X and so A < X. Hence
a < k. Also, since X 6 C, we have h @ k. Hence h = ag £ kg = kandso D < X.
Therefore D is the least element in the set {X €€, A< Xand X0 C}.

Let & be a d-class in %. If & is torsion-free, then we assign for & in an arbitrary
way either one of L-type and R-type. If & is periodic, then, by Theorem 3.3, the
idempotents of all archimedean classes of S, which are elements in 2 lie in a Zg-class.
If the @ -class is of L-type, then we say that the o-class Z is of L-type and, if the -
class is of R-type, then we say that 2 is of R-type. Now we define the operation =
on % in the following way.

Let A, Be € such that 4 < B. If the d-class Ad A BJ is of L-type, then we define

A*B=min {Xe%; A <X < Band Xe A5 A BS};
B+xA=max{Xe% A< X <Band XeAd A Bs}.

If the é-class 40 A Bd is of R-type, then we define

A=xB
B+ A

max {X €%, A <X < B and Xe A5 A Bd} ;
min {X€%; A <X < Band X€ A5 A BS}.

il
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Theorem 5.3. The operation * is a binary operation on €.

Proof. Let A, Be ¢ such that A < B. First we suppose that the d-class A6 A BS
is of L-type. If Ay B, then A6 = Ad A Bd and evidently

A=min{Xe¥ A<X<Band X€A45 A B3} = AxB.
Suppose A4 non y B. By Corollary 4.5, the set

{Xe%; A <X < Band XeA5 A B}
is nonvoid. First we suppose that A5 A Bd is a torsion-free d-class. Let X € 4 such
that A £ X < B and X € A0 A BS. Then X is a torsion-free archimedean class.
Since A5 A Bd X Adand Ad A BS < B, itfollows from Lemma4.7that Xy Aand X v B.
If X were negative torsion-free, then, by Lemma 5.1, A = X y B, which is a contradic-
tion. Hence X is positive torsion-free. Therefore, again by Lemma 5.1, we have
X = B. Thus the set {X€%; A <X £ Band Xe€ A5 n B<3} consists of only one
element B and so B = A * B. Next we suppose that 45 A B9 is a periodic d-ciass.
We take Ce A5 A Bé such that A < C £ B. Then C is a periodic archimedean
class. Then, by Lemma 5.2, there exists a -class D which is the least element of the set
{X €E¥4; A< Xand X ¢ C}. It is clear that D = 4 * B. In a similar way, we can prove
that B # 4 is defined. The case when A8 A Bo is of R-type can be treated similarly.
From the proof of the preceding Theorem 5.3, we have

Corollary 5.4. Let A. Be ¢ such that A < B,Ay B and AS is of L-type [ R-type].
Then A= B = A[Bx A = A].

Corollary 5.5. Let A, Be € suchthat A < B, Anony Band A0 A B is a torsion-
free d-class of L-tvpe [R-tvpe]. Then A+ B = B[B* A = B].

Lemma 5.6. Let 4, B, Ce % such that A < B < C. Then A3 n C3 < Bo in the
semilattice €/o.

Proof. We have 4 £ AxC £ C and A+ Ce A5 A C5. Since A5 A C6 X A
and A6 A Co = Cd. it follows from Lemma 4.7 that A+ Cy A and AxCyC.

Hence, by Lemma 4.3, we have A = C y B and, again by Lemma 4.7, we have 45 A
A C6 X Bé.

Lemma 5.7. Let A, B, Ce € suchthat A X B. Then AxC < BxCand C+xA <
£ CxB.

Proof. f ASCZXB then ASAxC<C<BxC<Band ASCx+xAL
< C £ C* B £ B. Next suppose C £ A £ B. By way of contradiction we assume
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B*C < A*C. Thenwehave C £ BxC < A+xC £ 4 < B andso, by Lemma 5.6,
A3 A CS X (B*xC)d =B3 A CS S (A+C)d = A0 A C§.

Hence A0 A C6 = BS A Co. First we assume B A Cd is of L-type. Then C <
<A*CZLBand A*sCe A0 A CoO = BS A C5 with Bx C < 4 * C, which con-
tradicts the definition of B % C. Next we suppose Bd A Co is of R-type. Then C <
<BxC<Aand BxCeBd A Co = Ad n CO with B* C < A * C, which con-
tradicts the definition of 4 « C. Thus we have A « C < B = C. In a similar way we
can prove that C * A < C x B. Thecase when 4 £ B £ C can be treated in a similar
way.

Lemma 5.8. The operation % is idempotent: for every A€ 6, A+x A = A.

Proof. Clear from the definition of the operation .

Lemma 5.9. For A,B€%, Ax(A+B)=(A*B)*B = AxB.

Proof. In the proof we only consider the case when A5 A B9 is of L-type. We have
(A*B)6 = A6 A B6 < Bd and so, by Lemma 4.7, we have 4 * By B. Hence,
by Corollary 5.4, (A* B)x B = A= B. Suppose A < B. Then 4 £ A * (4 *B) £
< A% B < B. On the other hand, we have (4% (4 xB))é = A5 A BS and so
A x B 5 Ax(A* B) by the definition of 4 * B. Hence A * (4 * B) = A * B. In the
case when B £ A, we can prove A x (A * B) = A = B in a similar way.

Lemma 5.10. € is a semigroup with respect to the operation *.

Proof. Let 4, B,Ce%. We show that (4% B)*C = A% (B C) by dividing
into the following cases. In the proof we only consider the case when 46 A Bé A Cd
is of L-type.

(a) The case when A < B < C:

By Lemmas 5.7, 5.8 and 5.9, we have
AxC=(A+xA)xC<(A*B)»C<(4*xC)xC=AxC;
A*C=Ax(A*C) < Ax(BxC) < A+(C+C)=AxC.

Hence (A * B)xC = A C = A*(BxC).

(b) The case when 4 £ C £ B:

By Lemma 5.6, we have (4 xB)d = A6 A Bd <X CJ and so, by Lemma 4.7,
A*ByC and also A5 A Bo = A5 A B A Cd is of L-type. Hence, by Corollary
54,(A*B)xC = A B. Also we have 4 < A+ B < B and so

AxB=Ax(AxB)=Ax((A«B)xC) < A+ (B+C).
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On the other hand
A*(B*C)gA*(B*B)zA*B.

Hence (4 * B)*»C = A*x B = A% (BxC).
(c) The case when C< A < B*C £ B:

We have (4% B)é = A0 A B6 S (BxC)d =B5 A C6 ZCS and so AxByC
and A8 A B6 = A5 A B6 A C6 is of L-type. Hence (4% B)*C = A« B. By
Lemma 4.7, we have B C y B. Also, by Lemma 5.6, we have B6 A Cé < AJ and
$0 Bd A C6 = A5 A Bé A Cdis of L-type. Hence (B* C) = B = B = C and so

A*B=Ax(A*B) < Ax((BxC)*B)= Ax*(B=C).

On the other hand

Ax(BxC)< Ax(BxB)=A4x*B.
Hence (A% B)*C = AxB = Ax(B=*C).

(d) The case when C < B*C £ 4 < B:

By Lemma 5.9, we have BxC = (B*xC)*C < AxC < BxC and so B+xC =
=A%C. Hence Ax(BxC)=Ax(AxC)=AxC. Also, since A < A+B < B,
we have AxC<(4*B)*C<B*xC=A4%C. Hence (A*B)*C = Ax( =
= A*(Bx*C).

Thus we have proved that (A% B)* C = A x (B« C) in the case when 4 < B.
We can prove the same associative condition in a similar way in the case when
B < A.

Theorem 5.11. The system (%, *, <) is an ordered idempotent semigroup and the
relation & on € is equal to the @-equivalence on the idempotent semigroup €.

Proof. It follows from Lemmas 5.7, 5.8 and 5.10 that (% *, g) is an ordered
idempotent semigroup. Let A, Be ¥ such that A 2 B in the semigroup %. Then,
by Lemma 1.5, A and B belong to the same rectangular band in the semigroup %
and so A = A* B+ A and B = B=x A« B. Hence

Al =(AxBxA)5 = A5 A B6 = (B* A% B)d = BS

and so A & B. Conversely suppose A, B € € such that 4 6 B. First suppose A0 is of
L-type. Then, by Corollary 5.4, we have A* Bx A = Ax(BxA) = Aand Bx A %
* B=B=x(Ax*B)=Bandso A2 B in the semigroup %. In the case when A9 is
of R-type, we obtain the same conclusion in a similar way.

232



6. THE CONNECTION OF SET PRODUCTS OF ARCHIMEDEAN CLASSES
WITH THE OPERATION =*

Theorem 6.1. Let A, Be 6 such that Ad A BS is torsion-free and A nond B.
Then either Ay Bor By A. If Ay B, then

AB,BA< A= A+*B=BxA.
If By A, then
AB,BA S B=AxB=BxA.

Proof. We consider only the case when 4 £ B. By Corollary 4.5, there exists
Ce A6 A Bosuchthat Cy A, Cy Band A £ C £ B. Since 46 -A B§ is torsion-free,
C is positive torsion-free or negative torsion-free. By Lemma 5.1, if C is positive
torsion-free, then B = Cy A and, if C is negative torsion-free, then 4 = Cy B.
Now suppose Ay B. Then, by Lemma 4.7, we have 4 Ad = Ad A BJ. Since
Ay B and A4 nond B, we have Bnony A. In particular 4 = B and so, by
Lemma 5.1, A is negative torsion-free. By Corollaries 5.4 and 5.5, we have 4 * B =
=BxA=A. Letae A and be B. Then, since Bnony A, we have ab* < b?
and b*a < b2 If ab < ba, then b%ab?® < b*a < b?> and, if ba < ab, then
b*ab* < ab* < b®. Hence always we have (ab?)* £ ab® and so ab’ is non-posi-
tive. Let D be the archimedean class containing the element ab® and let D_ be
the set of all nonpositive elements of D. Then, since a> < ab?, we have 4 < D.
Since A is negative torsion-free, it follows from the dual of Lemma 1.8 that AD_
is contained in a single archimedean class. On the other hand, since 4y B and
b? € B, there exists a natural number n such that a"b? € 4. Hence a"*'b* = a(a"b?) =
= a"(ab’)e A~ AD_ and so AD_. < A. Hence a’b® = a(ab*)e AD_ < A and,
by Lemma 2.3, we have AB < A. Similarly we have BA < A. In the case when By A4,
we can prove AB, BA € B = A* B = B * A in a similar way.

Corollary 6.2. Let A, Be € such that A5 A BS is torsion-free. Then the following
conditions are equivalent to each other:

(1) A+ B and A4 B;
(2) AB is not contained in a single archimedean class;
(3) BA is not contained in a single archimedean class.

Proof. (2) = (1). Clear by Theorem 6.1. (1) = (2). Suppose A4 = B and 4 B.
Then Ay Band By A. Also A6 = B6 = A5 A Bd and so both 4 and B are torsion-
free. We take a € A and b € B. Then, by Theorem 2.4, there exist natural numbers m
and n such that a™be 4 and ab” e B. Hence ABN A + [0 and ABn B =+ []. In
a similar way we can prove that (1) < (3).

Lemma 6.3. Let A, Be ¥ such that Ax B[Bx A] is a periodic archimedean

class with idempotent e and the D p-class eZy is of L-type [R-type]. Then ae =
= ¢ [ea = e] for every ae A.
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Proof. In the proof we only consider the case when 4 < B. By Lemma 4.7, we
have A* By A and 4 = By B. First suppose that 4y 4 = B. Then we have Ay B
and A0 = (A * B) 6 is a 5-class of L-type. Hence, by Corollary 5.4, we have 4 =
= A * B. But, by Lemma 1.4, e is the zero element of 4 and so ae = e. Next suppose
Anony A« B. Then, by Lemma 5.2, ae is the idempotent of A * B and so ae = e.

Corollary 6.4. Suppose that A, Be € such that A < B and Ad A B9 is a periodic
5-class of L-type [R-type]. Let e and f be the idempotents in A= B [Bx A] and
B % A [A x B], respectively.

(1) If A5 A BS % Bd, then ab = e [ba = €] for every ae A such that a < e
and for every b e B;

(2) If A6 A Bé + A9, then ba = f [ab = [] for every ae A and for every be B
such that f £ b.

Proof. (1) Let a e Asuchthat a < eand let b e B. By Lemma 6.3, we have ae = ¢
and, by Theorem 2.7, we have eb = e. Since A5 A BS + B, we have A+ B < B
and so a £ ¢ < b. Hence

e=age<ab=Zeb=c¢

and so ab = e. The assertion (2) can be proved in a similar way.

Theorem 6.5. Suppose A, Be ¥ such that A5 A BS is periodic and AS + AS A
A Bo = Bo. Then AB consists of only one element which is the idempotent in
A * B and BA consists of only one element which is the idempotent in B « A.

Proof. In the proof we only consider the case when A < B and 46 A BJ is of
L-type. Since A0 = A A Bo + Bo, we have A < A+ Band B* A < B. We denote
by e and f the idempotents of A * B and B = A, respectively. Let ae 4 and be B.
Then, since a < e and f < b, it follows from Corollary 6.4 that ab = e and ba = f.

Let A be an archimedean class of S. We denote by A, and A_ the set of all non-
negative elements of A and the set of all nonpositive elements of 4, respectively.

Theorem 6.6. Suppose that A, Be € such that A £ B and A0 A BS is a periodic
d-class of L-type [R-type].

(1) If A5 = A6 A BS # BS and AB [BA] is contained in a single archimedean
class, then AB < A_ [BA < A_];

(2) If A5 + A5 A BS = BS and BA[AB] is contained in a single archimedean
class, then BA = B, [AB < B, ].

Proof. (1) Let ae A and be B. Denote by e the idempotent of the periodic
archimedean class A. If a € 4, then a < e and so, by Corollary 6.4, we have ab = e.
In particular, eb = e A. Since AB is contained in a single archimedean class, we
have AB < A. Moreoverifae A_,thene < aandsoe = eb < ab. Henceabe A4 _.
Thus AB = A_. (2) can be proved in a similar way.
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Lemma 6.7. Suppose that A, Be € such that A £ B and Ad A Bd is a periodic

d-class of L-type [R-type].

(1) Suppose A5 = A3 A BS. Let € and g be the idempotents of A and B A

[A = B], respectively. Then the following conditions are equivalent:

(a) AB[BA] is not contained in a single archimedean class;

(b) there exists an idempotent f of S such that e < f < g, e D, f and e and f
are consecutive in eZ; and also there existsae A_\ {e} such that ag = f[ga = f]

(2) Suppose A5 A B = BS. Let e and g be the idempotents of B and A + B

[B = A], respectively. Then the following conditions are equivalent:

(a) BA[AB] is not contained in a single archimedean class;

(b) there exists an idempotent f of S such that g < f < e, e Dy f and e and f are
consecutive in eDy and also there exists b e B, \{e} such that bg = f[gb = f].

Proof. (1) First suppose that the condition (a) holds. Since A6 = A5 A BS < BS,

we have 4 y B. Hence, by Lemma 2.7,
(6.7.1) eb =¢ forevery beB.
By the condition (a), we have A # B and so

(6.7.2) A<B.

Let ae A, and be B. Then, by (6.7.2), we have a < e < b and, by (6.7.1), a> <

< ab £ eb = e. Hence

(6.7.3) abe A forevery aeA, and beB.

By the condition (a) and (6.7.1),

(6.7.4) there exist xed and yeB suchthat xyé¢ 4.

By (6.7.3) and (6.7.4),

6.7.5 xeAd_~{e}.
, t

Put

(6.7.6) z = max {g, y} .

Let C be the archimedean class containing the element xy. Then x? < xy and so,

by (6.7.4), we have 4 < C. Since xy £ xz, we have

(6.7.7) Xz¢ A.

We have Bx A < B.If Bx A = B, then g, ye Band so ze B. If Bx A < B, then
g < yand so z = ye B. Hence

(6-7-8) zeB.
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Let i be a natural number and let D, be the archimedean class containing the
element z'e. Then e = x'e < z'e < z'*! and so A £ D; < B. Also, by (6.7.1) and
(6.7.8)

(z'e)? = zlezle = z'e, (Zle)e = z'e, e(z'e) = (ez')e=e.

Hence D; is a periodic archimedean class and, by Theorem 3.3, D;€ A0 = 45 A BJ.
Since (B* A) 6 = A5 A BS = Ad and since A5 A B is of L-type, e £ g in the semi-
group E. Hence g = ge = g'e < z'e and so B* A £ D,. Therefore D, = B » A by
the definition of B * 4 and so

(6.7.9) z'e = g for every natural number i.

By way of contradiction, we assume that zx < xz. Since x is an element of a periodic
archimedean class with idempotent e, there exists a natural number » such that
x" = e. Hence, by (6.7.1),

x < (xz)" X" =e"=¢e
and so xz € A, which contradicts (6.7.7). Hence

(6.7.10) Xz < zX.

Since A £ B A, we have e < g. If e = g were true, then, by (6.7.1), (6.7.10) and
(6.7.9),
e=e" =x""S(xz2)) S =ze=g =c¢

and so xz € 4, contradicting (6.7.7). Hence

(6.7.11) e<g.
Put
(6.7.12) f=xg.

Since B * A y A, it follows from Theorem 2.7 that gx = g and so
(6.7.13) feE.

Since ¢ & g in the semigroup E, we have fe = xge = xg = f. Since e is the zero
element of 4, we have ef = exg = eg = e. Hence

(6.7.14) e DS .

By (6.7.5) and (6.7.12), e = eg < xg = f. But if ¢ = f were true, then, by (6.7.10),
(6.7.9). (6.7.12), (6.7.8) and (6.7.1),

e S (xz)" = x(2x)z EXIX"Z = x2ez = xgz = fz =ez = e

and so xz € A, contradicting (6.7.7). Hence e < £, Also, by (6.7.11), we have x" =
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=e<g=g" and so x < g. Hence f = xg < g% = g. But, if f = g were true,
then g = f = xg and so g = x"g = eg = e, contradicting (6.7.11). Hence

(6.7.15) e<f<g.

By way of contradiction, we assume there exists h € E such that e < h < f and
e D¢ h. Then, since AJ is of L-type, g £ h in the semigroup E. Also, since e < h,
we have x < h and so f = xg £ hg = h, which is a contradiction. Hence

(6.7.16) e and f are consecutive in eZg.

Thus we have the condition (b).

Conversely suppose that the condition (b) holds. Let b € B. By Theorem 2.7, we
have ¢b = e € A. On the other hand, by the condition (b), there exists a € A such that
ag = f. Since g€ Bx A and B * A < B, there exists b’ € B such that g < b’. Then
f = ag < ab’ and so ab’ ¢ A. Thus we have the condition (a).

(2) can be proved in a similar way.

Theorem 6.8. Suppose that A, Be € such that A £ B and A5 A B is a periodic
d-class of L-type [ R-type].

(1) Suppose A5 = A5 A BS + B6 and AB[BA] is not contained in a single
archimedean class. Let e and g be idempotents of A and B x A [ A x B], respectively.
Then there exists an idempotent f of S such that e < f < g, e D¢ f and e and f are
consecutive in ePy. Also AB < A_ v {f}[BA = A_ v {f}]

(2) Suppose A5 + A5 A BS = BS and BA[AB] is not contained in a single
archimedean class. Let e and g be idempotents of Band A « B [B * A], respectively.
Then there exists an idempotent f of S such that g < f < e, e D f and e and f are
consecutive in eDy. Also BA = B, u {f}[4B < B, U{f}].

Proof. (1) Suppose A8 = A5 A B & BS and AB is not contained in a single
archimedean class. Then, by Lemma 6.7, there exists an idempotent f of S such that
e <f<g,ePgfand eand f are consecutive in eZ. Let xe Aand ye B.If xe 4.,
then, by Corollary 6.4, we have xy = ec A_.If xe A_ and xye 4, thene = ey £
< xy and so xye A_. Finally suppose xy ¢ A. Since A6 A Bd + BS, we have
Bx A < Bandso z = max {g, y} = y. Since A 8 B Ay B, it follows from Theorem
2.7 that

(6.8.1) ey' = e for every natural number i.

By way of contradiction, we assume that xyx < x. Then, by (6.7.10), (6.8.1), (6.7.9)
and (6.7.12), we have

X 2 x(%) 2 X = (o) x 2 xy = ey =
= xyex = xye = Xg = f
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and so e = x" = f* = f, which is a contradiction. Hence

(6.8.2) X < Xyx.

By way of contradiction, we assume y < yxy. Then, by (6.7.10), (6.8.1) and (6.7.9),
YEx)y S(Ox)y S yx"y =)"ey =ye=g.

Hence B £ B * A, which is a contradiction. Hence

(6.8.3) yxy <y.

By (6.8.2) and (6.8.3), we have xy < (xy)’ < xy and so

(6.8.4) xyekE.

By (6.8.4),

n+1

Il

xg =/,
x(yx)'y S xy"x"y = xy"ey = x)"e =xg = f.

xy = (xy)"*t = xy(xy)" = xyx"y" = xpey" = xye

xy = (xy)

n+1

Therefore
(6.8.5) xy =f,
Hence we have AB = 4_ v {f}.

(2) can be proved in a similar way.

Appendix. The behavior of set products AB of two archimedean classes 4 and B
of S such that A9 = BJ will be treated in other papers. A result in such a situation
was given in [8].
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