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Abstract: The study of Archimedean dependence models in high dimensions is motivated by current practice in
quantitative risk management. The performance of known and new parametric estimators for the parameters of
Archimedean copulas is investigated and related numerical difficulties are addressed. In particular, method-of-moments-
like estimators based on pairwise Kendall’s tau, a multivariate extension of Blomqvist’s beta, minimum distance
estimators, the maximum-likelihood estimator, a simulated maximum-likelihood estimator, and a maximum-likelihood
estimator based on the copula diagonal are studied. Their performance is compared in a large-scale simulation study
both under known and unknown margins (pseudo-observations), in small and high dimensions, under small and large
dependencies, and various different Archimedean families. High dimensions up to one hundred are considered and
computational problems arising from such large dimensions are addressed in detail. All methods are implemented in
the open source R package copula and can thus be easily accessed and studied. The numerical solutions developed
in this work extend to various asymmetric generalizations of Archimedean copulas and important quantities such as
distributions of radial parts or the Kendall distribution function.

Résumé : Les pratiques du moment en gestion quantitative du risque nous amènent à étudier des modèles de dépendance
en grandes dimensions construits à partir de copules Archimédiennes. La performance d’un grand nombre d’estimateurs,
dont plusieurs sont originaux, est étudiée et des solutions sont proposées pour les problèmes numériques associés. Des
estimateurs fondés sur le méthode des moments et le beta de Blomqvist ainsi que le tau de Kendall sont comparés à
des estimateurs du minimum de distance, du maximum de vraisemblance, du maximum de vraisemblance simulé et
du maximum de vraisemblance fondé sur la diagonale de la copule. Des simulations sont réalisées dans le cas où les
marges sont connues et dans le cas où elles sont estimées non paramétriquement, en faibles et en grandes dimensions,
pour plusieurs familles de copules Archimédiennes. Toutes les méthodes étudiées sont implantées dans le package
R copula distribué sous une licence libre. Les solutions numériques présentées dans ce travail restent valident dans
le cas de généralisations asymétriques des copules Archimédiennes et d’importantes quantités associées comme la
fonction de distribution de Kendall.
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1. Introduction

A copula is a multivariate distribution function with standard uniform univariate margins. An
important class of copulas, known as Archimedean copulas, is given by

C(uuu) = ψ(ψ−1(u1)+ · · ·+ψ
−1(ud)), uuu ∈ [0,1]d ,

with generator ψ . As a consequence of this functional form, Archimedean copulas are exchange-
able, that is, unaffected by permutations of u1, . . . ,ud . In practical applications, ψ belongs to
a parametric family (ψθθθ )θθθ∈Θ whose parameter vector θθθ needs to be estimated; for most popu-
lar parametric Archimedean copula families, θθθ is one-dimensional. The aims of this paper are
two-fold:

1. To carry out a large-scale comparative study of many estimators for Archimedean copulas
(including new ones), both under known and unknown margins (pseudo-observations);

2. To focus on the performance of estimators and computations in high dimensions, where
considerable numerical challenges have to be overcome.

1.1. Motivation and examples

In high dimensions, none of the existing copula models typically fits data well. Nevertheless, in
areas such as the modeling of financial and insurance risks, copula models are applied in high
dimensions, often, in our experience, in dimensions that run in to the thousands. As an example,
consider a portfolio of d financial instruments or assets with values St,1, . . . ,St,d at time point t,
interpreted as today. These asset values are referred to as risk factors and the value of the portfolio
is

Vt =
d

∑
j=1

β jSt, j,

where β j denotes the number of units of asset j in the portfolio, j ∈ {1, . . . ,d}. The asset log-
returns are given by

Xt+1, j = log(St+1, j)− log(St, j) = log(St+1, j/St, j), j ∈ {1, . . . ,d},

and the one-period ahead (sign adjusted) loss L of the portfolio is therefore

L =−(Vt+1−Vt) =−
d

∑
j=1

β j(St+1, j−St, j) =−
d

∑
j=1

β jSt, j(exp(Xt+1, j)−1). (1)

From a risk management perspective in the context of Basel II/III one is interested in the distri-
bution of the loss L. As becomes clear from (1), the loss distribution only depends on the joint,
and typically high-dimensional, distribution of the log-returns, all other quantities being known at
time point t, that is, today.

Financial portfolios can consist of complex instruments, for example, options, futures, credit
default swaps and insurance policies. In such cases, the formalism in (1) has to be extended to

Journal de la Société Française de Statistique, Vol. 154 No. 1 25-63
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238
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incorporate changes in other risk factors, such as price volatilities, default indicators and mortality
rates, for which less information is typically available than for simple asset prices. For computing
risk measures such as Value-at-Risk or expected shortfall, modeling dependence between the
risk-factor changes is crucial, as various examples in [McNeil et al., 2005] show.

Dimension reduction techniques cannot always be used in this context since it may be important
to model future payments from each contract or policy. In the absence of more detailed information,
exchangeability of the dependence structure is often assumed which makes Archimedean copulas
candidate models.

The reason for this is not that these models provide a good fit to the data at hand. Rather, they
are

1. comparably tractable from a numerical and computational point of view in high dimensions;

2. more plausible than models that assume independence and capable of giving indicative
results on the impact of dependence.

Model misspecification is often accepted in these applications in return for this convenience.
Another area of applications where exchangeable dependence models are used is sparse data.

This includes applications to operational risk modeling; see [Chavez-Demoulin et al., 2013] and
references therein. If the tail is of major interest, Archimedean copulas such as the Clayton or
Gumbel copula are often considered. They provide alternatives to the t copula (note: the Gaussian
copula does not allow for tail dependence, see [Sibuya, 1959]) to model tail dependence and are
also used for stress testing. A correct specification of the body of the distribution is often not
too important. One such example is [Schönbucher and Schubert, 2001] and [Hofert and Scherer,
2011] in the context of high-dimensional credit-risk portfolios, where copulas are calibrated
to essentially five data points only. Nevertheless, the dependence between the underlying 125
components in the portfolio plays a crucial role in pricing these products, which has also been
learned from the recent crisis; see, for example, [Donnelly and Embrechts, 2010]. As shown in
[Hofert and Scherer, 2011], even a highly exchangeable model with only one or two parameters
can provide a much more accurate pricing model for such portfolio products. More parameters
may not be justifiable in such applications given the small amount of data available and also not
computationally feasible since each evaluation of the object function is based on a Monte Carlo
simulation. From a practical point of view, one-parameter models are often easy to interpret due
to a one-to-one correspondence with measures of association such as Kendall’s tau. This has
contributed to their popularity; see [Embrechts and Hofert, 2011] for a discussion.

Other examples not detailed here can be found in the area of survival analysis, see [Hougaard,
2000] and [Duchateau and Janssen, 2008].

Because they are used in practice in high dimensions, it is important to investigate Archimedean
copulas in that context. Our paper [Hofert et al., 2012] was a first theoretical step in this direction.
The present paper complements this work in a statistical and computational direction, detailed
below. The results extend beyond Archimedean copulas and should be viewed in a wider context.

As the following examples show, the need for accurately evaluating (or estimating) the deriva-
tives of generators of Archimedean copulas arises in a variety of contexts.

– The density of a (possibly asymmetric, that is, non-exchangeable) Khoudraji-transformed
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28 M. Hofert, M. Mächler, A. J. McNeil

Archimedean copula is given by

c(uuu) = ∑
J⊆{1,...,d}

ψ
(|J|)
( d

∑
j=1

ψ
−1(uα j

j )

)
∏
j∈J

α j(ψ
−1)′(uα j

j )∏
j/∈J

(1−α j)u
−α j
j ,

see [Hofert et al., 2012].
– [Hofert, 2010, pp. 117] presents ways to construct Archimedean copulas with more than

one parameter. One example are outer power Archimedean copulas (with generator ψ̃(t) =
ψ(t1/β ), β ≥ 1). As Archimedean copulas, their density involves the generator derivatives,
given by

(−1)d
ψ̃

(d)(t) = Pop(t1/β )/td , d ∈N, where Pop(x) =
d

∑
k=1

aG
dk(1/β )(−1)k

ψ
(k)(x)xk.

For an extension of this result, see [Hofert and Pham, 2013]. In this reference, densities of
nested Archimedean copulas are derived. They again heavily involve generator derivatives.

– As a special case of the construction of [Hofert and Vrins, 2013], Archimedean Sibuya
copulas arise. As a tractable subclass, asymmetric extensions of Archimedean copulas of the
form

C(uuu) =
ψV
(
∑

d
j=1 ψ

−1
µ j+V (u j)

)
∏

d
j=1 ψV (ψ

−1
µ j+V (u j))

Π(uuu),

are presented, for a Laplace-Stieltjes transform ψV of a positive random variable V and
corresponding Laplace-Stieltjes transforms ψµ j+V of the random variables µ j +V for deter-
ministic µ1, . . . ,µd . Their densities are given by

c(uuu) =
d

∏
j=1

1
ψV (ψ

−1
µ j+V (u j))

∑
J⊆{1,...,d}

ψ
(|J|)
V

( d

∑
j=1

ψ
−1
µ j+V (u j)

)

·∏
j∈J

u j

ψ ′
µ j+V (ψ

−1
µ j+V (u j))

∏
j/∈J

(
1−

u jψ
′
V (ψ

−1
µ j+V (u j))

ψ ′
µ j+V (ψ

−1
µ j+V (u j))ψV (ψ

−1
µ j+V (u j))

)
,

thus again involve generator derivatives.
High-order generator derivatives also appear in several statistically important quantities such as
– the distribution function of the radial part

FR(t) = 1−
d−1

∑
k=0

(−1)kψ(k)(t)
k!

tk, t ∈ [0,∞),

(here: a slightly simplified version), see [McNeil and Nešlehová, 2009];
– the Kendall distribution function

K(t) =
d−1

∑
k=0

(−ψ
−1(t))k

ψ
(k)(ψ−1(t))/k!, t ∈ [0,1],

(again a slightly simplified version here), see [Barbe et al., 1996] or [Genest et al., 2011].
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For statistical applications, it is therefore crucial to be able to accurately compute (or estimate)
densities and generator derivatives of Archimedean copulas. A considerable amount of time
has gone into numerically stable and efficient implementation in the R package copula. The
simulation results reported in this paper also serve as checks on the implementations in the
package. Moreover, the numerical tricks and results presented also apply in the other contexts
mentioned above.

We believe that issues of this type will become more important in the future as copula models
in higher dimensions gain in applied and theoretical interest. Our computations will also point out
interesting (and partly surprising) results, which might lead to further research in this direction.

1.2. Overview and organization of the paper

There are several known approaches for estimating bivariate parametric Archimedean copula
families. Assuming the copula density to exist, maximum-likelihood estimation is one option;
see [Genest et al., 1995] or [Tsukahara, 2005]. Another estimator resembles the method-of-
moments estimator and consists of choosing the copula parameter such that a certain dependence
measure, for example, Kendall’s tau, equals its empirical counterpart; see [Genest and Rivest,
1993]. Although there is no theoretical justification for applying this method in more than two
dimensions, using the mean of pairwise empirical Kendall’s taus and estimating the copula
parameter such that the population version of Kendall’s tau equals this mean also appears in the
literature; see [Berg, 2009] or [Savu and Trede, 2010]. A similar but different estimator is applied
in [Kojadinovic and Yan, 2010]. Another method in higher dimensions based on the moments of
the Kendall distribution function is given in [Brahimi and Necir, 2011]. Other estimation methods
include approximating the probability integral transform with splines and using a minimum
distance approach between this distribution function and an empirical counterpart; see [Dimitrova
et al., 2008]. Splines also appear in [Lambert, 2007] for approximating a certain ratio involving
the generator of the Archimedean copula to be estimated. [Tsukahara, 2005] considers minimum
distance estimators based on Cramér-von Mises or Kolmogorov-Smirnov distances and compares
their performance to rank approximate Z-estimators in a simulation study involving the bivariate
Archimedean Clayton, Frank, and Gumbel copula. Another estimation procedure in the bivariate
case is given by [Qu et al., 2010] based on minimizing a Cramér-von Mises distance between the
empirical distribution function of a certain univariate random sample and the standard uniform
distribution. The approach described in [Stephenson, 2009] in the context of extreme-value
distributions can be applied for estimating the parameter of a Gumbel copula in a Bayesian
setup. A non-parametric estimation procedure is introduced in [Genest et al., 2011]. For more
general information concerning copula parameter or copula density estimation in parametric and
(especially) non-parametric set-ups, see [Charpentier et al., 2007].

In this work, we compare several known and new parametric estimators for Archimedean
copulas both under known and unknown margins (the margins being estimated non-parametrically).
In the large-scale simulation study carried out, we compare the following estimators based on
well-known one-parameter generators (for two-parameter families, see [Hofert et al., 2012]):

1. We consider the method-of-moments estimator based on averaged pairwise sample versions
of Kendall’s tau. We also consider the average of pairwise Kendall’s tau estimators.
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30 M. Hofert, M. Mächler, A. J. McNeil

2. We apply a multivariate version of the measure of concordance known as Blomqvist’s beta
for estimating Archimedean copulas. Blomqvist’s beta has the advantage of being given
explicitly in terms of the copula. Similar to the method-of-moments estimation procedure
introduced by [Genest and Rivest, 1993], the copula parameters are estimated such that the
population and sample version of Blomqvist’s beta coincide.

3. We present several minimum distance estimators for estimating Archimedean copulas.
Recently, a transformation of random variables following an Archimedean copula to uniform
random variables (similar to Rosenblatt’s transformation but simpler to compute) was
introduced by [Hering and Hofert, 2013]. The minimum distance estimators presented here
estimate the parameters as the minimum of certain Cramér-von Mises or Kolmogorov-
Smirnov distances based on the transformation of [Hering and Hofert, 2013].

4. We consider maximum-likelihood estimation. Although the density of an Archimedean
copula has an explicit form in theory, deriving and evaluating the required derivatives is
known to be challenging from both a theoretical and a numerical perspective, especially in
large dimensions; see also our motivation in Section 1.1. As mentioned below, computations
based on computer algebra systems often fail already in low dimensions or require high
precision (and are therefore too slow to be applied, for example, in large-scale simulation
studies). We present explicit formulas for the densities of well-known Archimedean families
and efficiently evaluate them. These results are based on the recent findings of [Hofert et al.,
2012].

5. We introduce a simulated maximum-likelihood estimator to estimate Archimedean copulas.
This estimator can be applied if the generator derivatives cannot be evaluated accurately
but the copula is easy to sample.

6. We present maximum-likelihood estimation based on the diagonal of the Archimedean
copula. The main advantage is that the resulting estimation method is comparably easy and
fast to apply in virtually any dimension.

The paper is organized as follows. In Section 2, we briefly recall the notion of Archimedean
copula. Section 3 introduces and presents the different estimators investigated in this work.
Section 4 contains the large-scale simulation carried out. Section 5 addresses numerical issues
when working in large dimensions and provides solutions to some of the problems mentioned.
Section 6 concludes.

2. Archimedean copulas

Definition 2.1
An (Archimedean) generator is a continuous, decreasing function ψ : [0,∞]→ [0,1] which satisfies
ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0, and which is strictly decreasing on [0, inf{t : ψ(t) = 0}]. A
d-dimensional copula C is called Archimedean if it permits the representation

C(uuu) = ψ(t(uuu)), where t(uuu) =
d

∑
j=1

ψ
−1(u j), uuu ∈ [0,1]d , (2)

for some generator ψ with inverse ψ−1 : [0,1]→ [0,∞], where ψ−1(0) = inf{t : ψ(t) = 0}.
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[McNeil and Nešlehová, 2009] show that a generator defines an Archimedean copula of any
dimension k ∈ {2, . . . ,d} if and only if ψ is d-monotone, that is, ψ is continuous on [0,∞], admits
derivatives up to the order d−2 satisfying (−1)k dk

dtk ψ(t)≥ 0 for all k ∈ {0, . . . ,d−2}, t ∈ (0,∞),
and (−1)d−2 dd−2

dtd−2 ψ(t) is decreasing and convex on (0,∞). We mainly assume ψ to be completely
monotone, meaning that ψ is continuous on [0,∞] and (−1)k dk

dtk ψ(t)≥ 0 for all k ∈N0, t ∈ (0,∞),
so that ψ is the Laplace-Stieltjes transform L S [F ] of a distribution function F on the positive
real line; see Bernstein’s Theorem in [Feller, 1971, p. 439]. The class of all such generators is
denoted by Ψ∞ and it is clear that a ψ ∈Ψ∞ generates an Archimedean copula in any dimensions
d.

There are several known parametric Archimedean generators (see, for example, [Nelsen, 2006,
pp. 116]) also referred to as Archimedean families. Among the most widely used in applications are
those of Ali-Mikhail-Haq (A), Clayton (C), Frank (F), Gumbel (G), and Joe (J). We will consider
these generators as working examples; see Table 1 which also includes population versions of
Kendall’s tau for these families. Here, D1(θ) =

∫
θ

0 t/(exp(t)−1)dt/θ denotes the Debye function
of order one. Detailed information about the distribution functions F corresponding to the given
generators can be found in [Hofert, 2012] and references therein.

TABLE 1. Well-known one-parameter Archimedean generators ψ with corresponding Kendall’s tau. The range of
attainable Kendall’s tau is (0,1/3) for A, (0,1) for C and F, and [0,1) for G and J.

Family Parameter ψ(t) τ

A θ ∈ [0,1) (1−θ)/(exp(t)−θ) 1−2(θ +(1−θ)2 log(1−θ))/(3θ 2)

C θ ∈ (0,∞) (1+ t)−1/θ θ/(θ +2)
F θ ∈ (0,∞) − log

(
1− (1− e−θ )exp(−t)

)
/θ 1+4(D1(θ)−1)/θ

G θ ∈ [1,∞) exp(−t1/θ ) (θ −1)/θ

J θ ∈ [1,∞) 1− (1− exp(−t))1/θ 1−4∑
∞
k=1 1/(k(θk+2)(θ(k−1)+2))

3. Estimation methods for Archimedean copulas

Assume that we have given realizations xxxi, i∈{1, . . . ,n}, of independent and identically distributed
(iid) random vectors XXX i, i∈ {1, . . . ,n}, from a joint distribution function H with known margins Fj,
j ∈ {1, . . . ,d}, Archimedean copula C generated by ψ , and corresponding density c. The generator
ψ is assumed to belong to a parametric family (ψ

θθθ
)θθθ∈Θ with parameter vector θθθ ∈ Θ ⊆ Rp,

p ∈N, and the true but unknown vector is θθθ 0 (similarly, C =Cθθθ 0 and c = cθθθ 0). If the margins
Fj, j ∈ {1, . . . ,d}, are known, ui j = Fj(xi j), i ∈ {1, . . . ,n}, j ∈ {1, . . . ,d}, is a random sample
from C. In practice, the margins are typically unknown and must be estimated parameterically or
non-parametrically. In the following, whenever working under unknown margins, we will assume
the latter approach and thus consider the pseudo-observations

ûi j =
n

n+1
F̂n, j(xi j) =

ri j

n+1
, (3)

where F̂n, j denotes the empirical distribution function corresponding to the jth margin and ri j

denotes the rank of xi j among all xi j, i ∈ {1, . . . ,n}.
For estimating θθθ 0, we now present several methods, some of which (such as the simulated

or the diagonal maximum-likelihood estimator) are new. We give the formulas in terms of a
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32 M. Hofert, M. Mächler, A. J. McNeil

random sample UUU i, i ∈ {1, . . . ,n}, from C. In Section 4, this random sample is replaced either by
realizations uuui, i∈ {1, . . . ,n} (when working under known margins) or by the pseudo-observations
ûuui, i ∈ {1, . . . ,n}, when working under unknown margins.

3.1. Pairwise Kendall’s tau

Kendall’s tau is defined to be

τ =E[sign((X1−X ′1)(X2−X ′2))],

where (X1,X2)
> is a vector of two continuously distributed random variables, (X ′1,X

′
2)
> is an

independent copy of (X1,X2)
>, and sign(x) = 1(0,∞)(x)−1(−∞,0)(x) denotes the signum function.

Kendall’s tau is a measure of concordance (see [Scarsini, 1984]) and therefore measures the
strength of association (as a number in [−1,1]) between large values of one variable and large
values of the other. Note that Archimedean copulas with generator ψ ∈Ψ∞ are positive lower
orthant dependent, thus Kendall’s tau always lies in [0,1] for such copulas; see, for example,
[Hofert, 2010, pp. 59]. Kendall’s tau has an obvious estimator, referred to as the sample version of
Kendall’s tau. Based on the random sample UUU i = (Ui1,Ui2)

>, i ∈ {1, . . . ,n}, it is given by

τ̂n =

(
n
2

)−1

∑
1≤i1<i2≤n

sign((Ui11−Ui21)(Ui12−Ui22)).

It can also be estimated directly from the bivariate sample XXX i, i ∈ {1, . . . ,n}.
If C is a bivariate Archimedean copula generated by a twice continuously differentiable

generator ψ with ψ(t)> 0 for all t ∈ [0,∞), Kendall’s tau can be represented in semi-closed form
as

τ = 1+4
∫ 1

0

ψ−1(t)
(ψ−1(t))′

dt = 1−4
∫

∞

0
t(ψ ′(t))2 dt

(see [Joe, 1997, p. 91]) which can often be computed explicitly; see Table 1.
[Genest and Rivest, 1993] introduce a method-of-moments estimator for bivariate one-parameter

Archimedean copulas based on Kendall’s tau. The copula parameter θ0 ∈Θ⊆R is estimated by
θ̂n such that

τ(θ̂n) = τ̂n,

where τ(θ) denotes Kendall’s tau of the corresponding Archimedean family viewed as a function
of the parameter θ ∈Θ⊆R. In other words,

θ̂n = τ
−1(τ̂n), (4)

assuming the inverse τ−1 of τ exists. This estimation method obviously only applies to one-
parameter families. Otherwise, the set of all parameters with equal Kendall’s tau is a level curve
and so Kendall’s tau cannot be uniquely inverted. If (4) has no solution, this estimation method
does not lead to an estimator. Note that unless there is an explicit form for τ−1, θ̂n is computed by
numerical root finding.
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[Berg, 2009] and [Savu and Trede, 2010] apply this method to data of dimension d > 2 by
using pairwise sample versions of Kendall’s tau. If τ̂n, j1 j2 denotes the sample version of Kendall’s
tau between the j1th and j2th data column, then θ is estimated by

θ̂n = τ
−1

((
d
2

)−1

∑
1≤ j1< j2≤d

τ̂n, j1 j2

)
. (5)

We denote this estimator or estimation method by τ ¯̂τ . Intuitively, the parameter is chosen such
that Kendall’s tau equals the average over all pairwise sample versions of Kendall’s tau. Note
that properties of this estimator are not known and also not easy to derive since the average is
taken over dependent data columns. In particular, although

(d
2

)−1
∑1≤ j1< j2≤d τ̂n, j1 j2 is unbiased

for τ(θ0), the estimator in (5) need not be unbiased for θ0.
Another “pairwise” estimator can be obtained by first computing the

(d
2

)
pairwise estimators as

given in (4) and then average over the estimators, that is,

θ̂n =

(
d
2

)−1

∑
1≤ j1< j2≤d

τ
−1(τ̂n, j1 j2).

This unbiased estimator can be found in [Kojadinovic and Yan, 2010]; see, for example, the
function fitCopula(, method=“itau”) in the R package copula. We denote it or the corre-
sponding estimation method by τ ¯̂

θ
.

3.2. Blomqvist’s beta

Blomqvist’s beta (see, for example, [Nelsen, 2006, p. 182]) is also a measure of concordance. In
the bivariate case with X j ∼ Fj, j ∈ {1,2}, it is defined by

β =P((X1−F−1 (1/2))(X2−F−2 (1/2))> 0)−P((X1−F−1 (1/2))(X2−F−2 (1/2))< 0)

and therefore measures the probability of falling into the first or third quadrant minus the proba-
bility of falling into the second or fourth quadrant, the quadrants being defined by the medians
F−j (1/2), j ∈ {1,2}. This measure can be expressed in terms of the copula of (X1,X2)

>. It also
allows for a natural generalization to d > 2, given by

β =
2d−1

2d−1−1
(C(1/2, . . . ,1/2)+Ĉ(1/2, . . . ,1/2)−21−d);

see, for example, [Schmid and Schmidt, 2007]. Here, Ĉ denotes the survival copula corresponding
to C. For Archimedean copulas as given in (2), Blomqvist’s beta is easily seen to be

β =
2d−1

2d−1−1

(
ψ(dψ

−1(1/2))+
( d

∑
j=0

(
d
j

)
(−1) j

ψ( jψ−1(1/2))
)
−21−d

)
. (6)

Given the random sample UUU i, i ∈ {1, . . . ,n}, the sample version of Blomqvist’s beta is given by

β̂n =
2d−1

2d−1−1

(
1
n

n

∑
i=1

( d

∏
j=1
1{Ui j≤1/2}+

d

∏
j=1
1{Ui j>1/2}

)
−21−d

)
(7)
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For asymptotic properties of β̂n, see [Schmid and Schmidt, 2007].

A method-of-moments estimator based on Blomqvist’s beta can be obtained via

θ̂n = β
−1(β̂n),

where β (θ) denotes β as a function of the parameter θ ∈ Θ ⊆ R. We denote this estimator
or estimation method by β . As for Kendall’s tau, this estimation method only applies to the
one-parameter case. Typically, θ̂n is computed via numerical root finding.

3.3. Minimum distance estimation

[Hering and Hofert, 2013] present a transformation for Archimedean copulas that is analogous
to Rosenblatt’s transform but simpler to compute. Consider a d-monotone generator ψ and let
UUU follow the Archimedean copula C with generator ψ . Furthermore, let the Kendall distribution
function K (that is, the distribution function of the probability integral transformation C(UUU)) be
continuous. Then, the transformed random vector UUU ′′′ = Tψ(UUU) with

U ′j =

(
∑

j
k=1 ψ−1(Uk)

∑
j+1
k=1 ψ−1(Uk)

) j

, j ∈ {1, . . . ,d−1}, U ′d = K(C(UUU)) (8)

follows a uniform distribution on [0,1]d , denoted by UUU ′′′ ∼ U[0,1]d . Note that if ψ ∈ Ψ∞, then

K(t) = ∑
d−1
k=0

ψ(k)(ψ−1(t))
k! (−ψ−1(t))k; see [Barbe et al., 1996] or [McNeil and Nešlehová, 2009].

The transformation (8) allows one to easily derive a minimum distance estimator. First, one
transforms the random vectors UUU i, i∈{1, . . . ,n}, with Tψ and then minimizes a “distance” between
the transformed variates and the multivariate uniform distribution. This could be achieved, for
example, with the statistics S(B)n or S(C)

n used by [Genest et al., 2009]. For simplicity and run-time
performance, however, we map the transformed variates to univariate quantities via

Y n
i =

d

∑
j=1

(Φ−1(U ′i j))
2 or Y l

i =
d

∑
j=1
− logU ′i j, i ∈ {1, . . . ,n},

where Φ−1 denotes the quantile function of the standard normal distribution. Such mappings
to a univariate setting are known from goodness-of-fit testing; see [D’Agostino and Stephens,
1986, p. 97]. If the transformation Tψ(UUU) is applied with the correct parameter, then Y n

i ∼ F
χ2

d
and

Y l
i ∼ FΓd , i ∈ {1, . . . ,n}, that is, Y n

i and Y l
i should follow a chi-square distribution with d degrees

of freedom and a Γ(d,1) distribution, respectively. Hence, minimum distance estimators can be
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obtained via the Cramér-von Mises and Kolmogorov-Smirnov type of distances

θ̂θθ
n,CvM
n = arginf

θθθ∈Θ

n
∫

∞

−∞

∣∣F̂n,Y n(x)−F
χ2

d
(x)
∣∣2 dF

χ2
d
(x)

= arginf
θθθ∈Θ

1
12n

+
n

∑
i=1

(
2i−1

2n
−F

χ2
d
(Y n

(i))

)2

,

θ̂θθ
n,KS
n = arginf

θθθ∈Θ

sup
x

∣∣F̂n,Y n(x)−F
χ2

d
(x)
∣∣

= arginf
θθθ∈Θ

max
i∈{1,...,n}

{
F

χ2
d
(Y n

(i))−
i−1

n
,

i
n
−F

χ2
d
(Y n

(i))

}
,

θ̂θθ
l,CvM
n = arginf

θθθ∈Θ

n
∫

∞

−∞

∣∣F̂n,Y l(x)−FΓd (x)
∣∣2 dFΓd (x)

= arginf
θθθ∈Θ

1
12n

+
n

∑
i=1

(
2i−1

2n
−FΓd (Y

l
(i))

)2

,

θ̂θθ
l,KS
n = arginf

θθθ∈Θ

sup
x

∣∣F̂n,Y l(x)−FΓd (x)
∣∣

= arginf
θθθ∈Θ

max
i∈{1,...,n}

{
FΓd (Y

l
(i))−

i−1
n

,
i
n
−FΓd (Y

l
(i))

}
,

where F̂n,Y n and F̂n,Y l denote the empirical distribution functions based on (Y n
i )i∈{1,...,n} and

(Y l
i )i∈{1,...,n}, respectively, and Y n

(i) and Y l
(i), i∈{1, . . . ,n}, denote the order statistics of (Y n

i )i∈{1,...,n}

and (Y l
i )i∈{1,...,n}, respectively. We denote these four estimators or estimation methods by MDECvM

χ ,
MDEKS

χ , MDECvM
Γ

, and MDEKS
Γ

, respectively.
In large dimensions, one can omit the possibly costly computation of U ′d and work with U ′j,

j ∈ {1, . . . ,d− 1}, only, see [Hering, 2011, pp. 52]. Note that minimum distance estimators
naturally also work for p≥ 2, that is, parameter vectors θθθ ∈Θ⊆Rp.

3.4. Maximum-likelihood estimation

According to [McNeil and Nešlehová, 2009], an Archimedean copula C admits a density c if and
only if ψ(d−1) exists and is absolutely continuous on (0,∞). In this case, c is given by

c(uuu) = ψ
(d)(t(uuu))

d

∏
j=1

(ψ−1)′(u j) =
ψ(d)(t(uuu))

∏
d
j=1 ψ ′(ψ−1(u j))

, uuu ∈ (0,1)d , (9)

where, as in (2), t(uuu) = ∑
d
j=1 ψ−1(u j). Note that for computing the log-density, it is convenient to

write c as

c(uuu) = (−1)d
ψ

(d)(t(uuu))
d

∏
j=1
−(ψ−1)′(u j) =

(−1)dψ(d)(t(uuu))

∏
d
j=1−ψ ′(ψ−1(u j))

.
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Given the sample UUU i, i ∈ {1, . . . ,n}, finding the maximum-likelihood estimator (MLE) usually
involves solving the optimization problem

θ̂θθ n = argsup
θθθ∈Θ

n

∑
i=1

logcθθθ (UUU i),

where here and in the following the subscript θθθ is used to stress the dependence on θθθ . This
requires an efficient strategy for evaluating the (log-)density. The most important part is to know
how to derive and compute the generator derivatives. Tools like automatic differentiation, see
[Griewank and Walther, 2003], might provide a solution. Recently, [Hofert et al., 2012] presented
explicit formulas for all families listed in Table 1. The corresponding copula densities are reported
here for the reader’s convenience (note that α = 1/θ ):

1. For the family of Ali-Mikhail-Haq,

cθ (uuu) =
(1−θ)d+1

θ 2
hA

θ
(uuu)

∏
d
j=1 u2

j
Li−d(hA

θ (uuu)),

where Li−s(z) = ∑
∞
k=1

zk

ks is the polylogarithm of order s at z and hA
θ
(uuu) = θ ∏

d
j=1

u j
1−θ(1−u j)

.

2. For the family of Clayton,

cθ (uuu) =
d−1

∏
k=0

(θk+1)
( d

∏
j=1

u j

)−(1+θ)

(1+ tθ (uuu))−(d+α).

3. For the family of Frank,

cθ (uuu) =
(

θ

1− e−θ

)d−1

Li−(d−1)(h
F
θ (uuu))

exp(−θ ∑
d
j=1 u j)

hF
θ
(uuu)

,

where hF
θ
(uuu) = (1− e−θ )1−d

∏
d
j=1(1− exp(−θu j)).

4. For the family of Gumbel,

cθ (uuu) = θ
d exp(−tθ (uuu)α)

∏
d
j=1(− logu j)

θ−1

tθ (uuu)d ∏
d
j=1 u j

PG
d,α(tθ (uuu)

α),

where

PG
d,α(x) =

d

∑
k=1

aG
dk(α)xk,

aG
dk(α) = (−1)d−k

d

∑
j=k

α
js(d, j)S( j,k) =

d!
k!

k

∑
j=1

(
k
j

)(
α j
d

)
(−1)d− j, k ∈ {1, . . . ,d},

and s and S denote the Stirling numbers of the first kind and the second kind, respectively,
given by the recurrence relations

s(n+1,k) = s(n,k−1)−ns(n,k),

S(n+1,k) = S(n,k−1)+ kS(n,k),

for all k∈N, n∈N0, with s(0,0) = S(0,0) = 1 and s(n,0) = s(0,n) = S(n,0) = S(0,n) = 0
for all n ∈N.

Journal de la Société Française de Statistique, Vol. 154 No. 1 25-63
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges 37

5. For the family of Joe,

cθ (uuu) = θ
d−1 ∏

d
j=1(1−u j)

θ−1

(1−hJ
θ
(uuu))1−1/θ

PJ
d,α

(
hJ

θ
(uuu)

1−hJ
θ
(uuu)

)
,

where

PJ
d,α(x) =

d−1

∑
k=0

aJ
dk(α)xk,

aJ
dk(α) = S(d,k+1)(k−α)k, k ∈ {0, . . . ,d−1},

hJ
θ
(uuu) = ∏

d
j=1(1− (1−u j)

θ ), and (k−α)k =
Γ(k+1−α)

Γ(1−α) denotes the falling factorial.

Example 3.1
The left-hand side of Figure 1 shows the log-likelihood of a Clayton copula based on a 100-
dimensional sample of size n = 100 with parameter θ0 = 2 such that the corresponding bivariate
population version of Kendall’s tau equals τ(θ0) = 0.5. The MLE is denoted by θ̂n. The right-hand
side of Figure 1 shows the log-likelihood plot of a 100-dimensional Gumbel family with parameter
θ0 = 2 such that Kendall’s tau equals τ(θ0) = 0.5. Both Figures are plotted on the interval
[τ−1(τ(θ0)−h),τ−1(τ(θ0)+h)], where h = 0.05 denotes a “distance” in terms of concordance.
Note that evaluating the log-density of a Gumbel copula is numerically highly complicated; see
Section 5.3 for more details.

θ

n = 100      d = 100      θ0 = 2      τ(θ0) = 0.5

l(θ
; u

1,
…

, u
n
)

log−likelihood of a Clayton copula

6800

6850

6900

6950

1.7 1.8 1.9 θ0θ̂n 2.1 2.2 2.3 2.4

θ

n = 100      d = 100      θ0 = 2      τ(θ0) = 0.5

l(θ
; u

1,
…

, u
n
)

log−likelihood of a Gumbel copula

5680

5700

5720

5740

5760

1.85 1.90 1.95 θ0 θ̂n 2.05 2.10 2.15 2.20

FIGURE 1. Plot of the log-likelihood of a Clayton (left) and Gumbel (right) copula based on a sample of size n = 100
in dimension d = 100 with parameter θ0 = 2 such that Kendall’s tau equals 0.5.
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3.5. Simulated maximum-likelihood estimation

If the derivatives of a given Archimedean generator ψ are not known explicitly one may use
the fact that ψ is an expectation in order to approximate the density of the generated copula.
This way one can replace derivatives of higher order by just one integral (which can either be
evaluated numerically or via Monte Carlo simulation). If ψ ∈ Ψ∞, then ψ(t) = L S [F ](t) =∫

∞

0 exp(−xt)dF(x), so that by differentiating under the integral sign one obtains

(−1)d
ψ

(d)(t) =
∫

∞

0
xd exp(−xt)dF(x) =E[V d exp(−Vt)], t ∈ (0,∞),

where V has distribution function F . An approximation to (−1)dψ(d)(t) is thus given by

(−1)d
ψ

(d)(t)≈ 1
m

m

∑
k=1

V d
k exp(−Vkt), t ∈ (0,∞), (10)

where Vk ∼ F , k ∈ {1, . . . ,m}, are realizations of iid random variables following F = L S −1[ψ].
Instructions for how to sample F for the one-parameter families in Table 1 can be found, for
example, in [Hofert, 2012]; see also [Hofert and Mächler, 2011]. This method can be used to
evaluate the copula density. We refer to the corresponding MLE as simulated maximum-likelihood
estimator (SMLE). Finally, note that both the MLE and the SMLE naturally apply to the multi-
parameter case.

3.6. Diagonal maximum-likelihood estimation

The diagonal δ (u) =C(u, . . . ,u) of a copula C suggests a simple and straightforward estimation
procedure which, as far as we are aware, has not been exploited for estimating (Archimedean)
copulas so far. Note that the diagonal δθθθ of a parametric copula family (Cθθθ )θθθ∈Θ is a distribution
function and, for UUU ∼C,

Y = max
1≤ j≤d

U j ∼ δθθθ .

Based on the sample UUU i, i ∈ {1, . . . ,n}, with corresponding maxima Yi, i ∈ {1, . . . ,n}, one can
apply maximum-likelihood estimation to find an estimator θ̂θθ n of the parameter vector θθθ 0 via

θ̂θθ n = argsup
θθθ∈Θ

n

∑
i=1

logδ
′
θθθ
(Yi), (11)

where δ ′
θθθ

denotes the density of the distribution function δθθθ . We refer to the estimator θ̂θθ n as diag-
onal maximum-likelihood estimator (DMLE). For Archimedean copulas, δθθθ (u) = ψθθθ (dψ

−1
θθθ

(u))
and hence,

δ
′
θθθ
(u) = dψ

′
θθθ
(dψ

−1
θθθ

(u))(ψ−1
θθθ

)′(u), u ∈ [0,1]. (12)

Therefore, one advantage of the DMLE is that the degree of numerical difficulty of the optimization
in (11) (theoretically) remains rather unaffected by the dimension. Another advantage may be its
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computational speed, which makes it useful for computing initial values for more sophisticated
estimators. As a drawback, the DMLE only uses information from the copula diagonal.

For the one-parameter Gumbel family, (11) can be solved explicitly, the estimator θ̂ G
n of θ

being

θ̂
G
n =

logd
logn− log

(
∑

n
i=1− logYi

) .
An adjusted estimator of the form

θ̂
G,∗
n = max{θ̂ G

n ,1}

is then guaranteed to provide an admissible parameter estimator for Gumbel’s family.

4. A large-scale simulation study

In this section, we present a large-scale simulation study in which we compare the performance
of the different estimators presented in Section 3 both under known and (from an applied point of
view the more interesting case of) unknown margins (pseudo-observations). To the best of our
knowledge, this is the first study of this kind also addressing large dimensions (up to 100). To be
able to also include the estimators based on measures of concordance, we restrict ourselves to the
one-parameter families as given in Table 1.

4.1. A word concerning the implementation

The results presented in this section are based on the following computational set-up. The
procedures are computationally challenging in many ways and much effort has gone into accurate
and efficient implementation in R; see Section 5. The latest version of the package can be accessed
via http://nacopula.r-forge.r-project.org/. The computations are carried out on the
computer cluster Brutus of ETH Zurich which runs CentOS 5.4. The batch jobs are run on nodes
with four quad-core AMD Opteron 8380 CPUs and 32 GB of RAM. Apart from the physical
structure of the grid, the compiler, and the programming language, note that run time also depends
on other factors such as the quality of the implementation or the current load of the machine. The
presented run times should therefore be viewed with this in mind.

4.2. The experimental design

In the simulation study carried out, we consider both known and unknown margins. For each
of these cases, we generate N = 1000 samples of size n from iid random vectors following a
d-dimensional Archimedean copula with prespecified parameter θ such that the corresponding
Kendall’s tau is τ ∈ {0.25,0.75}. For the case of known margins, we base estimation directly
on these samples. For the case of unknown margins, we base estimation on the corresponding
pseudo-observations as given in (3). Since we are mainly interested in the behavior for different
dimensions d, we consider d ∈ {5,20,100} and keep n = 100 fixed. The dimensions considered
thus go up to the sample size n in which case the data matrices have 10000 entries; note that such
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a setup is computationally highly challenging for all the estimators we consider and a novelty in
the context of dependence modeling with copulas. We investigate the one-parameter families of
Ali-Mikhail-Haq (only for τ = 0.25 since the range of admissible Kendall’s tau for this family is
bounded from above by 1/3), Clayton, Frank, Gumbel, and Joe. The average pairwise Kendall’s
tau estimator (τ ¯̂τ ), the average of Kendall’s tau estimators (τ ¯̂

θ
), the estimation method based

on Blomqvist’s beta (β ), the four presented minimum distance estimators (MDECvM
χ , MDEKS

χ ,
MDECvM

Γ
, and MDEKS

Γ
), maximum-likelihood (MLE), simulated maximum-likelihood (SMLE),

and diagonal maximum-likelihood (DMLE) estimators are applied to estimate the parameter for
each of the N data sets. Finally, bias and root mean squared error (RMSE), as well as mean user
run time over all N replications are computed.

For the required optimizations for the estimators based on Blomqvist’s beta, all minimum
distance estimators, MLE, SMLE, and DMLE, we use initial intervals determined from a large
range of (admissible) Kendall’s tau; see the implementation of the function initOpt in the
R package copula for more details. For the minimum distance estimators to be competitive
according to run time, we only include the Kendall distribution function in the transformation
given in (8) in the five-dimensional case, but not for higher dimensions. For applying the SMLE,
we draw 10000 random variates from V ∼ F = L S [ψ] for each evaluation of the density of the
Archimedean copula.

4.3. Results under known margins

Tables 2, 3, and 4 in the appendix contain the bias (multiplied by 1000), the RMSE (multiplied by
1000), and the mean user times in milliseconds (MUT), respectively, for all investigated estimators
under known margins. For each entry, the number in parentheses denotes the entry divided by the
corresponding entry of the MLE column, so that the performance with respect to the MLE can
easily be determined; the MLE itself thus has always 1.0 in parentheses. For the RMSEs, note that
the reciprocals of the square of these numbers are also known as the (estimated) relative efficiency
of the MLE with respect to the corresponding estimator.

Figures 2 and 3 graphically display the square root of the absolute error via box plots obtained
from the N = 1000 replications. Due to readability, we exclude methods which perform so poorly
that their boxplots dominate the scale of values. In particular, this is the case for the estimators
based on Blomqvist’s beta for d = 100 for the families of Clayton, Frank, and Joe and the SMLE
for Clayton and τ = 0.25.

The results from this study under known margins can be summarized as follows:
– The performance of the average of bivariate Kendall’s tau estimator τ ¯̂

θ
as given in the end

of Section 3.1 is very similar to the one of the averaged pairwise Kendall tau estimator τ ¯̂τ .
One problem that especially τ ¯̂

θ
faces is that sample versions of Kendall’s tau are sometimes

not in the range of tau as a function of theta. These values were then mapped to the range
of admissible Kendall’s tau, see the function tau.checker in copula. Furthermore, run
time for method τ ¯̂

θ
is typically larger (especially in large dimensions) than that for τ ¯̂τ , which

is clear since more inversions of Kendall’s tau have to be performed. Overall, τ ¯̂τ is thus
preferred. Furthermore, due to only considering pairs at a time, this estimator is quite robust
against numerical difficulties. A disadvantage, however, is its large run time due to the
quadratic complexity in the dimension d.
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– Although Blomqvist’s beta can be flawlessly applied to estimate the copula parameter θ

for small and moderate dimensions d, this estimator shows serious numerical problems for
large values of d uniformly over all investigated Archimedean families. One of the problems
turns out to be that both products appearing in the sample version (7) of Blomqvist’s beta
are sometimes zero, so that β̂n < 0 although β ≥ 0. Another problem is that the evaluation
of the survival copula at (1/2, . . . ,1/2)> turns out to be numerically challenging for several
families; see Section 5.6 for more details.

– The performance of the minimum distance estimators depends on the mapping to the one-
dimensional setting applied. In particular, the estimators MDECvM

Γ
and MDEKS

Γ
based on

the logarithmic transformation to a Gamma distribution do not perform well in comparison
to MDECvM

χ and MDEKS
χ . Furthermore, the minimum distance estimators based on the

Kolmogorov-Smirnov distances are outperformed by those based on the Cramér-von Mises
distances (also according to run time in most of the cases investigated, see Table 4). Note that
run time for d = 5 is larger than for d ∈ {20,100} because we applied the full transformation
Tψ including the Kendall distribution function K in the five-dimensional case. Moreover, the
distances (objective functions) had to be reparameterized in order for the minimum distance
estimators to be computed; see Section 5.1 for more details.

– With the explicit formulas for the densities we presented, the MLE clearly shows the best
performance under known margins. Note that the run times are much smaller than one
would expect in comparison to other estimators, although, our implementation was written
with focus on readability rather than run-time performance and thus several quantities are
computed each time the density is evaluated. In contrast to statements found in the literature
(see, for example, [Berg and Aas, 2009] or [Weiß, 2010]) this leaves no doubt that maximum-
likelihood estimation is feasible in large dimensions and performs well; for the latter, see
also [Hofert et al., 2012] who empirically show that the mean squared error (MSE) satisfies

MSE ∝
1

nd

in the case of known margins.
– The SMLE also shows an incredible performance, the only exception being Clayton’s family;

see Section 5.2 for more details. The RMSEs are close to the ones obtained by maximum-
likelihood estimation. Moreover, this method is straightforward to implement given random
number generators for the distribution corresponding to the generator under consideration.
The drawback of this method is certainly a larger run time. Note that this could be partly
reduced, for example, by using an adaptive technique in which smaller amounts of random
variates are drawn during the first couple of steps the optimizer performs. Also note that
with the constant use of 5000 random variates (instead of 10 000) per density evaluation, the
overall performance of the SMLE is still slightly better than those of the minimum distance
estimator MDECvM

χ .
– The advantage of the DMLE lies in its speed. Due to this fact, this estimator could be used

for finding initial values for more sophisticated estimation methods.
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FIGURE 2. Box plots of the square root of the absolute error (under known margins) obtained from N = 1000
replications of sample size n = 100 for Kendall’s tau equal to 0.25.
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FIGURE 3. Box plots of the square root of the absolute error (under known margins) obtained from N = 1000
replications of sample size n = 100 for Kendall’s tau equal to 0.75.
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4.4. Results under unknown margins

Tables 5, 6, and 7 in the appendix contain the bias (multiplied by 1000), the RMSE (multiplied by
1000), and the mean user times in milliseconds (MUT), respectively, for all investigated estimators
based on pseudo-observations.

Figures 4 and 5 graphically display the corresponding square root of the absolute error via box
plots obtained from the N = 1000 replications. As for Figures 2 and 3, we exclude methods which
perform so poorly that their boxplots dominate the scale of values. Under pseudo-observations,
these were the same methods as under known margins with the only exceptions being MDEKS

Γ

for d ∈ {20,100} which are excluded and SMLE for Clayton which performed better under
pseudo-observations and is thus included in the figures; see Section 5.2 for an explanation.

The performance of the estimators based on pseudo-observations can be summarized as follows.
Overall, the MLE still performs best, but the differences in absolute error are much less obvious.
Furthermore, although a slight improvement of the performance of the MLE in larger dimensions
d is visible, the rate of improvement does not seem to be as large as under known margins.
Concerning the estimators based on Kendall’s tau and the minimum distance estimators, the
former performs well for the case τ = 0.25, the latter performs well for the case τ = 0.75.

5. Numerical issues and partial solutions

In this section, we address some specific numerical problems we encountered when working in
high dimensions. These problems are not trivial to solve and for some, no simple solution exists
to date. We included this section to emphasize that working in large dimensions is much more
affected by numerical issues. This is not merely a problem of slow run times; it is also a huge
problem for precision. As a general remark, let us stress that what is known about estimators
in low dimensions does not always carry over to the high-dimensional case: Estimators that are
fast in low dimensions may turn out to be too slow in large dimensions (although robust, the
pairwise Kendall’s tau estimators face this problem); estimators whose simple form suggest good
performance in large dimensions may be highly prone to numerical errors (which is the case, for
example, for Blomqvist’s beta due to accessing the survival copula involved, a critical task in
large dimensions).

5.1. Minimum distance estimators

The minimum distance estimators were especially prone to the problem of a flat objective function
for the optimization for all but the Ali-Mikhail-Haq family. Note that there, the parameter θ runs
in a bounded interval which is typically advantageous for optimization.

To show the problem, we consider the Gumbel copula and pick out the Cramér-von Mises
distances based on the mapping to a χ2 distribution (via the quantile function of the normal
distribution) as described in Section 3.3. The left-hand side of Figure 6 shows the objective
function (the distance to be minimized) based on samples of size n = 100 from Gumbel copulas in
the dimensions d ∈ {5,20,100} with parameter θ = 4/3 such that Kendall’s tau equals 0.25. We
choose the same (large) plotting interval as is chosen for the optimization in the simulation study
in Section 4. As can be seen from this figure, the distance to be minimized becomes flat already
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FIGURE 4. Box plots of the square root of the absolute error (under unknown margins) obtained from N = 1000
replications of sample size n = 100 for Kendall’s tau equal to 0.25.
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FIGURE 5. Box plots of the square root of the absolute error (under unknown margins) obtained from N = 1000
replications of sample size n = 100 for Kendall’s tau equal to 0.75.
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for moderate parameter values. The optimization of this distance carried out in the simulation
study is done via R’s optimize. It is indicated on the corresponding help page how this function
proceeds. Based on the first two points in the optimization procedure, it is clear that the algorithm
remains in the “flat part” of the distance function and thus returns wrong estimates.

The solution to this problem is simple and effective: By reparameterizing the distance one can
carry out the optimization without problems. To see why, consider the right-hand side of Figure 6
which shows precisely the same distance as on the left-hand side of this figure, but now plotted
in α = 1−1/θ . The advantage of this reparameterization is that the objective function is now a
function of the bounded variable α ∈ (0,1].
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FIGURE 6. Plot of the Cramér-von Mises distances (based on the mapping to a χ2 distribution) without (left) and with
(right) reparameterization of the distance for the Gumbel copula with parameter θ = 4/3 (Kendall’s tau equals 0.25)
based on a sample of size n = 100 in the dimensions indicated.

Similar transformations turn out to be convenient for the families of Clayton, Frank, and Joe as
well. For the latter, we use the same reparameterization as for Gumbel, for Clayton and Frank we
use α = 2arctan(θ)/π .

5.2. Simulated maximum-likelihood estimation

As can be seen from the results in Sections 4.3 and 4.4, the SMLE performs well except for
Clayton’s family under known margins. In this section we briefly investigate why. For this, recall
that the SMLE is based on the approximation (10). The log-density approximated via this Monte
Carlo method then involves

log((−1)d
ψ

(d)(t))≈ log
(

1
m

m

∑
k=1

V d
k exp(−Vkt)

)
= log

(
1
m

m

∑
k=1

exp(bk)

)
, (13)

where bk = d log(Vk)−Vkt.

For the SMLE to compute, we have to replace t in (13) by ∑
d
j=1 ψ−1(u j). For simplicity, let us

assume that all components u j are equal to u, so we consider the vector uuu = (u, . . . ,u)> ∈ [0,1]d .
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The corresponding value t for (13) is then t = dψ−1(u) = d(u−θ −1). Let us assume that θ = 2,
that is, the corresponding value of Kendall’s tau is 0.5. If u is small, then t becomes large. The
problem is now that the exponents bk become quite small. Indeed, they are so small (depending
on t) that the exp(bk) become zero in computer arithmetic for many (again depending on t) of the
m = 10000 sampled Vk’s. These zeros significantly affect the approximation in (13).

To give an example, let θ = 2, d = 5, draw iid Vk ∼ Γ(1/θ ,1), k ∈ {1, . . . ,m}, for m = 10000
(using set.seed(1)), and compute the approximation in (13) at t ∈ {5 ·1016,5 ·1012,5 ·108,15}.
The left-hand side (correct values) for these values of t are (roughly) -208.09, -157.44, -106.78,
and -11.86, whereas the right-hand side gives -Inf, -622.62, -124.41, and -11.86. As one can see,
for t = 15 both values agree, for t = 5 · 108, the approximation is already quite far away from
the corresponding true value. For large t this problem becomes more severe, with the extreme
case being such a large t that exp(bk) is zero in computer arithmetic for all Vk’s. This implies
that log(0) =−Inf in (13). Note that this could be avoided by using an intelligent logarithm as
given in Lemma 5.1 1 below. However, this does not solve the problem of a poor approximation
to log((−1)dψ(d)(t)) (see also Figure 7 below), the problem being that all summands are zero,
except the one being exp(bk−bmax) = exp(0) = 1.

Figure 7 shows, in log-log scale, the relative error of the approximation (13) for uuu = (u, . . . ,u)>

as a function of u, based on m = 10000, d = 5, and θ = 2. As is clearly visible, the relative error
of the approximation becomes much larger for smaller values of u. Since the Clayton copula
has lower tail dependence, there is indeed a positive probability of obtaining random vectors
with simultaneously small components. These (and only these) samples affect the likelihood
approximation and lead to wrong SMLEs. Note that this problem vanishes for the SMLE based on
pseudo-observations, see Figures 4 and 5, since each ûi j ∈ {1/(n+1), . . . ,n/(n+1)} and thus the
ûi j’s are naturally bounded from below by 1/(n+1). Another option (not discussed here) could
be to base the likelihood computation only on those samples not close to zero simultaneously.
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5.3. Gumbel’s and Joe’s polynomial

For computing the log-likelihood for the Archimedean Gumbel or Joe copula, we need an efficient
way of evaluating the logarithm of the density cθ (uuu) as given in Section 3.4, Parts 4 and 5,
respectively. The challenge is to evaluate the logarithm of the polynomials involved. For this the
following auxiliary results are essential. Their proofs are straightforward and thus omitted.

Lemma 5.1

1. Let xi ≥ 0, i ∈ {1, . . . ,n}, such that ∑
n
i=1 xi > 0. Furthermore, let bi = logxi, i ∈ {1, . . . ,n},

with log0 =−∞, and let bmax = max1≤i≤n bi. Then

log
n

∑
i=1

xi = bmax + log
n

∑
i=1

exp(bi−bmax). (14)

2. Let xi ∈R, i ∈ {1, . . . ,n}, such that ∑
n
i=1 xi > 0. Furthermore, let si = signxi, bi = log|xi|,

i ∈ {1, . . . ,n}, with log0 =−∞ and let bmax = max1≤i≤n bi. Then

log
n

∑
i=1

xi = bmax + log
( n

∑
i=1

i:si=1

exp(b(i)−bmax)−
n

∑
i=1

i:si=−1

exp(b(i)−bmax)

)
, (15)

where b(i) denotes the ith smallest value of bi, i ∈ {1, . . . ,n}.

The ideas behind Lemma 5.1 1 and 2 are implemented in the (non-exported) functions lsum
and lssum in the R package copula.

Although mathematically straightforward, Lemma 5.1 has an important consequence for evalu-
ating logarithms of polynomials such as PG

d,α for Gumbel’s or PJ
d,α for Joe’s density. Depending

on the evaluation point, it might happen that the value of the polynomial is not representable
in computer arithmetic and thus one cannot first compute the value of the polynomial and take
the logarithm afterwards. Instead, Formula (14) suggests a “intelligent” (numerically stable)
logarithm to compute such polynomials (or sums). By taking out the maximum of the bi, it is
guaranteed that the exponentials which are summed up are all in [0,1] and thus the sum takes
on values in [0,n], representable in computer arithmetic. This trick solves the numerical issues
for computing PJ

d,α and thus for computing the log-likelihood of a Joe copula. The evaluation of
PJ

d,α is implemented as (non-exported) function polyJ in the R package copula. It is called with
default method log.poly implementing the trick described above when evaluating the density of
a Joe copula via the slot dacopula; two other, less efficient methods are also available, one of
which is a straightforward polynomial evaluation (poly).

Formula (15) takes the above idea of an intelligent logarithm a step further, by dealing with
possibly negative summands. The summands in each sum are ordered in increasing order to
prevent cancellation. This formula is helpful in computing PG

d,α . However, the situation turns out
to be more challenging for Gumbel’s family. All in all, several different methods for the evaluation
of PG

d,α were implemented. They are based on the following results about PG
d,α and described

below, where here and in the following, α = 1/θ ∈ (0,1].
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Lemma 5.2
Let

PG
d,α(x) =

d

∑
k=1

aG
dk(α)xk (16)

for α ∈ (0,1], where

aG
dk(α) = (−1)d−k

d

∑
j=k

α
js(d, j)S( j,k) (17)

=
d!
k!

k

∑
j=1

(
k
j

)(
α j
d

)
(−1)d− j, k ∈ {1, . . . ,d}. (18)

Then
1. aG

dk(α) = pJ
01(d;k)d!/k! for all α ∈ (0,1], where pJ

01(d;k)> 0 denotes a probability mass
function in d ∈ {k,k+1, . . .};

2. PG
d,α allows for the following representations:

PG
d,α(x) = (−1)d−1x

d

∑
j=1

(
s(d, j)

j−1

∑
k=0

S( j,k+1)(−x)k
)

α
j (19)

= (−1)d−1
αx

d−1

∑
j=0

(
s(d, j+1)

j−1

∑
k=0

S( j,k+1)(−x)k
)

α
j (20)

=
d

∑
j=1

s j exp
(
log|(α j)d |+ j logx+ x− log( j!)+ logFPoi(x)(d− j)

)
, (21)

where, for all j ∈ {1, . . . ,d},

s j =

{
(−1) j−dα je, α j /∈N or (α = 1, j = d),
0, otherwise,

(22)

and where FPoi(x)(·) denotes the distribution function of a Poisson distribution with param-
eter x.

Proof
Part 1 of Lemma 5.2 follows from [Hofert, 2010, p. 99] (the probability mass function pJ

01(d;k)> 0
corresponds to the distribution function F01(· ;k) whose Laplace-Stieltjes transform is the generator
ψ01(· ;k) appearing in a nested Joe copula). In particular, this equality implies that the coefficients
aG

dk(α) of PG
d,α are positive. This allows one to apply (14) with bk = logaG

dk(α)+ k logx, k ∈
{1, . . . ,d} (d = n), to compute the logarithm of the polynomial aG

dk(α) at x. Concerning Part
2, Equations (19) and (20) directly follow from interchanging the order of summation of (16)
combined with (17). For Equation (21), note that interchanging the order of summation of (16)
combined with (18) and rewriting the generalized binomial coefficient

(
α j
d

)
as (α j)d/ j! leads to

PG
d,α(x) =

d

∑
j=1

(α j)d(−1)d− j x j exp(x)
j!

d− j

∑
k=0

xk

k!
exp(−x).

Journal de la Société Française de Statistique, Vol. 154 No. 1 25-63
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges 51

Interpreting the second sum as FPoi(x)(d− j), pulling out the signs s j = sign((α j)d(−1)d− j), and
bringing in an exp(log(·)) leads to the result as stated. Concerning the formula for s j, note that

s j = sign((α j)d(−1)d− j) = (−1)d− j sign
d−1

∏
l=1

(α j− l) = (−1)d− j
d−1

∏
l=1

sign(α j− l)

= (−1)d− j
d−1

∏
l=dα je

sign(α j− l). (23)

First assume α j /∈N and dα je ≤ d−1. In this case s j = (−1)d− j(−1)d−1−dα je+1 = (−1) j−dα je.
This is also true if dα je = d since then j has to be equal to d. Now consider α = 1 and j = d.
In this case, it is easily seen from (23) that s j = 1 which is also true for (22). Finally, consider
the second case in (22). It implies that α j ∈N and thus the first factor in (23) being zero due
to l = dα je = α j, so s j = 0. Note the interesting fact that the formula for s j is independent of
d.

The results presented in Lemma 5.2 lead to the following different methods for computing the
logarithm of PG

d,α , see the (non-exported) function polyG of the R package copula:
– pois, pois.direct: These methods are based on Representation (21), where pois applies

the intelligent logarithm (15) to evaluate the sum and pois.direct computes the sum
directly as given in (21);

– stirling, stirling.horner: Method stirling evaluates Representation (19) directly,
where the polynomial ∑

j−1
k=0 S( j,k+1)(−x)k in−x is computed via Horner’s scheme. Method

stirling.horner is based on Representation (20), where Horner’s scheme is applied to
compute the polynomial in α with coefficients s(d, j+1)∑

j−1
k=0 S( j, k+1)(−x)k which, as

before, are evaluated with Horner’s scheme.
– sort, horner, direct, and dsSib.*: These methods all PG

d,α with the intelligent logarithm
(14) based on the logarithms of the coefficients aG

dk(α) (note that the coefficients aG
dk(α)

of are all positive). The logarithmic coefficients can be obtained in different ways: sort
computes them via (15); horner via Horner’s scheme based on interpreting (17) as a
polynomial in −α; direct by directly computing the sum as given in (17); and dsSib.*
by various different methods described on the help page of the function dsumSibuya (for
example, dsSib.log uses (18) together with the intelligent logarithm as given in (15)).

Additionally, a method default is implemented which consists of a careful combination of the
above methods based on numerical experiments. Note that all methods involved work with logx
instead of x. For this reason, polyG requires as argument logx rather than x.

Finally, let us mention that the problem of evaluating sums of type

n

∑
k=0

(
n
k

)
(−1)k fk (24)

for sequences ( fk)k has a long history (note that (18) falls under this setup). They can be interpreted
as forward differences and are known to be numerically challenging. Approximate (asymptotic
for n→ ∞) formulas may be obtained by using methods from complex analysis; see, for example,
[Flajolet and Sedgewick, 1995], and have been important, e.g., for estimating the complexity of
computer algorithms.
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However, these asymptotic formulas are not very accurate for finite n (note that in our case,
n = d, the data dimension) and the only known way to accurately compute them, seems high
precision arithmetic. See sumBinomMpfr() in R package Rmpfr, and its documentation for
simple examples such as fk = f (k) =

√
k.

5.4. Kendall’s tau for Ali-Mikhail-Haq copulas

In Table 1, the population version of Kendall’s tau for the Ali-Mikhail-Haq (A) family, as function
of the parameter θ , is

τA(θ) = 1−2(θ +(1−θ)2 log(1−θ))/(3θ
2). (25)

When computing it for the Kendall’s tau estimator (see Section 3.1), however, the simple formula
(25) is not sufficient, notably not for small θ , see the left plot in Figure 8: Replacing log(1−θ)
by its numerical accurate log1p(−θ) helps down to around θ ≈ 10−7, but then that formula
breaks down as well, and indeed our tauAMH() (package copula), uses parts of the Taylor series
τA(θ) =

2
9 θ(1+θ(1

4 +
θ

10(1+θ(1
2 +θ

2
7))))+O(θ 6) 1, as soon as θ ≤ 10−2.

θ

τ A
M

H
(θ

)

10−10 10−8 10−6 10−4 10−2 100

10−11

10−9

10−7

10−5

10−3

10−1

1 − 2((1 − θ)2log(1 − θ) + θ) (3θ2)
1 − 2((1 − θ)2log1p(− θ) + θ) (3θ2)
tauAMH(θ)

θ

|1
−

τ̂(
θ)

τ(
θ)

|

w/ log1p()

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

k= 3

k= 4

k= 5

k= 6

k= 7

tauAMH()

FIGURE 8. left: τA(θ): direct form (breaking down for θ < 10−5), using log1p() (okay down to θ ≈ 10−8), correct
approximation as provided by tauAMH(); right: relative errors of log1p(), Taylor approximations, and our hybrid
tauAMH().

5.5. log1mexp

There are several situations, such as the one addressed in Section 5.6, where an accurate computa-
tion of

f (a) = log1mexp(a) = log(1− exp(−a)), a≥ 0, (26)

1 replacing log(1 − θ) by its Taylor expansion −∑
∞
k=1 θ k/k in (25) results in the expansion τA(θ) =

2
9 θ ∑

∞
k=0

6
(k+1)(k+2)(k+3) θ k
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is required. Note that this is numerically challenging in both situations, when a ↓ 0 (hence
exp(−a) ↑ 1 and cancellation of two almost equal terms in 1− exp(−a)), and when a ↑ ∞, as
exp(−a) ↓ 0 and in 1−exp(−a), almost all accuracy of exp(−a) is lost when it is less than around
10−15. Now, for the first case, we can make use of the R and C library function expm1(x) which
computes exp(x)− 1 accurately also for very small x, and for the second case, use the R and
C library function log1p(x) which computes log(1+ x) accurately also for very small x. Our
package copula provides the function log1mexp() which adapts to these two cases, in a sense,
optimally by using a cutoff of a = log2; see [Mächler, 2012].

5.6. The density of the diagonal of Frank copulas

Computing the DMLE for Frank’s copula family is one situation where the accurate computation
of (26) is crucial. To compute the density δ ′

θ
of the diagonal (12) for Frank copulas with generator

ψθ (t) =− log(1− (1− exp(−θ))e−t)/θ , the functions

−ψ
′
θ (t) =

(1− e−θ )exp(−t)
θ(1− (1− e−θ )exp(−t))

,

ψ
−1
θ

(u) =− log
(

exp(−uθ)−1
e−θ −1

)
, and− (ψ−1

θ
)′(u) =

θ

exp(θu)−1

are involved. Numerical issues in computing δ ′
θ
(u) arise for large θ and u close to 1. It is known

that numerically, the computation of ex−1 suffers from cancellation when 0 < x� 1. The first
suspect is thus ψ

−1
θ

which involves terms of this type. The left-hand side of Figure 9 displays
logδ ′

θ
(u) for θ = 38 and d = 2 for two different versions of computing ψ

−1
θ

: psiInv.0 uses
only the R functions log() and exp(), whereas psiInv.1 uses log() and expm1(). Either
way, numerical issues appear due to the cancellation in the division of terms of type ex−1 when
computing ψ

−1
θ

. By rewriting ψ
−1
θ

as

ψ
−1
θ

(u) =− log
(

1− exp(−uθ)− e−θ

1− e−θ

)

we can use R’s function log1p(.) to accurately compute log(1+ ·) and thus the generator inverse
ψ
−1
θ

via -log1p((exp(-u*theta)-exp(-theta))/expm1(-theta)) which we denote by
psiInv.2. The right-hand side of Figure 9 displays the effect of using psiInv.2 in comparison
to psiInv.0 and psiInv.1.

Although this already looks promising, it is still not possible to compute the negative log-
likelihood for the DMLE of Frank’s copula family for a large range of parameters θ as one would
like to do for the optimization. The left-hand side of Figure 10 shows the negative log-likelihood
based on the diagonal of a five-dimensional (so rather low-dimensional) Frank copula, where
computations are done in double precision and high-precision arithmetic with different significant
bits (this was done with the R package Rmpfr). As it turns out, the problem is the evaluation of
−ψ ′

θ
(t) for small t (equivalently, t = ψ

−1
θ

(u) for large θ and u close to 1 as before). The solution
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FIGURE 9. logδ ′
θ
(u) for θ = 38 and d = 2 for computing ψ

−1
θ

via R’s log() and exp() functions (psiInv.0), a
version with log() and expm1() (psiInv.1), and a version using log1p() and expm1() (psiInv.2).

is to rewrite the logarithm of −ψ ′
θ
(t) via

log(−ψ
′
θ (t)) = log(1− e−θ )− t− log(θ)− log(1− (1− e−θ )exp(−t))

= log1mexp(θ)− t− log(θ)− log1mexp
(
− log((1− e−θ )exp(−t))

)
= log1mexp(θ)− t− log(θ)− log1mexp

(
t− log(1− e−θ )

)
= w− log(θ)− log1mexp(−w),

where w = log1mexp(θ)− t. By computing log1mexp via log1mexp() as described in Sec-
tion 5.5, one can then accurately compute the negative log-likelihood for the DMLE for Frank’s
copula family; see the right-hand side of Figure 10. For more details we refer the interested reader
to [Mächler, 2011] 2.

6. Conclusion

Motivated by applications in quantitative risk management, we introduced and compared different
parametric estimators for Archimedean copula families with focus on large dimensions (up to
d = 100). In particular, estimators based on Kendall’s tau, Blomqvist’s beta, minimum distance
estimators, the maximum-likelihood estimator, a simulated maximum-likelihood estimator, and a
maximum-likelihood estimator based on the copula diagonal were investigated both under known
and unknown margins (pseudo-observations). Several of these estimation methods were newly
introduced and investigated in this context.

Under known margins, the best performance according to precision was shown by the maximum-
likelihood estimator. To our surprise, the maximum-likelihood estimator also performed well
according to numerical stability (being of similar numerical stability as the pairwise Kendall’s

2 As this is a vignette of R package copula, all its figures are completely reproducible via R code in the file
Frank-Rmpfr.Rnw which is part of the package source.
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FIGURE 10. Negative log-likelihood based on the diagonal of a five-dimensional Frank copula (sample size n = 100)
with various kinds of precision (left) and an accurate version in double precision based on log1mexp (right).

tau estimators) and run time (being only outperformed by the diagonal maximum likelihood
estimator). Under unknown margins, the MLE still performed best, but the differences in precision
between the various estimators are much less clear-cut and the rate of improvement in d is not as
high as under known margins.

Our work specifically addressed the challenges of inference in large dimensions which is
important for practical applications. Large dimensions up to d = 100 were tackled for the first
time and numerical challenges when working in such large dimensions were addressed in detail.
Moreover, a detailed implementation of the presented estimation methods in the R package
copula creates transparency and allows the reader to access and verify our results.

Archimedean copulas in high dimensions are often used for modeling dependence in large
portfolios of various kinds, for example, if tail dependence is of interest or only few data is
available. Furthermore, Archimedean copulas serve as building blocks for several extensions
which are not limited by exchangeability and thus allow for a wider range of statistical applications.
The numerical solutions studied in this paper extend to these models. Furthermore, important
statistical quantities used for sampling or goodness-of-fit testing such as distributions of radial
parts or the Kendall distribution function require accurate evaluation procedures, which are now
available even in high dimensions.

Appendix A: Simulation tables
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