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ARCHIMEDEAN MAPS OF HIGHER GENERA

JÁN KARABÁŠ AND ROMAN NEDELA

Abstract. The paper focuses on the classification of vertex-transitive polyhe-
dral maps of genus from 2 to 4. These maps naturally generalise the spherical
maps associated with the classical Archimedean solids. Our analysis is based
on the fact that each Archimedean map on an orientable surface projects onto
a one- or a two-vertex quotient map. For a given genus g ≥ 2 the number of
quotients to consider is bounded by a function of g. All Archimedean maps of
genus g can be reconstructed from these quotients as regular covers with cov-
ering transformation group isomorphic to a group G from a set of g-admissible
groups. Since the lists of groups acting on surfaces of genus 2, 3 and 4 are
known, the problem can be solved by a computer-aided case-to-case analysis.

1. Introduction

By a map M, we mean a 2-cell decomposition of a compact connected orientable
surface Sg of genus g. In other words, a map M can be described as a 2-cell em-
bedding ε : Γ ↪→ Sg of the underlying graph Γ into a surface Sg. The connected
components of Sg \ ε(Γ) are called faces. Given a map M, an automorphism of
the underlying graph Γ which extends to a self-homeomorphism of Sg is called
an automorphism of M. A map M is vertex-transitive if its automorphism group
Aut(M) acts transitively on vertices of Γ. In a vertex-transitive map on an ori-
entable surface, the group of orientation-preserving automorphisms Aut+(M) acts
on the vertex-set either with one or with two orbits.

Graphs considered in this paper may have loops, multiple edges and semiedges.
More precisely, a graph is a quadruple Γ = (D,V ; I, L), where D = D(Γ) and
V = V (Γ) are disjoint nonempty finite sets, I : D → V is a surjective mapping
and L is an involutory permutation on D. The elements of D and V are darts and
vertices, respectively, I is the incidence function assigning to every dart its initial
vertex and L is the dart-reversing involution. The orbits of the group 〈L〉 on D
are edges of Γ. It may happen that x.L = x for some dart x ∈ Γ, and in this
case the corresponding edge is called a semiedge. If I(x.L) = I(x) but x.L �= x,
then the corresponding edge is called a loop. The remaining edges are called links.
Two links {x, x.L} and {y, y.L} are parallel if I(x) = I(y) and I(x.L) = I(y.L), or
I(x) = I(y.L) and I(x.L) = I(y). A graph without semiedges, loops and parallel
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570 J. KARABÁŠ AND R. NEDELA

links is called a simple graph. The above definition of a graph follows the approach
of Jones and Singermann [17] and is the same as in [25].

A (convex) polyhedron is defined in [15, 16] as the convex hull of a finite set of
points in the Euclidean space. By Steinitz’s theorem [30] a graph forms a 1-skeleton
of a convex polyhedron if and only if it is planar and 3-connected. Therefore a
simple graph is called polyhedral if and only if it is planar and 3-connected. A 2-cell
decomposition of the sphere given by a 2-cell embedding of a polyhedral graph into
the sphere will be called a spherical polyhedral map. Note that a 2-cell embedding of
a polyhedral graph into the sphere is uniquely determined by the graph, hence there
is a correspondence between polyhedral graphs, polyhedral maps and polyhedra.
To generalise the concept of a polyhedral map to higher genera we shall relax the
condition on polyhedrality as follows.

We say that two faces of a map are adjacent if they are incident to the same
vertex. In a spherical polyhedral map a boundary of a face is a simple cycle and the
boundary cycles of two adjacent faces intersect either in a single vertex, or in a single
edge together with the two incident vertices. Following Mohar and Thomassen [24,
Proposition 5.5.12] and Brehm and Schulte [4], we say that a map on a surface
of genus g is polyhedral of genus g if the boundary of every face is a simple cycle
and the boundary cycles of any two faces are either disjoint or intersect either in a
single vertex or in a single edge (together with the two incident vertices). By Mohar
and Thomassen [24, Proposition 5.5.12] the underlying graph of a polyhedral map
is simple and 3-connected. An Archimedean map is a polyhedral map such that
its automorphism group is transitive on its vertices. Note that in [26] a weaker
definition of polyhedrality is used.

The classification of classical Archimedean solids (maps) is done by their local
types. A local type of a map M at a vertex v is nothing but a cyclic sequence of
lengths of faces incident to v following a given global orientation of the surface.
In the case of Archimedean maps the local types do not depend on a choice of a
vertex. Therefore for an Archimedean map M we can talk about a type of M. We
write the type of a map M in a multiplicative form (e.g., (3.4.4.6.4) = (3.42.6.4)
or (3.3.3.3) = (34)) also known as Cundy and Rollett symbol [9]. Since we shall
consider a map and its mirror image to be isomorphic, a local type and its mirror
image will be considered to be the same. As a rule we shall use the lexically minimal
representative of local type of a map. For each local type there exists a universal
Archimedean map (tiling) of the sphere, Euclidean or hyperbolic plane covering
every Archimedean map of that type; see [8].

There are 13 classical Archimedean solids (15 if the mirror images of two enan-
tiomorphs are counted separately). Thus there are 13 (15) associated spherical
Archimedean maps. Moreover, the five Platonic solids give rise to another five
spherical Archimedean maps. To complete the list of spherical Archimedean maps
we include the infinite families of maps associated with the prisms and anti-prisms.
For more information see e.g. the Wikipedia [32].

Toroidal Archimedean maps are quotients of the uniform (vertex-transitive)
tilings of the Euclidean plane [16, p. 63]. There are 11 distinct Archimedean tilings
of the Euclidean plane E2 (12 if the mirror images of two enantiomorphs of type
(34.6) are counted separately). Each toroidal Archimedean map can be constructed
as a quotient of one of the universal tilings by a group of translations. Each of the
universal tilings give rise to an infinite family of toroidal Archimedean maps. A more
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ARCHIMEDEAN MAPS OF HIGHER GENERA 571

detailed classification can be found in [31]. For further information see [1, 26, 27, 31]
and [14, pp. 291–295].

From the above notes it is clear that there are infinitely many Archimedean maps
of both genus 0 and genus 1. In contrast, by the well-known Riemann-Hurwitz
bound combined with Proposition 5, there are finitely many Archimedean maps for
each genus g, g ≥ 2. In particular, we have the following proposition.

Proposition 1 (Riemann-Hurwitz bound, [13]). Given a vertex-transitive map
M of genus g > 1 the order of Aut(M) is bounded by |Aut(M)| ≤ 168(g − 1)
and the order of the group of orientation-preserving automorphisms is bounded by
|Aut+(M)| ≤ 84(g − 1). In particular, the number of vertices of M is at most
168(g − 1).

In the present paper the following classification problem will be considered.

Problem. Classify isomorphism classes of Archimedean maps of given genus g > 1.
A similar problem, the classification of regular maps of genus 2 ≤ g ≤ 101, has
already been solved by Conder [7]. The main result of our paper written in the
enumerative form follows. Complete lists of Archimedean maps of genus 2, 3, 4 can
be found at the website [18].

Theorem 2 (Main Theorem). There are 17, 103 and 111 isomorphism classes of
Archimedean maps of genus 2, 3, 4, respectively.

2. Two-dimensional orbifolds and maps on orbifolds

The idea of an orbifold comes from geometry of manifolds, where they are defined in
a more general setting. Generally, orbifolds can be viewed as homomorphic images
of manifolds, in particular, a quotient orbifold is induced by an action of a discrete
group of automorphisms of a manifold.

For the purpose of this paper we define an (orientable) orbifold to be an ori-
entable surface of genus γ ≥ 0 together with a distinguished finite set of points
B = {b1, b2, . . . , br}, to each point bi in B there is associated an integer mi ≥ 2,
i = 1, 2, . . . r. The numbers m1,m2, . . . ,mr are called branch-indices. Each orb-
ifold is determined by its signature (γ;m1,m2, . . . ,mr), where the branch-indices
are ordered in a nondecreasing sequence m1 ≤ m2 ≤ · · · ≤ mr.

Every vertex-transitive mapM on a surface of genus g covers regularly a quotient
map M̄ = M/Aut+(M). The quotient map M̄ is of genus γ ≤ g. The underlying
surface Sγ can be viewed as a two-dimensional quotient orbifoldO(γ;m1,m2, . . . ,mr)

= Sg/Aut+(M), where the parameters γ, g,m1, . . . ,mr are related by the Riemann-
Hurwitz equation:

2− 2g = |Aut+(M)|(2− 2γ −
∑r

i=1(1− 1
mi

)), mi ≥ 2,(2.1)

|Aut+(M)| ≡ 0 mod mi.

Note that given a surface, its admissible quotient orbifolds were classified by
Broughton [5] for genus 2 and 3, and by Bogopolski [2] for genus four. Lists of
admissible orbifolds for surfaces of higher genera can be found in [19].

Our approach is based on the fact that given a quotient orbifold O we can
identify all the potential quotient maps M̄ = M/Aut+(M) on O which have by
definition one or two vertices. Moreover, given a map M̄ on O, we can reconstruct
the covering map M over M̄ and verify whether it is polyhedral or not. To do this
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572 J. KARABÁŠ AND R. NEDELA

effectively we first need a combinatorial description of a map on an orbifold and
to derive more facts on the quotients of Archimedean maps. The reconstruction is
explained in the following section.

It is well known [17, 25] that a map on an orientable surface can be described by
means of a triple M = (D;R,L), where D is a set of darts of M, R,L ∈ Sym(D)
are permutations of darts of M such that L2 = 1 and 〈R,L〉 is transitive on D.
The permutation R is called the rotation of M and L is called the dart reversing
involution. The orbits of R are identified with the set V of vertices of M, the orbits
of L are identified with the set E of edges of M and the cycles of RL form boundary
walks of the set F of faces of M. The edges that correspond to orbits of length one
are called semiedges. A valency val(x) of a vertex, edge or face x is the size of the
corresponding orbit, i.e., val(x) = |x|. It follows that the valency of an edge e is
either one or two depending on whether e is a semiedge or not.

Let M1 = (D1;R1, L1) and M2 = (D2;R2, L2). Then a map homomorphism
ϕ : M1 → M2 is a mapping ϕ : D1 → D2 such that ϕR1 = R2ϕ and ϕL1 = L2ϕ.
By transitivity of 〈R2, L2〉 every map homomorphism is surjective, therefore map
homomorphisms are called coverings. The orientation preserving map automor-
phisms are permutations of D commuting with both R and L. By transitivity of
〈R,L〉 the action of Aut+(M) on D is semiregular (see Dixon and Mortimer [10,
Theorem 4.2a]). A permutation τ of M is an orientation reversing automorphism
of M if τRτ−1 = R−1 and τLτ = L. The automorphism group Aut(M) is formed
by orientation preserving and orientation reversing automorphisms of M. Since a
composition of two orientation reversing automorphisms belongs to Aut+(M), we
have [Aut(M) : Aut+(M)] ≤ 2. If there are no orientation reversing automor-
phisms M is called chiral, otherwise it is called reflexible. An orientation reversing
automorphism of order two fixing a vertex, an edge or a face is called a reflection.

Every vertex-transitive map M with a group of orientation-preserving automor-
phisms G ≤ Aut+(M) covers a quotient M̄ = M/G = (D̄; R̄, L̄) of genus γ, where
D̄ = {[x]G; x ∈ D}, [x]R̄ = [xR] and [x]L̄ = [xL]. The mapping x 
→ [x]G is a
covering M → M̄ called a standard covering.

Proposition 3. Let M be an Archimedean map on an orientable surface. Then
the quotient map M̄ = M/Aut+(M) is either a one-vertex map, or a two-vertex
map.

Proof. Since [Aut(M) : Aut+(M)] ≤ 2, the group of orientation preserving auto-
morphisms acts on the vertex set either with one, or with two orbits. It follows
that the quotient map has at most two vertices. �

It follows that Archimedean maps are of two kinds, which will be treated sepa-
rately. If Aut+(M) acts on the vertices of M inducing one orbit, then M will be
called an Archimedean map of type I. In the other case if Aut+(M) acts on the
vertices of M inducing two orbits, M will be called an Archimedean map of type II.

The quotient map M̄ = M/Aut+(M) lies on a surface of genus γ ≤ g. The
genus γ can be counted by the Euler-Poincaré formula 2 − 2γ = V̄ − Ē + F̄ .
Moreover, the covering f : M → M̄ associates with each vertex, edge, or face

x̄ = f(x) an integer b(x̄) = val(x)
val(f(x)) . It follows that f determines an orbifold

O with signature (γ;m1,m2, . . . ,mr), where the set of branch-indices is given by
{b(x̄) | b(x̄) ≥ 2 and x ∈ V ∪ E ∪ F}. In general, a map M = (D;R,L) is on an
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orbifold O(γ;m1,m2, . . . ,mr) if it is of genus γ and a function b : V ∪ E ∪ F →
{1,m1,m2, . . . ,mr} satisfying the following conditions is given:

(M1) Let x be an edge. Then b(x) ≤ 2, and b(x) = 2 if and only if x is a semiedge.
(M2) For each i ∈ {1, 2, . . . , r} there is exactly one x ∈ V ∪ E ∪ F such that

b(x) = mi.

If b is defined by setting b(x̄) = val(x)
val(f(x)) , for some regular covering f : M → M̄, we

say that b is induced by f . We will say that a covering f : M → M̄ is regular if the
group of covering transformations acts transitively (and hence regularly) on each
fibre over a dart. For more details on regular coverings between maps see [22].

The above definition of a map on an orbifold comes from [23]. The following
proposition is a useful extension of Proposition 3.

Proposition 4. Let M be an Archimedean map of type II. Then an orientation
reversing automorphism τ of M transposing the two vertex orbits projects into ori-
entation reversing automorphism τ̄ of M̄.

In particular, the branch-indices of a face F̄ and its image τ̄(F̄ ) coincide and
the branch-indices of the two vertices are the same.

Proof. The following diagram has to commute:

x
τ ��

f

��

τx

f

��
x̄

τ̄ �� τ̄ x̄

Let G = Aut+(M). Set f : M → M̄, f : x 
→ [x]G, where [x]G denotes the orbit of
G containing a dart x of M. Since G�Aut(M),

[gτx]G = [τg′x]G = [τx]G.

It follows that τ̄ : [x]G 
→ [τx]G is well defined. Moreover, valencies of F̄ and
τ̄ (F̄ ), as well as the valencies of their preimages in M, are the same. The result
follows. �

For technical reasons we slightly modify a notation of an orbifold, where a one-
or two-vertex map is embedded. Let M̄ be a one-vertex map on an orbifold O.
Let n be the sum of the numbers of its faces and semiedges. For each face and for
each semiedge let mi ≥ 1, i = 1, . . . , n, denote the respective branch-index, and let
m0 ≥ 1 be a branch-index associated with the unique vertex of M̄. In other words,
we admit that some branch-indices are equal to one. With this notation in mind we
write O = O(γ;m0,m1,m2, . . . ,mn), mi ≥ 1 for i = 0, 1, . . . , n, with the convention
that m0 ≥ 1 is a branch-index of the unique vertex. Alternatively, if M̄ is a 2-vertex
quotient map, the respective orbifold will be described as O = (γ;m2

0,m1, . . . ,mn)
with the convention that the two branch-points of index m0 ≥ 1 are associated with
the two vertices. By Proposition 4 the two vertices of the quotient have the same
branch-index.

The following proposition lists some properties of quotient maps.

Proposition 5. Let M be an Archimedean map on an orientable surface of genus
g ≥ 1 and let M̄ = M/Aut+(M) be its quotient of valency � on an orbifold
O(γ;m0,m1, . . . ,mn) or O(γ;m2

0,m1, . . . ,mn), respectively. Then

(1) 3 ≤ �m0 ≤ 3 +
√
12g − 3,
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574 J. KARABÁŠ AND R. NEDELA

(2) mifi > 2 for every face F̄i, where fi = |F̄i| is the face-valency, i ∈
{1, . . . , n} and mi is an index of a branch-point associated with F̄i,

(3) |Aut+(M)| > �m2
0 if M is of type I,

(4) |Aut+(M)| > 1
2�m

2
0 if M is of type II.

Proof. Observe that m0 is the order of a vertex stabiliser in M and k = �m0 is the
valency of M. In the case �m0 ≤ 2 the lifted map cannot be polyhedral, since its
valency is k ≤ 2.

Now we shall prove the upper bound k ≤ 3 +
√
12g − 3. Let v, e and f denote

the number of vertices, edges and faces of M, respectively. By the Euler-Poincaré
equation it holds that v − e + f = χ = 2 − 2g. By vertex-transitivity, the valency
k of a lifted map M is equal to k = �m0 and e = kv/2. Since M has to be simple,
f ≤ kv/3. If g = 1, then direct computation yields k ≤ 6. If g ≥ 2, then for k ≤ 6
the upper bound is satisfied. Hence we may assume k ≥ 7. Inserting the previous
terms in the Euler-Poincaré equation and using v > k we get

−χ ≥ kv

(
1

6
− 1

k

)
> k2

(
1

6
− 1

k

)
.

Hence 0 > k2 − 6k + 6(−χ) and statement (1) holds.
To see (2) observe that mifi for i ≥ 1 is the valency of a face Fi covering F̄i.

Since the face-valency in a polyhedral map is at least 3 we are done.
Denote Aut+(M) = G. To prove (3) recall that k = �m0 is the valency of M

while |G|
|Gv | =

|G|
m0

, where Gv is the vertex stabilizer in G. Since M is a simple map,

the number of vertices of M is |Aut+(M)|
m0

> �m0.

To see (4) observe that if M is of type II we have v
2 = |G|

|Gv| =
|G|
m0

. Since M is

simple, v > k = �m0 and consequently 2|G|
m0

> �m0. �

3. Reconstruction of Archimedean maps

An explicit construction of the lift over M̄ requires a practical method of description
of the covering. Such a method is provided by voltage assignments [14]. Usually,
voltages are assigned to darts. However, in order to encompass all regular covers
(including those which are not valency preserving), we need to employ voltage
assignments on angles. We shall follow the approach developed in [22].

Let M = (D;R,L) be a map. An (oriented) angle of M is an ordered pair
a = (x, y), where x and y are darts of M such that y ∈ {xR, xR−1, xL}. We always
consider the angles (x, xR) and (x, xR−1) to be distinct. The darts x and y are
called the initial and the terminal dart of a, respectively. The angle a−1 = (y, x) is
the inverse of a = (x, y). We denote by A(M) the set of all angles of M; obviously,
|A(M)| = 3|D|.

An angle-walk (or briefly a walk) is a sequence W = a1a2 . . . an of angles of M
such that the terminal dart of ai coincides with the initial dart of ai+1, for each
index i = 1, 2, . . . , n−1. The initial dart of a1 and the terminal dart of an are called
the initial and the terminal dart of W , respectively. The term closed angle-walk has
the obvious meaning. If W = a1a2 . . . an is a walk originating at x and terminating
at y, then W−1 = a−1

n a−1
n−1 . . . a

−1
1 is a walk originating at y and terminating at x,

called the inverse of W .
Let M be a map and let G be a finite group. A voltage assignment on M valued

in G is a function ξ : A(M) → G such that for any angle a one has ξ(a−1) =
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ξ(a)−1. Note that if x is the unique dart of a semiedge, then the voltage ξ(x, xL)
is necessarily an involution. In what follows we shall denote ξ(a) = ξa. The group
G is called the voltage group.

A voltage assignment can be extended to walks in the obvious way. Let W =
a1a2 . . . an be an angle-walk on M. The voltage of W is defined to be the product
ξW = ξa1

ξa2
. . . ξan

. The subgroup of G generated by voltages of all closed walks
based at a fixed dart x will be called the local voltage group Gx at x.

Given a voltage assignment ξ on M = (D;R,L) valued in G, set Dξ = D × G,
and define the permutations of Dξ by

(3.1)
(x, h)Rξ = (xR, h · ξ(x, xR)),
(x, h)Lξ = (xL, h · ξ(x, xL)).

If the group 〈Rξ, Lξ〉 is transitive, then Mξ = (Dξ;Rξ, Lξ) is the derived map
determined by M and ξ. The group 〈Rξ, Lξ〉 is transitive if Gx = G. In what
follows we assume this property to be satisfied automatically.

It is easy to see that the natural projection πξ : Mξ → M erasing the second
coordinate is a map covering. Observe that for each element a ∈ G the mapping
ψa : (x, g) 
→ (x, ag) is a fibre-preserving automorphism of Mξ and that the group

G̃ = {ψa; a ∈ G} is isomorphic to G. Moreover, the projection πG̃ : Mξ → Mξ/G̃
is clearly equivalent to πξ. Therefore, πξ is a regular map homomorphism. The
converse holds as well; see [22, Theorem 5.1].

Theorem 6 ([22]). Let ϕ : M̃ → M = M̃/G be a standard map homomorphism.
Then there exists a voltage assignment ξ on M valued in G such that the natural
projection πξ : Mξ → M is equivalent to ϕ.

Let v be a vertex of valency k. A boundary angle walk for a vertex v is a
closed walk a1a2 . . . ak such that ai = (xRi−1, xRi) for some dart x emanating
from v, i = 1, . . . , k. A boundary angle walk for a semiedge s = {x} is the
closed walk (x, xL). A boundary angle walk for an edge e = {x, xL}, x �= xL
is the closed walk (x, xL)(xL, x). A boundary angle walk for a face F of valency
k is a closed walk a1a2 . . . a2k where a2i = (x(RL)i−1R, x(RL)2i) and a2i−1 =
(x(RL)i−1, x(RL)i−1R), i = 1, 2, . . . , k. For y ∈ V ∪ E ∪ F we set ξy = ξW , where
W is the boundary angle walk for y. Let ψ be a map automorphism on M. We say
that a voltage-assignment ξ on M is locally-ψ-invariant if for every closed angle
walk W we have ξW = 1 implies ξψW = 1 [22, p. 455].

LetM be a map on an orbifold O(γ;m1,m2, . . . ,mr) with a distribution function
b : V ∪ E ∪ F → {1,m1,m2, . . . ,mr}. A voltage-assignment ξ on M will be called
b-compatible if for every y ∈ V ∪E ∪ F we have |ξy| = b(y).

The next theorem follows from Theorem 6 and Propositions 3 and 4.

Theorem 7. Let ϕ : M → M̄ = M/Aut+(M) be a regular covering from an
Archimedean map of genus g and let b be the induced distribution of branch-indices.
Then there exists a b-compatible voltage-assignment ξ : A(M̄) → Aut+(M) such
that the natural projection πξ : Mξ → M̄ is equivalent to ϕ.

Furthermore, if M is of type II, then ξ is locally-τ̄ -invariant for some orientation-
reversing map automorphism τ̄ transposing the two vertices of M̄.

Remark 8. Let N be a map. Using some standard arguments in topological graph
theory [14, Theorem 2.5.3, Theorem 2.5.4] one can prove that a voltage assignment
ξ : A(N) → G can be reduced with respect to a rooted spanning tree T of N as
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576 J. KARABÁŠ AND R. NEDELA

follows. For each vertex v there is a unique dart dv (based at v) on the unique path
in T joining v to the root. We form an equivalent voltage assignment satisfying the
following conditions:

(1) all angles of the form (x, xR), (x, xR−1) except (dv, dvR), (dvR, dv), v ∈
V (N), receive trivial voltages,

(2) for angles of the form a = (x, xL), ξa = 1 if x is contained in the spanning
tree T .

The assignment ξ satisfying (1) and (2) will be called T -reduced. In a T -reduced
voltage assignment ξ, the voltage ξa on an angle a = (x, xL) can be interpreted
as a voltage on the dart x while for every vertex v ∈ V the voltage on the angle
(dv, dvR) can be interpreted as ξv. It follows that a T -reduced voltage assignment
can be viewed as a voltage assignment ξ : V ∪D → G.

Remark 9. A b-compatible voltage assignment ξ : A(M̄) → G on a one-vertex map
M̄ on an orbifold O = O(γ;m1,m2, . . . ,mr) determines G as a quotient of the
fundamental group π1(O) of the orbifold O which is an F-group with presentation:

π1(O) = 〈a1, . . . , aγ , b1, . . . , bγ , x1, . . . , xr | xm1
1 , . . . , xmr

r ,

r∏
j=1

xj

γ∏
k=1

[ak, bk]〉.

Given an orbifold O the canonical one-vertex map is the one whose faces induce
the universal relators in the above presentation [12, Section 1.2].

Figure 1. The canonical map on the orbifold O(1; {2, 3, 6}) de-
fines F-group π(O) = 〈a1, b1, x1, x2, x3 | x2

1, x
3
2, x

6
3, x1x2x3[a1, b1]〉.

4. Description of computation

At this moment we are ready to determine Archimedean maps of a given genus.
In what follows we provide steps of an algorithm reconstructing all Archimedean
maps of genera g = 2, 3, 4.

Step 1 (Solving Riemann-Hurwitz equation). The lists of admissible orbifolds were
derived in [5] for genus 2 and 3 and in [2] for surface of genus 4. For our purpose we
have derived the catalogues independently. It turned out that there is a misprint
in the catalogue in [2] (compare with [19]). The processing is divided into two
substeps:

a) solving the Riemann-Hurwitz equation numerically,
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b) for a given set of parameters |G|, g, γ,m1,m2, . . . ,mr we determine
all groups G acting on Sg giving rise to the g-admissible orbifold O =
O(γ;m1,m2, . . . ,mr). This can be done by constructing all b-compatible
voltage assignments defined on a canonical one-vertex map on O.

In the first step the following bound turned out to be useful.

Lemma 10. Given g > 1, the number of branch-indices r in the Riemann-Hurwitz
equation (2.1) is bounded by 2g + 2 ≥ r.

Proof. Assume the covering is branched. Hence |G| ≥ 2. Setting mi = 2 for each
i = 1, 2, . . . , r, minimises the summands and maximises r. Now

2− 2γ +
2g − 2

|G| =
r

2
.

To maximise r we set γ = 0 and |G| = 2. �

The computation iterates through γ ∈ {0 . . . g − 1} and |G| ∈ {2, . . . , 84(g − 1)}
testing the values of mi such that mi ≤ |G| divides |G| for each i = 1, 2, . . . , r
including cases with r = 0 (smooth covers Sg → Sγ).

Note that all the groups of orders given by the numerical solution are contained
(at least up to genus 15, see [19]) in Small Groups Library [29], which is contained
in Magma [3]. Thus employing the software Magma, the candidates for the voltage
groups can be identified inside these lists.

Step 2 (Determination of quotient maps). Given a group G ≤ Aut+(M) acting with
one or two orbits on the set of vertices of M, we use Proposition 5 to obtain the
maximal valency � of the quotient map M̄ = (D̄; R̄, L̄). In the one-vertex case we
assume R̄ = (1, 2, . . . , �) and in the two-vertex case we assume R̄ = (1, 2, . . . , �)(�+
1, �+ 2, . . . , 2�). For sake of clarity the two cycles of R̄ in two-vertex quotient map
are denoted as the “black” and “white” vertex. Every quotient map is determined
by setting L̄ ∈ Sym(�) or L̄ ∈ Sym(2�), respectively, where L̄2 = 1 and 〈R̄, L̄〉
is transitive on D̄. In the case of a two-vertex quotient we first determine all τ̄
transposing the two vertices such that R̄τ̄ = R̄−1 (see Proposition 4) and then
we determine all dart-reversing involutions L̄ such that L̄τ̄ = L̄. This approach
significantly decreases the computation time. In the case of a one-vertex quotient
map τ̄ is always set to be the identity of Sym(�). By reasons of symmetry it is

sufficient to consider a unique representative of each conjugacy class L̄〈R̄〉.

We fix one dart d of M̄ to be a root and reorder the branch-indices such that
the face whose boundary walk contains d has branch-index m1. In the one-vertex
case we simply choose the dart d = 1. In the two-vertex case we choose a dart
emanating from the “white” vertex and terminating in the “black” vertex.

Given a quotient map M̄ of genus γ and a g-admissible orbifold O(γ;m1,
m2, . . . ,mr), we derive all possible distributions of branch-points among the faces,
semiedges and vertices of M̄. The distribution b of branch-indices is done such
that the conditions of Proposition 5 are satisfied. The distribution b is checked for
consistency with τ̄ , i.e., the images of vertices, semiedges and faces should have
the same branch-assignment as the respective preimages. The search of possible
quotient embeddings is done through all g-admissible signatures (from Step 1) and
all quotient maps.
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Figure 2. Different quotients on the orbifold O(0; {2, 2, 2, 3}).

Step 3 (Determining voltage assignments). By an embedding M̄ ↪→ O a partial
presentation of a voltage group is determined. Namely, for each angle ā we have a

generator ξā and each x ∈ V̄ ∪Ē∪F̄ gives rise to the relator ξ
b(x)
x , where ξx is written

as a product of generators. This way a universal voltage group U is defined. Given
M̄ on the orbifold Sg/G we try to construct an order-preserving epimorphism ξ :
U → G. Actually, we use Magma HomomorphismsProcess procedure, as described
in The Magma Handbook of Functions [6, Part IX].

In fact, following Remark 8 we are going to construct a T -reduced b-compatible
voltage assignment ξ : V̄ ∪ D̄ → G, which allows us to reduce the number of
generators. Keeping in mind that the derived map has to be simple we get additional
constrains:

• for every dart x in D̄ not belonging to T , ξx �= 1,
• two darts, x, y emanating from the same vertex and terminating in the
same vertex are endowed with different voltages, i.e., ξx �= ξy,

Step 4 (Lifting the maps). The construction described in (3.1) was used to deter-
mine Archimedean maps. The lifted maps were tested whether they satisfy the
required criteria (genus, number of darts, vertices, etc.).

In the case of two-vertex quotient maps we have tested whether the automor-
phism τ̄ lifts. For this purpose we have recorded the darts in the fibre over a dart
emanating from the “black” or from the “white” vertex of the quotient, respec-
tively. We choose a dart y from the “black fibre” covering a fixed dart d in the
quotient and determine the set of darts {x1, x2, . . . , x|G|} from the “white fibre”
covering the dart d · τ̄ . We check whether at least one mapping τ : y 
→ xi extends
into a map homomorphism τ : M → M−1.

Step 5 (Polyhedrality test). After completing Step 4 we have obtained a list of
simple maps of a given genus in terms of M = (D;R,L). Each M in the list is
vertex-transitive. The polyhedrality is checked directly for each map in the list
following the definition.

Step 6 (Recognition of isomorphism classes). The list of polyhedral maps may
contain (and actually it contains) isomorphic maps represented differently. In fact,
in the previous computations we have constructed all the pairs of the form (M,G),
where M is an Archimedean map on Sg and G ≤ Aut+(M) acts either with one,
or with two orbits on vertices of M. To solve the isomorphism problem for a pair
of maps M1 and M2 the following observation is crucial. Given a mapping ψ of

a dart x 
→ y, x ∈ D1 and y ∈ D2, employing the commuting rules Rψ
1 = R2 and
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Lψ
1 = L2 the mapping ψ either extends to a unique isomorphism ψ : M1 → M2,

or there is no such isomorphism. The algorithms determining Aut(M), checking
whether M is reflexible or chiral and so on, reduce to the same procedure.

5. Census of Archimedean maps of genera 2, 3 and 4

Each map in the list in Appendix A is described by a three-row record. The first
row contains the following description of an Archimedean map

(5.1) Ag.i = M(Gg.i,Gv, (x1, x2, . . . , x�)
m0),

where g is genus and i is a unique integer identifier. The group G = Gg.i ≤
Aut+(M) is either vertex-transitive or it acts on the vertex set with two orbits.
The group Gv = 〈z〉 ≤ G is a vertex stabilizer (Gv

∼= Cm0
, where m0 | val(M)).

In general, the same map admits more than one vertex-transitive action of a group
of automorphisms. Our program chooses the representative with the minimum
order. The (local) type of M and information about the type (Type I or II) and
reflexibility is displayed in this row.

In the case of maps of Type I the vector (x1, x2, . . . , x�) gives a fixed cyclic order
of the set of generators {x1, x2, . . . , x�} induced by the rotation of M. The set
{x1, x2, . . . , x�} is closed under taking inverses. The above description generalises
the standard description of a Cayley map [28]. A map M is a Cayley map if there
exist G ≤ Aut+(M) acting regularly on the vertices of M.

In case of maps of Type II the vector (x1, x2, . . . , x�) gives a fixed cyclic order
of the set of generators {x1, x2, . . . , x�} at the “black” vertices induced by the
rotation of M. The rotation at the “white” vertices is compatible with the cyclic
permutation (τ̄x1, τ̄x2, . . . , τ̄x�). In the case m0 = 1 the action of the considered
automorphism group is regular on vertices and the corresponding Archimedean map
is an unoriented Cayley map (see [20] for more details).

The second row of the record shows a presentation of G = Gg.i and structural
information about G [3, 29].

The last row gives the quotient map M̄ = (D̄; R̄, L̄); we use the abbreviation
M̄ = [R̄; L̄]. If M is of Type I, then R̄ is by definition R̄ = (1, 2, . . . , �) (see
Theorem 11), and L̄ ∈ Sym(�) is written as a product of transpositions. If M is of
Type II, then R̄ is by definition R̄ = (1, 2, . . . , �)(�+1, �+2, . . . , 2�) (see Theorem 11),
and L̄ ∈ Sym(2�) is written as a product of transpositions. The quotient M̄ is
embedded into the orbifold of the signature O(γ;m1,m2, . . . ,mr) = Sg/Gg.i; see
the extended catalogue [18].

The records in the list are sorted lexicographically according to the local type.
Full records of Archimedean maps of genera 2, 3, 4 can be found at the website [18].

The output of our computation can be found in the following theorems.

Theorem 11. The following table enumerates Archimedean maps of genera 2, 3
and 4.

Genus All Type I Type II Reflexible Chiral pairs
2 17 9 8 13 4
3 103 78 25 63 40
4 111 76 35 77 34
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Since our algorithm constructs all pairs (M,G) where M is Archimedean of genus
2 ≤ g ≤ 4 and G ≤ Aut+(M) is either transitive on vertices of M or it acts with
two orbits, we get as a by-product a list of non-Cayley Archimedean maps of genera
2, 3, 4. Most of the Archimedean maps of type I of small genera are Cayley maps.

Theorem 12. Every Archimedean map of type I and of genus two is a Cayley map.
There are 3 non-Cayley Archimedean maps of genus three of type I. There are 2
non-Cayley Archimedean maps of genus four and of type I.

The description of non-Cayley Archimedean maps and genus 2 ≤ g ≤ 4 follows.

A3.191 M(G3.191, C3, (x)3) is of local type (73), type I, reflexible;

G3.191 = 〈x, y | x2, y3, (xy)7, (xy−1xy)4〉 ∼= PSL3(2);
M̄ = [(1); ()] on O(0; {2, 3, 7});

A3.382 M(G3.382, C2, (x, x−1)2) is of local type (3.7.3.7), type I, reflexible;
G3.382 = 〈x, y | y2, (xy)3, x7, (yx−3)4〉 ∼= PSL3(2);

M̄ = [(1, 2); (1, 2)] on O(0; {2, 3, 7}).
A3.1383 M(G3.1383, C4, (x, x−1)4) is of local type (38), type I, reflexible;

G3.1383 = 〈x, y | x3, y4, (x−1y−1)3, (yx−1)3〉 ∼= (C4 × C4) : C3;
M̄ = [(1, 2); (1, 2)] on O(0; {3, 3, 4}).

A4.656 M(G4.656, C2, (x, x−1)2) is of local type (54), type I, reflexible;
G4.656 = 〈x, y | y2, x5, (x2y)3, (yxyx−2)2, (xy)5〉 ∼= A5;
M̄ = [(1, 2); (1, 2)] on O(0; {2, 4, 5}).

A4.1874 M(G4.1874, C2, (z, z−1, x, y)2) is of local type (33.4.33.4), type I, reflexible;

G4.1874 = 〈x, y, z, u | u2, x2, y2, z3, z−1xy, zxz−1y, (zuy)2, (uy)3, (ux)3, (yxux)2〉
∼= S4;

M̄ = [(1, 2, 3, 4); (1, 2)] on O(0; {2, 2, 2, 4}).

Appendix A. Archimedean maps of genus 2

In what follows, we display the record containing basic data for Archimedean maps
of genus two only. For genus 3 and 4 the list with other additional information can
be found at the website [18].

A2.1 M(G2.1, 1, (x, y, z)) is of local type (4.6.16), type II, reflexible;
G2.1 = 〈x, y, z | x, (yz−1)2, (zx−1)3, (y−3z−1)2, (xy−1)8〉 ∼= GL2(3);
M̄ = [(1, 2, 3)(4, 5, 6); (1, 4)(2, 6)(3, 5)] on O(0; {2, 3, 8});

A2.7 M(G2.7, 1, (x, y, z)) is of local type (4.8.12), type II, reflexible;
G2.7 = 〈x, y, z | x, (xy−1)2, z2yz2y−1, (yz−1)4, (zx−1)6〉 ∼= (C6 × C2) : C2;
M̄ = [(1, 2, 3)(4, 5, 6); (1, 4)(2, 6)(3, 5)] on O(0; {2, 4, 6});

A2.27 M(G2.27, 1, (x, y, y−1)) is of local type (6.6.8), type I, reflexible;
G2.27 = 〈x, y | x2, (xy−1)3, y8, (y3xy)2, (y−2xyx)2〉 ∼= GL2(3);
M̄ = [(1, 2, 3); (2, 3)] on O(0; {2, 3, 8});

A2.33 M(G2.33, 1, (x, x−1, y, y−1)) is of local type (3.4.8.4), type I, reflexible;
G2.33 = 〈x, y | y3, (x−1y−1)2, x8, (x−1yx−2)2〉 ∼= GL2(3);
M̄ = [(1, 2, 3, 4); (1, 2)(3, 4)] on O(0; {2, 3, 8});

A2.39 M(G2.39, 1, (x, x−1, y, y−1)) is of local type (3.6.4.6), type I, reflexible;
G2.39 = 〈x, y | y3, x4, yx−1yxyx−1, yx−1yxyx−1, x−2yx−2y−1〉 ∼= SL2(3);
M̄ = [(1, 2, 3, 4); (1, 2)(3, 4)] on O(0; {3, 3, 4});

A2.43 M(G2.43, 1, (x, x−1, y, y−1)) is of local type (4.4.4.6), type I, reflexible;
G2.43 = 〈x, y | y4, (x−1y−1)2, (y−1x)2, x6〉 ∼= (C6 × C2) : C2;
M̄ = [(1, 2, 3, 4); (1, 2)(3, 4)] on O(0; {2, 4, 6});
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A2.46 M(G2.46, 1, (z, r, x, s)) is of local type (4.4.4.6), type II, reflexible;
G2.46 = 〈x, y, z, r, s | z, x2, y2, s2, (sx)2, rsxy, r−1srs, (ys)2, (sz−1)2, (zr−1)3〉

∼= D12;
M̄ = [(1, 2, 3, 4)(5, 6, 7, 8); (1, 5)(2, 8)(4, 6)] on O(0; {2, 2, 2, 3});

A2.51 M(G2.51, 1, (x, y, z, r)) is of local type (4.4.4.6), type II, reflexible;
G2.51 = 〈x, y, z, r | x, z2, (yz)2, (rx−1)2, (zr−1)2, (r−1, y−1), (xy−1)3〉 ∼= D12;
M̄ = [(1, 2, 3, 4)(5, 6, 7, 8); (1, 5)(2, 8)(3, 7)(4, 6)] on O(0; {2, 2, 2, 3});

A2.89 M(G2.89, 1, (x, y, y−1, z, z−1)) is of local type (34.8), type I, chiral;
G2.89 = 〈x, y, z | x2, xy−1z−1, z3, y8, zy−2xz−1y−3〉 ∼= GL2(3);
M̄ = [(1, 2, 3, 4, 5); (2, 3)(4, 5)] on O(0; {2, 3, 8});

A2.93 M(G2.93, 1, (x, y, y−1, z, z−1)) is of local type (3.3.4.3.6), type I, chiral;
G2.93 = 〈x, y, z | x2, xy−1z−1, y4, (z−1y)2, z6〉 ∼= (C6 × C2) : C2;
M̄ = [(1, 2, 3, 4, 5); (2, 3)(4, 5)] on O(0; {2, 4, 6});

A2.97 M(G2.97, 1, (z, r, s, s−1, x)) is of local type (3.44), type II, reflexible;
G2.97 = 〈x, y, z, r, s, t | z, x2, y2, yx, s−1t−1, s3, t3, rxs−1, rs−1xz−1, zr−1yt−1〉

∼= C6;
M̄ = [(1, 2, 3, 4, 5)(6, 7, 8, 9, 10); (1, 10)(2, 6)(3, 4)(8, 9)] on O(0; {2, 2, 3, 3});

A2.99 M(G2.99, 1, (x, x−1, y, y−1, z, z−1)) is of local type (35.4), type I, reflexible;
G2.99 = 〈x, y, z | x3, z3, x−1y−1z−1, y4, xy−2zy−1〉 ∼= SL2(3);
M̄ = [(1, 2, 3, 4, 5, 6); (1, 2)(3, 4)(5, 6)] on O(0; {3, 3, 4});

A2.105 M(G2.105, 1, (x, z, z−1, r, y, r−1)) is of local type (34.42), type I, chiral;
G2.105 = 〈x, y, z, r | x2, y2, xz−1r−1, z3, zr−2, xzr, (ry)2, (yx)2, (z−1y)2〉 ∼= D12;
M̄ = [(1, 2, 3, 4, 5, 6); (2, 3)(4, 6)] on O(0; {2, 2, 2, 3});

A2.109 M(G2.109, 1, (z, z−1, r, s, r−1, x)) is of local type(34.42), type II, reflexible;
G2.109 = 〈x, y, z, r, s, t, u | s, x2, y2, yx, tz−1, zur−1,

t3, z3, z−1r−1x, xzu−1, tyu−1, rs−1us〉 ∼= C6;
M̄ = [(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12); (1, 2)(3, 5)(4, 10)(7, 12)(9, 11)] onO(0; {2, 2, 3, 3});

A2.111 M(G2.111, 1, (r, r−1, s, x, y, s−1, z)) is of local type (37), type I, chiral;
G2.111 = 〈x, y, z, r, s | x2, y2, z2, rs−2, r3, r−1s−1z, sxy, zrs, (zx)2〉 ∼= D12;
M̄ = [(1, 2, 3, 4, 5, 6, 7); (1, 2)(3, 6)] on O(0; {2, 2, 2, 3});

A2.114 M(G2.114, 1, (z, z−1, r, s, t, r−1, x)) is of local type (37), type II, reflexible;
G2.114 = 〈x, y, z, v, r, s, t, u | s, x2, y2, yx, uz−1, rs−1t,

st−1v, z3, z−1r−1x, uyv−1, u3, ztr−1, xzt−1〉 ∼= C6;
M̄ = [(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14); (1, 2)(3, 6)(4, 11)(5, 12)(8, 14)(10, 13)]

on O(0; {2, 2, 3, 3});
A2.116 M(G2.116, 1, (z, r, x, s, t, t−1, u)) is of local type (37), type II, reflexible;

G2.116 = 〈x, y, z, v, r, s, t, u | z, x2, y2, xy, tr−1, t−1v−1,
uz−1y, t3, st−1u−1, v3, rys−1, zr−1v−1〉 ∼= C6;

M̄ = [(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14); (1, 12)(2, 9)(4, 8)(5, 6)(7, 14)(10,11)]
on O(0; {2, 2, 3, 3});
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[13] A. Hurwitz, Über algebraische Gebilde mit Eindeutigen Transformationen in sich, Mathe-
matische Annalen 41 (3), (1893), pp. 403–442 MR1510753

[14] J. L. Gross and T. W. Tucker, “Topological graph theory”, Dover Publications Inc., Mineola,
NY, 2001, second edition. MR1855951
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