
COMPUTER 22

PERSPECTIVES

Published by the IEEE Computer Society 0018-9162/11/$26.00 © 2011 IEEE

Platforms, runtimes, and middleware play a vital role in an evolving
mobile computing environment in which the trend is toward converged
communication, where Web resources integrate seamlessly with
mobile systems.

M
obile devices increasingly depend on reliable

software to offer a good user experience. Devel-

oping software in this operating environment

requires many support services,1-3 which are

mainly provided in the middleware layer. Middleware

offers a level of indirection and transparency for applica-

tion developers, who save development cost and time using

standardized or well-known interfaces when designing

their products.

Development time and cost have traditionally been high

for mobile applications and services, which operate in a

more challenging environment than a typical fixed net-

work. The wireless and mobile environment is less stable,

has high latency, limited bandwidth, and many terminal

types. Therefore, a specific implementation is not necessar-

ily usable by all mobile equipment on the market.

Managing high development costs, meeting the chal-

lenges of the wireless network, and supporting device

mobility motivate mobile handset manufacturers and

vendors to provide middleware solutions for easier devel-

opment and a unified user experience in the fragmented

mobile marketplace.4,5

MOBILE MARKETPLACE EVOLUTION
In the 1980s, mobile phones provided only basic voice

services.6 The first generation of mobile applications and

services, introduced around 1991, were restricted by tech-

nology. The two key enablers for application development

were the mobile data connection and the Short Message

Service.

The second generation of mobile applications was

supported by built-in browsers, such as the Wireless Appli-

cation Protocol (WAP) and, more recently, lightweight Web

browsers. This generation also introduced the Multimedia

Messaging Service (MMS) for images, audio, and video.

A more sophisticated environment supports third-

generation applications and services that are built atop a

platform offering services such as location support, content

adaptation, storage, and caching. Platforms supporting

the emergence of third-generation applications include

Symbian Series 60, Java ME, Android, and the iPhone iOS.

Although the fourth generation of applications is still

emerging, we can briefly sketch their anticipated properties

in light of recent proposals in the research and standard-

ization communities. The fourth generation is expected to

Arching over the Mobile Computing
Chasm: Platforms and Runtimes
Sasu Tarkoma and Eemil Lagerspetz, University of Helsinki

23APRIL 2011

(key/value and SQL), can significantly improve current

mobile Web applications. The iPhone platform has good

support for HTML5.

The Session Initiation Protocol (SIP) is a key signaling

protocol in 3G and 4G wireless access networks for ses-

sion management.7 Some platforms expose a SIP API to

developers.

Three platforms are fully open source: Android, Maemo/

MeeGo, and Symbian OS. The platforms have varying sys-

tems for supporting third-party application installation

and execution. Execution of privileged system functions

requires certification or other means of obtaining permis-

sion. The newer platforms are less fragmented, whereas

older systems are invariably fragmented.

Android
The Android operating system and software platform

for mobile devices is based on the Linux operating system.

Android was developed by Google and the Open Handset

Alliance, which includes more than 30 companies. The

platform allows development of managed code using a

Java-like language that follows the Java syntax, but does

not provide the standard class libraries and APIs. Instead,

it uses libraries and APIs developed by Google.

Figure 1 shows the Android architecture. It is based on

the Linux kernel and a set of drivers for the various hard-

ware components, such as display, keypad, audio, and

connectivity. Android includes a set of C/C++ libraries for

use by its various components. The Android application

be adaptive not only in terms of application behavior and

content, but also in the networking stack and wireless

interface. Always-on connectivity, multimode communica-

tions, mesh networking, adaptive network interfaces, and

physical communication media will be important features

of future mobile computing devices.

MOBILE PLATFORMS
Table 1 gives an overview of the different mobile plat-

forms and their properties. C, C++, and Java are currently

the dominant programming languages for mobile devices.

Network scanning and interface control functions, which

have varying levels of support in mobile platforms, are

important when an application needs to monitor and con-

trol the wireless communications. Background processing,

which denotes the platform’s multitasking capabilities, and

energy and power monitoring and control—two important

aspects of mobile platforms—are fairly well supported

across platforms. Both multitasking and energy-man-

agement features vary from system to system. Memory

management and persistent storage are well supported

across the platforms, as is location information.

HTML5, the next version of HTML, is in development.

The first public working draft of the specification was made

available in January 2008, and completion is expected

around 2012. Browser vendors are already implement-

ing HTML5 features as they are defined. Some HTML5

features, including the WebSocket API, advanced forms,

offline application API, and client-side persistent storage

Table 1. Overview of popular smartphone systems.

Property

Android

Linux iPhone OS Java ME MIDP

MeeGo

Linux

Symbian

Series 60

Windows Mobile

.NET and Windows

Phone 7

Development Java, native

code with JNI

and C/C++

Objective-C Java ME C/C++, Qt APIs,

various

C++, Qt, Python,

various

C# and .NET,

Silverlight, various

Network

and energy

monitoring/

control

Several APIs Limited API

support, battery

monitoring since

3.0

No Several APIs,

native calls

Yes Yes (limited in WP7)

Background

processing

Yes (services) No (yes for 4.0) Yes (multitasking

support in MIDP

3.0)

Yes Yes Yes, not supported

for third-party appli-

cations in WP7

HTML5 Yes, support

depends on

version

Yes N/A Yes, support

depends on

version

Yes, future

versions

No, expected in

future versions

SIP API support Yes, support

depends on

version

Extension Extension Yes Yes No, possibly in

future versions

Open source Yes No No Yes Yes No

Third-party

application

installation

Certi�cate,

Android market

Certi�cate,

Apple App Store

Certi�cate Certi�cate Certi�cate Certi�cate, WP7

apps marketplace

COMPUTER 24

PERSPECTIVES

framework APIs expose the capabilities of these libraries

to developers.

The Android runtime executes the custom Java byte-

code. The runtime includes the core libraries and the Dalvik

virtual machine. Atop the libraries and runtime is the appli-

cation framework, which consists of various managers.

Several bundled applications reside atop the managers.

These applications, which include an e-mail client, SMS

program, calendar, maps, browser, and contacts, are all

written in Java. Developers use the same API that the built-

in core applications use. Android emphasizes component

reuse, and any component can publish its capabilities,

which other components can use if security constraints

do not prevent this.

BlackBerry
RIM’s BlackBerry devices are based on a propri-

etary operating system. Version 4 supports Java Mobile

Information Device Profile (MIDP) 2.0 applications and

synchronization with various productivity suites. The com-

munications model is based on enterprise servers that act

as e-mail relays. The servers use RIM’s network operation

center (NOC) to send and receive messages to and from the

mobile devices. Because they use a proprietary NOC, the

servers can implement mobile push efficiently.

iPhone
Apple developed the iPhone mobile operating system,

or iOS, for its iPhone, iPod touch, and iPad products. The

operating system is derived from Mac OS X and uses the

Darwin foundation, built around XNU, a hybrid kernel

combining the Mach 3 microkernel, elements of Berkeley

Software Distribution (BSD) Unix, and an object-oriented

device driver API (I/O kit).

Figure 2 gives an overview of the Mac OS X architecture,

which was adapted for the iPhone architecture. The iPhone

system is built on an ARM processor, and the core operat-

ing system (Darwin) includes the XNU kernel and system

utilities. The XNU kernel includes Posix support, network-

ing and file system support, and the device drivers. Above

the operating system is the layered middleware—namely,

core services, application services, the API layer, and finally

the GUI (Aqua).

Apple provides the SDK as a free download, but requires

approval and payment to release software for the iPhone

platform in the App Store. There, users can browse and

download applications directly to their iPhone, iPod touch,

or iPad. Figure 2 shows the five available APIs: Carbon,

QuickTime, BSD/Posix, Classic, and Cocoa.

Carbon is a procedural API consisting of a file manager,

resource manager, font manager, and event manager. Each

manager offers an API related to some functionality, defin-

ing the necessary data structures and functions. Managers

are often interdependent or layered.

The Posix specifications define crucial operating system

software interfaces and a standard threading library API.

The Classic environment, a backward-compatible hard-

ware and software abstraction layer, is no longer supported

in the current Mac OS version.

Cocoa Touch provides an abstraction layer based on

Cocoa, the native Mac OS X object-oriented application

program environment. Cocoa’s design follows model-view-

control (MVC) principles, and its frameworks are written in

Objective-C. The Cocoa layer supports multitouch events

and controls, and it has an interface for accelerometer input

and support for localization (i18n) and a camera.

Announced in April 2010, version 4.0 of the iOS software

supports multitasking for third-party applications. The key

design principle is to offer APIs for specific background

operations to optimize overall system performance. The

new iPhone multitasking-specific APIs include support for

background audio play, VoIP, location services, task com-

pletion, and fast application switching. For example, VoIP

applications will be able to receive calls in the background.

The APIs also support third-party push servers for sending

notifications to applications.

The iPhone SDK supports the development of three types

of applications—iPhone, iPad, and universal applications. A

universal application determines the device type and then

uses the available features based on conditional statements.

Java ME
Java Platform, Micro Edition (Java ME, previously J2ME),

specifies a standardized collection of Java APIs for develop-

ing software for small and resource-constrained devices.

Target applications include consumer devices, home appli-

APPLICATION

APPLICATION FRAMEWORK

LINUX KERNEL

ANDROID RUNTIMELIBRARIES

Home Contacts Phone Browser

Activity
manager

Window
manager

Content
providers

View
system

Notification
manager

Package
manager

Telephony
manager

Resource
manager

Location
manager

Keypad
driver

Display
driver

Wi-Fi
driver

Camera
driver

Audio
drivers

Flash memory
driver

Power
management

Binder (IPC)
driver

Surface
manager

Open
GL/ES

SGL

Media
framework

FreeType

SSL

SQLite

WebKit

IIbc

Core
libraries

Dalvik virtual
machine

—

Figure 1. The Android architecture and its key components.

Android is based on the Linux kernel and includes a set of C/C++

libraries, which are used by its various components.

25APRIL 2011

ances, security, defense, automotive, industrial, industrial

control, and multimedia. Since December 2006, the Java

ME source code has been licensed under the GNU general

public license.

A Java ME configuration specifies the virtual machine

and the core libraries. There are two main configurations:

•	 the connected device configuration (CDC) for high-end

PDAs, and

•	 the connected limited device configuration (CLDC) for

mobile phones and other small devices.

Device manufacturers augment the configurations with

profiles, which define additional APIs. The most common

profile is the MIDP, aimed at mobile phones. The Personal

Profile targets consumer products and embedded devices.

The Java ME platform’s Mobile Service Architecture

(MSA) specification (Java Specification Request [JSR] 248)

defines a standard set of application functionalities for

mobile devices, covering interactions between various

technologies associated with the MIDP and CLDC speci-

fications. An MSA version 2 device can use either CLDC

1.1 or CDC 1.1 as its configuration. The MIDlet execution

environment is extended to CDC.

Java ME is evolving into a versatile platform for mobile

application development. The introduction of MSA2 and

various JSRs has gradually removed the early restrictions

with MIDP applications and won growing vendor support.

Moreover, MIDP version 3 addresses software portability

challenges between CLDC and CDC.

Kindle SDK
Amazon offers a Kindle SDK for developing Java-based

active applications for Kindle e-book readers. The Kindle

SDK is based on the Java ME Personal Basis Profile and

Kindle-specific extensions. The APIs support a basic user

interface, networking, and limited secure storage on the

device.

Maemo and MeeGo
Nokia’s Maemo platform includes the Internet Tablet

OS, which is based on Debian GNU/Linux and draws much

of its GUI, frameworks, and libraries from the GNU Object

Model Environment (Gnome) project. It uses the Matchbox

window manager and, like Ubuntu Mobile, uses the GTK-

based Hildon as its GUI and application framework. The

Maemo platform is intended for Internet tablets, which are

smaller than laptops but larger and more versatile than

PDAs. A tablet might have a small keyboard, and its cen-

tral characteristics include a stylus and a touch-sensitive

screen. The touch screen is an important consideration for

developers when designing graphical interfaces.

The latest development combines Nokia’s Maemo plat-

form with Intel’s Moblin to form the MeeGo system. Both

the Maemo and Moblin applications were developed with

the GTK framework. However, Nokia’s Qt framework has

replaced GTK. MeeGo is expected to run on both Atom and

ARM processors and to support both netbooks and mobile

phones. MeeGo applications are written in C++ using the

MeeGo SDK, which includes Qt. In February 2011, Nokia

announced that its future smartphones will be based on

the Windows Phone 7 platform.

The MeeGo architecture includes a hardware abstraction

layer (HAL), an operating system base (Linux kernel, X),

middleware, and user-experience-related functions. The

lowest HAL layer, provided by the device vendor, includes

kernel drivers and patches, kernel configuration, modem

support, and other software related to the underlying

hardware. MeeGo includes a set of components called the

content framework to gather and offer user metadata to

application developers.

Qt is a cross-platform application framework designed

for building GUI applications. It provides the basic APIs

for GUIs, databases, XML, and networking, and includes a

WebKit-based Web runtime. The Qt platform is available for

several systems, including Windows, Mac OS, Linux, Sym-

bian, and Windows CE. The Qt API is implemented in C++,

which most developers use. Currently, developers can only

use C++ to create Symbian applications, although other

language bindings are available for other platforms. The

Qt platform is currently being extended to support device-

specific APIs pertaining to location, calendars, alarms,

sensors, and so on.

Hardware

GUI (”Aqua”)

API

Quartz OpenGL PrintCore …

Application services

Core services

Core foundation Core services
Non-GUI
API…

System utilities

Kernel (xnu)

File systems

Networking NKE

Posix

Core OS (”Darwin”)

Carbon Quick-
Time

BSD Classic Cocoa

I/O kit Drivers

Figure 2. iPhone architecture and its main components. The

architecture uses the Darwin operating system, which includes

the XNU kernel and system utilities.

COMPUTER 26

PERSPECTIVES

HP WebOS
HP’s WebOS, originally developed by Palm, runs on

the Linux kernel. The mobile runtime system includes

a WebKit-based browser, and applications are written

in JavaScript. The WebOS follows the cloud-based ser-

vice model. The JavaScript-based application framework,

called Mojo, provides common functions pertaining to

user interfaces, widgets, and data access. A typical WebOS

application uses HTML5 for presentation and audio/video.

Developers create the applications using the MVC architec-

tural pattern to separate user experience concerns from the

application’s data model and storage.

The WebOS is based on a scene metaphor in which an

application consists of a set of scenes that facilitate pre-

sentation and user interaction. Scenes are pushed into and

popped out of a scene stack. The top scene in the stack is

visible to the user. The execution framework activates and

deactivates the scenes. The scenes and applications use

asynchronous notifications (W3C document object model

events) to signal changes.

Symbian and Series 60
Symbian’s open mobile operating system is designed

for ARM processors. The system includes a microkernel

operating system, associated libraries, a user interface, and

a reference implementation of common tools. Like many

desktop operating systems, Symbian is structured with

preemptive multitasking and memory protection. The multi-

tasking model features server-based asynchronous access

based on event passing. Three design goals motivated the

choice of servers, microkernel design, and event passing:

•	 minimizing response times to users,

•	 maximizing integrity and security, and

•	 utilizing scarce resources efficiently.

Nokia acquired ownership of Symbian in 2008 and

established the Symbian Foundation to provide royalty-

free software for the mobile environment. The Symbian

operating system was open sourced in 2010.

The base services layer is the lowest level reachable by

user-side operations. It includes the file server and user

library; the plug-in framework, which manages all plug-ins;

a store; a central repository; a DBMS; and cryptographic ser-

vices. The base services layer provides basic connectivity

and serial communications as well as telephony. The com-

munications infrastructure was developed on this layer,

with two prominent networking stacks—TCP/IP and WAP.

The Web and WAP browsers are available for the respective

protocol stacks. The Symbian Web runtime is based on the

WebKit system. The Java runtime and JavaPhone are avail-

able for applications.

The Symbian operating system’s native language is C++,

but the language is not compatible with ANSI C++. The oper-

ating system and applications are based on the MVC design

pattern, which supports the separation of functions. The

Symbian operating system emphasizes resource recovery

using several programming features, such as a cleanup

stack and descriptors. The operating system’s event-based

nature allows the minimization of thread switching using

active objects that support asynchronous processing by

encapsulating service request and request completion

processing. In addition to C++ native applications, wid-

gets are supported through the Nokia Web Runtime (WRT)

widgets. The WRT environment follows the W3C widgets

specification and allows widget installation and execution.

The widgets can access device-specific features using the

JavaScript Platform Services 2.0 API.

Windows Mobile and
.NET Compact Framework

Microsoft released Windows Mobile 6 at the 3GSM World

Congress in 2007. It comes in a standard version for smart-

phones, a version for PDAs with phone functionality, and a

classic version for PDAs without phone features. Windows

Mobile 6 is based on the Windows CE 5.0 operating system

and integrates with Windows Live and Exchange products.

Software development for the platform typically uses Visual

C++ or the .NET compact framework. When native client-

side functionality is not needed, software developers can

use server-side code that is deployed on a mobile browser,

such as Internet Explorer Mobile bundled with Windows

Mobile.

The next version is the Windows Phone 7 Series (WP7)

announced at the 2010 Mobile World Congress. WP7

focuses on user experience and does not support third-

party software multitasking.

CURRENT STATE
The current platform landscape is heterogeneous, with

several operating systems, programming languages, and

interfaces in use, resulting in complex mobile software

development and testing processes. A mobile platform must

be flexible and extensible not only in the distributed envi-

ronment but also in the local environment. The current

and emerging platforms are still limited in this respect.

For example, because third-party developers cannot easily

extend Java ME MIDP, iPhone, or Android APIs, it is easier

to extend and modify functionality at the server side than

to modify the client.

A mobile platform must be flexible
and extensible not only in the
distributed environment but also
in the local environment.

27APRIL 2011

The convergence of mobile and traditional IT fields

has led to the increasing use of Web technologies in the

development and deployment of mobile applications. The

current Web technologies are suitable for mobile applica-

tions that conform to the Web’s request/reply interaction

style. However, in many cases Web protocols do not directly

work well with mobile and wireless links. Indeed, asyn-

chronous operation would be particularly useful in mobile

applications that must react to changes in the environment.

Support for adaptive operation is an important trend

in mobile applications and services. Adaptation can be

realized in many ways—for example, on client devices

or servers, using proxies and gateways, and through col-

laboration of the different entities, including services and

software. Context awareness also introduces new chal-

lenges, such as context acquisition, privacy, and software

testing and quality assurance. Testing adaptive and con-

text-aware behavior requires new kinds of solutions and

methods for ensuring that software is working properly

and that it generates the desired user experience. Unfor-

tunately, universal device and service discovery is still not

available for developers. The current trend in developing

adaptive applications is to use both Web technology and

platform-specific APIs.

Thus, the current state leaves much room for improve-

ment. No common APIs for network scanning and selection

or network interface control exist. Background processing

is supported on most platforms, but not all. Application-

level energy awareness is far from ubiquitous. However,

memory management, persistent storage, and location

information are widely supported.

The marketplace has a clear need for a common API

that unifies network connectivity, energy awareness, and

the user experience. This should take a form that is easy

to deploy on existing devices and most software stacks.

TOWARD COMMON APIS
One solution to the current challenge of fragmented

device base and development tools is to provide common

APIs for service and application developers. Indeed, both

device manufacturers and telecom operators are actively

involved in various API development and standardization

efforts.

One key aspect is the development language and envi-

ronment. Although recent experimental results suggest

that JavaScript-based application platforms can be executed

on Web browsers, several practical challenges pertaining

to performance and browser limitations remain.8 One chal-

lenge is determining how to allow a Web-based application

to access local system variables, such as context variables.

Security and privacy are paramount.

Web runtimes therefore must provide access to client-

side platform APIs, such as the file system, geolocation,

or camera. Previously, these APIs were exclusive to native

applications. The industry is focusing on JavaScript and

URL-based APIs to solve the API fragmentation problem.

At least in theory, JavaScript APIs should be accessible to

any content rendered by the Web runtime.

The Open Mobile Alliance, a key mobile standardiza-

tion organization, bases its browsing specifications on

Internet technology, but limits profiles for constrained

resources and user interfaces of mobile devices. The GSM

Association’s OneAPI initiative aims to define a commonly

supported API for mobile operators exposing network

information to Web application developers.

The Open Mobile Terminal Platform group is pursuing

a standardization activity that defines requirements and

specifications for simpler and more interoperable mobile

APIs.

CHALLENGES
Mobile computing and software development face

several important challenges. A key problem is fragmen-

tation, which can occur on multiple layers and dimensions

(the operating system, platform and middleware, service

API layers, and so on). Currently, the available operating

systems and platforms have differing programming con-

ventions, interfaces, and software distribution solutions.

This increases software development costs and slows down

the software ecosystem.

In addition to fragmentation, the nature of the APIs and

the features of the underlying platform they expose differ

widely. Most systems expose certain underlying system

features, some requiring authorization to access. For exam-

ple, access to context information and networking services

varies from system to system.

An asynchronous system-wide event bus is a basic solu-

tion for interconnecting various on-device components;

however, there is no single standard for this. For example,

Android and Java ME use Java-specific events, MeeGo uses

D-Bus, and HP’s WebOS uses W3C events. One trend is to

use URI-based conventions for naming system resources

and services. This approach is used extensively in Nokia

Platform Services, WebOS, and other runtimes. An alter-

native, albeit more radical, solution to fragmentation is to

use virtualization to execute the entire mobile application

software stack.9

Energy consumption is one of the greatest challenges

for current mobile devices. Energy and power continue

The marketplace has a clear need for
a common API that unifies network
connectivity, energy awareness, and
the user experience.

COMPUTER 28

PERSPECTIVES

to remain the most limiting factors for the performance

of mobile computing systems. Battery capacity does

not increase as fast as the requirements. Internet and

Web 2.0 services, in particular, consume vast amounts

of energy, resulting in short battery lifetimes and,

ultimately, poor user experiences. Current research

challenges include how to support energy accounting

and execute applications across mobile devices and

cloud-based systems.10

A
considerable amount of R&D has gone into solu-

tions for different kinds of mobile and pervasive

environments that support a wide variety of appli-

cations. However, the solution landscape is still

fragmented. The next step to realizing the visions of perva-

sive computing is to support access to context information

and enable more intelligent information processing on

client devices.

Given that there are more than 3 billion mobile devices

on the market today, with projections indicating that the

number will approach 5 billion in the near future, the pros-

pects for mobile applications, services, and middleware

appear promising. Handling such a large number of users

with widely divergent device types and characteristics

necessitates developing interoperable and high-perfor-

mance platforms as well as a highly scalable and available

fixed infrastructure.

One step toward extensibility and universality is

to employ a common interoperable message bus that

supports component discovery, capability negotiation,

and communications. Researchers have proposed mes-

sage passing, publish-subscribe,11 and tuple spaces as

key components for mobile and pervasive software,

but these ideas have not yet found their way into prod-

ucts and standardization. HTTP and runtime-specific

APIs or local sockets are still the common denomina-

tor for communications and for enabling intradevice

communications.

Although it has not yet been adopted on a large scale in

the mobile marketplace, the HTML5 specification offers

one approach for providing persistent storage and a satis-

factory user experience. The iPhone iOS is pioneering the

use of HTML5. It remains to be seen how fast other mobile

platforms adopt this new specification. HTML5 in combi-

nation with custom JavaScript APIs would open a world

of possibilities for developing portable and cloud-assisted

mobile software.

Another approach is to use virtualization techniques to

support multiple operating systems and platforms on the

same hardware, possibly at the same time. Organizations

could also use virtualization to enhance system secu-

rity. This is a future technology still maturing for mobile

devices.9

References

 1. M. Weiser, “Ubiquitous Computing,” Computer, Oct.

1993, pp. 71-72.

 2. A.K. Dey, “Understanding and Using Context,” Per-

sonal Ubiquitous Computing, vol. 5, no. 1, 2001, pp.

4-7.

 3. K. Raatikainen, H.B. Christensen, and T. Nakajima,

“Application Requirements for Middleware for Mobile

and Pervasive Systems,” ACM SIGMobile Mobile Com-

puting and Comm. Rev., vol. 6, no. 4, 2002, pp. 16-24.

 4. S. Tarkoma, ed., Mobile Middleware: Architectures,

Patterns, and Practice, John Wiley & Sons, 2009.

 5. E. Oliver, “A Survey of Platforms for Mobile Networks

Research,” ACM SIGMobile Mobile Computing and

Comm. Rev., vol. 12, no. 4, 2008, pp. 56-63.

 6. K.M. Dombroviak and R. Ramnath, “A Taxonomy of

Mobile and Pervasive Applications,” Proc. ACM Symp.

Applied Computing (SAC 07), ACM Press, 2007, pp.

1609-1615.

 7. H. Schulzrinne and E. Wedlund, “Application-Layer

Mobility Using SIP,” ACM SIGMobile Mobile Computing

Comm. Rev., vol. 4, no. 3, 2000, pp. 47-57.

 8. T. Mikkonen and A. Taivalsaari, “Creating a Mobile

Web Application Platform: The Lively Kernel Experi-

ences,” Proc. ACM Symp. Applied Computing (SAC 09),

ACM Press, 2009, pp. 177-184.

 9. L. Rudolph, “A Virtualization Infrastructure that

Supports Pervasive Computing,” IEEE Pervasive Com-

puting, vol. 8, no. 4, 2009, pp. 8-13.

 10. E. Cuervo et al., “MAUI: Making Smartphones Last

Longer with Code Offload,” Proc. Int’l Symp. Mobile

Systems, Applications, and Services (MobiSys 10), ACM

Press, 2010, pp. 49-62.

 11. P.T. Eugster et al., “The Many Faces of Publish/Sub-

scribe,” ACM Computing Surveys, vol. 35, no. 2, 2003,

pp. 114-131.

Sasu Tarkoma is a full professor in the Department of Com-

puter Science at the University of Helsinki. His research

interests include mobile computing and Internet technology.

He received a PhD in computer science from the University

of Helsinki. Tarkoma is affiliated with the Nokia Research

Center and Aalto University. Contact him at sasu.tarkoma@

cs.helsinki.fi.

Eemil Lagerspetz is a researcher at the Helsinki Institute

for Information Technology and a PhD student at the Uni-

versity of Helsinki. His research interests include mobile

data management and data communications. Lagerspetz

received an MSc in computer science from the University

of Helsinki. Contact him at eemil.lagerspetz@cs.helsinki.fi.

 Selected CS articles and columns are available for free

 at http://ComputingNow.computer.org.

