Architecting Families of Software Systems with
Process Algebras

MARCO BERNARDO

University of Urbino - Italy

and

PAOLO CIANCARINI and LORENZO DONATIELLO
University of Bologna - Italy

Software components can give rise to several kinds of architectural mismatches when assembled
together in order to form a software system. A formal description of the architecture of the
resulting component based software system may help to detect such architectural mismatches
and to single out the components that cause the mismatches. In this paper we concentrate on
deadlock related architectural mismatches arising from three different causes that we identify:
incompatibility between two components due to a single interaction, incompatibility between two
components due to the combination of several interactions, and lack of interoperability among a
set of components forming a cyclic topology. We develop a process algebra based architectural
description language called PADL, which deals with all the three causes through an architectural
compatibility check and an architectural interoperability check relying on standard observational
equivalences. The adequacy of the architectural compatibility check is assessed on a compressing
proxy system, while the adequacy of the architectural interoperability check is assessed on a
cruise control system. We then address the issue of scaling the architectural compatibility and
interoperability checks to architectural styles through an extension of PADL. The formalization
of an architectural style is complicated by the presence of two degrees of freedom within the set
of instances of the style: variability of the internal behavior of the components and variability
of the topology formed by the components. As a first step towards the solution of the problem,
we propose an intermediate abstraction called architectural type, whose instances differ only for
the internal behavior of their components. We define an efficient architectural conformity check
based on a standard observational equivalence to verify whether an architecture is an instance of
an architectural type. We show that all the architectures conforming to the same architectural
type possess the same compatibility and interoperability properties.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation—jformal methods; D.2.11 [Software Engineering]: Software Architectures—languages;
patterns

General Terms: Design, Languages, Verification
Additional Key Words and Phrases: Architectural mismatch detection, architectural styles, pro-
cess algebras, software architectures

Authors address: M. Bernardo, Univ. di Urbino, Ist. di Scienze e Tecnologie dell’Informazione,
Piazza della Repubblica 13, 61029 Urbino, Italy; P. Ciancarini and L. Donatiello, Univ. di Bologna,
Dip. di Scienze dell’'Informazione, Mura A. Zamboni 7, 40127 Bologna, Italy.

This work has been supported by Progetto MURST Cofinanziato “Saladin”.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY /0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-40.

2 . Marco Bernardo et al.

1. INTRODUCTION

As recognized a long time ago, structuring a large collection of software compo-
nents to form a software system is an essentially distinct and different intellectual
activity from that of constructing the individual software components [DeRemer
and Kron 1976]. The software architecture level of design enables us to cope with
the increasing size and complexity of the component based software systems during
the early stage of their development [Perry and Wolf 1992; Shaw and Garlan 1996].
To achieve this, the design focus is turned from algorithmic and data structure re-
lated issues to the overall architecture of a software system, where the architecture
is meant to be a collection of computational components together with a descrip-
tion of their interactions. As software architecture emerges as a discipline within
software engineering, it becomes increasingly important to support architectural
development with languages and tools. It is widely recognized that suitable ar-
chitectural description languages (ADLs) should be devised to formalize software
architectures instead of using informal box-and-line diagrams, and companion tools
should be implemented to support the automatic analysis of architectural proper-
ties in order to allow the designer to make principled choices. Among the formal
method based ADLs appeared in the literature, we mention those relying on process
algebras [Allen and Garlan 1997; Magee et al. 1995], Z [Abowd et al. 1995], and
the CHAM [Inverardi and Wolf 1995].

The formal description of the software architecture of a complex system serves two
purposes. First and foremost is making available a precise document describing the
structure of the system to all the people involved in the design, implementation, and
maintainance of the system itself. The second one is concerned with the possibility
of analyzing the properties of the system at the architectural level. This allows for
the early detection of errors, thus resulting in time and money saving. This paper
is about the latter purpose.

Nowadays software systems are typically made out of numerous components
whose behavior is individually well known. Typical examples are embedded sys-
tems and web centered applications. Thus, the main problem faced by a software
designer is that of understanding whether the components fit together well. If
the architecture of a software system is given a formal description, then adequate
techniques can hopefully be used to prove the well formedness of the system or
to single out the components responsible for architectural mismatches. There are
different kinds of architectural mismatches. A typical example is deadlock: starting
from deadlock free components, the designer constructs a system that can dead-
lock. This example is just an instance of a more general architectural mismatch:
starting from components satisfying a property P, the designer constructs a system
that does not satisfy P. As another example, we mention architectural mismatches
arising in case of underspecification: starting from components some of which have
a behavior that partially depends on the interactions with other components, the
designer ends up with a system whose behavior is not fully specified. In this paper
we concentrate on deadlock related architectural mismatches.

There are many causes of architectural mismatches that lead to a system block. In
this paper we examine the following three causes: (1) incompatibility between two
components due to a single interaction, (2) incompatibility between two components

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 3

due to the combination of several interactions, and (3) lack of interoperability
among a set of components forming a cyclic topology. The contribution of this paper
is to develop a suitable formal framework in which all the three causes above of
deadlock related architectural mismatches are dealt with through standard analysis
techniques. Since component based software systems are considered, we develop an
ADL called PADL that allows compositional specifications to be written through
a process algebra and provides the designer with powerful means like observational
equivalences [Milner 1989].

Cause (1) is the simplest example of deadlock related architectural mismatch:
for instance, a deadlock free component that wants to send data to another dead-
lock free component not willing to accept data from the first component. This
kind of architectural mismatch is considered in the process algebraic framework of
Wright [Allen and Garlan 1997]. The designer using Wright is required to specify
the ports of each component and the roles of each component connector. A port
represents the behavior of a component w.r.t. an interaction through a connector,
while the roles of a connector describe the expected interactions of each component
attached to the connector. Given a connector and the set of components attached
to it, all the pairs of corresponding ports and roles are verified to be compatible,
which ensures a deadlock free interaction of the set of components through that
connector provided that a constraint on the overall interaction of the roles of the
connector is satisfied. In [Inverardi et al. 2000] it is argued that the presence of
deadlock related architectural mismatches should not be checked at the port/role
level only but also at the component level and should be carried out efficiently. The
reason is that the internal (as opposed to interactional or observable) behavior of
a component may correlate different interactions of the component itself in such a
way that the system blocks (cause (2)). As an example, in [Inverardi et al. 2000]
a compressing proxy system is considered, whose deadlock free gzip component in-
teracts properly with the rest of the system as long as its input flow interaction
and its output flow interaction are examined separately. However, since the gzip
component can autonomously decide to start sending compressed data before hav-
ing received all the data to be compressed, a deadlock is detected when examining
the two flows together w.r.t. the rest of the system. This kind of architectural
mismatch is dealt with in [Inverardi et al. 2000; Inverardi and Uchitel 2001] by ex-
tracting from each component description its actual behavior and its assumptions
about the behavior of the rest of the system. An algorithm based on a variant
of an observational equivalence is then defined that tries to match each assumed
behavior with a sequence of actual behaviors. If the algorithm succeeds, the set of
interacting components is deadlock free. In PADL we treat cause (1) and (2) by
means of an architectural compatibility check based on a standard observational
equivalence. Given the set of components interacting through a given deadlock free
component K of a software system, the architectural compatibility check ensures
that the overall interaction of those components is deadlock free provided that, for
each component interacting through K, a certain observational equivalence based
condition involving only the component and K is satisfied. Additionally, the ar-
chitectural compatibility check scales to the whole architecture in case of acyclic
topology. This architectural compatibility check, which subsumes the compatibil-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 . Marco Bernardo et al.

ity check of [Allen and Garlan 1997] and equals the effectiveness of the algorithm
of [Inverardi et al. 2000; Inverardi and Uchitel 2001], thus bringing different tech-
niques into a uniform framework using standard machinery, is both efficient, as it
avoids the construction of the state space of the overall interaction, and helpful in
case of mismatch detection, as it allows the source of the mismatch to be singled
out.

As far as cause (3) is concerned, we observe that the deadlock related architectural
mismatches should not be checked only between pairs of interacting components
but also among sets of interacting components that form a cycle. The reason is
that in such a scenario each pair composed of two interacting components could be
well formed, while the global interaction might not be. In terms of the algorithm
of [Inverardi et al. 2000; Inverardi and Uchitel 2001], the interactions within the
sequence of actual behaviors matching an assumed behavior should be taken into
account as well. As an example of this kind of mismatch, let us elaborate on the
guest analogy of [Inverardi et al. 2000]. Here we have three deadlock free compo-
nents: the guest, the host, and the waiter. When arriving at the party, the guest
expects to be welcome by the host and to be asked whether (s)he wants an orange
juice or a pineapple juice. The guest then expects that the host tells the waiter
what the desired drink is and that the waiter brings that drink. Suppose that the
interactions within the pairs of components are correct, but assume that the host
has bad memory or is a malicious person and can thus tell the waiter to bring to the
guest a drink different from the desired one. It is clear that the three components
do not interoperate correctly when considered collectively. PADL comes equipped
with an architectural interoperability check that (like the architectural compatibil-
ity check for acyclic topologies) is based on a standard observational equivalence.
The architectural interoperability check guarantees the absence of deadlock for sets
of interacting components that form a cyclic topology provided that there is at
least one deadlock free component in the cycle that satisfies a certain observational
equivalence based condition (different from the one for the architectural compati-
bility check). An important property of the architectural interoperability check is
that, in case of mismatch detection, the temporal logic based diagnostic informa-
tion associated with an equivalence checking failure can be exploited during the
application of a procedure to identify the source of the mismatch in the cycle.

Finally, we address the issue of scaling the architectural compatibility and in-
teroperability checks to architectural styles through an extension of PADL. Archi-
tectural styles [Shaw and Garlan 1996] are organizational patterns that have been
developed over the years as designers recognized the value of specific organizational
principles and structures for certain classes of software. The aim is to capitalize
on codified principles and experience to specify, analyze, plan, and monitor the
construction of complex software systems with high levels of efficiency and confi-
dence. As examples of architectural styles we have client-server systems, pipe-filter
organizations, layered architectures, and so on. An architectural style defines a
family of software systems having a common vocabulary of components as well as a
common topology and set of contraints on the interactions among the components.
Since an architectural style encompasses an entire family of software systems, it
is desirable to formalize the concept of architectural style both to have a precise

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 5

definition of the system family and to study the architectural properties common
to all the systems of the family. The formalization of an architectural style is com-
plicated by the presence of two degrees of freedom within the set of instances of
the style: variability of the internal behavior of the components and variability of
the topology formed by the components. As a first step towards the solution of the
problem, we propose an intermediate abstraction called architectural type, whose
instances differ only for the internal behavior of their components, while sharing
the same topology. We define an efficient architectural conformity check based on a
standard obervational equivalence to verify whether an architecture is an instance
of an architectural type. We show that all the architectures conforming to the same
architectural type possess the same compatibility and interoperability properties.

This paper, which is an extended and revised version of [Bernardo et al. 2000;
2001], is organized as follows. In Sect. 2 we recall some notions about process
algebras and observational equivalences that are used in the rest of the paper.
In Sect. 3 we present the textual and graphical notation for PADL as well as its
semantics defined by translation into process algebra. In Sect. 4 we introduce
the architectural compatibility check and we assess its adequacy on a compressing
proxy system. In Sect. 5 we describe the architectural interoperability check and
we assess its adequacy on a cruise control system. In Sect. 6 we propose the
concept of architectural type, we provide the architectural conformity check, and we
demonstrate the scalability of the architectural compatibility and interoperability
checks. Finally, in Sect. 7 we report some concluding remarks about future work,
while comparisons with related work are performed in every section.

2. PROCESS ALGEBRAS

Process algebras [Milner 1989; Hoare 1985] are algebraic languages that support the
compositional description of concurrent and distributed systems and the formal
verification of their properties. In this section we recall the basic notions about
syntax, semantics, and observational equivalences for process algebras that will be
used in the rest of the paper.

2.1 Syntax and Operational Semantics

The basic elements of any process algebra are its actions, which represent activities
carried out by the systems being modeled, and its operators (among which a parallel
composition operator), which are used to compose process algebraic descriptions.

Definition 2.1. The set of process terms of the process algebra PA ! we consider
in this paper is generated by the following syntax
E:=0|aE|E/L|E[¢]|E+FE|FE|sE|A
where a belongs to a set Act of actions including a distinguished action 7 for
unobservable activities, L,S C Act — {7}, ¢ belongs to a set ARFun of action
relabeling functions preserving observability (i.e., ¢ ~1(7) = {7}), and A4 belongs to
a set Const of constants each possessing a (possibly recursive) defining equation of

the form A = E. []

LA mix of CCS [Milner 1989] and CSP [Hoare 1985], which is the functional kernel of the stochastic
process algebra EMPAg, [Bravetti and Bernardo 2000].

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 . Marco Bernardo et al.

Table I. Operational semantics for PA

a
all—— F

E— . F E— L E
ifa¢ L ———— ifa€eL

E/L ——E'/L E/L——E/L

a
E——FE'
ea)
Elp] — E'[¢]
a a
E,——FE' Ey —— E'

By + By — B B+ By — B

a a
E1 — Ef Ey —— FE}

ifa¢ S ifa¢s

a a
E1||ls B2 —— E ||s E2 Eil|ls B2 —— E1 |5 Ej

By —— B, By—— B

= ifa€e S
Eil|ls B2 —— E} ||s E

E-L.F A
" Al E

a
A——FE'

In the syntax above, the null term “0” is the term that cannot execute any
action. The action prefix operator “a..” denotes the sequential composition of
an action and a term: term a.F can execute action a and then behaves as term
E. The hiding operator “_/L” makes some of the executed actions unobservable:
term E/L behaves as term F with each executed action a turned into 7 whenever
a € L. The relabeling operator “_[¢]” changes the executed actions: term FE[p]
behaves as term E with each executed action a turned into ¢(a). The alternative
composition operator “_4_” expresses a nondeterministic choice between two terms:
term F; + E5 behaves as either term F; or term FE5 depending on whether an
action of F; or an action of Fs is executed. The parallel composition operator
“_|ls 7 expresses the concurrent execution of two terms according to the following
synchronization discipline: two (observable) actions can synchronize iff they belong
to the synchronization set S and are equal. Term Fj || B asynchronously executes
actions of Fj or F5 not belonging to S and synchronously executes actions of F; and
E5 meeting the requirement above. The action prefix operator and the alternative
composition operator are called dynamic operators, whereas the hiding operator,
the relabeling operator, and the parallel composition operator are called static
operators. A term is called sequential if it is composed of dynamic operators only.

The semantics for PA is defined in the standard operational style by means of
a set of axioms and inference rules, which formalize the meaning of each operator.
The result of the application of the operational semantic rules is a state transition

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 7

graph, where states are in correspondence with process terms and transitions are
labeled with actions. In order to get as usual finitely branching state transition
graphs, we restrict ourselves to closed and guarded terms, i.e. we require that every
constant has exactly one defining equation and every constant occurrence is within
the scope of an action prefix operator. The operational semantics for the closed and
guarded terms of PA is shown in Table I. As an example, the first rule for the hiding
operator means that, if the current state is £/L and E is capable of performing an
action a ¢ L thus evolving into E’, then E/L is capable of performing the same
action a thus evolving into E’'/L. The other rules must be read in the same way.
In particular, note that in the third rule for the parallel composition operator the
action resulting from the synchronization of two a actions is still a. This means
that multiway synchronizations are permitted.

2.2 Observational Equivalences

Due to their algebraic nature, process description languages like PA naturally lend
themselves to the definition of equivalences and preorders. In particular, in the con-
currency theory literature several notions of equivalence can be found, which relate
terms according to a certain interpretation of their behavior (see [van Glabbeek
2001] for a survey).

Here we recall the weak bisimulation equivalence [Milner 1989], which captures
the ability of two terms to simulate each other’s behaviors up to 7 actions, i.e. when
abstracting from internal details. Before introducing it, we generalize the transition
relation —— labeled with actions to the transition relation =—= labeled with
sequences of actions

ay an
L

|

with e denoting the empty sequence and == being the identity relation over pro-
cess terms. Moreover, if o is a sequence over Act, let 6 denote the sequence over
Act — {7} obtained from ¢ by removing all the occurring 7 actions. Finally, we use

= T g T
with m,n € N, to indicate the execution of an action sequence o possibly preceded
and followed by the execution of arbitrarily many unobservable actions.

Definition 2.2. A binary relation B over PA is a weak bisimulation iff, whenever
(E1, E2) € B, then for all a € Act: 2

—whenever By —— E1, then Ey = E}, and (E}, E}) € B for some Ej;

—whenever Ey —— El, then Fy = F} and (E1, E}) € B for some Ej.

The union of all the weak bisimulations, denoted by =g, is called the weak bisim-
ulation equivalence.]

~p enjoys several algebraic properties w.r.t. the dynamic operators. Although such
properties are not explicitly used in the rest of the paper, their are reported below
to show the ability of ~p to abstract from 7 actions, which makes ~p well suited
to reason on projections (obtained through the hiding operator) of the behavior of

?Note that @ = a for a # 7, a4 =€ for a = 7.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 . Marco Bernardo et al.

system components:

(E1+ E>) + E3 Ei + (Ey + E3)

~B
B+ Es =g F> + Fy
E+0 =5 F
FEF+F B E
T.F ~B FE
a.1.F =~ a.F
E+71FE =~ 7.F
a.(E1 —|—T.E2) + a.E2 =~ Cl.(El + T.Eg)

Furthermore, ~p is a congruence w.r.t. the static operators. This means that the
observable behavior of a term does not change if we replace a subterm with a
weakly bisimulation equivalent term in the context of a static operator. Formally,
if El ~B E2 then

E1 /L ~B EQ/L

Erlp] =B Es[y]

Ey|sE ~p E2|sE

This property, together with the fact that ~p never equates a deadlocked term to
a deadlock free term, is essential to prove the deadlock freedom results contained
in this paper.

Definition 2.3. A term FE is said to be deadlock free iff for each state s of its
underlying state transition graph there exist an observable action a and a state s’
a

such that s = ¢'. []

3. A PROCESS ALGEBRA BASED ADL

In this section we present the syntax and the semantics for PADL, an ADL based
on PA for the compositional and hierarchical modeling of architectural types. In
this section we concentrate on the description of a single software architecture,
deferring to Sect. 6 the detailed explanation of the concept of architectural type
and the related notion of conformity of a software architecture to an architectural
type. Throughout this section, we consider a pipe-filter system to exemplify the
features of PADL.

3.1 Textual Notation

A description in PADL represents an architectural type, which we view as a sin-
gle software architecture instead of a family of software architectures for the time
being. As shown in Table II, each architectural type is defined as a function of
its architectural element types (AETS) and its architectural topology. An AET is
defined as a function of its behavior, specified as a family of sequential PA terms,
and its interactions, specified as a set of PA actions occurring in the behavior that
act as interfaces for the AET. The architectural topology is specified through the
declaration of a set of architectural element instances (AEIs) representing the soft-
ware components, a set of architectural (as opposed to local) interactions given by
some interactions of the AEIs that act as interfaces for the whole architectural type,
and a set of directed architectural attachments among the interactions of the AEIs.
Every interaction is declared to be an input interaction or an output interaction
and the attachments must respect such a classification: every attachment must

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 9

Table II. Structure of a PADL textual description

archi_type (name)
archi_elem_types (architectural element types: behaviors and
interactions)
archi_topology
archi_elem_instances (architectural element instances)
archi_interactions (architectural interactions)
archi_attachments (architectural attachments)
end

involve an output interaction and an input interaction of two different AEIs. An
attachment between two interactions of the same AEI is not allowed because the
interactions of an AEI are logically intended for communications with other AEIs;
if needed, such an attachment can be simulated within the behavior of the AEL. An
AEI can have different types of interactions (input/output, local/architectural); it
must have at least one local interaction. Every local interaction must be involved
in at least one attachment, hence there cannot be any isolated AEI, while every
architectural interaction must not be involved in any attachment. In order to allow
several AEIs to synchronize, every local interaction can be involved in several at-
tachments provided that no autosynchronization arises, i.e. no chain of attachments
is created that starts from a local interaction of an AEI and terminates on a local
interaction of the same AFEI.

We now illustrate each part of an architectural description in PADL by means
of an example concerning a pipe-filter system. > The system is composed of three
identical filters and one pipe. Each filter acts as a service center of capacity two
that is subject to failures and subsequent repairs. For each item processed by the
upstream filter, the pipe forwards it to one of the two downstream filters according
to the availability of free positions in their buffers. If both have free positions, the
choice is resolved nondeterministically.

The first part of a PADL description defines the name of the architectural type:

archi_type PipeFilter
The specification above indicates that the architectural type for the pipe-filter sys-
tem is named PipeFilter.

The second part of the description defines the AETs on which the architectural
type is based. Every AET is defined through its name, its behavior, which is for-
malized by a family of sequential PA terms, and its interactions, which are given by
a set of PA actions occurring in the behavior. The interactions represent a means
whereby a generic instance of the AET communicates and cooperates with the rest
of the system. Every interaction is declared to be an input interaction or an output
interaction:

3PADL keywords will be written in boldface.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 . Marco Bernardo et al.

archi_elem_types
elem _type FilterT

behavior Filter = accept_item. Filter’ +
fail.repair. Filter

Filter’ 2 accept_item. Filter” +
serve_item. Filter +

fail .repair. Filter’

Filter” 2 serve_item.Filter’ +

fail.repair. Filter”
interactions input accept_item
output serve_item

elem_type PipeT

behavior Pipe 2 accept_item.(forward _item . Pipe +
forward _item.,. Pipe)
interactions input accept_item
output forward_item,, forward _itemsq

The specification above indicates that AET FilterT has the behavior described by
term Filter. This represents a service center of capacity two that can fail and be
repaired, which interacts with the rest of the system by accepting new items and
delivering served items. Initially, besides failing and being repaired, the filter can
only accept an item coming from the outside, thus evolving into Filter’. If an item
is in the buffer (Filter’) and the filter does not fail, then either another item from
the outside is accepted or the item in the buffer is served. If two items are in
the buffer (Filter’) and the filter does not fail, no more items can be accepted;
the filter can only serve one of the waiting items. AET PipeT, instead, has the
behavior described by term Pipe, which repeatedly accepts an item and forwards
it along one of two different routes. Accepting new items and forwarding them are
the only interactions with the rest of the system.

The third part of the description defines the topology of the architectural type
through the declaration of the instances of the previously introduced AETS, some of
the interactions of such AEIs as being architectural, and the attachments among the
interactions of such AEIs. The AEIs represent an abstraction of the software com-
ponents constituting the system. The architectural interactions are interactions of
some of the AEIs that act as interfaces for the whole architectural type. Their role
is related to hierarchical modeling, as will be made clear in Sect. 6 when explaining
the concept of architectural type. Every attachment connects an output interac-
tion of an AEI to an input interaction of another AEI. In order to avoid ambiguity,
every interaction declared as being architectural or involved in an attachment is
expressed through the dot notation, with its name prefixed by the name of the AEI
to which it belongs. Every local interaction must be involved in at least one at-
tachment, otherwise the related action would simply represent an internal activity
of the AEI to which it belongs. On the contrary, every architectural interaction
cannot be involved in any attachment, as its purpose is to serve when embedding
the architectural type to which it belongs in the context of a larger architectural

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 11

accepi_item
R : Filter T
serve_item
accept_item
P : PipeT
forward_itemy 2 ¢ forward_item,
accept_item_ \aocept_i tem
F : Filter T F: Filter T
servg item servg item

Fig. 1. Flow graph of PipeFilter

type as we shall see in Sect. 6. In order to allow several AEIs to synchronize, every
local interaction can be involved in several attachments provided that no autosyn-
chronization arises, i.e. no chain of attachments is created that starts from a local
interaction of an AEI and terminates on a local interaction of the same AEI:
archi_topology
archi_elem_instances Fy, Fy, F5 : FilterT
P : PipeT
archi_interactions input Fjy.accept_item
output F}.serve_item, Fy.serve_item
archi_attachments from Fj.serve_item to P.accept_item
from P.forward_item, to Fy.accept_item
from P.forward_item, to Fy.accept_item

The specification above establishes that there are three instances Fy, Fi, and Fy
of FilterT as well as one instance P of PipeT, connected in such a way that the
items flow from Fy to P and from P to Fj or F5. Additionally, the accept_item
interaction of Fy and the serve_item interactions of F; and F5 are declared as being
architectural. We shall see in Sect. 6 how they are used in the description of a client-
server system where the server structure is given by the pipe-filter organization
above.

3.2 Graphical Notation

PADL comes equipped with a graphical notation to provide a visual help during
the development of the architecture of complex software systems. Such a graphical
notation is based on flow graphs [Milner 1989]. In a flow graph representing an
architectural description in PADL, the boxes denote the AEIs, the black circles de-
note the local interactions, the white squares denote the architectural interactions,
and the directed edges denote the attachments. Due to the absence of isolated
AEls, every considered flow graph will always be connected. As an example, the
architectural type PipeFilter can be pictorially represented through the flow graph
of Fig. 1.

From a methodological viewpoint, when modeling an architectural type with
PADL, it is convenient to start with the flow graph representation of the architec-

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 . Marco Bernardo et al.

tural type and then to textually specify the behavior of each AET.

3.3 Translation Semantics into PA

The semantics of a PADL specification is given by translation into PA. While only
the dynamic operators of PA can be used in the syntax of a PADL specification, the
more complicated static operators of PA are transparently used in the semantics
of a PADL specification. The translation into PA is accomplished in two steps. In
the first step, the semantics of all the instances of each AET is defined to be the
behavior of the AET projected onto its interactions. Such a projected behavior is
obtained from the family of sequential PA terms representing the behavior of the
AET by applying a hiding operator on all the actions that are not interactions. In
this way, we abstract from all the internal details of the behavior of the instances
of the AET.

Definition 3.1. Given a PADL specification, let C be an AET with behavior F
and interaction set Z. The semantics of C and its instances is defined by [C] =
E/(Act — {7} - 1). [

In our pipe-filter example we have
[FilterT| = [Fo] = [F1] = [F:] = Filter/{fail, repair}
[PipeT] = [P] = Pipe

thus abstracting from the internal activities fail and repair. The state transition
graph underlying [FilterT] has 6 states and 10 transitions: among such transitions,
4 are observable while 6 are invisible (they represent the execution of fail and repair
actions). The state transition graph underlying [PipeT], instead, has 2 states and
3 transitions.

In the second step, the semantics of an architectural type is obtained by com-
posing in parallel the semantics of its AEIs according to the specified attachments.
Recalled that the parallel composition operator is left associative, in our pipe-filter
example we have

[PipeFilter] = [Fo][serve_item — a]||g
[Fi]laccept.item — a1] |l
[F>][accept _item +— a2 ||{a,a;,a2}
[P][accept_item — a,
forward _item, — a1,
forward _itemy, — as]

The use of the relabeling operator is necessary to make the AFEIs interact. As
an example, Fy and P must interact via serve_item and accept_item, which are
different from each other. Since the parallel composition operator allows only equal
actions to synchronize, in [PipeFilter] each serve_item action executed by [Fp]
and each accept_item action executed by [P] is relabeled to the same action a.
In order to avoid interferences, it is important that a be a fresh action, i.e. an
action occurring neither in [Fp] nor in [P]. Then a synchronization on a is forced
between the relabeled versions of [Fy] and [P] by means of operator ||1q,q,,a,3- The
state transition graph underlying [PipeFilter] has 432 states and 1944 transitions:
among such transitions, 648 are observable while 1296 are invisible (they represent
the execution of fail and repair actions by Fy, F1, and F).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 13

In order to define the semantics of an arbitrary architectural type, first we have
to determine the number of fresh actions that we need in order to make the AEIs
interact according to the attachments. To achieve that, we have to single out
all the chains of attachments, as each of them corresponds to a maximal set of
synchronizing interactions, all of which must therefore be relabeled to the same fresh
action. Given an architectural type A, let Cq,...,C, be some of its AEIs and let
i,j, k range over {1,...,n}. For each AEI C;, let Z¢, be the set of its interactions,
AZc, C I, be the set of its interactions declared as being architectural, and
LIc.c,...cn € Zc, — AZc, be the set of its local interactions attached to local
interactions of C,...,C),. We now formalize the concept of chain of attachments
through the notion of connected set of interactions.

Definition 3.2. We say that a set LZ of local interactions of Cy,...,C,, is con-
nected iff:

—for each pair (C;.a1,Cj.a2) of interactions of LZ, either there is an attachment
between them, or there exists an interaction Cy.as of LI such that there is an
attachment between Cj.a; and Cj.az and Cy.a3 is connected to Cj.az;

—/L7 is maximal.]

As an example, in PipeFilter there are three connected sets of local interactions:

{Fy.serve_item, P.accept_item}

{P.forward_item, Fy.accept_item}

{P.forward_itemy, Fs.accept_item}
Once we have identified the connected sets of local interactions, we construct a set
S(Cy,...,C,) composed of as many fresh actions as there are connected sets of
local interactions. Then we relabel all the local interactions in the same connected
set to the same fresh action. This is achieved by defining a set of injective action
relabeling functions of the form ¢¢,.cy,...c, : LZci:cn,....c., — S(C1,...,Cy) in
such a way that ¢c,.c,,....c,(a1) = ©c;;c,,....c, (az) iff Ci.ay and Cj.az belong to
the same connected set. Based on these relabeling functions that prepare the AEIs
to interact, we now define two semantics for C; restricted to its local interactions
attached to local interactions of Ci,...,C,. The closed semantics will be used
in the definition of the architectural checks. It abstracts from the architectural
interactions of C; as these must not come into play when checking for deadlock
related architectural mismatches. Since the open semantics will be used instead
in the definition of the semantics of an architectural type, it does not abstract
from the architectural interactions of C; as these must be observable. If C; has no
architectural interactions, then the two semantics coincide.

Definition 3.3. The closed and the open interacting semantics of C; restricted
to C1,...,C, are defined by

[Cile, .. o, = [Ci] / (At —{7} = LIc;cn,..00) [ecicn,....cn]
[Cile, .. c, = [Ci] / (Act = {1} — (LIcycn,...c YUALG,)) [pcicn,..c.] ®

If we compare Def. 3.1 and Def. 3.3, we observe that the latter gives rise to a fur-
ther projection on the local interactions attached to local interactions of Cy,...,C,
and relabel such local interactions in order to make it possible the synchronization
among C1,...,C,. Finally, we define the closed and the open interacting semantics

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 . Marco Bernardo et al.

of C1,...,C, by putting in parallel the closed and the open interacting semantics
of each of the considered AEIs, respectively. To do that, we need to define the
synchronization sets. Let us preliminarily define for each AEI and pair of AEIs in
C4,...,C, the subset of fresh actions to which their local interactions are relabeled:
S(Cy;Ch,...,C) = voy0,...00(LLos0,...00)
S(Ci,Cj; Cy,... ,Cn) = S(Cl, Cy,... ,Cn) ﬁS(Cj; Cy,... ,Cn)
Recalled that the parallel composition operator is left associative, the synchroniza-
tion set between the interacting semantics of C; and Cs is given by S(Cy, Co; C1, . . .,

C),), the synchronization set between the interacting semantics of Co and Cj is given
by §(C1,C5;Ch,...,Cr)US(Co,C5;Ch,...,Cp), and so on.

Definition 3.4. The closed and the open interacting semantics of C1,...,C,, are
defined by
[Cr,...Cul® = [ChlE, e, llscroncn....om)

o]ty Isci.csicn,...cnyus (550,00 -+
|u;:115(c,-,cn;cl,..i,cn) [[Cn]]ccl,...,cn
[[017--'7071]]0 = [[Cl]](él,.,.,cn §(C1,C2;C,...,Cr)
[Col2,....c, s csicn,n.0nus(CarCsiCn, . Cn) - -
e Mlorrsencnennon [Cnle, e, n

Definition 3.5. The semantics of an architectural type A with AEIs Cy,...,C,
is defined by [A] = [C4,. .., Cy]°.]

When [C,...,C,]° is the semantics of a whole architectural type, the application
of the hiding operator occurring in Def. 3.3 is redundant.

We conclude by observing that the semantics of a set of AEIs, hence the semantics
of an architectural type, is well defined because we do not permit AEI autosynchro-
nizations. Additionally, we note that changing the order of the AEIs results in a
change of the synchronization sets, with no modification of the underlying state
transition graph. Furthermore, we point out that the mathematical details related
to the definition of the translation semantics for PADL can be made completely
transparent to the PADL users.

3.4 Related Work

PADL is clearly inspired by Wright [Allen and Garlan 1997]. In both languages, the
behavior of the software components is specified through sequential process terms,
and the semantics of the architectural descriptions is given by translation into a
process term using the static operators.

However, there are several differences between PADL and Wright. First, Wright
distinguishes between components and connectors, while in PADL there are just
architectural elements. Each of them can be interpreted as being a component or
a connector depending on the particular software system. This avoids redundancy
in the specifications caused by the presence of connectors whose behavior is trivial.
Second, in Wright the description of each component/connector is accompanied by
its ports/roles, whereas in PADL, similarly to Darwin [Magee et al. 1995], the inter-
actions are simply expressed as actions. Since ports and roles can be retrieved via
projections (see Def. 3.3), this avoids redundancy in the specifications. Third, as

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 15

will become clear in Sect. 6, PADL supports the hierarchical modeling of families of
architectures, while Wright only supports the flat modeling of a single architecture.
Fourth, similarly to Darwin and UniCon [Shaw et al. 1995], PADL is equipped
with a graphical notation that provides a visual help to the software architect. 4
Fifth, Wright allows the connector behavior to be extended with trace predicates
that further constrain the behavior itself, while this is not possible in PADL. As
a consequence, in PADL the software architect is forced to completely describe
each behavior in a process algebraic way and then to verify (e.g. via model check-
ing [Clarke et al. 1999]) that certain local properties are satisfied by the behavior.
This realizes a clear separation of concerns between modeling and analysis.

4. ARCHITECTURAL COMPATIBILITY CHECK

From the software architect perspective, using PADL instead of PA provides the
capability of modeling complex software systems in an easier way, which in partic-
ular elucidates the basic architectural concepts while hiding some process algebra
theory aspects. Since the semantics for PADL is given by translation into PA, on
the analysis side the software architect may reuse the standard verification tech-
niques for process algebras, i.e. equivalence/preorder checking and model checking.
However, the software architect needs not only an easier way of modeling, but also
a more controlled way of modeling that supports the automatical detection of ar-
chitectural mismatches as well as the identification of the software components that
cause them.

As seen in Sect. 1, in this paper we focus on three causes of deadlock related
architectural mismatches. To this purpose, we enrich PADL with a set of architec-
tural checks that take care of verifying whether the deadlock free components of
a software architecture fit together well, i.e. do not lead to system blocks. In this
section, we concentrate on the well formedness of acyclic architectural types, while
in Sect. 5 we address the well formedness of cyclic architectural types.

Definition 4.1. Given an architectural type A, the reduced flow graph of A is an
indirect flow graph obtained from the flow graph of A by collapsing all the edges
between two boxes into a single edge. A is said to be acyclic iff so is its reduced
flow graph. [|

The reason why we consider the reduced flow graph for an architectural type is
that the architectural checks that we shall define are not sensitive to the direction
of the information flow or to the presence of several attachments between two AEIs
rather than a single attachment. This preludes to a common handling of causes (1)
and (2) outlined in Sect. 1.

4.1 Compatibility Condition and Deadlock Freedom Result

Our objective is to detect the presence of deadlock related architectural mismatches
in an acyclic architectural type starting from an analysis of the local interactions
of its AEIs. Given an acyclic architectural type, the question arises as to what the
minimal group of AEIs to be considered is. If we take an AEI K and we consider all
the AEIs C1,...,C, attached to it, we can observe that they form a star topology

40f course, a similar visualization facility could easily be added to Wright.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 . Marco Bernardo et al.

whose center is K, as the absence of cycles prevents any two AEIs among C1,...,C),
from communicating via an AEI different from K. It can easily be recognized that
an acyclic architectural type is just a composition of star topologies. In this section
we show that the presence of deadlock related architectural mismatches due to
causes (1) and (2) can be investigated at the level of the constituent star topologies
through a suitable architectural compatibility check. Moreover, we show that if the
architectural compatibility check reveals that all the star topologies in an acyclic
architectural type are deadlock free, then the absence of deadlock scales to the
whole architectural type.

Before introducing the architectural compatibility check, let us formalize the
semantics of a star topology through a reworking of Def. 3.4. This takes into
account the fact that the considered set of AEIs interact through a given AEI only,
which simplifies the synchronization sets.

Definition 4.2. Given an acyclic architectural type, let Cq,...,C, be the AEIs
attached to AEI K. The interacting semantics of C1,...,C), through K is defined
by

[[K; Cr,... ’Onﬂ = [[K]]fr(,cl,...,cn, HS(K;K7017---7Cn)
[[Cl %{,Cl,“.,cn HS(K§K7017---7C71) tee

o Nlsaik,eno) [Colke,]

We show below that it is possible to verify that [K;C1,...,C,] is deadlock free by
locally considering the interactions of K with each C; in turn. The idea is that C; is
compatible with K if the parallel composition of their closed interacting semantics
is weakly bisimulation equivalent to the closed interacting semantics of K itself.
Intuitively, this means that attaching C; to K does not alter the behavior of K, i.e.
K is designed in such a way that it suitably coordinates with C;.

Definition 4.3. Given an acyclic architectural type, let Cq,...,C, be the AEIs
attached to AEI K. C} is said to be compatible with K iff

[[K]]%,Cl,...,cn ”S(K;K,Cl,.A.,Cn) [[Ci]]%,cl,...,cn ~B [[Kﬂfr(,cl,...,cn []

Observe that if C; is compatible with K and vice versa, then [Ci]% o, o, ~B

[K]]%,Cl,‘..,cn' However, the reverse implication does not hold. As an example, if
we take K and C; such that

T'a‘[[ci]](;(,Cl,...,Cn + T‘b'[[ci]]%,cl,...,cn

[Kl%.c,...c, = malK]%c, . o, +T700K]% 0, . c.
with equal observable actions attached to each other, then [Cil% o o =B
[K]% c,....c, but there is no compatibility. Indeed, we have that the combina-
tion of K and C;, which are individually deadlock free, deadlocks whenever K
and C; separately perform two invisible actions leading to two observable actions
not attached to each other. This simple example demonstrates that requiring K
and each C; in turn to be weakly bisimulation equivalent is not enough to ensure
deadlock freedom at the level of the star topology, ® hence we need a stronger re-
quirement that takes into account the coordination of K with each C; in turn. The

[Cil%.c,..

e e

5The example actually shows that not even isomorphism is enough.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 17

next theorem shows that compatibility provides a sufficient condition for deadlock
freedom when starting from a deadlock free center K of the star topology. The
subsequent corollary shows that compatibility scales from the star topologies to the
whole architectural type.

LEMMA 4.4. Given an acyclic architectural type, let C1,...,C, be the AEIs at-
tached to AEI K. For each nonempty subset {C{,...,Cl,} of {C1,...,Cyn}, if C!
is compatible with K for alli=1,...,n' then

K]k ..o llsk.cn,cn)
[Cilk.c....on lsacir.crcn) -
o NMsaxonnon C %oy o =B [Kl%c,...c

ProOF. We proceed by induction on n':

—If n’ = 1 then the property immediately follows from the compatibility of Cf
with K.

—Let the property hold for a certain n’ > 1 and consider
[Kl%.cy....on lsuircn,..cn)
[Ci%.c,...on suik,cn,..cn)
[Colkc....on Isxir,cn,..cn) -
||S(K;K,Cl,.--,0n) [[C;L'+1ﬂ(}(,cl,...,cn
Since C7 is compatible with K, it follows that

[[KH%{,C&,...,C” S(K;C,Cy,...,Ch) [[Cﬂ]%,cl,...,cn ~B [[K]]%,cl,...,cn
From the fact that ~p is a congruence w.r.t. the parallel composition operator,
it follows that

(K% cy....cn lsuxix.cn.....om
[[C{ﬂfr(,cl,...,cn ||S(K;K,Cl,..,70n)
[Colkcy,...on saix,cn,cn) -
lstik.cn,enc) (Ol
~B [Klkc,...c. lsurcn,.cn
[C3]%cn...on s,y -
o siikonnen [Calk e
The result then follows by the induction hypothesis.

O

THEOREM 4.5. Given an acyclic architectural type, let Cq,...,C, be the AEIs
attached to AEI K. If [K]% ¢, ¢, is deadlock free and C; is compatible with K
foralli=1,...,n, then [K;C4,...,C,] is deadlock free.

PROOF. Because of the compatibility hypothesis, by Lemma 4.4 we have that
[/ C, ..., Ol =B [K]%.c,...c,- Since [K[% ¢, o, is deadlock free and ~p

preserves deadlock freedom, the result follows. [

COROLLARY 4.6. Given an acyclic architectural type, if the semantics of each
AET with the architectural interactions being hidden is deadlock free and every AEI
is compatible with each AEI attached to it, then the architectural type is deadlock
free.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 . Marco Bernardo et al.

Proor. To avoid trivial cases, assume that the architectural type has at least
two AEIs. We proceed by induction on the number m of edges in the reduced flow
graph of the architectural type:

—If m = 1 then the reduced flow graph of the architectural type has two AEIs
connected by some attachments. The result immediately follows by applying
Thm. 4.5.

—Let the result hold for a certain m > 1 and suppose that the reduced flow graph
of the architectural type has m + 1 edges. Since the architectural type ia acyclic,
there exists an AEI C' having attachments to a single AEI K. Since C is com-
patible with K by the initial hypothesis, if C1,...,C, are all the other AEIs
attached to K we have

[[K]]%,c,cl,...,cn HS(K;K,C,Cl,..A,Cn) [[C]]%,c,cl,...,cn ~B [[K]](i(,c,cl,...,cn
hence [K]% c.c,...c, llsi:x.con....0n) [Clk.c.co,...c, is deadlock free because
so is [K]% c.c,...c, by the initial hypothesis. Let us replace K and C with a
new AEI such that its behavior is isomorphic to [K]% ¢ ¢, o, lsixix.c.cn.....0m)
[Cl% c.cy....c, and its interactions are the relabeled local interactions of K and
C (where pairs of attached relabeled interactions are counted once) plus the
architectural interactions of K and C. Then we obtain an architectural type
such that its semantics is isomorphic to the original one and its reduced flow
graph has m edges. The result then follows by the induction hypothesis.

O

If we apply the architectural compatibility check to the pipe-filter example of
Sect. 3 we have
[P]laccept_item +— a, |ltay [Fol/{accept_item} =~p [P]laccept_item + a,
forward _item; — ay, [serve_item — al) forward _item, — ay,
forward _itemy — as] forward _itemq — as]

[P]laccept_item +— a, |l{a,y [F1]/{serve_item} =~ [P]laccept_item a,
forward _item; — ay, [accept _item +— a4] forward _item, — ay,
forward_itemy — as] forward _itemq — as]

[P]laccept_item — a, ||{apy [F2]/{serve_item} =~ [P]laccept_item + a,
forward _itemy — ay, [accept_item +— as] forward_item, — aq,
forward _itemy — as] forward _itemy, — as]

Since [P]laccept_item — a, forward_item, — aq, forward_item, — as] is deadlock
free, we can conclude that so is [PipeFilter]. Checking deadlock freedom directly on
[PipeFilter] would have required the generation of hundreds of states and thousands
of transitions, whereas checking architectural compatibility as done above has only
required the generation of tens of states and transitions.

From a methodological viewpoint, given an acyclic architectural type the archi-
tectural compatibility check must be applied as follows. First, we verify that the
semantics of each AET with the architectural interactions being hidden is deadlock
free. Note that the hiding operator must be applied in order to make the archi-
tectural interactions unobservable. The reason is that we are interested in the way
the AEIs coordinate with each other, but the architectural interactions cannot be

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 19

involved in any attachment, so they must not come into play. Should not they be
hidden, it may be the case that an AEI is considered to be deadlock free because it
is always ready to execute an architectural interaction, even though it is not able
to properly coordinate with the other AEIs attached to it. Then, we assess the
validity of the compatibility condition for every pair of attached AEIs. We observe
that Cor. 4.6 only provides a sufficient condition for deadlock freedom. Therefore,
a violation of the compatibility condition for a pair of attached AEIs does not nec-
essarily imply that the architectural type can deadlock. We point out that the
compatibility condition and the probability for it to be violated strongly depend on
the adopted notion of observable equivalence. Here we use the weak bisimulation
equivalence, which is known to be very sensitive to the branching points in the AEI
behavior. It might be the case that [K]% -, ¢ llsiikx.ci.....cn) [Cilk.c,.. .c, 18
not weakly bisimulation equivalent to [K]% o, . because, although they pro-
duce the same execution traces of observable actions, they differ for the structure
of their branching points. Unfortunately, trace equivalence cannot be used in place
of weak bisimulation equivalence as the former does not preserve deadlock freedom,
i.e. it can equate a deadlock free term to a deadlocked one. In any case, the essence
of the compatibility condition is to investigate whether some attached AEIs coor-
dinate in an acyclic topology. Thus, independently of the specific observational
equivalence adopted in the compatibility condition, we believe that it is wise for
the architect to interpret a violation of the condition as a warning of the possible
presence of some kind of architectural mismatch. This should lead the architect to
a careful analysis of the interactions between the two attached AEIs giving rise to
the violation.

Given a star topology composed of C1, ..., (), attached to K, applying the archi-
tectural compatibility check is more convenient than directly checking [K;Ch, ...,
C,,] for deadlock freedom. The first reason is that the application of the architec-
tural compatibility check requires the construction of n state spaces each resulting
from the parallel composition of only two sequential terms (see Def. 4.3), whereas
the direct check requires the construction of one state space resulting from the par-
allel composition of n + 1 sequential terms (see Def. 4.2). Thus, the state space
construction related complexity is O(n) in the case of the architectural compatibil-
ity check, O(a™) in the case of the direct check. The second reason is that, in case
of deadlock, the direct check provides the architect with no diagnostic information
about the deadlock source. On the contrary, the architectural compatibility check
pinpoints potential sources of deadlock. Whenever the compatibility condition is
violated by a pair of attached AEIs, the architect knows that the two AEIs under
consideration may cause an architectural mismatch that leads to deadlock.

4.2 Related Work

Our architectural compatibility check is similar in spirit to the compatibility check
presented in [Allen and Garlan 1997]. However, there are some relevant differences.
First, the compatibility condition of [Allen and Garlan 1997] is based on an ob-
servational preorder given by a suitable reworking of the failure semantic based
preorder of [Hoare 1985], while our compatibility condition relies on the standard
weak bisimulation equivalence. Second, the compatibility condition of [Allen and
Garlan 1997] imposes a global constraint on the overall interaction of the roles of

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 . Marco Bernardo et al.

a connector, while our compatibility condition can be checked more efficiently as it
only imposes local constraints on the interactions between pairs of attached AEIs.
Third, the compatibility condition of [Allen and Garlan 1997] deals with single
component ports and connector roles without taking into account the relationships
among different ports of a component attached to different roles of the same con-
nector, thus forcing the architect to merge the ports above into a single one at the
modeling level in order for the compatibility check to be effective. Our compati-
bility condition, instead, naturally deals with both causes (1) and (2) of deadlock
related architectural mismatches, as the whole behavior of the AEIs is considered.
Finally, our architectural compatibility check scales to the whole architectural type
in case of acyclic topology.

Our architectural compatibility check also has some similarities with the algo-
rithm presented in [Inverardi et al. 2000; Inverardi and Uchitel 2001]. The idea of
the algorithm is that the presence of mismatches should be checked not only at the
port/role level but also at the component level, and that such a check should be
carried out in an efficient way. For this reason, the algorithm extracts from each
component description its actual behavior and its assumptions about the behavior
of the rest of the system. Then, the algorithm tries to match each assumed behav-
ior with a sequence of actual behaviors using a variant of the weak bisimulation
equivalence. Our architectural compatibility check has the same objectives as the
algorithm above, but relies on the standard weak bisimulation equivalence.

In conclusion, we can say that our architectural compatibility check subsumes the
compatibility check of [Allen and Garlan 1997] and equals the effectiveness of the
algorithm of [Inverardi et al. 2000; Inverardi and Uchitel 2001], thus bringing into
a uniform, process algebraic framework different techniques for detecting deadlock
related architectural mismatches using standard machinery.

4.3 Example: A Compressing Proxy System

In this section we assess the validity of the architectural compatibility check to
discover a known architectural mismatch in the compressing proxy system examined
in [Inverardi et al. 2000].

A compressing proxy system aims at improving the performance of Unix based
Web browsers over slow networks by creating a HI'TP server that compresses data
before sending them across the network. This is achieved by wedding the gzip
compression program to the standard HTTP server. A standard HTTP server is a
series of filters strung together, which communicate through a function call based
stream interface that allows an upstream filter to push data into a downstream
filter. The gzip program is instead a Unix filter communicating through pipes. An
important difference between the gzip program and the standard HTTP filters is
that the gzip program explicitly chooses when to read, while the HTTP servers are
forced to read when data are pushed to them. The gzip program may attempt to
output a portion of the compressed data, perhaps because an internal buffer is full,
before finishing reading all the input data.

In order to assemble the compressing proxy system from the existing HTTP
server and gzip program without modifications, we must insert the gzip program
into the HT'TP filter series using an appropriate adaptor because of their different
communication mechanisms. The flow graph of the corresponding PADL descrip-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 21

'_
Jo
E
a
w
a
©
ko]
S
ol
ie]
B
: :
§ :
=
S
§ £
8 §|
3 z
8 8
< =
Ia-- ,5
2 5
O |5 g
8 =| g
0 | 3 e
= 1>
o] o
8 8
<]
g
<
; .
? o
= bl
g 5
ol
€
o
g
s| B
g s
o
s
'_
Jo
E
S5
w
S

Fig. 2. Flow graph of the compressing proxy system

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 . Marco Bernardo et al.

Table III. AET behaviors for the compressing proxy system

. A . .
UFilter = write_data.UFilter
A .
Adaptor = recewe_from_filter. Adaptory
A
Adaptor; = send_to_gzip.Adaptory
A .
Adaptor, = send_to_gzip.Adaptor, +
send_eoi. Adaptors
A . .
Adaptors = receive_from_gzip.Adaptor,
A
Adaptor, = receive_from_gzip.Adaptor, +
receive_eoo.Adaptorsy
A
Adaptors = send_to_filter. Adaptor
A
Gzip = recewe_from_adaptor. Gzip,
A .
Gzipy = recetwe_from_adaptor.Gzip; +
receive_eoi. Gzipy +
signal _buffer_full. Gzip,
A
Gzip, = send_to_adaptor.Gzips
. A .
Gzips = send_to_adaptor.Gzips +
send_eoo.Gzip
. A .
DFilter = read_data.DFilter

tion is depicted in Fig. 2; its reduced version is acyclic. The behavior of each
AET is shown in Table III. The underlying state transition graph has 7 states and
9 transitions (8 observable, 1 invisible).

If we apply the architectural compatibility check, we discover that

Adaptor[send_to_gzip — aq, a1 a2,a5,a0y Gzip/{signal _buffer_full}
send_eoi — ag, [receive_from_adaptor — aq,
receive_from_gzip — ag, receive_eoi — aa,
receive_eoo — ay, send_to_adaptor — as,
recetve_from_filter — as, send_eoo — ay)

send_to_filter — ag)

#B Adaptor|[send_to_gzip — aq,
send_eoi — asg,
recetve_from_gzip — asg,
receive_eoo — Qy,
recetve_from_filter — as,
send_to_filter — ag]

In fact, the state transition graph of the whole architectural type has one deadlock
state. A simply passes uncompressed data to G whenever it receives data from
UF. Once the data stream is closed, A reads the compressed data from G and
pushes them to DF. This behavior of A gives rise to an interaction with G that is
not correct. More precisely, A and G fit together well as long as the uncompressed
data flow from A to G and the compressed data flow from G to A are considered
separately. However, when we consider the two flows together, a deadlock arises
because A does not take into account the fact that G can autonomously decide
to start sending compressed data back to A before having received from A all the
uncompressed data.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 23

Table IV. Correct behavior for the adaptor

A .

Adaptor = receive_from_filter. Adaptor,
A

Adaptor; = send_to_gzip.Adaptory
A .

Adaptor, = send_to_gzip.Adaptor, +
send_eoi. Adaptors +
signalled _buffer_full. Adaptorg

A
Adaptors = receive_from_gzip.Adaptor,
A . .
Adaptor, = receive_from_gzip.Adaptor, +
receive_eoo.Adaptory
A
Adaptory = send_to_filter. Adaptor
A
Adaptorg = receive_from_gzip. Adaptor,
A . .
Adaptor, = receive_from_gzip.Adaptor, +

receive_eoo.Adaptor,

To solve the problem, a new attachment must be introduced in Fig. 2 from G
to A, so that G can inform A about its intention to prematurely start writing
compressed data in the case that its buffer becomes full. Furthermore, A must be
redesigned in such a way that it handles data incrementally, with the possibility
of reading compressed data from G whenever the buffer of G becomes full. The
new behavior of A is shown in Table IV, where signalled_buffer_full is attached to
signal _buffer_full. By virtue of Thm. 4.5, the newly obtained acyclic architectural
type is deadlock free, because the closed interacting semantics of A is deadlock free
and every pair composed of A and an AEI attached to A passes the architectural
compatibility check.

5. ARCHITECTURAL INTEROPERABILITY CHECK

Checking architectural compatibility is unfortunately not enough to guarantee that
a software system is deadlock free in the cyclic case, as there may be further causes
of architectural mismatch. Let us consider e.g. the flow graph of Fig. 3 expanded
with the AET behaviors, which represents the guest analogy mentioned in Sect. 1.
We recall that there are three deadlock free components: the guest, the host, and
the waiter. When arriving at the party, the guest expects to be welcome by the
host and to be asked whether (s)he wants an orange juice or a pineapple juice.
The guest then expects that the host tells the waiter what the desired drink is and
that the waiter brings that drink. Unfortunately, the host has bad memory or is a
malicious person and can thus tell the waiter to bring to the guest a drink different
from the desired one. Although G, H, and W are deadlock free and both G and W
are compatible with H, the whole system is not deadlock free. If we construct the
state transition graph underlying this architectural type, which has 7 states and
8 transitions, we discover that there are two deadlock states. Here the problem is
that G and W do not communicate directly, so e.g. if G asks H for an orange juice
and H tells W to bring a pineapple juice instead, G and W do not interact any
more thus causing the system to block. A similar situation would happen if we had
a deaf waiter instead of a strange host, who often misunderstands what the host
orders and brings to the guest a drink different from the desired one. The situation

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 . Marco Bernardo et al.

asked_orange | H: HosiT

Host = asked_orange.(tell_orange.Host +
tell_pineapple.Host) +

- asked_pineapple.(tell_pineapple.Host +

asked_pineapple tell_orange.Host)

tell_orange tell_pineapple

ask_orange ask_pineapple

G: GuestT

Guest £ ask_orange.served_orange.Guest +
ask_pineapple.served_pineapple.Guest

served_orange served_pineapple
told_orange told_pineapple

serve_pineapple W: Waiter T

Waiter £ told_orange.serve_orange.Waiter +
told_pineapple.serve_pineapple.Waiter

serve_orange

Fig. 3. Flow graph of the guest analogy

would be even worse with a waiter fond of fruit juices, who sometimes decides to
drink the juice instead of bringing it to the guest.

If we look carefully at the flow graph of Fig. 3, we note that G, H, and W form
a cycle. If we view H as being in the middle between G and W, we have that
H gives rise to a mismatched interaction between G and W that cannot be de-
tected by the architectural compatibility check. As far as the detection of deadlock
related architectural mismatches is concerned, the guest analogy and its variants
demonstrate that it is not always enough to consider pairs of attached AEIs. ¢ The
reason is that cycles of deadlock free AEIs can result in deadlocks as well, which
is cause (3) identified in Sect. 1. In this section we develop another architectural
check to address the well formedness of cyclic architectural types.

5.1 Interoperability Condition and Deadlock Freedom Result

Our objective is to detect the presence of deadlock related architectural mismatches
in a cyclic architectural type starting from an analysis of the local interactions of
its AEIs. Obviously, the minimal group of AEIs to be considered is given by a
set C1,...,C, of AEIs forming a cyclic topology. In this section we show that
the presence of deadlock related architectural mismatches due to cause (3) can
be investigated for cycles of AEIs through a suitable architectural interoperability
check. More precisely, we prove that it is possible to verify that [Cy,...,C,]¢ is
deadlock free by locally considering the relationship of each C; with the whole cycle.
The idea is that C; interoperates with Cy,...,C;_1,Ci41,...,C, if the parallel
composition of the closed interacting semantics of the n AEIs projected on the
interactions with C; only is weakly bisimulation equivalent to the closed interacting

6They also demonstrate that a deadlock related architectural mismatch can be due not only to a
lack of coordination among software components, but also to the presence of previously undetected
errors in the software components or to a wrong choice of the software components to build up a
system.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 25

semantics of C;. Intuitively, this means that inserting C; into the cycle does not
alter the behavior of C;, i.e. that the behavior of the cycle assumed by C; matches
the actual behavior of the cycle. This interoperability condition is similar in spirit
to the compatibility condition. Instead of comparing the overall behavior of two
AEIs in a star topology with the behavior of one of them, we now compare the
overall behavior of a cycle of AEIs with the behavior of one of them. We are
obliged to include all the AEIs in the cycle, and not only those attached to the
AEI C; under consideration, because, as we have seen with the guest analogy,
the interactions among the AEIs in the cycle not attached to C; can give rise to
mismatches between C; and the AEIs in the cycle attached to it.

Definition 5.1. Given an architectural type, let Cq,...,C, be AEIs forming a
cycle. Cj is said to interoperate with Cy,...,C;_1,Ciyq,...,Cy iff

[[Cla EERE) Cn]]C/(ACt - {T} - 8(027 Cl7 R On)) ~B [[Ci]]%l,...,cn |

THEOREM 5.2. Given an architectural type, let Cq,...,Cy, be AFEIs forming a
cycle. If there exists C; such that [[Ci]]CCl,...,Cn is deadlock free and C; interoperates
with C1,...,Ci—1,Ci11,...,Cy, then [Cy,...,C,]¢ is deadlock free.

PRrROOF. A straightforward consequence of the fact that ~p preserves deadlock
freedom. [

If we let S(G,H,W) = {a_orange, a_pineapple, t_orange, t_pineapple, s_orange,
s_pineapple}, then for the guest analogy we have
[G, H,W]°/{t_orange, t_pineapple} sp Guest[ask_orange — a_orange,
ask_pineapple — a_pineapple,
served_orange — s_orange,
served_pineapple — s_pineapple]
[G, H,W]°/{s-orange, s_pineapple} #p Host[asked_orange — a_orange,
asked_pineapple — a_pineapple,
tell_orange — t_orange,
tell_pineapple — t_pineapple]
[G, H,W]°/{a_-orange, a_pineapple} #p Waiter[told_orange — t_orange,
told_pineapple — t_pineapple,
serve_orange — s_orange,
serve_pineapple — s_pineapple]
Since this system is very simple, by direct inspection we see that the problem is in
the behavior of H. If Host is redefined as follows

Host 2 asked _orange.tell_orange. Host +
asked _pineapple.tell_pineapple. Host

then we get ACM Journal Name, Vol. V, No. N, Month 20YY.

26 . Marco Bernardo et al.

[G, H,W]°/{t_orange, t_pineapple} ~p Guest[ask_orange — a_orange,
ask_pineapple — a_pineapple,
served_orange — s_orange,
served _pineapple — s_pineapple]

[G, H,W]¢/{s-orange, s_pineapple} ~p Host|asked_orange — a_orange,

asked_pineapple — a_pineapple,
tell_orange — t_orange,
tell_pineapple — t_pineapple]
[G, H,W]¢/{a-orange, a_pineapple} sp Waiter[told_orange — t_orange,
told_pineapple — t_pineapple,
serve_orange — s_orange,
serve_pineapple — s_pineapple]

hence the newly obtained architectural type is deadlock free. Note that W does
not interoperate with G and H. This does not cause any problem, as far as dead-
lock freedom is concerned. In fact, it can be proved that [G, H, W]°/{a_orange,
a_pineapple} and Waiter[told_orange — t_orange, told_pineapple — t_pineapple,
serve_orange — s_orange, serve_pineapple — s_pineapple] can execute the same se-
quences of observable actions, i.e. they are trace equivalent. Here the point is that
the two terms above have different branching points, hence ~p distinguishes them.

From a methodological viewpoint, given a cyclic architectural type the architec-
tural interoperability check must be applied to each cycle Cy,...,C, of AEIs as
follows. First, we identify the AEIs in the cycle whose closed interacting semantics
is deadlock free. Then, we apply the interoperability condition to each of them
until we find one that interoperates with the other AEIs in the cycle. Similarly to
the case of the architectural compatibility check, Thm. 5.2 only provides a suffi-
cient condition for deadlock freedom, for which the probability of being satisfied
strongly depends on the adopted notion of observational equivalence. Therefore, a
violation of the interoperability condition for a cycle of AEIs does not necessarily
imply that the cycle can deadlock. However, it is wise for the architect to interpret
the presence of no interoperating deadlock free AEIs along the cycle as a warning
of the possible presence of some kind of mismatch in the cycle, and to consequently
conduct a deeper analysis of the interactions among the AEIs in the cycle. Such
a further analysis can be accomplished by repeatedly shrinking the cycle until the
source of some architectural mismatch is localized. In a generic shrinking step, we
consider an AEI C; in the cycle that does not interoperate with the other AEIs
in the cycle. The cause of a possible mismatch is within C;, the rest of the cy-
cle, or both. This can in principle be determined by considering the behavior of
C; together with the temporal logic based diagnostic information coming from the
failure of the verification of the interoperability condition. If we discover that an
architectural mismatch exists and that its source is within C;, then we repair C;
and we repeat the architectural interoperability check, otherwise we shrink the cy-
cle as follows. Supposed that in the cycle C; is preceded by C;_; and followed by
Ciy1, we replace C;_1, C;, and C; 41 with a new AEI whose behavior is given by the
parallel composition of the closed interacting semantics of the three original AEIs,
and whose interactions are the relabeled local interactions of the three original AEIs

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 27

excluded those originally used to attach the three AEIs to each other. The new
AEI is then checked for deadlock freedom and interoperability.

Given a cyclic topology composed of C,...,C,, applying the architectural in-
teroperability check is more convenient than directly checking [Cy,...,C,]¢ for
deadlock freedom. The first reason is that the application of the compatibility
check requires the construction of n state spaces of the form [C1,...,C,]/(Act —
{r} = S8(C;; C1,...,Cy)) where only the interactions of C; attached to the interac-
tions of the other AEIs in the cycle are observable. If a state space of this form is
built compositionally and minimized at each step using ~g, then its construction
can be much faster than that of the state space of [C,...,C,]¢, as this term has
many more observable actions. The second reason is that, in case of deadlock,
the direct check provides the architect with no diagnostic information about the
deadlock source. On the contrary, the architectural interoperability check can help
pinpointing potential sources of deadlock through the associated cycle shrinking
procedure. The effectiveness of the cycle shrinking procedure depends on the order
in which the AEIs in the cycle are considered. The sooner it is discovered an AEI in
the cycle that causes deadlock, the more effective is the cycle shrinking procedure.

5.2 Related Work

To the best of our knowledge, there is no similar formal technique for detecting
architectural mismatches in case of software components forming a cyclic topology.
As an example, this kind of architectural mismatch is taken into account not even
by the algorithm of [Inverardi et al. 2000; Inverardi and Uchitel 2001], as it does
not consider the interactions within the sequence of actual behaviors matching an
assumed behavior.

5.3 Example: A Cruise Control System

In this section we assess the validity of our architectural interoperability check to
discover a known architectural mismatch in the cruise control system examined
in [Kramer and Magee 1997].

An automobile cruise control system is controlled by three buttons: on, off,
and resume. When the engine is turned on, the previous speed setting is cleared.
When the engine is running and on is pressed, the cruise control system records the
current speed and maintains the automobile at that speed. When the accelerator,
brake, or off is pressed, the cruise control system disengages but retains the speed
setting, so that if resume is pressed later on, then the system is able to accelerate
or deaccelerate the automobile back to the previously recorded speed.

The flow graph of the corresponding PADL description is depicted in Fig. 4; its
reduced version contains a cycle composed of S, CC, SD, SC. The behavior of each
AET is shown in Table V. The underlying state transition graph has 84 states and
230 transitions (143 observable, 87 invisible).

If we let S(S,CC,SD,SC) = {t_engine_on, p_accelerator, p_brake, p_on, p_off,
p-resume, t_engine_off , t_clear_speed, t_enable_speed_control, t _record _speed,
t_disable_speed_control, s_speed}, when applying the architectural interoperability

check to the cycle composed of S, CC, SD \d64 %%rq;ﬁq@ﬁgg’ f\}%‘%tv, No. N, Month 20YY.

28

Marco Bernardo et al.

[S,CC,SD,S5C]° #p Sensor

J{t_clear_speed, [turn_engine_on — t_engine_on,
t_enable_speed_control, press_accelerator — p_accelerator,
t_record _speed, press_brake — p_brake,
t_disable_speed_control, press_on — p_on,
s_speed } press_off — p_off,

press_resume — p_resume,
turn_engine_off +— t_engine_off]

[S,CC,SD,SC]° =g CruiseController

/{s_speed} [turn_engine_on — t_engine_on,

press_accelerator — p_accelerator,

press_brake — p_brake,

press_on — p_on,

press_off — p_off,

press_resume — p_resume,

turn_engine_off — t_engine_off,

trigger_clear _speed +— t_clear_speed,
trigger_enable_speed_control — t_enable_speed_control,
trigger_record_speed — t_record_speed,

trigger _disable_speed _control — t_disable_speed _control]

[S,CC,SD,SC|¢ #p SpeedDetector

/{p-accelerator, /{measure_speed}
p_brake, [turned_engine_on — t_engine_on,
p_omn, turned_engine_off — t_engine_off,
p_off, signal_speed — s_speed|
p_resume,

t_clear_speed,
t_enable_speed_control,
t_record _speed,
t_disable_speed _control }

[S,CC,SD,SC]° #p SpeedController

/{t_engine_on, /{enable_speed _control,
p_accelerator, record_speed,
p_brake, maintain_speed,
p_on, clear_speed,
p-off, disable_speed_control,
p-resume, adjust_throttle }
t_engine_off } [triggered _clear_speed — t_clear_speed,

triggered _enable_speed _control — t_enable_speed _control,
triggered _record _speed — t_record_speed,

triggered _disable_speed_control — t_disable_speed _control,
signalled _speed — s_speed)|

Despite the negative outcome of the architectural interoperability check, the state
transition graph of the whole cycle is deadlock free. However, because of such a

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 29

Table V. AET behaviors for the cruise control system

A .
Sensor = turn_engine_on.Sensor’
A
Sensor’ = press_accelerator.Sensor’ +

press_brake.Sensor’ +
press_on.Sensor’ +
press_off .Sensor’ +
press_resume.Sensor’ +
turn_engine_off .Sensor

A

CruiseController = Inactive
A
Inactive = turned_engine_on.trigger_clear_speed. Active
Active 2 pressed_accelerator. Active +

pressed_brake. Active +
pressed_on.trigger _enable_speed _control.trigger_record_speed. Cruising +
pressed_off . Active +
pressed_resume.Active +
turned_engine_off . Inactive

A .

Cruising = pressed_accelerator.trigger_disable_speed_control.StandBy +
pressed_brake.trigger_disable_speed_control.StandBy +
pressed_on.trigger _enable_speed _control.trigger_record_speed. Cruising +
pressed_off .trigger_disable_speed _control.StandBy +
pressed_resume. Cruising +
turned_engine_off . Inactive

A .

StandBy = pressed_accelerator.trigger_disable_speed_control.StandBy +
pressed_brake.trigger_disable_speed_control.StandBy +
pressed_on.trigger _enable_speed _control.trigger_record_speed. Cruising +
pressed_off .trigger_disable_speed _control.StandBy +
pressed_resume.trigger_enable_speed_control. Cruising +
turned_engine_off . Inactive

A .

SpeedDetector = turned_engine_on. WheelRevCounter
A
WheelRevCounter = measure_speed.signal_speed. WheelRevCounter +
turned_engine_off .Speed Detector
A .
SpeedController = Disabled

A

Disabled = signalled_speed.Disabled +
triggered_clear_speed.clear_speed. Disabled +
triggered _enable_speed _control.enable_speed_control. Enabled +
triggered _disable_speed_control.disable_speed _control. Disabled

A

Enabled = signalled_speed.maintain_speed.adjust _throttle. Enabled +
triggered _enable_speed _control.enable_speed_control. Enabled +
triggered _record _speed.record _speed. Enabled +
triggered _disable_speed_control.disable_speed _control. Disabled

A .
Throttle = adjusted_throttle. Throttle

negative outcome, we can suspect that some mismatch exists, which is actually the
case. In fact, the reason why the cycle is deadlock free is that speed signalling
related activities, which are formalized by the attachment from SD.signal_speed to
SC'.signalled _speed, take place endlessly as long as the engine is running. But if we
hide those activities, a deadlock shows up.

In order to localize the source of deadlock, let us apply the shrinking procedure to
the cycle composed of S, CC, SD, SC. If we start from S, we get the following tem-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Marco Bernardo et al.

30

19moayl - L

2oy peisnipe 8oy snipe

18]1043u0DpaRds : 08

ds”po|feubss p3edsfeubs

|01)U00 paads a|qesip paJebbin

|01)u00 paads a|qesip Jebbin

paads pJoda. pasebbin

paads pJoda. Jabbin

|04)u00 paads a|qeus paJebbin

|04)u00 paads a|qeus Jehb1)

paads™ reajo paJebbin

paads 1eap b6 1N

L|[00U0DssINID : DD

}jo auibua pauJny

uo aulbus pauiny

uo aulbus pau.n} uo aulbus™uin}

}jo auibua pauJny }jo auibue uiny

Joyesepade passa.d Joyeepaoe ssa.d

axelq pessa.d axelq ssa.d
uo passa.d uo ssaud
awnsaJ passa.d awnsaJ ssa.d
}jo passaud }jo ssaud

1losues S

Flow graph of the cruise control system

Fig. 4.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 31

Table VI. Correct cruising behavior for CC

Cruising 2 pressed_accelerator.trigger_disable_speed _control.StandBy +
pressed_brake.trigger_disable_speed_control.StandBy +
pressed_on.trigger_enable_speed_control.trigger_record_speed. Cruising +
pressed_off .trigger_disable_speed _control.StandBy +
pressed_resume. Cruising +
turned_engine_off .trigger _disable_speed _control.Inactive

poral logic based diagnostic information from the failure of the weak bisimulation
equivalence checking when verifying the interoperability of S w.r.t. CC,SD,SC:
formula

[[t_engine_on]]{{p_on)){{t_engine_off)){{t_engine_on))[[p_accelerator]|[f

is satisfied by [S, CC, SD, SC]° with all the interactions not involving S being hid-
den, while it is not satisfied by [S]§ ccsp sc- The formula above means that,
whenever t_engine_on is performed, it is possible to perform p_on, t_engine_off,
and t_engine_on, thereby reaching a state in which it is not possible to perform
p_accelerator. This formula represents an error because, after turning the engine on,
it should always be possible to press the accelerator. Since the overall cycle satisfies
this formula while S does not, we conclude that the error is in one of CC, SD, SC.
If we look at the behavior of C'C' to understand how it contributes to the satis-
faction of the formula, we realize that C'C is not able to perform t¢_clear_speed in
cooperation with SC after the engine is turned on again, because CC did not dis-
able the speed control when the engine was turned off in cruising mode. If Cruising
is modified as shown in Table VI, then S, CC, and SD satisfy the interoperability
condition and we can conclude by virtue of Thm. 5.2 that the cycle composed of
S, CC,S5D, SC is deadlock free. We observe that SC does not satisfy the interop-
erability condition, because its behavior simply models the two logical states of the
speed control mechanism and the signals that can be received in each of the two
states, without considering the order in which such signals can be received. There-
fore, this lack of interoperability does not cause any mismatch. From the positive
outcome of the interoperability check and the compatibility of 7" with SC, it follows
that the whole architectural type is deadlock free. We conclude by observing that
we have been able to systematically discover the subtle mismatch above thanks to
our architectural interoperability check, whereas in [Kramer and Magee 1997] it is
mentioned that the same error went originally undetected and was discovered for
the first time while animating the specification.

6. ARCHITECTURAL TYPES AND ARCHITECTURAL CONFORMITY CHECK

In this section we investigate whether the architectural compatibility and interop-
erability checks scale from single software architectures to architectural styles. This
is a desirable property, as it makes it possible to study the presence of architectural
mismatches for the whole family of architectures constituting an architectural style
on a single instance of the family. Investigating the scalability of the architectural
compatibility and interoperability checks requires the formalization of the concept
of architectural style and the provision of a solution to the membership problem
for an architectural style. Unfortunately, this task is complicated by the presence

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 . Marco Bernardo et al.

of two degrees of freedom within the family of instances of the style: variability of
the internal behavior of the components and variability of the topology formed by
the components. As a first step towards the formalization of architectural styles, in
this section we propose an intermediate abstraction called architectural type, whose
instances differ only for the internal behavior of their components, while sharing
the same topology. This restriction allows us to define an efficient check to verify
whether a software architecture is an instance of an architectural type.

6.1 Conformity Condition

The definition of an architectural type is given by a PADL description. If we view
the AETs and the architectural interactions of an architectural type as being its
formal parameters, similarly to the programming languages all the instances of an
architectural type can be obtained through an invocation mechanism. When invok-
ing an architectural type, one has to specify the name of the invoked architectural
type and to pass the actual, observable behavior preserving AETSs and the actual
names for the architectural interactions. 7

In order to make sure that an architectural type invocation conforms to an archi-
tectural type definition, we must check whether their semantics are weakly bisim-
ulation equivalent up to a suitable injective relabeling of their interactions. ® In
principle, this requires the construction of the state space of the architectural type
definition and the architectural type invocation, whose cost grows exponentially
with the number of AEIs. We show below that there exists a more efficient way to
verify the conformity of an architectural type invocation to an architectural type
definition, whose cost grows linearly with the number of AETSs. Such a technique
consists of verifying whether each actual AET is weakly bisimulation equivalent
to the corresponding formal AET up to an injective relabeling of their interac-
tions, and exploits the fact that ~p is a congruence w.r.t. the parallel composition
operator.

Definition 6.1. Let A(Cy,...,C.,;a},...,a}) be an invocation of the architectural
type A defined with formal AETSs Cy,...,C,, and formal architectural interactions
ai,...,a;. C}issaid to conform to C; iff there exist an injective relabeling function ¢
for the interactions of C; and an injective relabeling function ¢; for the interactions
of C; such that [C/][¢}] =B [Ci][¢:]-]

If the actual AETSs conform to the formal AETSs, the semantics of the architectural
type invocation is simply defined to be the semantics of the architectural type defi-
nition, where each formal architectural interaction is relabeled to the corresponding
actual architectural interaction. Note that this definition fully abstracts from the
actual AEIs of the architectural type invocation.

Definition 6.2. Let A(Cy,...,Cl,;a},...,a}) be an invocation of the architectural
type A defined with formal AETSs Cy,...,C,, and formal architectural interactions
ai,...,a;. If C/ conforms to C; for all i = 1,...,m, then the semantics of the archi-

tectural type invocation is defined by

7If absent, the actual parameters are assumed to coincide with the formal ones.
8The relabeling must be injective in order to prevent different interactions from collapsing into a
single one, which would make the check meaningless.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 33

[ACY,...,Clsa),...,a)] = [Alla1 — a},...,a; — a]] -

The next theorem shows that the definition above is correct, in the sense that under
the conformity assumption we are allowed to abstract from the actual AEIs of the
architectural type invocation.

THEOREM 6.3. Let A(Cy,...,C],;al,...,a;) be an invocation of the architectural
type A defined with formal AETs Cy,...,C,, and formal architectural interactions
ai,...,a;. Let C1,...,C] be the AEIs of the architectural type invocation. If C}
conforms to C; for alli=1,...,m, then there exist an injective relabeling function
¢’ for the interactions of the architectural type invocation and a relabeling function
@ for the interactions of the architectural type definition, with ¢ being injective at

least on the local interactions, such that [C1,...,CL]°l¢'] =B [A]lp]-

PROOF. From the conformity hypothesis on the AETS, we have that each actual
AEI conforms to a formal AEI. The result then follows from the congruence property
of ~5 w.r.t. the parallel composition operator. [

Note that in the theorem above we do not require the injectivity of ¢ on the
architectural interactions of the architectural type definition. The reason is that
the architectural type invocation may give the same actual name to several formal
architectural interactions, which must therefore be relabeled in the same way in
order for the result to hold. A straightforward consequence of the theorem is the
scalability of the architectural compatibility and interoperability checks, i.e. the
fact that all the instances of an architectural type possess the same compatibility
and interoperability properties.

COROLLARY 6.4. Let A(Cy,...,Cl,;a},...,a}) be an invocation of the architec-
tural type A defined with formal AETs Cy,...,Cy and formal architectural inter-
actions ax,...,a;. If Ci conforms to C; for alli =1,...,m, then the architectural

type invocation and the architectural type definition have the same compatibility and
interoperability properties.

We conclude with an example. Consider the following invocation of the architec-
tural type PipeFilter defined in Sect. 3, where a perfect filter type that never fails
is adopted and the two architectural output interactions are given the same actual
name:

PipeFilter(PerfectFilterT, ; accept_request, generate_outcome, generate_outcome)
with
elem_type PerfectFilterT
behavior PerfectFilter 2 accept_item. PerfectFilter’

PerfectFilter’ 2 accept_item. PerfectFilter” +
serve_item. PerfectFilter

PerfectFilter” 2 serve_item. PerfectFilter’
interactions input accept_item
output serve_item
Denoted with ¢ 4.+ the identical relabeling function over Act, we have that

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 . Marco Bernardo et al.

C: ClientT
generate_request] accept_outcome
receivey forward
N; : NetworkT N : NetworkT
forward | receive
accept_request generate_outcome
S: ServerT accept_item\\h
Ry : FilterT
serve_item
accept_item
P PipeT
forward_itemy,_° ~ forward_item,
accept_item accept_item i.\
F : FilterT F : FilterT i
serve_item E B E serve item

Fig. 5. Flow graph of ClientServer

PerfectFilter[p act] ~p Filter /{fail, repair}[© act)
By virtue of Thm. 6.3, we can infer that the invocation of PipeFilter conforms to
its definition. By virtue of Cor. 6.4, we can derive that the invocation of PipeFilter
is deadlock free.

6.2 Hierarchical Modeling

The architectural type invocation mechanism, together with the possibility of defin-
ing architectural interactions, can be exploited to model software architectures in
a hierarchical way. This is simply achieved by extending the syntax for PADL in
such a way that the behavior of an AET can be defined not only through a fam-
ily of sequential PA terms, but also through an invocation of a previously defined
architectural type. If the behavior of an AET is defined through an architectural
type invocation, the interactions of that AET are given by the actual names for the
architectural interactions specified in the invocation. The semantics of that AET
and its instances is then given by the semantics of the architectural type invoca-
tion, with all the local interactions of the invoked architectural type being hidden
as they are internal activities from the AET viewpoint. As far as the architectural
compatibility and interoperability checks are concerned, they must be applied in a

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 35

Table VII. Textual description of ClientServer

archi_type ClientServer

archi_elem_types

elem_type ClientT
. . A .
behavior Client = generate_request.accept_outcome.Client
interactions output generate_request

input accept_outcome

elem_type ServerT

behavior Server 2 PipeFilter(PerfectFilterT,;
accept_request,
generate_outcome, generate_outcome)
interactions input accept_request
output generate_outcome

elem_type NetworkT
A
behavior Network = receive.forward. Network
interactions input receive

output forward

archi_topology

archi_elem_instances C : ClientT
S : ServerT
Ny, No : NetworkT

archi_interactions

archi_attachments from C.generate_request to N .receive
from N,.forward to S.accept_request
from S.generate_outcome to N,.receive
from N,.forward to C.accept_outcome

end

hierarchical way starting from the lowest level architectural types, i.e. the invoked
architectural types that do not contain invocations themselves. Whenever an ar-
chitectural type passes a check, then it is collapsed into a single AEI that is part of
a higher level architectural type. The state space of such an AEI can be efficiently
built out of the state spaces of the AEIs of the invoked architectural type if we take
a compositional approach based on hiding the local interactions and minimizing at
each step through ~p.

As an example of hierarchical modeling, consider the pipe-filter system of Sect. 3
with a perfect filter type and suppose that it is the architecture of the server of a
client-server system. The flow graph description of such a hierarchical architectural
type is depicted in Fig. 5, while its textual description is reported in Table VII. The
behavior of ServerT is defined through an invocation of the previously defined archi-
tectural type PipeFilter, where the actual AET PerfectFilterT substitutes for the
formal AET FilterT and the actual names accept_request, generate_outcome, and
generate_outcome substitute for the formal architectural interactions Fy.accept_item,
Fy.serve_item, and Fjy.serve_item, respectively. Since PerfectFilterT conforms to
FilterT, the architectural type ClientServer is well defined. Let us investigate the
presence of architectural mismatches within ClientServer. From the architectural
compatibility check and the architectural conformity check, we know that the in-

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 . Marco Bernardo et al.

vocation of the architectural type PipeFilter is deadlock free. Let us collapse this
architectural type invocation into a single AEI, which corresponds to S of type
ServerT. Since C' is deadlock free and interoperates with N,., S, and N,, we can
conclude that ClientServer is deadlock free.

6.3 Related Work

Some papers have appeared in the literature that address the formalization of the
architectural styles. In [Abowd et al. 1995] a formal framework has been provided
for precisely defining architectural styles and analyzing within and between different
architectural styles. This is accomplished by means of a small set of mappings
from the syntactic domain of architectural descriptions to the semantic domain of
architectural meaning, following the standard denotational approach developed for
programming languages. In [Dean and Cordy 1995] a syntactic theory of software
architecture has been presented that is based on set theory, regular expressions,
and context free grammars. Architectural styles have been categorized through
the typing of the nodes and the connections in the diagrammatic syntax as well
as a pattern matching mechanism. In [Moriconi et al. 1995] architectural styles
have been represented as logical theories and a method has been introduced for
the stepwise refinement of an abstract architecture into a relatively correct lower
level architecture. Unlike the approaches above, our approach has a behavioral and
algebraic nature and has been developed in such a way that it is consistent with
the architectural compatibility and interoperability checks previously introduced.

Our approach to formalizing architectural styles via the intermediate abstrac-
tion of architectural types is complementary to an extension of Wright supporting
architectural styles (see, e.g., [Allen and Garlan 1998]). In such an approach, the
description of an architectural style only comprises the definition of component and
connector types with a fixed internal behavior as well as topological constraints,
whereas the component and connector instances and the related attachments are
separately specified in the configurations of the style, so that the set of component
and connector instances and the related attachments can vary from configuration
to configuration.

7. CONCLUSION

In this paper we have developed a compositional, hierarchical and graphical ADL
called PADL for the specification and analysis of families of component based soft-
ware systems. PADL provides a uniform framework in which the three different
causes of deadlock related architectural mismatches mentioned in the introduc-
tion can be dealt with by means of the standard weak bisimulation equivalence.
Causes (1) and (2) have been treated by means of an architectural compatibility
check that ensures the absence of deadlock within a set of software components
interacting through a given deadlock free software component. This check, which
scales to the whole architecture in case of acyclic topology, subsumes the compati-
bility check of [Allen and Garlan 1997] and equals the effectiveness of the algorithm
of [Inverardi et al. 2000; Inverardi and Uchitel 2001]. Cause (3) has been instead
treated through an architectural interoperability check that guarantees the absence
of deadlock within a set of interacting software components forming a cyclic topol-
ogy. Both checks, which rely on the properties of the weak bisimulation equivalence,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 37

have turned out to be more convenient — for efficiency and/or diagnosis related rea-
sons — than directly verifying deadlock freedom for the considered set of software
components. The usefulness of both checks has been assessed on a compressing
proxy system and a cruise control system, respectively, with TwoTowers [Bernardo
2002], a software tool for the functional verification and performance evaluation
of concurrent and distributed systems described with the stochastic process alge-
bra EMPA,, [Bravetti and Bernardo 2000]. Finally, we have addressed the issue
of scaling the architectural compatibility and interoperability checks to architec-
tural styles through an extension of PADL. We have proposed an approximation of
an architectural style called architectural type, whose instances differ only for the
internal behavior of their components. We have defined an efficient architectural
conformity check based on the weak bisimulation equivalence to verify whether an
architecture is an instance of an architectural type. We have shown that all the
architectures conforming to the same architectural type possess the same compat-
ibility and interoperability properties.

Two lessons have been learnt. First, the detection of architectural mismatches
in the case of complex component based software systems is practically impossi-
ble without the support of a formal description of the architecture of the systems
(see, e.g., the cruise control system). In this respect, the architectural descriptions
benefit a lot from the formality, compositionality, and expressivity of the process
algebras. Second, the process algebras are well suited at the architectural level
of design not only because of their compositional modeling facilities, but also for
their analysis related machinery, which enables the software architect to detect
mismatches in a rather efficient and automated way and to get some diagnostic
information useful for identifying the cause of the mismatches. In conclusion, we
can say that the process algebra based ADLs can be viewed as members of a next
generation of process algebras that offer an enhanced usability — through graphical
and hierarchical modeling capabilities — and a more controlled way of modeling
complex systems — through static checks like architectural compatibility, interoper-
ability, and conformity.

As far as future work is concerned, there are several directions that we would like
to explore:

(1) The deadlock freedom results can be so far scaled from the individual compo-
nents to the whole architectural types only in the case of acyclic topologies.
We would like to understand whether and when this form of scalability can be
achieved in the case of cyclic topologies.

(2) There are deadlock free software systems made out of deadlock free components
that do not pass the architectural compatibility or interoperability checks. The
reason is that such checks are based on the weak bisimulation equivalence, which
is known to be very sensitive to the branching points in the component behavior.
We would like to weaken the architectural compatibility and interoperability
checks using other standard observational equivalences lying between the weak
bisimulation equivalence and the trace equivalence, and to investigate to which
extent the deadlock freedom results are preserved.

(3) Deadlock is not the only kind of architectural mismatch. As seen in the in-
troduction, in general the designer may start with components each possessing

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 . Marco Bernardo et al.

a certain property and desire to get a system possessing a property somehow
related to the properties of its components. As a consequence, we would like
to investigate the adequacy of analysis techniques based on temporal logics
rather than equivalence checking. As a first step, since our architectural checks
are based on the weak bisimulation equivalence, we may consider its logical
characterization given by the weak Hennessy-Milner logic [Milner 1989]. As a
further step, we believe that compositional model checking [Clarke et al. 1989
and partial model checking [Andersen 1995] may be profitably used.

(4) The notion of architectural type that we have proposed as an approximation
of the concept of architectural style does not permit any form of variability of
the topology from instance to instance of the architectural type. We would like
to find out a more liberal definition of the notion of architectural type, which
allows for some form of topological variability while preserving the scalability
of the architectural compatibility and interoperability checks. Some work in
this direction has been recently done in [Bernardo and Franzeé 2002a; 2002b].

(5) The designer is often faced with the problem of choosing among different soft-
ware architectures that are functionally equivalent. This choice is clearly driven
by nonfunctional factors, and mostly by performance requirements. We would
like to develop an extension of our framework that takes performance aspects
into account. Similarly to the case of the detection of functional mismatches,
the extended framework should provide some diagnostic information at the ar-
chitectural level whenever unexpected values for the performance measures are
obtained. We believe that this can be achieved through a suitable mapping
from an enhanced PADL like language to structured performance models, like
queueing networks [Lavenberg 1983] and Markov chains represented through
Kronecker operators [Davio 1981]. We have done some preliminary work in
this direction in [Bernardo et al. 2002; Balsamo et al. 2002].

(6) Our framework should be put in the context of the whole software life cycle.
For this reason, we would like to study whether and to which extent:

—a PADL description can be synthesized from a description of the user re-
quirements, e.g. given in the UML notation;

—a PADL description can be used to automatically generate object oriented
code that possesses the properties proved at the architectural level, as well
as tests to be applied to the code that follows the described architecture;

—a PADL description can be used to predict the impact of the hardware plat-
form on the functionality and the performance of the described software
architecture.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their useful comments and suggestions
on an earlier version of this work.

REFERENCES

ABowD, G. D., ALLEN, R., AND GARLAN, D. 1995. Formalizing style to understand descriptions
of software architecture. ACM Trans. Softw. Eng. Method. 4, 319-364.

ALLEN, R. AND GARLAN, D. 1997. A formal basis for architectural connection. ACM Trans.
Softw. Eng. Method. 6, 213—249.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Architecting Families of Software Systems with Process Algebras . 39

ALLEN, R. AND GARLAN, D. 1998. A case study in architectural modelling: the aegis system. In
Proc. of the 8th Int. Workshop on Software Specification and Design (IWSSD-8).

ANDERSEN, H. R. 1995. Partial model checking. In Proc. of the 10th IEEE Int. Symp. on Logic
in Computer Science (LICS 1995). IEEE-CS Press, 398-407.

BaLsAMO, S., BERNARDO, M., AND SIMEONI, M. 2002. Combining stochastic process algebras and
queueing networks for software architecture analysis. In Proc. of the 8rd Int. Workshop on
Software and Performance (WOSP 2002). ACM Press, 190-202.

BERNARDO, M. 2002. TwoTowers 2.0 User Manual. http://www.sti.uniurb.it/bernardo/twotowers/.

BERNARDO, M., CIANCARINI, P., AND DONATIELLO, L. 2000. On the formalization of architectural
types with process algebras. In Proc. of the 8th ACM Int. Symp. on the Foundations of Software
Engineering (FSE-8). ACM Press, 140-148.

BERNARDO, M., CIANCARINI, P., AND DONATIELLO, L. 2001. Detecting architectural mismatches
in process algebraic descriptions of software systems. In Proc. of the 1st Working IEEE/IFIP
Conf. on Software Architecture (WICSA 2001). IEEE-CS Press, 77-86.

BERNARDO, M., DONATIELLO, L., AND CIANCARINI, P. 2002. Stochastic process algebra: from an
algebraic formalism to an architectural description language. In Performance FEvaluation of
Complex Systems: Techniques and Tools, M. C. Calzarossa and S. Tucci, Eds. LNCS, vol. 2459.
Springer, 236—260.

BERNARDO, M. AND FRANZE, F. 2002a. Architectural types revisited: extensible and/or connec-
tions. In Proc. of the 5th Int. Conf. on Fundamental Approaches to Software Engineering
(FASE 2002). LNCS, vol. 2306. Springer, 113-128.

BERNARDO, M. AND FRrRANzE, F. 2002b. Exogenous and endogenous extensions of architectural
types. In Proc. of the 5th Int. Conf. on Coordination Models and Languages (COORDINA-
TION 2002). LNCS, vol. 2315. Springer, 40-55.

BRAVETTI, M. AND BERNARDO, M. 2000. Compositional asymmetric cooperations for process
algebras with probabilities, priorities, and time. In Proc. of the 1st Int. Workshop on Models
for Time Critical Systems (MTCS 2000). ENTCS, vol. 39(3). Elsevier.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press.

CLARKE, E. M., LonG, D. E., AND McMILLAN, K. L. 1989. Compositional model checking. In
Proc. of the 4th IEEE Int. Symp. on Logic in Computer Science (LICS 1989). IEEE-CS Press,
353-362.

Davio, M. 1981. Kronecker products and shuffle algebra. IEEE Trans. Comput. 30, 116-125.

DeaN, T. R. AND CORDY, J. R. 1995. A syntactic theory of software architecture. IEEE Trans.
Softw. Eng. 21, 302-313.

DEREMER, F. AND KrON, H. H. 1976. Programming-in-the-large versus programming-in-the-
small. IEEE Trans. Softw. Eng. 2, 80-86.

Hoarg, C. A. R. 1985. Communicating Sequential Processes. Prentice Hall.

INVERARDI, P. AND UCHITEL, S. 2001. Proving deadlock freedom in component-based program-
ming. In Proc. of the 4th Int. Conf. on Fundamental Approaches to Software Engineering
(FASE 2001). LNCS, vol. 2029. Springer, 60-75.

INVERARDI, P. AND WOLF, A. L. 1995. Formal specification and analysis of software architectures
using the chemical abstract machine model. IEEE Trans. Softw. Eng. 21, 373-386.

INVERARDI, P., WoOLF, A. L., AND YANKELEVICH, D. 2000. Static checking of system behaviors
using derived component assumptions. ACM Trans. Softw. Eng. Method. 9, 239-272.

KRAMER, J. AND MAGEE, J. 1997. Exposing the skeleton in the coordination closet. In Proc. of
the 2nd Int. Conf. on Coordination Models and Languages (COORDINATION 1997). LNCS,
vol. 1282. Springer, 18-31.

LAVENBERG, S. S., Ed. 1983. Computer Performance Modeling Handbook. Academic Press.

MAGEE, J., DULAY, N., EISENBACH, S., AND KRAMER, J. 1995. Specifying distributed software
architectures. In Proc. of the 5th European Software Engineering Conf. (ESEC 1995). LNCS,
vol. 989. Springer, 137-153.

MILNER, R. 1989. Communication and Concurrency. Prentice Hall.

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 . Marco Bernardo et al.

MoriconI, M., QiaN, X., AND RIEMENSCHNEIDER, R. A. 1995. Correct architecture refinement.
IEEE Trans. Softw. Eng. 21, 356-372.

PERRY, D. E. AND WOLF, A. L. 1992. Foundations for the study of software architecture. ACM
Softw. Eng. Notes 17, 40-52.

Suaw, M., DELINE, R., KLEIN, D. V., Ross, T. L., YounG, D. M., AND ZELESNIK, G. 1995.
Abstractions for software architecture and tools to support them. IEEE Trans. Softw. Eng. 21,
314-335.

SHAW, M. AND GARLAN, D. 1996. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall.

VAN GLABBEEK, R. J. 2001. The linear time — branching time spectrum i. the semantics of

concrete, sequential processes. In Handbook of Process Algebra, J. A. Bergstra, A. Ponse, and
S. A. Smolka, Eds. Elsevier, 3-99.

Received July 2001; revised April 2002; accepted July 2002

ACM Journal Name, Vol. V, No. N, Month 20YY.

