
Scientific Programming 10 (2002) 75–89 75
IOS Press

Architecting Web sites for high performance

Arun Iyengar∗ and Daniela Rosu
IBM Research, T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Abstract: Web site applications are some of the most challenging high-performance applications currently being developed and

deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high

performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research

has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed

and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in

building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing

of client requests, the control of service levels, and the interaction with remote network caches.

1. Introduction

Web site applications are some of the most challeng-

ing high-performance applications currently being de-

veloped and deployed. This class of applications spans

a wide range of activities including commercial sites,

like on-line retailing and auctions, financial services,

like on-line banking and security trading, information

sites, like news and sport events, and educational sites,

like digital libraries.

The challenges that should be addressed by high-

performance Web site applications emerge from the

characteristics of workloads and the complexity of per-

formance constraints that these applications have to

support. In general, a Web site application provides

one or more types of services developed on top of an

HTTP-based infrastructure. These services may span

a large range of functionalities, from delivery of static

content, to execution of site-specific computations and

database queries, and to streaming content. Conse-

quently, the services offered by a site may differ with

respect to request rates, response time constraints, and

computation and bandwidth needs.

Numerous studies demonstrate that Web traffic is in-

creasing at a high rate. Moreover, the throughput that

Web sites need to sustain continues to increase dramat-

∗Corresponding author: Arun Iyengar, IBM T.J. Watson Research

Center, 19 Skyline Drive, Hawthorne, NY 10532, USA. Tel.: +1 914

784 6468; Fax: +1 914 784 7455; E-mail: aruni@us.ibm.com.

ically. Figure 1 illustrates this trend by presenting the

increase of (a) daily Web traffic and of (b) peak hits per

minute at major sporting and event Web sites hosted

by IBM from February 1998 through September 2000.

This trend raises important capacity planning problems,

given that having sufficient capacity to handle traffic

at a given point in time might not be sufficient several

months in the future.

Another challenging characteristic of Web traffic is

its burstiness, given that request rates during peak in-

tervals may be several times larger than their average

rates [37]. Cost-effective solutions to this challenge

multiplex several independent Web applications over

the same computing and networking infrastructure in

order to appropriately balance performance and cost

parameters [5]. However, this raises the need for com-

plex mechanisms for service level control.

Practically anyone who has used the Web is aware

of the fact that requests can incur long response de-

lays. On the path of a client’s interaction with a Web

site application, there are many components of the Web

infrastructure where performance problems can occur.

The Web site itself can be a major bottleneck. Par-

ticular attention is required for Web sites generating

significant dynamic or encrypted content. Previous re-

search has shown that generating dynamic content can

consume significant CPU cycles [35,36], while serving

encrypted content via SSL can be more than an order

of magnitude more expensive than serving unencrypted

content [4].

ISSN 1058-9244/02/$8.00 2002 – IOS Press. All rights reserved

76 A. Iyengar and D. Rosu / Architecting Web sites for high performance

0

100

200

300

400

500

600

700

800

900

P
ea

k
 H

it
s/

D
ay

 (
M

)

Quarter

1Q 98 2Q 98 2Q 99 3Q 99 2Q 00 3Q 00

0

200

400

600

800

1000

1200

P
ea

k
 H

it
s/

M
in

u
te

 (
K

)

Quarter

1Q 98 2Q 98 2Q 99 3Q 99 2Q 00 3Q 00

(a) (b)

Fig. 1. Maximum number of hits during (a) a single day (in millions) and (b) a single minute (in thousands), at major sporting and event Web

sites hosted by IBM from February 1998 through September 2000. Each bar represents a different quarter of a year.

While predictable response time is not the most criti-

cal performance demand a Web site is designed for,fail-

ing to address it may have significant business conse-

quences. Long waits can deter users who are not willing

to spend significant amounts of time accessing a Web

site in order to retrieve content of interest. Moreover,

unpredictable response times combined with availabil-

ity gaps can make a Web site unsuitable for mission-

critical applications. These problems might be due to

failures of systems along the path between clients and

Web sites, but often their cause lies in the Web site it-

self. The site’s architecture and software infrastructure

are likely to not scale well with high peak request rates

or highly variable per-request resource needs.

Overall, the high growth rate of client population

and the increased complexity of interactions and con-

tent models result in demands for high throughput, high

availability, low response times, and reduced costs. To

address these demands, innovative software and hard-

ware solutions are required. Recently, a large body

of research has addressed Web site-related problems.

This paper is an overview of recent solutions concern-

ing the architectures, software infrastructure services,

and operating system services used in building high

performance Web site applications.

The remainder of this paper is organized as follows.

Section 2 presents the architecture of a high perfor-

mance Web site, identifying the main components and

briefly discussing implementation challenges and re-

cent solutions. Sections 3–5 review the challenges and

solutions proposed for several Web site functions which

have a significant impact on performance – the pro-

cessing of client requests (Section 3), the control of

service levels (Section 4), and the interactions with re-

mote network caches (Section 5). Finally, Section 6

concludes the paper highlighting several problems for

future research.

2. Web site architecture

In this section, we introduce the main elements of a

high-volume Web site architecture. Focusing on their

role in processing client requests, we categorize the

components of a Web site’s architecture in three lay-

ers: the request distribution layer, the content delivery

layer, and the content generation layer. The request

distribution layer performs the routing of requests to

the Web site’s nodes or subsystems that can appropri-

ately process them. The goal of request distribution

is to ensure the targeted levels of throughput, response

time, and availability. This task is particularly chal-

lenging when the site is offering several services, each

with specific resource needs, request patterns, through-

put goals, and business values. The request distribution

layer includes components such as Domain Name Sys-

tem (DNS) servers, access switches and routers, and

infrastructure for performance monitoring and request

(re)routing.

The content delivery layer replies to client requests

by transmitting content available in disk and memory-

based stores, or acquired by interaction with content

generation components. A goal of the content delivery

layer is to maximize the ratio of requests that can be

serviced from local stores, thus minimizing response

times and server loads. This layer includes components

such as caching proxies, HTTP servers, application

servers, and content transformation engines.

Finally, the content generation layer handles con-

tent materialization triggered by client requests and

A. Iyengar and D. Rosu / Architecting Web sites for high performance 77

database updates. This layer includes database servers,

caches of query results, engines for tracking updates

and triggering off-line re-computation, and infrastruc-

ture for Web site management.

The three layers of a Web site application may be

mapped to a variety of physical configurations rang-

ing from a single node to a worldwide distributed in-

frastructure. Figure 2 illustrates the architecture of a

complex Web site which would be similar to those at

sites such as IBM’s sporting and event Web sites [34].

The content generation layer is at the central point of

the site configuration and typically spans a relatively

small geographical area. Content delivery and request

routing layers may be widely distributed.

Multiple Web servers would typically be needed to

handle high request rates. In Fig. 2, multiple Web

servers satisfy requests dispatched by the connection

router according to some load balancing policy. Web

sites may be mirrored in geographically distributed lo-

cations. A client can then obtain content with less la-

tency by accessing the Web site replica that is closest to

it. For some mirrored Web sites, clients must pick the

closest site themselves, while for other sites, requests

are routed by the network to the closest site [16]. Mir-

rored Web sites also provide higher availability. If one

replica site is down, others are likely to be available.

In the remainder of this section,we briefly discuss the

role of the main components in a Web site architecture

including DNS servers, caching proxies, connection

routers, HTTP servers, query engines, and dynamic

content management frameworks. The presentation

order follows the flow of a client’s interaction with the

Web site application.

DNS servers

DNS servers provide client hosts with the IP address

of one of the site’s content delivery nodes. When a re-

quest is made to a Web site such as http://www.research.

ibm.com/hvws, “www.research.ibm.com” must be

translated to an IP address. DNS servers perform this

translation.

Besides enabling clients to reach the targeted Web

sites, DNS servers provide a means for scaling Web

sites to handle high request rates. Namely, a name as-

sociated with a Web site might map to several IP ad-

dresses, each associated with a different set of server

nodes. DNS servers select one of these addresses based

on a site-specific request distribution policy. This pol-

icy may be as simple as Round Robin, but typically it

falls into the ‘Least Loaded’ paradigm, attempting to

minimize maximum node utilization [15,19]. In the

latter case, load estimations are based on observations

local to the DNS server (e.g., number of forwarded

clients), and on monitoring information provided by

each of the nodes (e.g., number of serviced requests,

CPU utilization). In either case, the load estimators are

likely to have low accuracy, and this is due to several

factors.

First, not all requests trigger identical server loads,

with load variability likely to increase as the web site

complexity increases. Second, DNS servers are not on

the path of all of the requests that reach the site, as the

results of DNS lookups can be cached. Cached name-

to-IP address mappings have lifetimes, called “Time-

To-Live” (TTL) attributes, which are provided by the

DNS servers and which indicate when these mappings

are no longer valid. If a mapping is cached, a sub-

sequent request to the same Web site can obtain the

IP address from a cache, obviating the need to con-

tact the DNS server. Thus, the caching of name-to-IP

address mappings allows requests to reach the site’s

nodes without being load balanced by the DNS server;

this increases the risk of load imbalance and limits the

effectiveness of DNS-based load balancing [22].

Overcoming these drawbacks by increasing the rate

of monitoring reports may be prohibitively expensive.

A typical solution is to limit the number of requests that

reach the site without the control of the DNS server.

This is achieved by setting very short, possibly zero,

TTL’s, causing most of the requests to trigger DNS

lookups. However, recent research provides evidence

that this approach has negative effects on client perfor-

mance as it may result in significant increase of per-

page response times [51]. Consequently, for a scalable

Web site, DNS-based request distribution should be

coupled with local solutions for load redistributions [8].

Connection routers

Clusters dedicated to content delivery typically have

a connection-routing front end, a component of the re-

quest distribution layer which routes requests to multi-

ple back-end servers. The connection router hides the

IP addresses of the back-end servers. This contrasts

with typical DNS-based routing in which clients can ob-

tain the addresses of individual back-end servers. How-

ever, for sites with multiple connection routers, DNS

lookups provide the address of one of these routers.

A connection router includes a router or a switch that

may be stand-alone [22,31,46,61], may work with ded-

icated resource management nodes [54,62], or may be

backed by request re-routing systems distributed across

the back-end nodes [7,8,63]. The request distribu-

78 A. Iyengar and D. Rosu / Architecting Web sites for high performance

Layers

content delivery

request distribution

content generation

content

Clients

Database/Storage

Manager

Connection
Router

DNS

Server

Content

Sources

Http/Application

Update
Manager

Servers

Servers

Resource

Reverse Proxy

Reverse Proxy

Reverse Proxy

requests

load info

Fig. 2. Components of a Web site architecture.

tion policies implemented by the connection router are

based on system load parameters and rules for mapping

content and service types to resources.
The performance enabled by a connection router is

better than that achieved with DNS-based routing [22].

This is mainly because, in comparison to a DNS server,
the connection router handles all requests addressed to

the site, and thus requests do not reach back-end nodes
without first going through the router. In addition,

a connection router can have more accurate system

load information (e.g., number of active connections,
transferred payload), can monitor resource utilization

with a much finer granularity, and can determine and

exploit the type of the requested service and content.
Besides enabling effective load distribution, connec-

tion routers simplify system management. Namely,
by hiding the identities of back-end servers, a connec-

tion router enables transparent additions or removals of

servers. In addition, when a server fails, a connection
router can quickly identify the event and stop directing

new requests to the node.

Reverse proxies

A Web site’s reverse proxies, also called “Web server
accelerators”, are components in the content delivery

layer that attempt to service client requests from a high-

performance cache. When this is not possible, requests
are forwarded to the Web site. A key difference be-

tween a reverse proxy and a proxy cache that serves
an institution or a region is the mix of cached content.

An institution or region cache, also called a forward

proxy, includes content from a large set of Web sites

and therefore has a large working-set size, requiring

an extensive amount of storage to obtain reasonable
hit rates. In contrast, a reverse proxy cache includes

content from a single site. Therefore, its working set
is relatively small. Less storage is thus required for a

reverse proxy to achieve good hit rates.
A reverse proxy may be located both within and out-

side the physical confines of the Web site. Its physical
configuration varies from a cache running on a high-

performance connection router [41], to a stand-alone
node [32,39], to a cluster [26,30,52,53]. In cluster-
based reverse proxies, nodes operate independently or

as cooperative caches [30,52]. In typical implementa-
tions, reverse proxies do not have disk stores, relying

only on main memory caches. Reverse proxies can in-
clude the functionality of a content-based router [32],

a particular type of connection router in which the tar-
get node is selected based on the type of the requested

content.
By offloading many of the requests addressed to the

regular Web servers at a site, reverse proxies contribute
to an increase in the site’s overall throughput. More-

over, their restricted functionality is amenable to effi-
cient implementations, which can boost throughput and
reduce response times.

In order to achieve consistency and prevent stale
data from being served, a reverse proxy cache should

have mechanisms that allow the server to invalidate
and possibly push data. The API used in [41] allows

dynamic data to be cached in addition to static data.
More recently, a significant body of work has addressed

the problem of consistency protocols for proxy caches.

A. Iyengar and D. Rosu / Architecting Web sites for high performance 79

Much of this work is relevant to reverse proxies. New

proposals aim to reduce Web site overhead and client-

observed response times by extending traditional pull-

based protocols with push-based methods [21,35,57].

Namely, the Web site keeps track of the proxies caching

its content and appropriately pushes invalidation mes-

sages when new versions are created.

HTTP Servers.

HTTP servers process requests for static and pre-

computed dynamic content [48] and provide the under-

lying framework for execution of application servers,

such as IBM’s WebSphere [33], in response to client re-

quests. The main characteristics that distinguish HTTP

servers are their software architectures and execution

modes. The software architectures of HTTP servers

vary from event-based with a single thread handling

all client connections (e.g., Zeus [60], NWSA [32],

kHTTPd [55]), to a combination of event-based pro-

cessing and thread-based handling of disk I/O opera-

tions (TUX [44]), to pure thread-based processing with

connection-to-thread mappings that last for the entire

connection lifetime (e.g., Apache [3]). With respect

to execution mode, HTTP servers may execute in user

mode (e.g., Zeus, Apache) or in kernel mode (e.g.,

kHTTPd, TUX, NWSA). Both software architecture

and execution mode influence the achievable perfor-

mance levels; significant performance advantages re-

sult from event-based kernel-mode servers. Recent re-

search has focused on optimizing the operating system

functions on the critical path of request processing. For

instance, [11] proposes scalable solutions to the UNIX

methods for select and allocation of file descriptors,

which are critical for user-mode, event-based servers.

[9] proposes a network subsystem architecture that al-

lows for incoming network traffic to be processed at the

priority of the receiving process, thus achieving stabil-

ity under overload and integrating the network subsys-

tem into the node’s resource management system. [47]

proposes a unified I/O buffering and caching system

that eliminates all data copies involved in serving client

requests and eliminates multiple buffering of I/O data,

thus benefiting servers with numerous WAN connec-

tions, for which TCP retransmission buffers have to be

maintained for long time intervals.

Caching query results

In the process of serving requests for dynamic con-

tent, application servers often query databases. These

queries can have significant overhead. Recent re-

search indicates that significant benefits can result from

caching query results. Cached results can be used as a

whole [20,48] or as a base for sub-queries [42]. Pro-

posed solutions allow query caching to be controlled

by the application [20,48] or by the database itself [25].

Application-controlled caching may benefit from ex-

ploiting application semantics but may be less effective

for complex applications with many relations and a va-

riety of queries. In contrast, query engine-controlled

caching can exploit the engine’s detailed understanding

of the complete site schema. For instance, a query en-

gine can automatically implement query reformulation

in order to produce content that is likely to have higher

cache utility.

Management of dynamic content

The framework for dynamic content management is

a Web site component that tracks information updates

and controls the pro-active recomputation of the related

dynamic content. Recent research has proved the sig-

nificant benefits that can result from pro-active con-

tent recomputation (and caching) versus the traditional

per-request content generation [17,64].

For instance, the approach proposed in [17] is to

monitor underlying data which affect Web pages, such

as database tables or files. When changes are detected,

new Web pages are generated to reflect these changes.

The underlying mechanism, called “trigger monitor”,

uses a graph to maintain relationships between the un-

derlying data and the Web pages affected by the data.

The trigger monitor uses graph traversal algorithms to

determine which Web pages need to be updated as a

result of changes to underlying data.

To summarize, this section has reviewed the major

components of a Web site’s architecture, highlighting

related challenges and proposed solutions. In the re-

mainder of this paper, we focus on several functions

of a Web site application that have strong implications

on the overall performance, namely the processing of

client requests, the control of service levels, and the

interaction with network caches.

3. Processing client requests

Highly accessed Web sites may need to handle peak

request rates of over a million hits per minute. Web

serving lends itself well to concurrency because trans-

actions from different clients can be handled in parallel.

A single Web server can achieve parallelism by mul-

tithreading or multitasking among different requests.

Additional parallelism and higher throughputs can be

80 A. Iyengar and D. Rosu / Architecting Web sites for high performance

achieved by using multiple servers and load balancing

requests among the servers. Sophisticated restructuring

by the programmer or compiler to achieve high degrees

of parallelism is not necessary.

Web servers satisfy two types of requests, static and

dynamic. Static requests are for files that exist at the

time a request is made. Dynamic requests are for con-

tent that has to be generated by a server program exe-

cuted at request time. A key difference between satis-

fying static versus dynamic requests is the processing

overhead. The overhead of serving static pages is rel-

atively low. A Web server running on a uniprocessor

can typically serve several hundred static requests per

second. This number is highly dependent on the data

being served; for large files, the throughput is lower.

The overhead for satisfying a dynamic request may

be orders of magnitude more than the overhead for sat-

isfying a static request. Dynamic requests often in-

volve extensive back-end processing. Many Web sites

make use of databases, and a dynamic request may in-

voke several database accesses; these database accesses

can consume significant CPU cycles. The back-end

software for creating dynamic pages may be complex.

While the functionality performed by such software

may not appear to be compute-intensive, such middle-

ware systems are often not designed efficiently. Many

commercial products for generating dynamic data are

highly inefficient.

One source of overhead in accessing databases is

connecting to the database. In order to perform a trans-

action on many databases, a client must first establish

a connection with a database in which it typically pro-

vides authentication information. Establishing a con-

nection is often quite expensive. A naive implementa-

tion of a Web site would establish a new connection for

each database access. This approach could overload

the database with relatively low traffic levels.

A significantly more efficient approach is to maintain

one or more long-running processes with open connec-

tions to the database. Accesses to the database are then

made with one of these long-running processes. That

way, multiple accesses to the database can be made

over a single connection.

Another source of overhead is the interface for in-

voking a server program in order to generate dynamic

data. The traditional method for invoking server pro-

grams for Web requests is via the Common Gateway

Interface (CGI). CGI works by forking off a new pro-

cess to handle each dynamic request; this incurs sig-

nificant overhead. There are a number of faster in-

terfaces available for invoking server programs [34].

These faster interfaces use one of two approaches. The
first approach is for the Web server to provide an in-
terface to allow a program for generating dynamic data
to be invoked as part of the Web server process itself.
IBM’s GO Web server API (GWAPI) is an example of
such an interface. The second approach is to establish
long-running processes to which a Web server passes
requests. While this approach incurs some interprocess
communication overhead, the overhead is considerably
less than that incurred by CGI. FastCGI is an example
of the second approach [45].

In order to reduce the overhead for generating dy-
namic data, it is often feasible to generate the data
corresponding to a dynamic page once, store the page
in a cache, and to serve subsequent requests to the
page from cache instead of invoking the server program
again [35,48,64]. Using this approach, dynamic data
can be served at the same rate as static data.

However, there are types of dynamic data that can-
not be pre-computed and serviced from the cache. For
instance, dynamic requests that cause a side effect at
the server such as a database update cannot be satisfied
merely by returning a cached page. For example, con-
sider a Web site that allows clients to purchase items
using credit cards. At the point at which a client com-
mits to buying something, that information has to be
recorded at the Web site; the request cannot be solely
serviced from the cache.

Personalized Web pages can also present problems
for caches. A personalized Web page would contain
content specific to a client such as the client’s name.
Such a Web page could not be used for another client.
Therefore, caching the page is of limited utility since
only a single client can use it. Each client would need
a different version of a page.

One method which can reduce the overhead for gen-
erating dynamic pages and enable caching of some
parts of personalized pages is to define these pages
as a collection of fragments [18]. In this approach, a
complex Web page is constructed from several simpler
fragments that may be recursively embedded. This is
efficient because the overhead for composing an object
from simpler fragments is usually minor compared to
the overhead for constructing the object from scratch,
which can be quite high.

The fragment-based approach also makes it easier to
design Web sites. Common information that needs to
be included on multiple Web pages can be created as
a fragment. In order to change the information on all
pages, only the fragment needs to be changed.

In order to use fragments to allow partial caching of
personalized pages, the personalized information on a

A. Iyengar and D. Rosu / Architecting Web sites for high performance 81

Web page is encapsulated by one or more fragments that
are not cacheable, but the other fragments in the page
are. When serving a request, a cache composes pages
from its constituent fragments, many of which can be
locally available. Only personalized fragments have to
be created by the server. As personalized fragments
typically constitute a small fraction of the entire page,
generating them would require lower overhead than
generating all of the fragments in the page.

Generating Web pages from fragments provides
other caching benefits as well. Fragments can be con-
structed to represent entities that have similar lifetimes.
When a particular fragment changes but the rest of the
Web page stays the same, only the fragment needs to be
invalidated or updated in the cache, not the entire page.
Fragments can also reduce the amount of cache space
taken by a collection of pages. Suppose that a par-
ticular fragment f1 is contained in 2000 popular Web
pages which should be cached. Using the conventional
approach, the cache would contain a separate version
of f1 for each page resulting in as many as 2000 copies.
By contrast, if the fragment-based method of page com-
position is used, only a single copy of f1 needs to be
maintained.

A key problem with caching dynamic content is
maintaining consistent caches. The cache requires a
mechanism, such as an API, allowing the server to ex-
plicitly invalidate or update cached objects that have
become obsolete. Web objects may be assigned ex-
piration times that indicate when they should be con-
sidered obsolete. Such expiration times are generally
not sufficient for allowing dynamic data to be cached
properly because it is often not possible to predict accu-
rately when a dynamic page will change. This is why
a mechanism is needed to allow the server to explicitly
keep the cache updated.

Server performance can also be adversely affected
by encryption. Many Web sites need to provide secure
data to their clients via encryption. The Secure Sockets
Layer protocol (SSL) [27] is the most common method
for passing information securely over the Web. SSL
causes serious performance degradation [4]. In ad-
dition, the overhead of providing secured interactions
may be unnecessarily increased if embedded images
that do not include private content are specified by the
Web content designer as requiring secure transmission.

While objects encrypted via SSL generally cannot be
cached within the network, they can be cached within
browsers if they have expiration times. Web sites can
thus considerably reduce their encryption workloads by
properly setting expiration times for objects that need
to be encrypted.

To summarize, this section has addressed the ele-

ments involved in the actual processing of HTTP re-

quests that have significant overhead. Among these, the

generation of dynamic content is one of the most criti-

cal, particularly for Web sites that generate significant

dynamic content.

4. Control of service levels

The control of service levels is a major concern for

many deployed Web site applications. This is motivated

by business reasons, including the need to maximize

resource utilization and the need to keep clients moti-

vated to access the site by delivering responses within

reasonable time. Challenges stem from the character-

istics of Web site workloads that typically exhibit high

burstiness of arrivals and high variance of per-request

resource usage.

The problem of controlling the service levels in a

Web site has been addressed in different formulations

by a large body of research. The most frequently con-

sidered formulations include:

– Single service – maximal performance. [8,22,29,

46,61,63] In the simplest formulation, a Web site

provides a single type of service. The goal of

service-level control is to maximize throughput

and minimize response times across all of the re-

quests received by the system.

– Multiple services – differentiated performance. [2,

62] In a more general formulation, a Web site

provides several types of services, each character-

ized by a relative importance coefficient. The goal

of service-level control is to ensure that requests

for more important services receive better service

quality while less important services do not starve.

– Multiple services – isolated performance. [1,5,6,

10,54] In an alternative formulation for Web sites

providing multiple services, each service is asso-

ciated with a minimum performance level, know

as a Service Level Agreement (SLA), and defined

by bounds on performance metrics like sustainable

request rate, response time, and availability. The

goal of service-level control is to ensure that each

service achieves the SLA levels while the system

resources are effectively exploited.

Research has addressed the problem of service level

control for Web sites based on host and cluster systems.

For host-based sites, solutions are defined by meth-

ods for dispatching requests to the available execution

82 A. Iyengar and D. Rosu / Architecting Web sites for high performance

threads [1,2] and for enforcing that these threads do not

use more than service-specific shares of the CPU and
disk resources [10]. For cluster-based sites, solutions
are defined by methods for dispatching client requests

to content delivery hosts and for performance monitor-
ing. For both types of sites, request-dispatching solu-
tions may include rules for discarding requests in order

to prevent the system from reaching overload. In the
remainder of this section, we discuss the solutions pro-
posed for each of the three formulations of the service-

level control problem, focusing on the solutions for
cluster-based sites, the most relevant configuration for
high performance Web sites.

Single service – maximum performance

In the most frequently addressed model of service
level control, all requests reaching the Web site have

equal importance. The goal is to maximize the site’s
throughput by ensuring that the load is well balanced
across all of the site’s processing nodes. A secondary

goal is to minimize the average response time. Sample
approaches include the increase of per-node hit ratios
in the memory cache and reduction of wait times in

node service queues.
All solutions are based on the existence of a control

component that is invoked for each new connection or

request to decide to which node it should be dispatched
or whether it should be dropped. The decision is based
on per-node information, such as estimates of current

CPU and disk loads, accessible content, and memory
cache content. In addition, the decision might consider
request characteristics, such as target content group,

actual URL, and expected resource needs. When the
identity of the requested content is a parameter of the
dispatching decision, the controller includes a request

analysis component.
The feature of the control mechanism that has the

strongest impact on performance and scalability is the

placement of its modules for dispatching decision and
request analysis. The proposed solutions include the
following: (1) both dispatching decision and analysis

are performed by the connection router, (2) dispatching
decision is made by a specialized node, while analysis
is done by processing nodes, and (3) both dispatching

decision and analysis are performed by each of the
processing nodes.

Solutions based on connection router decisions and

focusing only on throughput maximization have been
the first to appear.1 In this group, the most common

1Refer to [50] for a survey and taxonomy of router-based solutions.

request distribution policy is Weighted Round-Robin

(WRR), in which the number of requests directed to a

node is inversely proportional to its load [22]. Sample

of per-node load estimators include the number of es-

tablished connections, response times to probe requests

sent by the controller, CPU utilization, and a combina-

tion of CPU and disk utilizations. Alternative policies

include “Least Loaded First” and weighted “least con-

nections” – with weights reflecting the relative capaci-

ties of the nodes [50].

While characterized by a relatively low overhead,de-

cisions based only on load information cannot exploit

content distribution across the disk stores and memory

caches of the individual servers. To address this prob-

lem, content-based routing is used. A content-based

router examines each request and dispatches it to a node

that has access to the necessary content and is likely

to deliver it with the least overhead. This method can

also be used to route certain types of requests to des-

ignated servers. For example, a content-based router

could send all dynamic requests to a particular set of

servers.

The drawback to content-based routing is that it in-

troduces considerable overhead. Besides the actual

overhead of reading and parsing the request, a con-

nection management overhead is incurred. Namely, in

order to examine the request content, the router must

terminate the connection with the client, establish a

connection to the server, and transfer messages be-

tween client and server. The transfer overhead is higher

than for a regular (i.e., layer 4) router, which forwards

messages between client and server without terminat-

ing the connection. In a straightforward implemen-

tation of content-based routing, the router is involved

in the transfer of all of the data exchanged by client

and server [61]. Better performance is achieved by us-

ing a TCP handoff protocol which transfers the client

connection from the router to the server in a client-

transparent manner [22,46]. In this case, the router is

only involved with the transfer of content sent by the

client (mostly ACKs), which results in a much lower

overhead than the transfer of all of the content sent by

both server and client.

For content-based dispatching, a straightforward

method is to use a fixed partition of content to nodes.

However, this may lead to low throughput performance

because of the high propensity for load imbalances.

A viable solution considered in [46,61] is to have the

controller direct each request to a node that has re-

cently serviced the same content if this is not heav-

ily loaded relative to other nodes in the system. This

A. Iyengar and D. Rosu / Architecting Web sites for high performance 83

leads to higher locality and hit rates in server caches.

Load can be estimated by the number of active con-

nections [46] or by the weighted sum of CPU and disk

utilizations, with fixed weights, defined according to

site characteristics [61]. The experimental evaluation

presented in [46] demonstrates that a connection router

using this locality-aware content-based redirection can

achieve more then twice the performance of a router

using WRR.

However, recent studies provide experimental evi-

dence that content-based routing implemented by the

connection router does not scale well with cluster size

and processing power and is limited by the capacity of

the router. Addressing this drawback, [7] proposes a

distributed architecture in which the request analysis is

performed by the processing nodes and the dispatching

decisions are made by a dedicated node. Given the

relatively low overhead of decision making and load

monitoring, a dispatcher node based on a 300 MHz PIII

machine can sustain a peak of 50,000 connections/sec,

which is about an order of magnitude larger than can

be achieved with a content-based front-end router that

performs both request analysis and decision.

An alternative solution to the access router bottle-

neck is to have the request distribution decisions made

by the processing nodes. In this paradigm, after an-

alyzing a request, a node decides by itself whether to

process it locally or to forward it to a peer [8,63]. Typi-

cally, the selected peer is the one that is the least loaded,

according to the current node’s knowledge of its peers’

loads. For instance, the proposal in [8] uses periodic

broadcast to disseminate load information such as CPU

load or the number of locally opened and/or redirected

connections.

The solution proposed in [63] uses more complex

load models and acquisition protocols targeted at max-

imizing the accuracy of the information used in the

dispatching decision. Namely, a request is forwarded

to the node with the least load provided this is signif-

icantly lower than that of the current node. Load is

expressed by the stretch factor of the average response

time, i.e., the expected increase in response time with

respect to execution on an idle system. The load in-

formation may be requested at decision time, or it may

be derived from possibly outdated information received

previously through periodic multicast; the choice of

method depends on the node’s load index (i.e.,weighted

sum of CPU and disk utilization). This method is suit-

able for heterogeneous clusters, particularly for work-

loads with large and highly variable per-request over-

heads (about 10 sec average and one order of magni-

tude variance) and relatively low arrival rates (1–3 sec

between requests), such as for a digital library.

Both [8] and [63] present experimental results that

demonstrate that inter-node request redirection not only

solves the scalability problem but also enables a Web

site application to effectively accommodate inappropri-

ate load distributions that may result from DNS-based

routing or from a high variance of per-request over-

heads. For instance, [8] presents experiments run on

a 3-node server, with two thirds of requests going to

one node and one sixth to each of the other two. The

request forwarding mechanism is based on connection

transfer [12]. The study shows that redirection based on

load information (sampled at 1-sec intervals) results in

significant improvements relative to the no-redirection

approach. Mean response time was reduced by about

70%, variance was reduced by more than an order of

magnitude, and throughput increased by about 25%.

To conclude this section, we mention an important

theoretical result. [29] demonstrates that the size-based

request dispatching policy is optimal with respect to av-

erage response time. The size-based policy ensures that

the requests directed to the same node have comparable

sizes. The optimality result is due to the heavy-tailed

distribution of Web content. [29] proposes a method

for partitioning the content among the processing nodes

and demonstrates by simulation that this scheme results

in waiting times at least one order of magnitude lower

than round-robin or least-load-first. Unfortunately, for

most Web site applications, the applicability of this re-

sult is restricted by the difficulty of determining the

(approximate) request sizes at the dispatcher.

Multiple services – differentiated performance

After extensively addressing the problem of differ-

entiated Web services in the context of a single host,

research has recently addressed this problem in a clus-

ter context. The method proposed in [62] aims at en-

suring that the various classes of service that a Web site

provides receive prioritized access to resources in ac-

cordance with their relative importance to the system.

More important services should be guaranteed better

service quality, in particular, under heavy load situa-

tions. In addition, under light loads, requests for less

important services should not starve. Service quality

is quantified by the stretch factor defined earlier in this

section.

Using a simple queuing theory model, the authors de-

rive basic relationships among per-class stretch factors,

node assignments, resource utilization, and importance

coefficients. These formulas are evaluated periodically

84 A. Iyengar and D. Rosu / Architecting Web sites for high performance

using information on the current per-class arrival rates

and CPU utilizations to determine the number of nodes

to be allocated to a class and the associated request

admission rates. This information is used by an ac-

cess router to limit the number of requests serviced in

each class and to appropriately distribute these requests

among the nodes assigned to the class. The request-

to-node mapping is based on a Least Loaded policy in

which the relative CPU and I/O loads of the available

nodes are considered.

Multiple services – isolated performance

Numerous solutions for Web site service-level con-

trol enable each service in the system to perform at the

levels specified by the SLA, as predictable as if the ser-

vice is running on an isolated system. Toward this end,

the performance parameters specified in the SLA are

translated into resource reservations (e.g., CPU, disk,

and network) that are enforced through system-specific

mechanisms. Typical solutions are based on two-layer

resource infrastructures. One layer of the infrastructure

performs system-level resource management, deciding

how the system-level resource reservation of a service

is split into per-node reservations. The other layer of

the infrastructure performs node-level resource man-

agement, enforcing the per-node service reservations.

For node-level resource managers, typical solutions

are based on proportional-share resource allocation

methods, like the SFQ CPU scheduler considered

in [54] and the Lottery Scheduling-based “resource

containers” [10] considered in [6]. Each service is as-

signed a CPU reservation as a percentage of the node’s

capacity. The resource manager schedules the thread

processing in each service and appropriately charges

the resource usage to the corresponding service reser-

vations. Unallocated or unused resources on a node are

fairly shared among the active services with reserva-

tions on that node.

For the system-level resource manager, the goal is to

ensure that each node has enough resources to process

the assigned requests. The existence of this component

is necessary when client requests directly hit the server

nodes based on DNS routing or when the connection

router policy is based on criteria other than system load,

such as content locality [46].

An effective solution for the system-level component

is to start with a default distribution of each service

reservation to the available nodes and to periodically

adjust the per-node service reservations to accommo-

date the actual load distribution. A per-node service

reservation is increased when the service performs at

the maximum of its allocation on the node. However,

adjustments do not change the system-level reservation

of a service; the increase in reservation on one node is

accompanied by equivalent decrease on other nodes [6,

54]. The adjustment decision is based on monitoring

information regarding current per-node, per-service re-

source usage.

In [6], the reservation is increased by a small amount

proportional to the relative difference between the de-

fault per-node allocation and the actual usage up to a

bound (e.g., min
{

5, 500 ·

D−u

D

}

, where D is the de-

fault allocation and equal on all the nodes, u is the cur-

rent utilization, and 5 is a sample bound on the reallo-

cated amount). The actual decision is made by solving

an optimization problem that minimizes the distance

between the solution and target reservation levels.

The solution in [54], based on similar principles,

explicitly accounts for the unallocated resources. The

reservation increment is a percentage of the current

usage. Also, this solution does not assume that the

default per-node reservation is equal for all of the nodes

in the system.

Both studies provide evidence that in the presence

of bursty arrivals, which are typical of many Web sites,

a system with dynamically adjustable per-node service

reservations can achieve better resource utilization and

performance than a system with fixed per-node service

reservations. In addition, these solutions enable high

scalability. Experimental results in [54] demonstrate

that the control infrastructure scales up to 50,000 (node,

service)-pairs for decision periods of 15 sec.

The proposal in [5] is similar but addresses a more

complex, two-tier Web site architecture. The first tier

includes the content delivery servers, which can be dy-

namically assigned to particular services depending on

load variations. The second tier includes the content

generation servers that have a static assignment to ser-

vices. In addition, the site has network links shared

by all the services. A connection router implements

request throttling and load-based dispatching. The so-

lution is based on an elaborate and flexible infrastruc-

ture for performance control and system management.

A high-level resource manager analyzes the monitor-

ing events. For each service, it adjusts the limits of

request throttling and the allocation of first-tier servers.

The limits of request throttling are determined by the

load of the second-tier servers and by the utilization of

network resources.

To summarize, this section has presented the main

system models considered in service-level control and

reviewed relevant solutions in each category of models.

A. Iyengar and D. Rosu / Architecting Web sites for high performance 85

Despite the variety of solutions to enforcing system-

specific performance goals, all of the related studies

provide experimental evidence that dynamic resource

allocation decisions significantly outperform the static

solutions in the context of typical Web site workloads.

Consequently, the run-time mechanism for service-

level control is a critical component in a highly efficient,

high performance Web site application.

5. Caching within the network

Web site performance can be further improved by

caching data within the network. Cached data are

moved closer to clients, reducing the latency for ob-

taining the data. Network bandwidth is saved because

cached data has to travel over fewer links. Since ag-

gregate network consumption is reduced, this means

that latency could also be reduced for uncached as well

as cached data. Web site server CPU cycles are saved

because fewer requests reach the servers at the Web

site.

A recent trend in architecting high-volume Web site

applications is the outsourcing of static content distri-

bution. The enabling mechanism is called a content

distribution network (CDN) and represents an infras-

tructure of caches within the network that replicates

content as needed to meet the demands of clients across

a wide area (Fig. 3). CDNs are provided by companies

such as Akamai and Digital Island and are maintained

in sites belonging to commercial hosting services such

as Exodus.

Practically, the interaction between a Web site, its

clients, and a CDN occurs as follows. A Web site

pushes (or the CDN prefetches) some of its content into

the CDN’s caches. For instance, the content selected

for replication in a CDN includes frequently requested

image files. When a client is accessing the Web site

for an HTML page, it is sent a customized version

of the page in which some of the links to embedded

objects point to object replicas in the CDN’s caches

rather than to the primary copies of these objects at

the Web site. The replicas are selected such that the

client can achieve the fastest response times. The deci-

sion is based on static information, such as geographic

locations and network connectivity, and on dynamic

information, such as network and cache loads.

The cache infrastructure of CDNs is distributed

across wide areas to enable the delivery of Web content

from locations closer to clients. Therefore, CDNs con-

tribute to reductions in client-observed response times

- proxy cache
ISP

- CDN node

Individual clients
CDN

Proxy cache

Legend

Server
- CDN service

Server
- reverse proxy cache

- proxy cache
Institutional network

- reverse
 proxy cache- proxy cache

ISPs

Fig. 3. Internet infrastructure with proxy caches and CDNs.

and in network traffic. Furthermore, CDNs benefit the
service quality delivered to clients by dynamically ad-

justing content placement and per-site resource alloca-

tion in response to demand and network conditions.
In addition, a CDN service releases internal Web site

resources that can be used to provide better service for

requests for non-cacheable content. Moreover, CDNs
protect a Web site from unpredictable request bursts,

obviating at reasonable cost the need for excess capac-

ity at the Web site. This is because CDNs maintain the

necessary network and computation resources that are
used to service several Web sites.

CDNs represent the Web site-biased alternative to the

caching within the network, while Web proxy caches
represent the client-biased alternative (Fig. 3). For Web

proxy servers, which are typically deployed to service

clients within administrative and regional domains, the
performance benefits from caching result from the over-

lap in Web content accesses across the client popula-

tion. Documents accessed by multiple clients can be

cached at the proxy server, reducing the need to repeat-
edly fetch the documents from a remote server. The

performance of two commercial CDNs (Akamai and

Digital Island) are discussed in [38], and an overview
of Web proxy caching is contained in [56].

The remote caching provided by CDNs has several

advantages over Web proxy caching. First, content is

prefetched into caches directly, whereas proxy caches
are populated in response to client requests. Therefore,

the Web site’s overhead of offloading the content is

incurred only once, and not repetitively, for all proxy
caches that access the site.

Second, a Web site has direct control of the content

cached by CDNs. It can easily keep track of cached

86 A. Iyengar and D. Rosu / Architecting Web sites for high performance

content and can use appropriately suited cache consis-

tency protocols. As proxy caches are transparent to

Web sites, they can only rely on object expiration times

to prevent serving stale data. There is no standard pro-

tocol for a server to indicate to the proxy cache that an

object has become obsolete.

Third, a CDN provides a Web site with accurate

statistics about the access patterns (e.g. number of hits)

to the content serviced from its caches. In contrast,

the Web site has no information about the content ser-

viced by Web proxy caches. One technique for getting

around this problem is for each cacheable page to in-

clude a small uncacheable image file. Since Web pages

typically embed several image files, the relative Web

site overhead for serving the uncacheable image is rel-

atively low. It is then possible to determine the total

requests for content from the site, including requests to

data cached by proxy servers, by analyzing log requests

for such uncacheable image files.

One advantage that proxy caching has over CDN’s is

that any Web site can take advantage of proxy caching

with no extra cost just by setting expiration times and

HTTP headers appropriately. By contrast, people run-

ning a Web site have to pay money to a CDN service in

order to use one.

A possible concern for the Web site in its selection

of a CDN service is the CDN’s ability to cope with

unexpected request rates. The quality that a CDN can

provide under overwhelming requests bursts or chang-

ing network conditions depends on the amount and the

distribution of its own resources. Recent research and

standardization efforts have focused on enabling CDNs

to interoperate towards improving their scalability, fault

tolerance, and performance. The solution proposed

in [13] is based on DNS-level routing among CDNs.

The DNS router, more elaborate than in the case of

a single site, maps client DNS server IP addresses to

a geographical region and then returns the address of

the CDN serving the region. The selection is based on

CDN load. Upon receiving a client request, a CDN

without a direct agreement with the target Web site acts

as a regular Web proxy, retrieving content from the site

and appropriately billing the site’s CDN.

Consistency of network caches

A major problem with both CDN and proxy caches is

maintaining cache consistency. The ideal is to achieve

strong consistency. Strong consistency means that a

cache consistency mechanism always returns the results

of the latest write at the server. Due to network delays,

it is generally not possible to achieve this literal notion

of strong consistency in Web caches. Therefore, a

more relaxed notion of strong consistency is usually

used with regard to the Web, e.g. a cache consistency

method is strongly consistent if it never returns data

that is outdated by more than t time units, where t

is the delay for sending a message from a server to a

cache [23].

With current standards, strong consistency can be

achieved by polling. Namely, the cache polls the server

on each client request to see if the cached data is current.

This approach results in significant message traffic sent

between caches and servers. It also increases response

times at caches because a request cannot be satisfied

from a cache until the cache has polled the server to

ensure that it is sending updated content.

Alternatively, strong consistency can be achieved by

server-driven methods in which servers send update

messages to caches when changes occur. This approach

can minimize update traffic because update messages

are only sent when data actually change. However,

servers need to maintain state for cached objects in-

dicating which caches store the objects. In addition,

problems arise if a server cannot contact a cache due to

network failure or the cache being down.

One approach which can reduce the overhead for

server-driven cache consistency is to use leases [14,28,

23,57–59]. In this approach, a cache obtains a lease

from a server in order to cache an object. The lease

duration is the length of time for which the server must

inform the cache of updates to the object. After the

lease expires, the server no longer needs to inform the

cache of updates to the object. If the cache wants to

continue to receive update messages, it must renew its

lease on the object. Lease durations can be adjusted to

balance server and network overheads. Shorter leases

require less storage at the server but larger numbers

of lease renewal messages. In the asymptotic cases, a

lease length of zero degenerates into polling, while an

infinite lease length degenerates into the conventional

server-driven consistency approach. In the worst case

when a server is unable to communicate with a cache,

the lease length bounds the maximum amount by which

a cached object may be obsolete. If the server and cache

are always in communication, the cached object will

never be obsolete (modulo communication delays).

A variation on just using leases is to also use volume

leases [58]. Volume leases are granted to a collection

of objects known as a volume. In order to store an

object, a cache must obtain both an object and volume

lease for the object. Object leases are relatively long.

Volume leases are relatively short. In the worst case

A. Iyengar and D. Rosu / Architecting Web sites for high performance 87

when a server is unable to communicate with a cache,

short volume leases bound the maximum amount by

which any cached object in the volume is obsolete. The

cost of maintaining the leases is low because volume

leases amortize the cost of lease renewal over a large

number of objects. Techniques for efficiently imple-

menting volume leases for caching dynamic objects are

presented in [57].

To summarize, this section has addressed the prob-

lem of reducing requests to Web sites by caching data

within the network. We focused on CDN services,

which have several advantages over traditional Web

proxy caches, and techniques for maintaining cache

consistency.

6. Conclusion

There are a number of open research problems con-

cerning the improvementof Web site performance. Ad-

ditional research is needed in the area of caching dy-

namic Web data at remote points in the network. While

several methods have been developed for maintaining

consistency, more work needs to be done in demonstrat-

ing the feasibility of these methods for large numbers

of Web sites and remote caches. One problem that hin-

ders work in this area is the absence of a standard pro-

tocol agreed upon by multiple vendors for maintaining

cache consistency. Another problem is the difficulty

researchers have in obtaining realistic data from Web

sites generating significant amounts of dynamic data.

Another important area of research is related to the

techniques that Web content designers can use to facil-

itate performance. For example, Section 3 discussed

how Web pages can be constructed from fragments to

improve performance and to allow portions of person-

alized Web pages to be cached by localizing personal-

ized information to specific fragments. More research

is needed in order to determine optimal strategies for

breaking up Web pages into fragments, both for im-

proving performance and for making it easier to design

Web content.

Several aspects of the service-level control problem

need to be further explored. For instance, one research

topic is related to the service quality model. Current

solutions take conservative approaches in ensuring that

SLAs are guaranteed in all circumstances. An impor-

tant open question is whether combining minimal per-

formance level guarantees with best effort reallocation

of unused resources across services leads to better per-

formance under highly bursty request arrivals.

Another topic of importance is the implication of

cooperative CDNs on Web site performance. A Web

site interacts with a CDN other than the one it has

explicitly selected as if the CDN were a regular Web

proxy cache. Therefore, the load observed by the server

is larger when its CDN directs its requests to other

CDNs. More elaborate methods for CDN cooperation

are required in order to guarantee that Web sites observe

the offloading negotiated with their selected CDN.

References

[1] T. Abdelzaher, K.Shin and N. Bhatti, Performance Guaran-

tees for Web Server End-Systems: A Control-Theoretical Ap-
proach, Accepted to IEEE Transactions on Parallel and Dis-

tributed Systems, 2001.

[2] J. Almeida, M. Dadu, A. Manikutty and P. Cao, Providing Dif-

ferentiated Levels of Service in Web Content Hosting Work-

shop on Internet Server Performance, 1998.

[3] Apache Software Foundation, Apache http server project,

http://www.apache.org/.
[4] G. Apostolopoulos, V. Peris and D. Saha, Transport Layer

Security: How much does it really cost? Proceedings of IEEE

INFOCOM, 1999.

[5] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar,

S. Krishnakumar, D.P. Pazel, J. Pershing and B. Rochwerger,

Oceano – SLA Based Management of a Computing Utility,

Proceedings of the IFIP/IEEE International Symposium on

Integrated Network Management, 2001.
[6] M. Aron, P. Druschel and W. Zwaenepoel, Cluster Reserves: A

Mechanism for Resource management in Cluster-based New-

tork Servers, Proceedings of ACM Sigmetrics, 2000.

[7] M. Aron, D. Sanders, P. Druschel and W. Zwaenepoel, Scal-

able Content-aware Request Distribution in Cluster-based Net-

work Servers, Proceedings of Annual Usenix Technical Con-

ference, 2000.

[8] L. Aversa and A. Bestavros, Load Balancing a Cluster of
web Servers Using Distributed Packet Rewriting, Proceedings

of International Performance, Computing, Communications

Conference, 2000.

[9] G. Banga and P. Druschel, Lazy Receiver Processing (LRP):

A Network Subsystem Architecture for Server Systems, Pro-

ceedings of USENIX Symposium on Operating System Design

and Implementation, 1996.

[10] G. Banga, P. Druschel and J. Mogul, Resource containers:
A new facility for resource management in server systems,

Proceedings of USENIX Symposium on Operating Systems

Design and Implementation, 1999.

[11] G. Banga and J. Mogul, Scalable kernel performance for In-

ternet servers under realistic loads, USENIX Symposium on

Operating Systems Design and Implementation, 1998.

[12] A. Bestavros, M. Crovella, Mark, J. Liu, Jun and D. Martin,
Distributed Packet Rewriting and its Application to Scalable

Server Architectures, Proceedings of the International Con-

ference on Network Protocols, 1998.

[13] A. Biliris, C. Cranor, F. Douglis, M. Rabinovich, S. Sibal,

O. Spatscheck and W. Sturm, CDN Brokering, Proceedings

of the International Workshop on Web Caching and Content

Distribution, 2001.

88 A. Iyengar and D. Rosu / Architecting Web sites for high performance

[14] P. Cao and C. Liu, Maintaining Strong Cache Consistency in

the World Wide Web, Proceedings of the 17th International

Conference on Distributed Computing Systems, 1997.

[15] V. Cardellini, M. Colajanni and P. Yu, DNS dispatching algo-

rithms with state estimators for scalable Web-server clusters,

World Wide Web Journal 2(3) (1999).

[16] J. Challenger, P. Dantzig, A. Iyengar A Scalable and Highly
Available System for Serving Dynamic Data at Frequently

Accessed Web Sites, Proceedings of SC98, 1998.

[17] J. Challenger, A. Iyengar and P. Dantzig A Scalable System

for Consistently Caching Dynamic Web Data, Proceedings of

IEEE INFOCOM’99.

[18] J. Challenger, A. Iyengar, K. Witting, C. Ferstat and P. Reed,

A Publishing System for Efficiently Creating Dynamic web

Content Proceedings of IEEE INFOCOM, 2000.
[19] M. Colajanni, P. Yu and D. Dias, Scheduling Algorithms for

Distributed Web Servers, Proceedings of International Con-

ference on Distributed Computing Systems, 1997.

[20] L. Degenaro, A. Iyengar, I. Lipkind and I. Rouvellou, A Mid-

dleware System Which Intelligently Caches Query Results,

Proceedings of Middleware, 2000.

[21] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham

and P. Shenoy, Adaptive Push-Pull of Dynamic Web Data:
Better Resiliency, Scalability and Coherency, Proceedings of

International World Wide Web Conference, 2001.

[22] D. Dias, W. Kish, R. Mukherjee and R. Tewari, A Scalable and

Highly Available Web Server, Proceedings of IEEE Computer

Conference, 1996.

[23] V. Duvvuri, P. Shenoy and R. Tewari, Adaptive Leases: A

Strong Consistency Mechanism for the World Wide Web, Pro-

ceedings of INFOCOM, 2000.
[24] A. Feldmann, R. Caceres, F. Douglis, G. Glass and M. Rabi-

novich, Performance of Web Proxy Caching in Heterogeneous

Bandwidth Environments, Proceedings of IEEE INFOCOM,

1999.

[25] D. Florescu, A. Levy, D. Suciu and K. Yagoud, Optimiza-

tion of Run-time Management of Data Intensive Web Sites,

Proceedings of VLDB Conference, 1999.
[26] A. Fox, S. Gribble, Y. Chawathe, E. Brewer and P. Gau-

thier, Cluster-Based Scalable Network Services, Proceedings

of ACM Symposium on Operating Systems Principles, 1997.

[27] A. Freier, P. Karlton and P. Kocher, The SSL Protocol,

http://home.netscape.com/ eng/ssl3/ draft302.txt.

[28] C. Gray and D. Cheriton, Leases: An Efficient Fault-Tolerant

Mechanism for Distributed File Cache Consistency, Proceed-

ings of the 12th ACM Symposium on Operating Systems Prin-

ciples, 1989.

[29] M. Harchol-Balter, M. Crovella and C. Murta, On Choosing

a Task Assignment Policy for a Distributed Server System,

Proceedings of Performance Tools, 1998.

[30] V. Holmedahl, B. Smith and T. Yang, Cooperative Caching of

Dynamic Content on a Distributed Web Server, IEEE Interna-

tional Symposium on High-Performance Distributed Comput-

ing, 1998.
[31] G. Hunt, G. Goldszmidt, R. King and R. Mukherjee, Network

Dispatcher: A Connection Router for Scalable Internet Ser-

vices, Proceedings of the 7th International World Wide Web

Conference, 1998.

[32] IBM Netfinity Web Server Accelerator V2.0, IBM Cor-

poration, http://www.pc.ibm.com/ us/solutions/ netfinity/

server accelerator.html.

[33] IBM Corporation, WebSphere Application Server, http://
www-4.ibm.com/ software/webservers/ appserv/ pr version4.

html.

[34] A. Iyengar, J. Challenger, D. Dias and P. Dantzig, High-

Performance Web Site Design Techniques, IEEE Internet

Computing 4(2) (2000).

[35] A. Iyengar and J. Challenger, Improving Web Server Perfor-

mance by Caching Dynamic Data, Proceedings of USENIX

Symposium on Internet Technologies and Systems, 1997.

[36] A. Iyengar, E. MacNair and T. Nguyen, An Analysis of Web
Server Performance, Proceedings of GLOBECOM, 1997.

[37] A. Iyengar, M. Squillante and L. Zhang, Analysis and charac-

terization of large-scale Web server access patterns and per-

formance, World Wide Web 2(1,2) (1999).

[38] K. Johnson, J. Carr, M. Day and F. Kaashoek, The Measured

Performance of Content Distribution Networks, Proceedings

of the International Web Caching and Content Delivery Work-

shop, 2000.
[39] P. Joubert, R. King, R. Neves, M. Russinovich and J. Tracey,

High-Performance Memory-Based Web Servers: Kernel and

User-Space Performance, Proceedings of the USENIX Annual

Technical Conference, 2001.

[40] B. Krishnamurthy, J. Mogul and D. Kristol, Key differences

between HTTP/1.0 and HTTP/1.1, Proceedings of the 8th In-

ternational World Wide Web Conference, 1999.

[41] E. Levy-Abegnoli, A. Iyengar, J. Song and D. Dias, Design
and Performance of a Web Server Accelerator, Proceedings of

IEEE INFOCOM, 1999.

[42] Q. Luo, J. Naughton, R. Krishnamurthy, P. Cao and Y. Li,

Active Query Caching for Database Web Servers, WebDB

(Informal Proceedings), 2000.

[43] J. Mogul, The case for persistent-connection HTTP, Proceed-

ings of SIGCOMM, 1995.

[44] I. Molnar, Answers from planet TUX: Ingo Molnar re-
sponds, Slashdot (http://slashdot.org/ articles/ 00/07/20/

1440204.shtml).

[45] Open Market, FastCGI, http://www.fastcgi.com/.

[46] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.

Zwaenepoel and E. Nahum, Locality-Aware Request Distri-

bution in Cluster-based Network Servers, Proceedings of the

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 1998.

[47] V. Pai, P. Druschel and W. Zwaenepoel, IO-Lite: A Unified I/O

Buffering and Caching System, Proceedings of the USENIX

Symposium on Operating Systems Design and Implementa-

tion, 1999.

[48] K. Rajamani and A. Cox, A Simple and Effective Caching

Scheme for Dynamic Content, Rice University CS Technical

Report TR 00-371, 2000.
[49] P. Rodriguez, C. Spanner and E. Biersack, Web Caching Ar-

chitectures: Hierarchical and Distributed Caching, Proceed-

ings of the International Web Caching Workshop, 1999.

[50] T. Schroeder, S. Goddard and B. Ramamurthy, Scalable Web

Server Clustering Technologies, IEEE Network (May/June

2000).

[51] A. Shaikh, R. Tewari and M. Agrawal, On the Effectiveness

of DNS-based Server Selection, Proceedings of IEEE INFO-

COM, 2001.

[52] J. Song, E. Levy, A. Iyengar and D. Dias, Design Alterna-

tives for Scalable Web Server Accelerators, Proceedings of

the IEEE International Symposium on Performance Analysis

of Systems and Software, 2000.

[53] J. Song, A. Iyengar, E. Levy and D. Dias, Architecture of a

Web Server Accelerator, Computer Networks 38(1), Jan. 2002.

[54] B. Urgaonkar and P. Shenoy, Sharc: Managing Resources
in Shared Cluters, Technical Report TR01-08, Department of

Computer Science, University of Massachusetts, 2001.

A. Iyengar and D. Rosu / Architecting Web sites for high performance 89

[55] A. van de Ven, kHTTPd Linux http accelerator, http://www.

fenrus.demon.nl.

[56] J. Wang, A Survey of Web Caching Schemes for the Internet,

ACM Computer Communication Review 29(5) (1999).

[57] J. Yin, L. Alvisi, M. Dahlin and A. Iyengar, Engineering

server-driven consistency for large scale dynamic web ser-

vices, Proceedings of the 10th International World Wide Web

Conference, 2001.

[58] J. Yin, L. Alvisi, M. Dahlin and C. Lin, Volume Leases for

Consistency in Large-Scale Systems, IEEE Transactions on

Knowledge and Data Engineering 11(4) (1999).

[59] H. Yu, L. Breslau and S. Shenker, A Scalable Web Cache Con-

sistency Architecture, Proceedings of ACM SIGCOMM’99.

[60] Zeus Technology Limited, Zeus Web Server, http://www.zeus.

co.uk.

[61] X. Zhang, M. Barrientos, B. Chen and M. Seltzer, HACC: An

Architecture for Cluster-Based Web Servers, Proceedings of

the USENIX Windows NT Symposium, 1999.

[62] H. Zhu, H. Tang and T. Yang, Demand-driven Service Differ-

entiation in Cluster-based Network Services, Proceedings of

IEEE INFOCOM, 2001.

[63] H. Zhu, T. Yang, D. Watson, O. Ibarra and T. Smith, Adaptive

Load Sharing for Clustered Digital Library Servers, Interna-

tional Journal on Digital Libraries 2(4) (2000).

[64] H. Zhu and T. Yang, Class-based Cache Management for Dy-

namic Web Content, Proceedings of IEEE INFOCOM, 2001.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

