

Architectural Approaches for
Dynamic Translation and Reconfiguration

Brian F. Veale*, John K. Antonio*, and Monte P. Tull†

*School of Computer Science †School of Electrical and Computer Engineering
University of Oklahoma

Norman, OK 73019
E-mail: {veale, antonio, tull}@ou.edu

Abstract - A microprocessor taxonomy is introduced based on
whether: (1) the hardware is static or reconfigurable and (2) the
code translation process is static or dynamic. The IBM DAISY
and Transmeta CrusoeTM microprocessors are reviewed. These
static hardware microprocessors support a dynamic translation
process to execute programs originally compiled for the PowerPC
and Intel® X86 microprocessors, respectively. Inspired by
features from both the DAISY and CrusoeTM microprocessors, a
conceptual design of a dynamically reconfigurable
microprocessor is given. Driven by the results of a preliminary
study, a specific approach to designing a reconfigurable
microprocessor is presented. As a part of this approach, the
concept of partitioning the instruction set of a microprocessor in
order to support an application, instead of partitioning the
functionality of the application, is developed.

I. INTRODUCTION
Microprocessor hardware can be divided into two main

categories:
1. microprocessors implemented in static hardware; and
2. microprocessor implementations that include

reconfigurable hardware.
In a microprocessor implemented in static hardware, the
circuitry is fixed and implements the original set of operations
for which it was fabricated. However, in a microprocessor
implemented using reconfigurable hardware, the operations
performed by the reconfigurable circuitry can be changed after
fabrication by configuring the reconfigurable hardware. A
microprocessor based on reconfigurable hardware can be
partially or completely implemented in reconfigurable
circuitry, e.g., only the circuitry that performs arithmetic
operations might be implemented using reconfigurable
circuitry.

An overview of a microprocessor taxonomy is illustrated
in Figure 1. In addition to categorizing the type of hardware
used to implement the microprocessor, distinction is made in
how code is translated, i.e., statically or dynamically.
Examples associated with all but one of the categories are
shown on the figure.

This work was supported by the U.S. Department of Education through a
GAANN (Graduate Assistance in Areas of National Need) Fellowship.

A. Static Microprocessors
In a static microprocessor, the instruction set that can be

executed is fixed and the architecture of the underlying
hardware is fixed. Examples of static microprocessors include
the Intel® X86 family of microprocessors [1] and the
PowerPC microprocessor [2].

The static translation process, which is the typical code
development and execution process for static microprocessors,
is shown in Figure 2. The source code is constructed using a
high-level language, e.g., C++. The compilation process takes
in source code and produces machine code for the target
microprocessor. In the model of Figure 2, note that the
process of translating source code into machine code occurs
before execution begins on the static microprocessor.

In addition to the typical static translation process, there
exist static microprocessors that perform the translation
process dynamically at the same time that execution of the
machine code occurs. The generic code development and
execution process for a microprocessor that performs dynamic
translation is shown in Figure 3.

In dynamic translation, as shown in Figure 3, the source
code is developed as before using a high-level language. The
compilation process takes in the source code and produces
machine code for an initial target microprocessor. This initial
target may be associated with an actual physical
microprocessor or it may be associated with a virtual
microprocessor. (For example, Java source code is initially
targeted to binary Java Virtual Machine (JVM) code [3].) The
machine code for the initial target microprocessor is re-
translated into machine code for the final target
microprocessor and optimized. Re-translation refers to the
process of translating the machine code for the initial target
microprocessor into machine code for the final target
microprocessor; and optimization refers to techniques used to
change and re-order the execution of instructions contained in
machine code in order to speed-up execution. The re-
translation and optimization step is the essence of dynamic
translation and can be performed in software or hardware, as
illustrated in Figure 1.

Microprocessors

Static Microprocessors Reconfigurable Microprocessors

Static Translation
Intel X86 [1]
PowerPC [2]

Dynamic Translation

Translation in
Software
Java [3, 4]

Dynamo [12]

Dynamic Translation
(no known examples)

Static Translation
SPYDER [7, 13]

PRISC [8]
Translation in

Hardware
DAISY [5]

Crusoe [6, 11]
Figure 1. A taxonomy of microprocessors and the translation processes they use.

One example of a system that performs the re-translation
and optimization step in software is the JVM [3]. When a
Java program is executed on a static microprocessor, the initial
machine code, which is called Java bytecode, is re-translated
into the machine code for the target microprocessor using the
JVM, which is implemented in software [4].

The DAISY (Dynamically Architected Instruction Set
from Yorktown) [5] and Crusoe™ [6] microprocessors are
examples of static microprocessors that perform the re-
translation and optimization step of the dynamic translation
process in hardware. In these systems, the source code is not
initially compiled for the DAISY or Crusoe™ microprocessor,
but for a different static microprocessor. When the initial
machine code is executed by DAISY or Crusoe™, it is re-
translated into machine code for the DAISY or Crusoe™
microprocessor, which is then executed by the microprocessor
[5, 6]. This re-translation is performed in hardware. A main
focus of this paper is to overview and compare the DAISY and
Crusoe™ systems (Sections II and III).

B. Reconfigurable Microprocessors
In contrast to a static microprocessor, the instruction set

and the underlying architecture of a reconfigurable
microprocessor can be dynamic. This means that the
instruction set and the circuitry implementing particular
instructions or functionality of the microprocessor can be
changed after fabrication of the microprocessor.

The static translation process, which is the typical code
development and execution process for reconfigurable
microprocessors, is shown in Figure 4. The source code is
constructed using a high-level language. The compilation

process takes in source code and produces: (1) machine code
for the target microprocessor and (2) a description of
functionality that represents a sequence of instructions to be
implemented in the reconfigurable hardware to support the
machine code. After the compilation process is finished, the
synthesis process converts the descriptions of the instructions
to be implemented in reconfigurable hardware into binary
configuration code for the reconfigurable hardware. In the
model of Figure 4, note that the process of translating source
code into machine code and binary configuration code occurs
before execution begins on a reconfigurable microprocessor.
The SPYDER [7] and PRISC [8] microprocessors are
examples of reconfigurable microprocessors that use this
approach. A review of these microprocessors is presented in
Section IV.

Unlike the category of static microprocessors, there are no
known examples of a reconfigurable microprocessor that uses
a dynamic translation process. At the end of this paper, future
work is outlined in the direction of examining dynamically
reconfigurable microprocessor architectures.

C. Summary of Microprocessor Taxonomy
For the purpose of this study, microprocessors are

implemented in either static or reconfigurable hardware. Two
possible translation processes are defined: static and dynamic.
In the static translation approach, the source code is compiled
before execution on the microprocessor begins. In the
dynamic translation approach, initial machine code is re-
translated and/or optimized during execution on the
microprocessor.

Compilation

Binary
Machine

Code

Execution on a
static

microprocessor
Source Code

Prior to Execution
During Execution

Figure 2. The static translation process for a static microprocessor.

Compilation

Re-Translation
& Optimization

(done in software
or in hardware)

Execution on a
static

microprocessor

Binary Machine Code
(for initial target
microprocessor)

Binary Machine Code
(for final target
microprocessor)

Prior to Execution

During Execution

Source Code

Figure 3. The dynamic translation process for a static microprocessor.

Compilation

Binary
Machine

Code

Execution on a
reconfigurable
microprocessorDescriptions of

instructions to be
implemented in
reconfigurable

hardware

Synthesis

Binary
Configuration

Code

Source Code

Prior to Execution
During Execution

Figure 4. The static translation process for reconfigurable microprocessors.

Microprocessors that perform dynamic translation have
the advantage that they can execute machine code that was
initially compiled for an existing microprocessor that has an
established market share. Microprocessors that perform static
translation do not have to perform the re-translation and
optimization step found in dynamic translation and therefore
may execute faster than a microprocessor that uses dynamic
translation to execute the same machine code.

Reconfigurable microprocessors have the potential
advantage of being able to dynamically alter their architecture
and/or instruction set. However, current technology that
supports reconfigurable microprocessors is generally slower
than the technology used to create static microprocessors.
Even though reconfigurable hardware may be slower, it still
holds promise of producing overall performance that is faster
than static hardware by strategically and dynamically
reconfiguring the architecture to match the currently executing
instructions.

This paper describes architectural approaches to support
dynamic translation and reconfiguration. Sections II and III
provide details on the design of the hardware architectures of
the DAISY [5] and Crusoe™ [6] microprocessors,
respectively, which are examples of static microprocessors
that implement dynamic translation. An alternative approach
to the design of reconfigurable microprocessors is proposed
and preliminary architectural approaches of a dynamically
reconfigurable microprocessor that can use this approach are
given in Section V.

II. THE IBM DAISY MICROPROCESSOR

A. Overview
The DAISY microprocessor [5] is a static microprocessor

that has been developed by IBM, which uses the dynamic
translation process of Figure 3. The goal of the DAISY
microprocessor is to use dynamic translation to provide
complete compatibility with the binary machine code of an
existing commercial microprocessor [5]. The DAISY
microprocessor presented is completely compatible with the
machine code of the PowerPC microprocessor. However, the
techniques used in the PowerPC version of the DAISY
microprocessor could be applied to other microprocessors

such as the Intel® X86 and the IBM System/390, as well as
virtual microprocessors such as the JVM [5].

A high-level component view of the DAISY
microprocessor is shown in Figure 5. The architecture of the
DAISY microprocessor is based on a VLIW (Very Long
Instruction Word) processor core and is built on top of the
PowerPC memory model and register file [5]. The white areas
of Figure 5 represent PowerPC components of the system, and
the black areas represent the DAISY specific components of
the system. Note that there are no PowerPC execution units;
all processing is done in the block labeled DAISY Processor
Core (VLIW).

In the DAISY microprocessor, instructions are tree-based
and implement a multi-way path selection scheme [5]. The
flow control model for a tree-based instruction is given in
Figure 6. The multi-way path selection scheme allows the
dynamic translation process to aggressively re-translate and
optimize programs that contain multiple paths of flow and
benefit from branch prediction.

Each DAISY VLIW instruction can specify up to sixteen
concurrent operations [5]. In the model of Figure 6, each path
can consist of any subset of the sixteen operations. The
condition codes (ccA, ccB, and ccC) determine the path taken
and what instruction is performed next [9].

DAISY ROM
(Boot Code)
(VMM Code)

PowerPC
Boot ROM

Translations
VMM Code

PowerPC
Memory

VMM Data

RAM Memory

Instruction
Cache

Hierarchy

Data Cache
Hierarchy

DAISY
Processor

Core
(VLIW)

(Sizes not to scale;
 VMM stands for Virtual Machine Monitor)

Figure 5. The components of a DAISY microprocessor [5].

ccA

ccB

ccC

L1

L4

L2 L3

P1

P4

P2 P3

if(ccA == false)
 execute ops on path P1
 branch to L1
else
 if(ccB == true)
 execute ops on path P4
 branch to L4
 else
 if(ccC == false)
 execute ops on path P2
 branch to L2
 else
 execute ops on path P3
 branch to L3

Figure 6. The tree-based instruction flow control model and instruction format

[9].

The DAISY microprocessor performs the re-translation
and optimization step of Figure 3 by performing a re-
translation of initial machine code into groups of DAISY
instructions (called instruction groups) that are in the form of
machine code for the DAISY microprocessor. As execution
of machine code on the DAISY microprocessor continues, if
previously re-translated instruction groups are encountered
frequently, then they are optimized. This process of re-
translation and optimization is depicted in Figure 7 [5].

B. Re-translation and Optimization of Binary Machine Code
The DAISY microprocessor uses a Virtual Machine

Monitor (VMM), shown in Figure 5, to handle the re-
translation process. The VMM also handles control of the
microprocessor, including exception handling, and is
transparent to the binary machine code of the initial target
microprocessor [5].

In the DAISY microprocessor, instruction groups take the
form of a tree and are called tree groups. A tree group is a
high-level abstraction of a group of VLIW instructions that
models the flow of instruction execution (the control path)
through a program. This control path defines the tree
properties of a tree group. Control paths can only merge on
the boundary between tree groups (the transition from one tree
group to another). Each of the leaves of the tree corresponds
to an exit point in the tree and is called a “tip.” By knowing
which of the tips was used to exit the tree, the system can
determine the path taken through the tree [5].

Tree groups are used as the unit of translation in the re-
translation process. When a segment of code is encountered
that has already been re-translated, the system merely
branches to the corresponding tree group. In this situation, re-
translation is not necessary.

If re-translated code is executed frequently, then it is
optimized. The goal of the optimization algorithms used in
DAISY is to attain a significant level of ILP (Instruction Level
Parallelism) with a low overhead cost. The scheduling
approaches are adaptive and a function of execution frequency

and behavior. The optimizations used in these approaches
include copy propagation and load-store telescoping [5]. For a
more detailed description of these optimizations, refer to [10].

The process of re-translating code a specified number of
times before it is optimized is beneficial to the overall
performance of the system for at least two reasons. First, the
re-translation process acts as a filter for rarely executed code
to keep such code from being optimized. The cost to optimize
such code is wasted and will never be regained because the
system will not benefit from faster execution of the code in the
future. Second, the re-translation process can be used to
gather data about how to guide the optimization process.

C. Special Hardware and Control Mechanisms
There are several areas in which special support is

provided to make the DAISY microprocessor completely
compatible with the binary machine code of the PowerPC
microprocessor without encountering performance
degradation. Among these areas are exception handling and
context switching mechanisms, support for handling register-
indirect branches, and being able to detect and handle self-
modifying and self-referential program code. A more detailed
description of these mechanisms and their underlying
hardware support is provided in [10].

D. Summary
The keys to the success of the approaches used in DAISY

are that the system performs ILP extraction at execution time
[5] and run-time profiling of program code. This results in a
high level of performance due to the ability of the
microprocessor to dynamically adapt the re-translated
instruction code. This is a major improvement over the
heuristic and profile-based approaches that static compilers
use, that result in trade-offs being considered to improve
performance [5].

The performance studies of DAISY, presented in [5],
indicate that the filtering out of infrequently executed machine
code before it is optimized does not necessarily improve
system performance; and that the optimization of DAISY
machine code is expensive. Also, it was found that the ILP
achieved is directly affected by how tree groups are formed.

III. THE TRANSMETA CRUSOE™ MICROPROCESSOR

A. Overview
The Crusoe™ microprocessor [6], developed and

marketed by Transmeta Corporation, is in the same class of
microprocessors as DAISY, i.e., it is a static microprocessor
that performs the re-translation and optimization step of the
dynamic translation process in hardware. This microprocessor
is associated with the same high-level translation process as
DAISY, which is illustrated in Figure 3. The goals of the
Crusoe™ microprocessor are to be completely compatible
with the machine code of the Intel® X86 family of
microprocessors [1] and to directly compete with these
microprocessors in the marketplace. The Crusoe™

microprocessor achieves these goals with a unique hardware
architecture, which includes enhanced support for re-
translating X86 machine code into Crusoe™ machine code
and executing the resulting machine code [6].

A high-level view of a Crusoe™ based system is shown
in Figure 8. Similar to the DAISY, the Crusoe™
microprocessor is based on a VLIW processor core and is built
on top of the X86 register file and memory model. A
Crusoe™ based system can be divided into four layers: (1) the
target application which was initially compiled for an X86
microprocessor; (2) the target operating system (also initially
compiled for an X86 microprocessor); (3) the Code
Morphing™ process which handles the re-translation and
optimization of machine code, the maintenance of re-
translated machine code in a translation buffer located in
memory, and system control; and (4) the Morph host which is
the VLIW processor core of the microprocessor [6].

The Code Morphing™ process of the Crusoe™
microprocessor maintains a translation buffer, as shown in
Figure 8, which stores completed re-translations of each X86
instruction. Once instructions are successfully re-translated
and segments of instructions are optimized, the resulting
machine code is stored in the translation buffer. The resulting
machine code (in the translation buffer) is executed by the
VLIW processor core. When a previously re-translated
instruction is encountered again, the microprocessor can recall
the corresponding operation(s) from the buffer and execute
them without further re-translation [6].

As X86 machine code is executed on the Crusoe™
microprocessor, if the instruction being executed at any given
time has not been re-translated (and does not exist in the
translation buffer), then it is re-translated into machine code

for the Crusoe™ microprocessor and optimized [6]. This
process is the re-translation step of Figure 3 and is shown in
Figure 9 for the Crusoe™.

 The performance of the Crusoe™ microprocessor comes
from the reduction in the amount of hardware in the
microprocessor (compared to the Intel® X86 microprocessor)
and the caching of re-translated machine code. This results in
a possible speedup of the execution of program code and a
reduction in the power consumption of the microprocessor
[11].

B. Re-Translation and Optimization of Instructions
The Crusoe™ microprocessor uses the Code Morphing™

process, shown in Figure 9, to perform the re-translation
process. The Code Morphing™ process also optimizes the
resulting machine code and handles control of the system,
including exception handling [6]. Just as with the DAISY
VMM, this process is transparent to the X86 machine code
being executed on the Crusoe™.

The first time an X86 instruction is encountered it is re-
translated into a sequence of Crusoe™ operations, as shown in
Figure 9. As instructions are re-translated, the different
segments of Crusoe™ machine code that are generated are
linked together so that they do not branch back to the Code
Morphing™ process if the next segment to be executed has
already been re-translated. This helps to eliminate most of the
branches back to the Code Morphing™ process and serves to
enhance the speed of the emulated X86 microprocessor. Once
the system has reached a steady state, it is estimated that a re-
translation will only be necessary for one in every million X86
instructions executed over the life of a running program [6].

Compilation
Execution on
the DAISY

microprocessor

Binary Machine Code
(for initial target
microprocessor)

Binary Machine Code
(for final target
microprocessor)

At a
previously
optimized

instruction?

Execute the
re-translation

Re-translate instruction
and add to instruction

group X

Exit point for
instruction group X

found?

Save group X as group
Y and create a new

group X

Has group Y
been encountered

n times?
Optimize group Y

Yes

No

Yes

Yes

No

No

Source Code

Prior to Execution

During Execution

Figure 7. The dynamic translation process used by the DAISY microprocessor derived from [12].

Target Application
Target Operating System

Translator Instruction Set/
Instruction Set

Translation
Buffer

Basic Machine Functions
 Interrupt Handlers
 Trap Handlers
 Hardware Simulation

Enhanced Hardware
(VLIW Processor Core)

Microprocessor

Code Morphing
Process

Morph Host

Figure 8. The components of a Crusoe™ based system [6].

Compilation
Execution on

the Crusoe
microprocessor

Binary Machine Code
(for initial target
microprocessor)

Binary Machine Code
(for final target
microprocessor)

Current
instruction is in the

Translation
Buffer?

Execute the
re-translation

Re-translate and
optimize instruction.

Yes

No

Source Code

Add re-translation of
instruction to the

Translation Buffer

Prior to Execution

During Execution

Figure 9. The dynamic translation process used by the Crusoe™ microprocessor derived from [6].

In addition to re-translating X86 machine code into
Crusoe™ operations, the Code Morphing™ process also
optimizes the operations in an attempt to speed up the
execution of instructions as much as possible. Specific
optimizations described in [6] are: speculatively removing the
X86 segmentation process; speculatively removing upper
boundary memory checks; common sub-expression
elimination; speculatively removing commit operations;
register renaming; code motion; data aliasing; copy
elimination; and the use of alias hardware. These
optimizations are performed on a re-translation only if the re-
translation is executed frequently, because the time needed to
re-translate and optimize infrequently executed instructions is
greater than the time required to re-translate and execute the
instructions without optimization. Refer to [10] for a
comprehensive summary of these optimizations.

C. Commercial Impact
The Transmeta Crusoe™ microprocessor is a successful

commercial product. It has gained a share of the Intel® X86-
compatible microprocessor market. Transmeta has been
successful in marketing the Crusoe™ microprocessor for use
in laptop computers and handheld devices. The power
requirements of the Crusoe™ microprocessor are 60%-70%
less than compatible microprocessors [11]. This has been
accomplished by reducing the complexity of the underlying
hardware architecture of the microprocessor [6].

IV. THE SPYDER AND PRISC MICROPROCESSORS
SPYDER [7] and PRISC [8] are examples of

reconfigurable microprocessors that use the translation process
of Figure 4. SPYDER uses reconfigurable resources to
implement hardware synthesized specifically for a program to
be executed on the processor [7]. A C++ to netlist compiler
that creates the binary configuration code used to configure
the processor must be run before a program can be executed
on SPYDER [13]. Thus, SPYDER requires that source code
must be available and recompiled.

PRISC [8] is a reconfigurable processor similar in concept
to SPYDER. A main difference between the two is that the
reconfigurable resources in PRISC are in the form of
execution units connected to the data path of the CPU along
with static functional units [8] as shown in Figure 10;
SPYDER does not specify static execution units. Because of
the static execution units present in PRISC, programs can
utilize static integer and floating-point execution units, while
this is not possible with the SPYDER processor. For
programs to utilize the reconfigurable resources of PRISC,
source code must be analyzed by a hardware extraction tool
that determines what program code should be executed using
the reconfigurable resources [8].

Execution
Unit

Static Logic

Execution
Unit

Execution
Unit

Execution
Unit

Reconfigurable LogicRegister
File and
Bypass
Logic

Figure 10. Architecture of the PRISC Microprocessor derived from [8].

The approaches of the SPYDER and PRISC processors
represent important steps in applying reconfigurable
computing to the realm of general-purpose computing and
commercial embedded applications. However, both of these
approaches require compilation and analysis at the source-
code level, and they do not directly support existing
instruction set architectures. Thus, they may lack mainstream
viability because they are not legacy-compatible at the
machine-code level. This is an important factor, considering
the vast amount of legacy software executables and hardware
systems that dominate today's market. An alternative
approach is presented in the next section.

V. AN ARCHITECTURE FOR A DYNAMICALLY
RECONFIGURABLE MICROPROCESSOR

Inspired by the study of the DAISY, Crusoe™, SPYDER,
and PRISC microprocessors, a concept of combining dynamic
code analysis and reconfigurable technology is presented in
this section. The goal is to describe a microprocessor that is
compatible with an existing microprocessor and exploits the
flexibility of reconfigurable hardware. A high-level
architecture of such a microprocessor, that is similar to
SPYDER and PRISC, is presented in Figure 11.

A. System Architecture
The microprocessor depicted in Figure 11 combines static

execution units and dynamically reconfigurable execution

units implemented in reconfigurable hardware to provide a
VLIW-based microprocessor that supports configuration
context switching. A set of pre-defined execution units can be
loaded into a context of the reconfigurable hardware within
the microprocessor as needed by the configuration controller,
each of which supports a subset of the instructions supported
by the instruction set architecture (ISA) of the microprocessor.
When an execution unit configuration is loaded into the
microprocessor, the data paths and control signals for the
execution unit is specified by the configuration controller.
This approach allows multiple copies of the same execution
unit to be loaded into the microprocessor without any
hardware conflicts by assigning the execution units different
data paths and control signals. For example, the
reconfigurable portion of the microprocessor could be
configured with two ALUs and two Load/Store units as
depicted in Figure 11.

The configuration controller handles the loading of
execution units into the reconfigurable hardware of the
microprocessor. The reconfigurable hardware within the
microprocessor is capable of supporting multiple contexts (as
first suggested in [14]). Reconfigurable hardware contains
logic blocks (sometimes referred to as logic cells), which are
configured by a string of bits (called a bit-stream) to
implement a specified function. In a context switching
approach, each bit of the bit-stream is stored in a separate
configuration register (or memory) instead of storing the entire
bit-stream in a single memory, e.g., SRAM. Therefore, the
configuration registers not only specify the current
configuration context for each logic block, but also holds other
configuration contexts. When the processor wishes to switch
to a configuration context that is already present in the
configuration registers, it simply has to change which bit of
each configuration register is used to specify the
configuration.

Register Bank B

Configuration
Controller

Register Bank A

Reconfigurable Logic

Load/Store
UnitALU

Static Logic

ALU 1 ALU 2 FPU 1 Load/Store
Unit 1

Load/Store
Unit 2

Unused
Reconfigurable

Logic
Context 1

Context 2

Context n

Figure 11. A multiple context reconfigurable microprocessor that uses dynamically reconfigurable and static execution units.

The combination of the configuration registers and the
configuration controller can be used to implement a
configuration pipeline. A configuration pipeline is similar to
an instruction pipeline, and is filled with the configurations
that implement different sets of execution units that are needed
to execute segments of code. As each set of execution units is
needed, the pipeline is advanced and the reconfigurable
hardware is reconfigured to implement the units. This
approach can speed-up the re-configuration of reconfigurable
hardware by decreasing the time required to load a new
configuration into the device. This decrease is achieved by
removing the need to re-write all of the configuration bits at
the point in time when a re-configuration is needed (assuming
the desired configuration exists in the configuration register).

Our preliminary studies suggest that there typically exists
a subset of instructions (such as those listed in Figure 12 for
the Intel® X86 microprocessor) that are frequently executed
throughout a given program. These studies examined the
execution of the POV-Ray (Persistence of Vision Raytracer)
ray tracing program [15] compiled for Linux at the assembly
language level one instruction at a time using the Linux
system call ptrace [16] (e.g., supported in Red Hat Linux 7.3).
The ptrace utility can trace all code within the program’s user
space, but cannot follow calls to operating system code.
These studies are reported in [10].

The results of our initial studies suggest that there exist
instructions that should be implemented statically in hardware
in order to optimize the overall execution of the program
because these instructions occur frequently and uniformly
throughout the execution of a program. In addition to
implementing instructions that are frequently executed in
static execution units, it is also desirable to design the static
execution units so that they can implement any instruction.
This makes the microprocessor completely compatible with
the entire instruction set architecture it implements for all
possible configurations of the reconfigurable hardware. Of
course the objective of the configuration process would be to
select configurations that best match the instructions currently
being executed (i.e., so as to minimize the number of
instructions that are sub-optimally matched to the current
configuration).

mov fstp fucompp cld
push fxch fadd nop
cmp fmul jbe fsubr
pop ret jc jnc
fld call fstcw jg
test and fst fucomp
jnz fstsw jns leave
add jmp fldz jl
inc jle fld1 or
sub fldcw fucom fabs
movzx dec shl frdint
lea faddp ja
jz xor fistp

Figure 12. The fifty most frequently executed instructions in POV-Ray [10].

In the typical translation process for reconfigurable
microprocessors, shown in Figure 4, the functionality of the
program being executed on the microprocessor is distributed
amongst a set of configurations. The studies performed in
[10] have inspired an alternative approach to the design of
reconfigurable microprocessors in which the configurations
for the microprocessor each support a subset of the instruction
set of the microprocessor. This approach is proposed in the
next subsection.

B. Instruction Set Partitioning
One drawback of the approach, taken in SPYDER[7] and

PRISC[8], of distributing the functionality of the program
being executed on a reconfigurable microprocessor among a
set of configurations is that the hardware required to support
the program is application specific. Additionally, this
approach requires that the program be re-compiled and the
functionality of the hardware needed to support the program
be extracted from the source code and synthesized into binary
configuration code(s) for the reconfigurable microprocessor.
Therefore, a reconfigurable microprocessor that uses this
translation model is not legacy-compatible at the machine
code level.

A different approach is to distribute the functionality of
the instruction set supported by the microprocessor among a
set of configurations that may or may not overlap (i.e.,
instruction set partitioning), effectively splitting the instruction
set into smaller sets of instructions. This approach moves the
definition and synthesis of the functionality supported by the
microprocessor off-line; the translation process of such a
microprocessor uses a set of pre-defined hardware
configurations. This translation process is presented in Figure
13.

In contrast to the translation process for a reconfigurable
microprocessor in which the functionality of the program
being executed is distributed among a set of configurations
(refer to Section I.B), the model of Figure 13 does not
generate the binary configuration codes for the reconfigurable
microprocessor. Instead of the binary configuration codes
supporting functionality of the specific program being
executed, they support the instruction set of the
microprocessor and are pre-defined. Thus, the same set of
binary configuration codes are used for every program
executed by the microprocessor, although some programs may
not require the existence of all of the binary configuration
codes in order to execute.

The translation process may include optimizations
performed on the binary machine code in order to improve the
performance of the microprocessor by applying techniques
such as code re-ordering to reduce the required number of
configuration switches. The microprocessor can execute un-
optimized code; however, in order to execute a particular
instruction, a correct partition must be configured and un-
optimized code could result in a high rate of configuration
switching.

Compilation

Binary
Machine

Code

Execution on a
reconfigurable
microprocessor

Source Code

Prior to Execution
During Execution

Static
Optimization

(optional)

Binary
Configuration

Codes

Binary
Machine

Code

Figure 13. A static translation process for reconfigurable microprocessors in which support for the instruction set of the microprocessor is distributed among a set

of configurations.

A dynamic translation process for a reconfigurable
microprocessor that uses instruction set partitioning extends
the static translation process of Figure 13 by utilizing
optimizations that benefit from run-time information about the
program being executed such as profiling data that indicates
the probabilities associated with the targets of control
instructions (e.g., branch instructions). Another approach to
dynamic translation for a reconfigurable microprocessor that
uses instruction set partitioning is to dynamically determine
the configurations that support the instruction set during the
execution of the program.

There are no known reconfigurable microprocessors that
utilize instruction set partitioning. This approach to the design
of reconfigurable microprocessors is being investigated and
preliminary results of this investigation can be found in [17].

C. The Configuration Process
The configuration process for the proposed

microprocessor is split into a static and dynamic analysis of
the program. The static analysis occurs at or after compilation
time and the dynamic analysis occurs during execution of the
program.

The static analysis examines one unit of code (e.g., basic
block) of the program at a time and determines the optimal set
of execution units to be configured within the microprocessor
during execution of the unit of code. The execution units
considered by the analysis process include the static execution
units and a pre-defined set of execution units that can be
loaded into the reconfigurable hardware of the
microprocessor. The set of execution units needed for each
unit of code within the program can be specified by the static
analysis process by adding tags to the end of the instructions
that specify the desired configuration of the execution units,
which are then interpreted and dynamically implemented by
the configuration controller. We note here that the static
analysis can be performed directly on binary machine code
produced by existing compilers. Thus, this analysis is stand-
alone and does not necessarily need to be integrated into

existing or new compilers. This implies that this analysis can
be viewed as a post-compilation but pre-execution process.

Although useful, the static analysis does not have to be
performed; standard legacy code without the addition of
configuration tags can be executed directly on the
microprocessor. If “non-tagged” code is executed on the
microprocessor, then a default configuration is initially
implemented in the reconfigurable hardware. The initial
configuration used is likely not optimal for the code being
executed; however, dynamic analysis commences and more
optimal configurations are determined during execution.
Dynamic analysis further optimizes the ordering of
configurations provided to the configuration controller beyond
what the static analysis provides. This ordering is based on
predictions of what units of code will be executed in the
future. Because the static analysis does not have access to
information about the data being processed by the program or
the past execution flow of the program, this further
optimization can only be done at execution time. To reduce
the overhead incurred by reconfiguration of the
microprocessor, the dynamic analysis and loading of the
configuration registers can be pipelined, as illustrated in
Figure 14.

Determine optimal
execution unit
configuration

Determine next unit
of code

Load configuration
into an empty slot of

the configuration
registers

Dynamic Analysis

Figure 14. Pipelining of dynamic analysis and loading of configuration

registers.

VI. CONCLUSIONS
This paper has introduced a microprocessor taxonomy

that classifies microprocessors based on the technology used
to implement them (static or reconfigurable), the process that
they use to translate machine code and execute instructions,
and whether this process is performed in software or
hardware. The design and operation of two different static
microprocessors that perform dynamic translation of machine
code have been presented and compared. A proposed
architecture for utilizing dynamically reconfigurable hardware
was also discussed.

The two microprocessors reviewed in this paper are the
IBM DAISY and the Transmeta Crusoe™. These
microprocessors use dynamic translation to execute machine
code initially compiled for the PowerPC and Intel® X86
microprocessors, respectively. The design of these two
microprocessors and how they perform dynamic translation
differ. DAISY is based on a sophisticated VLIW processor
core while the Crusoe™ uses a simplified VLIW processor
core that has extra hardware support added for speeding up the
process of rolling back the state of the emulated
microprocessor when an exception occurs. The re-translation,
optimization, and scheduling processes are also different
between these two microprocessors. DAISY uses a generic
and broad approach while the Crusoe™ is Intel® X86 specific
and performs specialized optimizations that may only apply to
Intel® X86 machine code.

The DAISY and Crusoe™ microprocessors both represent
a new direction for microprocessor design. The designers of
these microprocessors recognize the reality that for a new
microprocessor to be successful in today’s market, it should be
compatible with an existing instruction set of a microprocessor
that has been successful. This is due to the vast amount of
legacy software and hardware systems that dominate the
market.

Some initial concepts are proposed at the end of the paper
related to an architecture that includes dynamically
reconfigurable hardware. Such a microprocessor may be able
to outperform a static counterpart because the analysis process
has the option of executing a unit of code using a particular
configuration of the reconfigurable hardware for which it is
well matched. The efficient implementation of instruction(s)
in reconfigurable hardware could speed-up overall execution.

A new approach to the design of reconfigurable
microprocessors in which the instructions of the ISA are
distributed amongst a set of configurations for the
microprocessor instead of distributing the functionality of the
program being executed amongst the configurations is
proposed. This approach is not application specific and can be
used to develop microprocessors that support both new and
legacy ISAs. This approach is currently being investigated
and studies dealing with the feasibility of this approach and
optimization of code generated for a microprocessor that uses
instruction set partitioning are reported in [17].

The goal of the concepts presented at the end of this paper
is to minimize the number of reconfigurations required to
execute a program while maximizing the amount of ILP
achieved. Future work will extend the concepts presented
here by formalizing specific approaches to this design
problem.

REFERENCES
[1] IA-32 Intel Architecture Software Developer’s Manual, Intel

Corporation,
http://developer.intel.com/design/pentium4/manuals/index2.htm, 2002.

[2] PowerPC Microprocessor Family: The Programming Environment for
32-Bit Microprocessors, International Business Machines Corporation,
http://www-
3.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256
99600719DF2, 2002.

[3] J. Gosling and H. McGilton, “The Java Language Environment: A White
Paper,” Sun Microsystems Inc., Mountain View, CA,
ftp://ftp.javasoft.com/docs/papers/langenviron-pdf.zip, May 1996.

[4] The Java HotSpot Virtual Machine Technical White Paper, Sun
Microsystems Inc., Palo Alto, CA,
http://wwws.sun.com/software/solaris/java/wp-hotspot/, 2001.

[5] K. Ebcioğlu, E.R. Altman, M. Gschwind, and S. Sathaye, “Dynamic
Binary Translation and Optimization,” IEEE Transactions on
Computers, vol. 50, no. 6, June 2001, pp. 529-548.

[6] R.F. Cmelik, D.R. Ditzel, E.J. Kelly, C.B. Hunter, D.A. Laird, M.J.
Wing, and G.B. Zyner, “Combining Hardware and Software to Provide
an Improved Microprocessor,” US Patent 6,031,992, Feb. 2000.

[7] C. Iseli and E. Sanchez, “Beyond Superscalar Using FPGAs,”
Proceedings of the 1993 IEEE International Conference on Computer
Design: VLSI in Computers and Processors, 1993, pp. 486-490.

[8] R. Razdan and M.D. Smith, “A High-Performance Microarchitecture
with Hardware-Programmable Functional Units,” Proceedings of the
27th Annual International Symposium on Microarchitecture, 1994, pp.
172-180.

[9] K. Ebcioğlu, J. Fritts, S. Kosonocky, M. Gschwind, E.R. Altman, K.
Kailas, and T. Bright, “An Eight-Issue Tree-VLIW Processor for
Dynamic Binary Translation,” Proceedings of the International
Conference on Computer Design: VLSI in Computers and Processors,
1998, pp. 488-495.

[10] B.F. Veale, J.K. Antonio, and M.P. Tull, “Design and Optimization of
Legacy Compatible Microprocessors,” Technical Report No. CS-TR-02-
002, School of Computer Science, University of Oklahoma,
http://www.cs.ou.edu/~veale/pubs/CS-TR-02-002.pdf, Dec. 2002.

[11] A. Klaiber, “The Technology Behind Crusoe™ Processors: Low-Power
X86-Compatible Processors Implemented with Code Morphing™
Software,” Transmeta Corporation, Santa Clara, CA,
http://www.transmeta.com/about/press/white_papers.html, Jan. 2000.

[12] E.R. Altman, K. Ebcioğlu, M. Gschwind, and S. Sathaye, “Advances
and Future Challenges in Binary Translation and Optimization,”
Proceedings of the IEEE, vol. 89, no. 11, Nov. 2001, pp.1710-1722.

[13] C. Iseli and E. Sanchez, “A C++ Compiler for FPGA Custom Execution
Units Synthesis,” Proceedings of the IEEE Symposium on Field
Programmable Custom Computing Machines, 1995, pp. 173-179.

[14] S. Scalera and J.R. Vásquez, “The Design and Implementation of a
Context Switching FPGA,” Proceedings of the 6th Annual IEEE
Symposium on Field Programmable Custom Computing Machines,
1998, pp. 78-85.

[15] POV-Ray 3.5 Documentation, Hallam Oaks Pty. Ltd,
http://www.povray.org/documentation/, April 2002.

[16] Red Hat Documentation: Linux Programmer's Manual, PTRACE, Red
Hat, Inc., http://www.europe.redhat.com/documentation/man-
pages/man2/ptrace.2.php3, March 2000.

[17] B.F. Veale, J.K. Antonio, and M.P. Tull, ”Code Optimization for a
Reconfigurable Microprocessor,” Technical Report No. CS-TR-03-001,
in preparation.

