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Abstract - A microprocessor taxonomy is introduced based on 
whether: (1) the hardware is static or reconfigurable and (2) the 
code translation process is static or dynamic.  The IBM DAISY 
and Transmeta CrusoeTM microprocessors are reviewed.  These 
static hardware microprocessors support a dynamic translation 
process to execute programs originally compiled for the PowerPC 
and Intel® X86 microprocessors, respectively.  Inspired by 
features from both the DAISY and CrusoeTM microprocessors, a 
conceptual design of a dynamically reconfigurable 
microprocessor is given.  Driven by the results of a preliminary 
study, a specific approach to designing a reconfigurable 
microprocessor is presented.  As a part of this approach, the 
concept of partitioning the instruction set of a microprocessor in 
order to support an application, instead of partitioning the 
functionality of the application, is developed.  

I. INTRODUCTION 
Microprocessor hardware can be divided into two main 

categories:  
1.  microprocessors implemented in static hardware; and 
2.  microprocessor implementations that include 

reconfigurable hardware. 
In a microprocessor implemented in static hardware, the 
circuitry is fixed and implements the original set of operations 
for which it was fabricated.  However, in a microprocessor 
implemented using reconfigurable hardware, the operations 
performed by the reconfigurable circuitry can be changed after 
fabrication by configuring the reconfigurable hardware.  A 
microprocessor based on reconfigurable hardware can be 
partially or completely implemented in reconfigurable 
circuitry, e.g., only the circuitry that performs arithmetic 
operations might be implemented using reconfigurable 
circuitry. 

An overview of a microprocessor taxonomy is illustrated 
in Figure 1.  In addition to categorizing the type of hardware 
used to implement the microprocessor, distinction is made in 
how code is translated, i.e., statically or dynamically.  
Examples associated with all but one of the categories are 
shown on the figure. 
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A. Static Microprocessors 
In a static microprocessor, the instruction set that can be 

executed is fixed and the architecture of the underlying 
hardware is fixed.  Examples of static microprocessors include 
the Intel® X86 family of microprocessors [1] and the 
PowerPC microprocessor [2]. 

The static translation process, which is the typical code 
development and execution process for static microprocessors, 
is shown in Figure 2.  The source code is constructed using a 
high-level language, e.g., C++.  The compilation process takes 
in source code and produces machine code for the target 
microprocessor.  In the model of Figure 2, note that the 
process of translating source code into machine code occurs 
before execution begins on the static microprocessor. 

In addition to the typical static translation process, there 
exist static microprocessors that perform the translation 
process dynamically at the same time that execution of the 
machine code occurs.  The generic code development and 
execution process for a microprocessor that performs dynamic 
translation is shown in Figure 3.  

In dynamic translation, as shown in Figure 3, the source 
code is developed as before using a high-level language.  The 
compilation process takes in the source code and produces 
machine code for an initial target microprocessor.  This initial 
target may be associated with an actual physical 
microprocessor or it may be associated with a virtual 
microprocessor.  (For example, Java source code is initially 
targeted to binary Java Virtual Machine (JVM) code [3].)  The 
machine code for the initial target microprocessor is re-
translated into machine code for the final target 
microprocessor and optimized.  Re-translation refers to the 
process of translating the machine code for the initial target 
microprocessor into machine code for the final target 
microprocessor; and optimization refers to techniques used to 
change and re-order the execution of instructions contained in 
machine code in order to speed-up execution.  The re-
translation and optimization step is the essence of dynamic 
translation and can be performed in software or hardware, as 
illustrated in Figure 1. 
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Figure 1. A taxonomy of microprocessors and the translation processes they use. 

One example of a system that performs the re-translation 
and optimization step in software is the JVM [3].  When a 
Java program is executed on a static microprocessor, the initial 
machine code, which is called Java bytecode, is re-translated 
into the machine code for the target microprocessor using the 
JVM, which is implemented in software [4]. 

The DAISY (Dynamically Architected Instruction Set 
from Yorktown) [5] and Crusoe™ [6] microprocessors are 
examples of static microprocessors that perform the re-
translation and optimization step of the dynamic translation 
process in hardware.  In these systems, the source code is not 
initially compiled for the DAISY or Crusoe™ microprocessor, 
but for a different static microprocessor.  When the initial 
machine code is executed by DAISY or Crusoe™, it is re-
translated into machine code for the DAISY or Crusoe™ 
microprocessor, which is then executed by the microprocessor 
[5, 6].  This re-translation is performed in hardware.  A main 
focus of this paper is to overview and compare the DAISY and 
Crusoe™ systems (Sections II and III). 

B. Reconfigurable Microprocessors 
In contrast to a static microprocessor, the instruction set 

and the underlying architecture of a reconfigurable 
microprocessor can be dynamic.  This means that the 
instruction set and the circuitry implementing particular 
instructions or functionality of the microprocessor can be 
changed after fabrication of the microprocessor.   

The static translation process, which is the typical code 
development and execution process for reconfigurable 
microprocessors, is shown in Figure 4.  The source code is 
constructed using a high-level language.  The compilation 

process takes in source code and produces: (1) machine code 
for the target microprocessor and (2) a description of 
functionality that represents a sequence of instructions to be 
implemented in the reconfigurable hardware to support the 
machine code.  After the compilation process is finished, the 
synthesis process converts the descriptions of the instructions 
to be implemented in reconfigurable hardware into binary 
configuration code for the reconfigurable hardware.  In the 
model of Figure 4, note that the process of translating source 
code into machine code and binary configuration code occurs 
before execution begins on a reconfigurable microprocessor.  
The SPYDER [7] and PRISC [8] microprocessors are 
examples of reconfigurable microprocessors that use this 
approach.  A review of these microprocessors is presented in 
Section IV. 

Unlike the category of static microprocessors, there are no 
known examples of a reconfigurable microprocessor that uses 
a dynamic translation process.  At the end of this paper, future 
work is outlined in the direction of examining dynamically 
reconfigurable microprocessor architectures. 

C. Summary of Microprocessor Taxonomy 
For the purpose of this study, microprocessors are 

implemented in either static or reconfigurable hardware.  Two 
possible translation processes are defined: static and dynamic.  
In the static translation approach, the source code is compiled 
before execution on the microprocessor begins.  In the 
dynamic translation approach, initial machine code is re-
translated and/or optimized during execution on the 
microprocessor. 
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Figure 2. The static translation process for a static microprocessor. 
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Figure 3. The dynamic translation process for a static microprocessor. 
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Figure 4. The static translation process for reconfigurable microprocessors.

Microprocessors that perform dynamic translation have 
the advantage that they can execute machine code that was 
initially compiled for an existing microprocessor that has an 
established market share.  Microprocessors that perform static 
translation do not have to perform the re-translation and 
optimization step found in dynamic translation and therefore 
may execute faster than a microprocessor that uses dynamic 
translation to execute the same machine code. 

Reconfigurable microprocessors have the potential 
advantage of being able to dynamically alter their architecture 
and/or instruction set.  However, current technology that 
supports reconfigurable microprocessors is generally slower 
than the technology used to create static microprocessors.  
Even though reconfigurable hardware may be slower, it still 
holds promise of producing overall performance that is faster 
than static hardware by strategically and dynamically 
reconfiguring the architecture to match the currently executing 
instructions. 

This paper describes architectural approaches to support 
dynamic translation and reconfiguration.  Sections II and III 
provide details on the design of the hardware architectures of 
the DAISY [5] and Crusoe™ [6] microprocessors, 
respectively, which are examples of static microprocessors 
that implement dynamic translation.  An alternative approach 
to the design of reconfigurable microprocessors is proposed 
and preliminary architectural approaches of a dynamically 
reconfigurable microprocessor that can use this approach are 
given in Section V. 

II. THE IBM DAISY MICROPROCESSOR 

A. Overview 
The DAISY microprocessor [5] is a static microprocessor 

that has been developed by IBM, which uses the dynamic 
translation process of Figure 3.  The goal of the DAISY 
microprocessor is to use dynamic translation to provide 
complete compatibility with the binary machine code of an 
existing commercial microprocessor [5].  The DAISY 
microprocessor presented is completely compatible with the 
machine code of the PowerPC microprocessor.  However, the 
techniques used in the PowerPC version of the DAISY 
microprocessor could be applied to other microprocessors 

such as the Intel® X86 and the IBM System/390, as well as 
virtual microprocessors such as the JVM [5]. 

A high-level component view of the DAISY 
microprocessor is shown in Figure 5.  The architecture of the 
DAISY microprocessor is based on a VLIW (Very Long 
Instruction Word) processor core and is built on top of the 
PowerPC memory model and register file [5].  The white areas 
of Figure 5 represent PowerPC components of the system, and 
the black areas represent the DAISY specific components of 
the system.  Note that there are no PowerPC execution units; 
all processing is done in the block labeled DAISY Processor 
Core (VLIW). 

In the DAISY microprocessor, instructions are tree-based 
and implement a multi-way path selection scheme [5].  The 
flow control model for a tree-based instruction is given in 
Figure 6.  The multi-way path selection scheme allows the 
dynamic translation process to aggressively re-translate and 
optimize programs that contain multiple paths of flow and 
benefit from branch prediction. 

Each DAISY VLIW instruction can specify up to sixteen 
concurrent operations [5].  In the model of Figure 6, each path 
can consist of any subset of the sixteen operations.  The 
condition codes (ccA, ccB, and ccC) determine the path taken 
and what instruction is performed next [9]. 
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Figure 5. The components of a DAISY microprocessor [5]. 
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Figure 6. The tree-based instruction flow control model and instruction format 

[9]. 

The DAISY microprocessor performs the re-translation 
and optimization step of Figure 3 by performing a re-
translation of initial machine code into groups of DAISY 
instructions (called instruction groups) that are in the form of 
machine code for the DAISY microprocessor.  As execution 
of machine code on the DAISY microprocessor continues, if 
previously re-translated instruction groups are encountered 
frequently, then they are optimized.  This process of re-
translation and optimization is depicted in Figure 7 [5]. 

B. Re-translation and Optimization of Binary Machine Code 
The DAISY microprocessor uses a Virtual Machine 

Monitor (VMM), shown in Figure 5, to handle the re-
translation process.  The VMM also handles control of the 
microprocessor, including exception handling, and is 
transparent to the binary machine code of the initial target 
microprocessor [5]. 

In the DAISY microprocessor, instruction groups take the 
form of a tree and are called tree groups.  A tree group is a 
high-level abstraction of a group of VLIW instructions that 
models the flow of instruction execution (the control path) 
through a program.  This control path defines the tree 
properties of a tree group.  Control paths can only merge on 
the boundary between tree groups (the transition from one tree 
group to another).  Each of the leaves of the tree corresponds 
to an exit point in the tree and is called a “tip.”  By knowing 
which of the tips was used to exit the tree, the system can 
determine the path taken through the tree [5]. 

Tree groups are used as the unit of translation in the re-
translation process.  When a segment of code is encountered 
that has already been re-translated, the system merely 
branches to the corresponding tree group.  In this situation, re-
translation is not necessary. 

If re-translated code is executed frequently, then it is 
optimized.  The goal of the optimization algorithms used in 
DAISY is to attain a significant level of ILP (Instruction Level 
Parallelism) with a low overhead cost.  The scheduling 
approaches are adaptive and a function of execution frequency 

and behavior.  The optimizations used in these approaches 
include copy propagation and load-store telescoping [5].  For a 
more detailed description of these optimizations, refer to [10]. 

The process of re-translating code a specified number of 
times before it is optimized is beneficial to the overall 
performance of the system for at least two reasons.  First, the 
re-translation process acts as a filter for rarely executed code 
to keep such code from being optimized.  The cost to optimize 
such code is wasted and will never be regained because the 
system will not benefit from faster execution of the code in the 
future.  Second, the re-translation process can be used to 
gather data about how to guide the optimization process.   

C. Special Hardware and Control Mechanisms 
There are several areas in which special support is 

provided to make the DAISY microprocessor completely 
compatible with the binary machine code of the PowerPC 
microprocessor without encountering performance 
degradation.  Among these areas are exception handling and 
context switching mechanisms, support for handling register-
indirect branches, and being able to detect and handle self-
modifying and self-referential program code.  A more detailed 
description of these mechanisms and their underlying 
hardware support is provided in [10]. 

D. Summary 
The keys to the success of the approaches used in DAISY 

are that the system performs ILP extraction at execution time 
[5] and run-time profiling of program code.  This results in a 
high level of performance due to the ability of the 
microprocessor to dynamically adapt the re-translated 
instruction code.  This is a major improvement over the 
heuristic and profile-based approaches that static compilers 
use, that result in trade-offs being considered to improve 
performance [5]. 

The performance studies of DAISY, presented in [5], 
indicate that the filtering out of infrequently executed machine 
code before it is optimized does not necessarily improve 
system performance; and that the optimization of DAISY 
machine code is expensive.  Also, it was found that the ILP 
achieved is directly affected by how tree groups are formed. 

III. THE TRANSMETA CRUSOE™ MICROPROCESSOR 

A. Overview 
The Crusoe™ microprocessor [6], developed and 

marketed by Transmeta Corporation, is in the same class of 
microprocessors as DAISY, i.e., it is a static microprocessor 
that performs the re-translation and optimization step of the 
dynamic translation process in hardware.  This microprocessor 
is associated with the same high-level translation process as 
DAISY, which is illustrated in Figure 3.  The goals of the 
Crusoe™ microprocessor are to be completely compatible 
with the machine code of the Intel® X86 family of 
microprocessors [1] and to directly compete with these 
microprocessors in the marketplace.  The Crusoe™ 



 

microprocessor achieves these goals with a unique hardware 
architecture, which includes enhanced support for re-
translating X86 machine code into Crusoe™ machine code 
and executing the resulting machine code [6]. 

A high-level view of a Crusoe™ based system is shown 
in Figure 8.  Similar to the DAISY, the Crusoe™ 
microprocessor is based on a VLIW processor core and is built 
on top of the X86 register file and memory model.  A 
Crusoe™ based system can be divided into four layers: (1) the 
target application which was initially compiled for an X86 
microprocessor; (2) the target operating system (also initially 
compiled for an X86 microprocessor); (3) the Code 
Morphing™ process which handles the re-translation and 
optimization of machine code, the maintenance of re-
translated machine code in a translation buffer located in 
memory, and system control; and (4) the Morph host which is 
the VLIW processor core of the microprocessor [6]. 

The Code Morphing™ process of the Crusoe™ 
microprocessor maintains a translation buffer, as shown in 
Figure 8, which stores completed re-translations of each X86 
instruction.  Once instructions are successfully re-translated 
and segments of instructions are optimized, the resulting 
machine code is stored in the translation buffer.  The resulting 
machine code (in the translation buffer) is executed by the 
VLIW processor core.  When a previously re-translated 
instruction is encountered again, the microprocessor can recall 
the corresponding operation(s) from the buffer and execute 
them without further re-translation [6]. 

As X86 machine code is executed on the Crusoe™ 
microprocessor, if the instruction being executed at any given 
time has not been re-translated (and does not exist in the 
translation buffer), then it is re-translated into machine code 

for the Crusoe™ microprocessor and optimized [6].  This 
process is the re-translation step of Figure 3 and is shown in 
Figure 9 for the Crusoe™. 

 The performance of the Crusoe™ microprocessor comes 
from the reduction in the amount of hardware in the 
microprocessor (compared to the Intel® X86 microprocessor) 
and the caching of re-translated machine code.  This results in 
a possible speedup of the execution of program code and a 
reduction in the power consumption of the microprocessor 
[11]. 

B. Re-Translation and Optimization of Instructions 
The Crusoe™ microprocessor uses the Code Morphing™ 

process, shown in Figure 9, to perform the re-translation 
process.  The Code Morphing™ process also optimizes the 
resulting machine code and handles control of the system, 
including exception handling [6].  Just as with the DAISY 
VMM, this process is transparent to the X86 machine code 
being executed on the Crusoe™. 

The first time an X86 instruction is encountered it is re-
translated into a sequence of Crusoe™ operations, as shown in 
Figure 9.  As instructions are re-translated, the different 
segments of Crusoe™ machine code that are generated are 
linked together so that they do not branch back to the Code 
Morphing™ process if the next segment to be executed has 
already been re-translated.  This helps to eliminate most of the 
branches back to the Code Morphing™ process and serves to 
enhance the speed of the emulated X86 microprocessor.  Once 
the system has reached a steady state, it is estimated that a re-
translation will only be necessary for one in every million X86 
instructions executed over the life of a running program [6].
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Figure 7. The dynamic translation process used by the DAISY microprocessor derived from [12].
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Figure 8. The components of a Crusoe™ based system [6].
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Figure 9. The dynamic translation process used by the Crusoe™ microprocessor derived from [6].

In addition to re-translating X86 machine code into 
Crusoe™ operations, the Code Morphing™ process also 
optimizes the operations in an attempt to speed up the 
execution of instructions as much as possible.  Specific 
optimizations described in [6] are: speculatively removing the 
X86 segmentation process; speculatively removing upper 
boundary memory checks; common sub-expression 
elimination; speculatively removing commit operations; 
register renaming; code motion; data aliasing; copy 
elimination; and the use of alias hardware.  These 
optimizations are performed on a re-translation only if the re-
translation is executed frequently, because the time needed to 
re-translate and optimize infrequently executed instructions is 
greater than the time required to re-translate and execute the 
instructions without optimization.  Refer to [10] for a 
comprehensive summary of these optimizations. 

C. Commercial Impact  
The Transmeta Crusoe™ microprocessor is a successful 

commercial product.  It has gained a share of the Intel® X86-
compatible microprocessor market.  Transmeta has been 
successful in marketing the Crusoe™ microprocessor for use 
in laptop computers and handheld devices.  The power 
requirements of the Crusoe™ microprocessor are 60%-70% 
less than compatible microprocessors [11].  This has been 
accomplished by reducing the complexity of the underlying 
hardware architecture of the microprocessor [6]. 

IV. THE SPYDER AND PRISC MICROPROCESSORS 
SPYDER [7] and PRISC [8] are examples of 

reconfigurable microprocessors that use the translation process 
of Figure 4.  SPYDER uses reconfigurable resources to 
implement hardware synthesized specifically for a program to 
be executed on the processor [7].  A C++ to netlist compiler 
that creates the binary configuration code used to configure 
the processor must be run before a program can be executed 
on SPYDER [13].  Thus, SPYDER requires that source code 
must be available and recompiled. 

PRISC [8] is a reconfigurable processor similar in concept 
to SPYDER.  A main difference between the two is that the 
reconfigurable resources in PRISC are in the form of 
execution units connected to the data path of the CPU along 
with static functional units [8] as shown in Figure 10; 
SPYDER does not specify static execution units.  Because of 
the static execution units present in PRISC, programs can 
utilize static integer and floating-point execution units, while 
this is not possible with the SPYDER processor.  For 
programs to utilize the reconfigurable resources of PRISC, 
source code must be analyzed by a hardware extraction tool 
that determines what program code should be executed using 
the reconfigurable resources [8].   
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Figure 10. Architecture of the PRISC Microprocessor derived from [8]. 

The approaches of the SPYDER and PRISC processors 
represent important steps in applying reconfigurable 
computing to the realm of general-purpose computing and 
commercial embedded applications.  However, both of these 
approaches require compilation and analysis at the source-
code level, and they do not directly support existing 
instruction set architectures.  Thus, they may lack mainstream 
viability because they are not legacy-compatible at the 
machine-code level.  This is an important factor, considering 
the vast amount of legacy software executables and hardware 
systems that dominate today's market.  An alternative 
approach is presented in the next section. 

V. AN ARCHITECTURE FOR A DYNAMICALLY 
RECONFIGURABLE MICROPROCESSOR 

Inspired by the study of the DAISY, Crusoe™, SPYDER, 
and PRISC microprocessors, a concept of combining dynamic 
code analysis and reconfigurable technology is presented in 
this section.  The goal is to describe a microprocessor that is 
compatible with an existing microprocessor and exploits the 
flexibility of reconfigurable hardware.  A high-level 
architecture of such a microprocessor, that is similar to 
SPYDER and PRISC, is presented in Figure 11. 

A. System Architecture 
The microprocessor depicted in Figure 11 combines static 

execution units and dynamically reconfigurable execution 

units implemented in reconfigurable hardware to provide a 
VLIW-based microprocessor that supports configuration 
context switching.  A set of pre-defined execution units can be 
loaded into a context of the reconfigurable hardware within 
the microprocessor as needed by the configuration controller, 
each of which supports a subset of the instructions supported 
by the instruction set architecture (ISA) of the microprocessor.  
When an execution unit configuration is loaded into the 
microprocessor, the data paths and control signals for the 
execution unit is specified by the configuration controller.  
This approach allows multiple copies of the same execution 
unit to be loaded into the microprocessor without any 
hardware conflicts by assigning the execution units different 
data paths and control signals.  For example, the 
reconfigurable portion of the microprocessor could be 
configured with two ALUs and two Load/Store units as 
depicted in Figure 11. 

The configuration controller handles the loading of 
execution units into the reconfigurable hardware of the 
microprocessor.  The reconfigurable hardware within the 
microprocessor is capable of supporting multiple contexts (as 
first suggested in [14]).  Reconfigurable hardware contains 
logic blocks (sometimes referred to as logic cells), which are 
configured by a string of bits (called a bit-stream) to 
implement a specified function.  In a context switching 
approach, each bit of the bit-stream is stored in a separate 
configuration register (or memory) instead of storing the entire 
bit-stream in a single memory, e.g., SRAM.  Therefore, the 
configuration registers not only specify the current 
configuration context for each logic block, but also holds other 
configuration contexts.  When the processor wishes to switch 
to a configuration context that is already present in the 
configuration registers, it simply has to change which bit of 
each configuration register is used to specify the 
configuration. 
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Figure 11. A multiple context reconfigurable microprocessor that uses dynamically reconfigurable and static execution units.



 

The combination of the configuration registers and the 
configuration controller can be used to implement a 
configuration pipeline.  A configuration pipeline is similar to 
an instruction pipeline, and is filled with the configurations 
that implement different sets of execution units that are needed 
to execute segments of code.  As each set of execution units is 
needed, the pipeline is advanced and the reconfigurable 
hardware is reconfigured to implement the units.  This 
approach can speed-up the re-configuration of reconfigurable 
hardware by decreasing the time required to load a new 
configuration into the device.  This decrease is achieved by 
removing the need to re-write all of the configuration bits at 
the point in time when a re-configuration is needed (assuming 
the desired configuration exists in the configuration register). 

Our preliminary studies suggest that there typically exists 
a subset of instructions (such as those listed in Figure 12 for 
the Intel® X86 microprocessor) that are frequently executed 
throughout a given program.  These studies examined the 
execution of the POV-Ray (Persistence of Vision Raytracer) 
ray tracing program [15] compiled for Linux at the assembly 
language level one instruction at a time using the Linux 
system call ptrace [16] (e.g., supported in Red Hat Linux 7.3).  
The ptrace utility can trace all code within the program’s user 
space, but cannot follow calls to operating system code.  
These studies are reported in [10]. 

The results of our initial studies suggest that there exist 
instructions that should be implemented statically in hardware 
in order to optimize the overall execution of the program 
because these instructions occur frequently and uniformly 
throughout the execution of a program.  In addition to 
implementing instructions that are frequently executed in 
static execution units, it is also desirable to design the static 
execution units so that they can implement any instruction.  
This makes the microprocessor completely compatible with 
the entire instruction set architecture it implements for all 
possible configurations of the reconfigurable hardware.  Of 
course the objective of the configuration process would be to 
select configurations that best match the instructions currently 
being executed (i.e., so as to minimize the number of 
instructions that are sub-optimally matched to the current 
configuration). 

 
mov fstp fucompp cld
push fxch fadd nop
cmp fmul jbe fsubr
pop ret jc jnc
fld call fstcw jg
test and fst fucomp
jnz fstsw jns leave
add jmp fldz jl
inc jle fld1 or
sub fldcw fucom fabs
movzx dec shl frdint
lea faddp ja
jz xor fistp  

Figure 12. The fifty most frequently executed instructions in POV-Ray [10]. 

In the typical translation process for reconfigurable 
microprocessors, shown in Figure 4, the functionality of the 
program being executed on the microprocessor is distributed 
amongst a set of configurations.  The studies performed in 
[10] have inspired an alternative approach to the design of 
reconfigurable microprocessors in which the configurations 
for the microprocessor each support a subset of the instruction 
set of the microprocessor.  This approach is proposed in the 
next subsection. 

B. Instruction Set Partitioning 
One drawback of the approach, taken in SPYDER[7] and 

PRISC[8], of distributing the functionality of the program 
being executed on a reconfigurable microprocessor among a 
set of configurations is that the hardware required to support 
the program is application specific.  Additionally, this 
approach requires that the program be re-compiled and the 
functionality of the hardware needed to support the program 
be extracted from the source code and synthesized into binary 
configuration code(s) for the reconfigurable microprocessor.  
Therefore, a reconfigurable microprocessor that uses this 
translation model is not legacy-compatible at the machine 
code level. 

A different approach is to distribute the functionality of 
the instruction set supported by the microprocessor among a 
set of configurations that may or may not overlap (i.e., 
instruction set partitioning), effectively splitting the instruction 
set into smaller sets of instructions.  This approach moves the 
definition and synthesis of the functionality supported by the 
microprocessor off-line; the translation process of such a 
microprocessor uses a set of pre-defined hardware 
configurations.  This translation process is presented in Figure 
13. 

In contrast to the translation process for a reconfigurable 
microprocessor in which the functionality of the program 
being executed is distributed among a set of configurations 
(refer to Section I.B), the model of Figure 13 does not 
generate the binary configuration codes for the reconfigurable 
microprocessor.  Instead of the binary configuration codes 
supporting functionality of the specific program being 
executed, they support the instruction set of the 
microprocessor and are pre-defined.  Thus, the same set of 
binary configuration codes are used for every program 
executed by the microprocessor, although some programs may 
not require the existence of all of the binary configuration 
codes in order to execute. 

The translation process may include optimizations 
performed on the binary machine code in order to improve the 
performance of the microprocessor by applying techniques 
such as code re-ordering to reduce the required number of 
configuration switches.  The microprocessor can execute un-
optimized code; however, in order to execute a particular 
instruction, a correct partition must be configured and un-
optimized code could result in a high rate of configuration 
switching. 
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Figure 13. A static translation process for reconfigurable microprocessors in which support for the instruction set of the microprocessor is distributed among a set 

of configurations.

A dynamic translation process for a reconfigurable 
microprocessor that uses instruction set partitioning extends 
the static translation process of Figure 13 by utilizing 
optimizations that benefit from run-time information about the 
program being executed such as profiling data that indicates 
the probabilities associated with the targets of control 
instructions (e.g., branch instructions).  Another approach to 
dynamic translation for a reconfigurable microprocessor that 
uses instruction set partitioning is to dynamically determine 
the configurations that support the instruction set during the 
execution of the program. 

There are no known reconfigurable microprocessors that 
utilize instruction set partitioning.  This approach to the design 
of reconfigurable microprocessors is being investigated and 
preliminary results of this investigation can be found in [17]. 

C. The Configuration Process 
The configuration process for the proposed 

microprocessor is split into a static and dynamic analysis of 
the program.  The static analysis occurs at or after compilation 
time and the dynamic analysis occurs during execution of the 
program.   

The static analysis examines one unit of code (e.g., basic 
block) of the program at a time and determines the optimal set 
of execution units to be configured within the microprocessor 
during execution of the unit of code.   The execution units 
considered by the analysis process include the static execution 
units and a pre-defined set of execution units that can be 
loaded into the reconfigurable hardware of the 
microprocessor.  The set of execution units needed for each 
unit of code within the program can be specified by the static 
analysis process by adding tags to the end of the instructions 
that specify the desired configuration of the execution units, 
which are then interpreted and dynamically implemented by 
the configuration controller.  We note here that the static 
analysis can be performed directly on binary machine code 
produced by existing compilers.  Thus, this analysis is stand-
alone and does not necessarily need to be integrated into 

existing or new compilers.  This implies that this analysis can 
be viewed as a post-compilation but pre-execution process. 

Although useful, the static analysis does not have to be 
performed; standard legacy code without the addition of 
configuration tags can be executed directly on the 
microprocessor.  If “non-tagged” code is executed on the 
microprocessor, then a default configuration is initially 
implemented in the reconfigurable hardware.  The initial 
configuration used is likely not optimal for the code being 
executed; however, dynamic analysis commences and more 
optimal configurations are determined during execution. 
Dynamic analysis further optimizes the ordering of 
configurations provided to the configuration controller beyond 
what the static analysis provides.  This ordering is based on 
predictions of what units of code will be executed in the 
future.  Because the static analysis does not have access to 
information about the data being processed by the program or 
the past execution flow of the program, this further 
optimization can only be done at execution time.  To reduce 
the overhead incurred by reconfiguration of the 
microprocessor, the dynamic analysis and loading of the 
configuration registers can be pipelined, as illustrated in 
Figure 14. 
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Figure 14. Pipelining of dynamic analysis and loading of configuration 

registers. 



 

VI. CONCLUSIONS 
This paper has introduced a microprocessor taxonomy 

that classifies microprocessors based on the technology used 
to implement them (static or reconfigurable), the process that 
they use to translate machine code and execute instructions, 
and whether this process is performed in software or 
hardware.  The design and operation of two different static 
microprocessors that perform dynamic translation of machine 
code have been presented and compared.  A proposed 
architecture for utilizing dynamically reconfigurable hardware 
was also discussed. 

The two microprocessors reviewed in this paper are the 
IBM DAISY and the Transmeta Crusoe™.  These 
microprocessors use dynamic translation to execute machine 
code initially compiled for the PowerPC and Intel® X86 
microprocessors, respectively.  The design of these two 
microprocessors and how they perform dynamic translation  
differ.  DAISY is based on a sophisticated VLIW processor 
core while the Crusoe™ uses a simplified VLIW processor 
core that has extra hardware support added for speeding up the 
process of rolling back the state of the emulated 
microprocessor when an exception occurs.  The re-translation, 
optimization, and scheduling processes are also different 
between these two microprocessors.  DAISY uses a generic 
and broad approach while the Crusoe™ is Intel® X86 specific 
and performs specialized optimizations that may only apply to 
Intel® X86 machine code. 

The DAISY and Crusoe™ microprocessors both represent 
a new direction for microprocessor design.  The designers of 
these microprocessors recognize the reality that for a new 
microprocessor to be successful in today’s market, it should be 
compatible with an existing instruction set of a microprocessor 
that has been successful.  This is due to the vast amount of 
legacy software and hardware systems that dominate the 
market. 

Some initial concepts are proposed at the end of the paper 
related to an architecture that includes dynamically 
reconfigurable hardware.  Such a microprocessor may be able 
to outperform a static counterpart because the analysis process 
has the option of executing a unit of code using a particular 
configuration of the reconfigurable hardware for which it is 
well matched.  The efficient implementation of instruction(s) 
in reconfigurable hardware could speed-up overall execution. 

A new approach to the design of reconfigurable 
microprocessors in which the instructions of the ISA are 
distributed amongst a set of configurations for the 
microprocessor instead of distributing the functionality of the 
program being executed amongst the configurations is 
proposed.  This approach is not application specific and can be 
used to develop microprocessors that support both new and 
legacy ISAs.  This approach is currently being investigated 
and studies dealing with the feasibility of this approach and 
optimization of code generated for a microprocessor that uses 
instruction set partitioning are reported in [17]. 

The goal of the concepts presented at the end of this paper 
is to minimize the number of reconfigurations required to 
execute a program while maximizing the amount of ILP 
achieved.  Future work will extend the concepts presented 
here by formalizing specific approaches to this design 
problem. 
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