
Architectural Breakdown of End-to-End Latency in a TCP/IP Network

Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli
Intel Corporation

Steen.Larsen@intel.com

Abstract

Adoption of the 10GbE Ethernet standard has been
impeded by two important performance-oriented
considerations: 1) processing requirements of common
protocol stacks and 2) end-to-end latency. The
overheads of typical software based protocol stacks on
CPU utilization and throughput have been well
evaluated in several recent studies. In this paper, we
focus on end-to-end latency and present a detailed
characterization across typical server system hardware
and software stack components. We demonstrate that
application level end-to-end latency with a 10GbE
connection can be as low as 10 microseconds for a
single isolated request. The paper analyzes the
components of the latency and discusses possible
significant variations to the components under realistic
conditions. We note that methods that are used to
optimize throughput can often be responsible for the
perception that Ethernet based latencies can be very
high. Methods to pursue reducing the minimum
latency and controlling the variations are presented.

1. Introduction

The introduction of the 10GbE Ethernet as an IEEE
802.3 standard in 2002 has led to a re-evaluation of
data center infrastructures with particular attention to
the server systems architecture. The capability of
typical server systems in efficiently terminating TCP/IP
streams has been evaluated and led to several types of
solutions in the industry. Several methods of network
acceleration ranging from state-full offloads (TOEs
[1,2]) to stateless offloads with platform assists (I/OAT
[3,4]) focusing exclusively on CPU utilization and
network throughput have been proposed. Very limited
advancements have been proposed to comprehensively
address the latency between systems in a data center
under Ethernet-based networking. We also observe
that throughput oriented innovations may have skewed

the perception of latency in Ethernet based networking
[4].

The focus of this paper is the ‘end-to-end’ latency
between applications running on two different systems.
In Section 2, we present general motivation for
addressing end-to-end latency and review previous
attempts to quantify network latency. We note that
certain classes of high-performance computing (HPC)
applications seek latencies of just a few microseconds
and have motivated innovations such as MPI, Myrinet
and Infiniband. These innovations have tended to
address Ethernet limitations but only by completely
bypassing typical TCP/IP Ethernet systems
architecture. Emerging NVRAM based storage
subsystems or storage caches are also likely to motivate
aggressive latency reductions for a broader class of
applications.

Our study is divided into two main areas: we first
present a detailed characterization under ideal
circumstances, and then evaluate practical aspects that
dilate latency. After explaining the motivation in
sections 3, section 4 contains a description of our
experimental setup and methodology. For our studies,
we instrumented the source code of a Linux stack
running with nanosecond resolution timers on the latest
Xeon processor systems. Sections 5 and 6 quantify
latency components associated with the application
interface to system software, the network stack and
hardware latencies between CPU cores, memory and
I/O subsystems. We observe that Ethernet based
latency with 10GbE can be as low as 10μs. Latency
data can be very sensitive to the workload, software
stack and system hardware assumptions. In Section 7,
we identify the primary sources of variation that
significantly effect overall average latency. In a
heterogeneous application environment, a system may
be exposed to throughput oriented connections and
latency sensitive connections. In current 1GbE and
10GbE adapters with no specific expectations on
latency, techniques to reduce the rate of interrupts may
significantly bloat overall latency. Three other issues
discussed in this paper are head-of-queue effects,

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.33

195

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.33

195

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

contention for various system resources, and core
affinity. Each of the significant factors that influence
latency is addressed comprehensively in Section 8. We
envision a set of techniques that collectively can
achieve deterministic 10μs latencies for Ethernet based
networked systems and under a wide range of
circumstances.

2. Background (Motivation & Prior Work)

We are primarily focused on data center
environments where latency differences of few
microseconds can have a significant impact on
application performance. Transcontinental distances of
the wild Internet involve speed of light dependency and
multiple complex packet hops where latencies can
easily get above many orders of magnitude beyond a
data center. A packet traveling 4800Km (3000 miles)
accounting only for wire delay would take 27ms, while
a packet in a data center traveling 50 meters would take
278ns to propagate. Within a datacenter the system-to-
system latency has the wire speed as a small fraction of
the overall latency.

Latency is orthogonal in definition to throughput.
Increasing throughput means increasing the number of
messages launched, processed or received. Network
and system capacity can be increased, but latency itself
may or may not be affected by changes in throughput.
The importance of latency relative to throughput is
very application specific. In a latency sensitive
application, a compute resource being used by the
application is stalled while waiting for an access to data
to return from a network location. If an application
thread (a hardware context) stalls after making a
request for data and no other thread is available to be
scheduled or can be scheduled to hide the latency, the
application is latency dependent. If the latency can be
hidden by scheduling other threads in place of the
stalled thread, the application can become more
throughput oriented.

Many applications may be designed to spawn as
many threads as possible to hide latency if the end-user
response time is not the primary metric. Several
popular throughput-oriented benchmarks such as
SPECjAppServer and TPC-C (non-clustered) exhibit
such behavior. In these benchmarks, the response time
need only be within reasonable limits. High network
latencies and high queuing latencies within the system
can be tolerated much more in such scenarios. It is
critical to note that the scheduling of many threads to
hide latency compromises platform efficiency even if
response time targets can be met. Scheduling
overheads including context switches, thread migration,

and contention for shared resources such as caches can
be reduced if latency can be reduced and a lower
number of threads are active at any given time.

There are several types of applications that have
been known to exhibit a greater latency sensitivity
compared to bandwidth sensitivity. In particular, we
are focused on scenarios where microsecond level
difference in latency has an application level
significance. Three usage models of interest are
recognized as follows:

1) Synchronization latency: This is the latency

associated with synchronization messages
between multiple threads of an application that
has been parallelized to run on different physical
compute nodes. Example: Parallel computing

2) Distributed memory access latency: In a
distributed memory application, threads running
on one compute node access the memory of
another compute node in a cluster. i.e. HPC,
database clusters, and business performance
clusters (BPC)..

3) Storage media access latency: Traditionally,
latency to access magnetic tapes or rotational
media like disk drives has been several
milliseconds. However, with the advent of
solid-state devices and the usage of DRAM
based caches that front-end magnetic media,
latencies can be expected to drop down to
microseconds.

Past studies have compared various interconnects

and software interfaces with a focus on latency. In an
NCSA study, [6] a simple ping-pong test is done
comparing TCP/IP messages with Myrinet and
Infiniband. For a small message of 64 bytes Infiniband
is 5.3μs and Myrinet is 8.3μs compared to 60μs
TCP/IP. Infiniband is consistently 10 times lower
latency than TCP/IP as messages increase until 64KB
where the bandwidth available begins to impact
latency.

A significant portion of the latency for TCP/IP
comes from the software interface. In this protocol, the
two ends that are communicating are not only assumed
to be completely asynchronous but are even unaware of
each other. When a message arrives at a compute
node, a processor must be interrupted and software
must discover the application that must process the new
message via protocol stacks. Once the discovery takes
place, the application must be context switched and the
data is copied into the applications buffer before the
message can be processed. In addition to this
fundamental overhead, several significant sources of

196196

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

variation may occur. For example, a NIC may use
interrupt moderation to amortize the processing
overhead of interrupts across a batch of packets. Such
techniques could artificially add latency irrespective of
the latency sensitivity of a packet within a batch.

In the HPC environment, often the solution is to use
an interconnect based on Infiniband or Myrinet. Of the
top 500 supercomputers, about 30% use Infiniband or
Myrinet interconnects [8]. Latencies between two
systems to transmit and receive a message can be as
low as 1.29μs with Qlogic InfiniPath HTX host
channel adapters. Attempts to reduce latency with TCP
offload engines [7] do not yield significant results due
in part to the context movement required by TOE. This
context is the mapping of IP addresses, TCP ports, and
other control flows normally done by the processor
executing the application level software. Even with the
advent of Ethernet cut-through switches that result in
Ethernet switch latencies of 300ns compared to 200ns
Infiniband switch latencies, HPC customers are
cautious to switch to Ethernet. To summarize, it is
generally perceived that Ethernet is about an order of
magnitude away from low latency networks such as
Infiniband and Myrinet.

3. Problem Statement

It may be obvious why TCP/IP has a much higher
latency than Infiniband and Myrinet and other
hardware based protocols to efficiently pass point-to-
point messages between applications. Key to the
differences is that the hardware supports the
packetization, segmentation, reassembly and movement
of payload data into user space. This is directly
accessible by the user space application without a
transition from kernel space to user space with memory
copies or complex pointer redirections.

On the other hand, TCP/IP has shown remarkable
flexibility in its 30 year history. Although certain
aspects remain constant (MTU, stack layer structure
with TCB and memory descriptors, and a focus of core
processing of the stack) several enhancements have
streamlined the efficiency of using the incumbent
networking protocol. These include interrupt
moderation schemes, receive side scaling (RSS) to map
to multiple cores efficiently, transmit side offloading
(TSO), and TCP/IP offloading schemes. Additionally
different protocols have been shown to work and have
been widely adopted with the Ethernet hardware layer
such as RDMA and layering on top of the TCP/IP stack
such as iSCSI.

As a result, with the growing importance of low
latency in applications, what generates the latency

becomes important. The overall goal would be to
improve TCP/IP if possible and if not reasonable,
propose proper alternatives based on the importance of
latency to an application. The first question is:

 What is the breakdown of minimal latency
components to pass a message from one system’s
application to another system’s application?

To answer this we break down the sequence of
operations between an application preparing a message
and sending it out the wire. Over a short wire, we
observe the receiving of the message and follow the
processes needed to pass the message to the receiving
application.

Once the minimal latency is understood between
two systems in a simple connection, we can look at
variations upon the message latency. In other words,
what is the variation and scope beyond the minimum
latency in the previous question?

By looking at how typical TCP/IP transactions
encounter events that prolong latency, we can
understand what can be done to improve TCP/IP
latency.

4. Experimental Setup

Figure 2 below shows the logical experimental
configuration which is a basic back-to-back fiber optic
connection between two Intel Xeon 2.13GHz 5138
based platforms. To avoid core affinity mapping
concerns, only a single core was enabled. The NIC
installed is an Intel 82571 1GbE based card using a
PCIe x4 link [10] to the Intel® 5000P chipset. [5]
This is a 1Gbps fiber optic NIC.

Figure 2

On the software configuration, the two systems are
executing Linux 2.6.18 RC3 kernels. NAPI [11] has
been turned off so there is no interrupt moderation in
the simple message tests being run. NetPIPE 3.6.2 was
used to send a simple TCP/IP ping-pong message
between the two systems. A complete test therefore
constitutes 3 packets on the link layer:

1. Ping to server
2. Pong response to client (with ACK of ping)

197197

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

3. ACK to server for pong.

It should be noted that the stacks on each system
sees three transactions. The client processes a ping
transaction and receives ACK and pong transactions.
The server receives a ping and ACK and sends a pong
(with ACK). Figure 3 illustrates this with how the
client system reacts to the ping-pong test.

Figure 3

The NetPIPE application is configured to run a

single byte of information from the client to the server
and pong back. This results in a 64 byte packet seen on
the wire which is the minimum TCP/IP packet size.

With the application in a running configuration, a
breakdown of application, stack components and driver
latencies can be derived by adding kernel probes into
the source code of the application and kernel. These
probes enable and disable performance monitoring
event registers such as CPU_CLK_UNHALTED [9]
counting the processor core clock cycles. For a simple
application where a single packet is being sent and a
single packet is being received, there is enough control
to deterministically enable/disable the counter.

Below is an example code of counting cycles during
the TCP sending copy operation. Between the Start
and End of instrumentation is the normal Linux kernel
transaction.

Start_Instrumentation(skb, \

ACROSS_TCP_SENDMSG_COPY);
err = skb_copy_to_page(sk, from, \

skb, page, off, copy);
End_Instrumentation(1, \

ACROSS_TCP_SENDMSG_COPY);

There is instrumentation latency added with this

approach. When the sampling is done, before sampling
real data, an empty Start/End sequence is made to
calculate the number of core cycles used to Start and
Stop the instrumentation. This time is subtracted from
any data such as the example above.

There is a certain amount of variation in the cycle
count. The exact core clock cycle when the counter is
enabled and disabled depends on the state of the
processor when the event counter is called. Even in a

controlled environment as a single ping-pong test, up to
30% variation can be seen in processor clock cycles.
As a result, averaging each sample over 10,000 ping-
pong tests was captured and of these at least 7 were
visually inspected for isolating extreme cases such as
system warm up or other potential configuration
perturbance. The average of these averages was then
used for each latency component discussed in section
6. Although we are concerned with the minimum
latency of each component, we cannot simply take the
minimum, since a minimum in one component (i.e.
TCP) will result in a non-minimum of another
component (i.e. IP)

Although the variation in the core clock counter
prevents an absolute minimum latency value to be
measured, some checks can be done. One was to re-
run the same test on another pair of client-servers.
Accounting the difference between a 2.13GHz core and
3.0GHz core, certain latency components were checked
with very similar clock counts in this different
environment. Additionally the L2 miss performance
register was tested, and all cases the last level cache
misses of the Xeon processor matched in every ping-
pong test executed.

In the measurements made, only a single client
system was used to break down the latency
components. The time needed to send a packet is
based on the client sending the ping. The time needed
to receive a packet is based on the client receiving the
pong packet.

There are hardware based latencies that cannot be
instrumented with software noted in Table 1 and 2.
These are based on estimated latencies based on
previous hardware measurements.

5. Overview of Latency

The NetPIPE application responds with a

measurement of time to complete the ping-pong round
trip time. This time is divided by two to represent the
time required to send a packet and receive the packet.

For the Intel 82571-based 1Gbps back-to-back
configuration described above, NetPIPE reports 14μs.
This is the round trip ping-pong transaction of 28μs.
The next section will do a detailed breakdown of
components leading to this 14μs.

With 10Gbps NICs becoming available, a back-to-
back configuration with PCIe x8 cards and 3.0GHz
Xeon 5160 cores was studied. Again turning NAPI off,
and using a single core configuration, the one-way
latency reported by NetPIPE for a TCP single byte
message was repeatedly 10.2μs. A certain amount of
speedup from the faster core is expected, but since

198198

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

small 64 byte packets are being used, there is as
expected little benefit from a 10Gbps link.

6. Detailed Latency Breakdown
First let us take the latency breakdown from the

transmission of a packet through the physical interface

and ending with the receive latencies. To begin with
the latency component breakdown, the NetPIPE
application needs to prepare a transmit request for the
ping operation. This takes 950ns to send a message to
the socket interface (on a connection that has already
been established) with the sock_write() function.
This then calls the tcp_sendmsg() to begin the
TCP transmission.

Once the TCP layer begins, the application buffer is
copied into kernel space and pushed into the transmit
queue. At this point, after 220ns, the
ip_queue_xmit() can be called to initiate the IP
layer.

The IP layer takes 450ns to do various tasks such as
routing, segmentation, and IP header processing before
calling the network device driver with
dev_queue_xmit(). The network driver consumes
430ns to construct the output packet queue entry and
calling e1000_xmit_frame(). The e1000 1Gbps
NIC driver sets up a DMA transfer with the 82571 NIC
by indicating a packet is pending transmission. This is
done by writing to a NIC control register, taking 400ns

to complete. The value written to the NIC is a pointer
into a ring of descriptors in main memory which the
NIC can fetch the packet descriptor of the packet to
transmit.

A time of about 180ns is needed to propagate the
tail pointer register write from the core to the NIC.
The NIC, once it knows a packet is needed to transmit,
fetches a descriptor from the memory (via DMA) that
defines where the packet header and payload reside in
memory. Since the 82571 is running at a slower speed
of about 135MHz, it takes about 180ns to interpret the
descriptor. A second DMA read by the NIC is
generated to fetch the actual packet data. Each 64-byte
cache line access to memory takes an estimated 400ns
to propagate from the PCIe signals pins to memory and
back. As a result, the hardware latency is 1,160ns for
the NIC to launch the packet onto the fiber interface.
The summation of the 3,750ns packet transmit process
is shown in Table 1.

The physical adapter (PHY) basically translates to
optical waves and tunes the signal to pre-emphasize or
de-emphasize the signal using DSP algorithms. This is
needed to counteract the number of “zeros” or “ones”
in a serial pattern that may skew the receiving end
incorrectly. The latency specifications on 1GHz PHYs
are usually <10ns. The short fiber connection between
the two machines of 3meters has a latency of light of an
estimated 10ns. Since the fiber speed is 1Gbps, an
additional 672ns are needed to propagate the 64-byte
minimum packet size and 20 bytes of inter-frame gap
and preamble. The total wire time including the PHYs
is estimated at 702ns.

For the receiving process, in this case the receiving
of a pong packet from the server, is similar to the
reverse of transmit. The NIC, upon filtering a packet
as its own packet, will start writing into main memory
based on the contents of a pre-fetched packet
descriptor. This filtering takes 200ns at the 135MHz
NIC speed at which point the NIC will start the DMA
write into main memory. Immediately after launching
the DMA, the NIC will interrupt the processor that
pending receive data is ready. Based on the ordering
rules of the PCIe specification [10] the interrupt will
not be serviced before the write is finished into main
memory to maintain data coherence. This combined
DMA and interrupt latency is calculated as 900ns
based on the Intel® 5000P chipset specification,
resulting in a total 1,100ns before core software is
engaged.

The interrupt handler takes about 270ns to switch
out the current context and start to determine the source
of the interrupt. Most current systems follow a
complex process of reading potential interrupt cause

Table 1
Description of transmit packet
activities Source

Time
 (ns)

Application sends a message to
the socket interface

Measure
950

TCP prepares a datagram to IP
layer

Measure
260

IP layer calls network device
driver

Measure
550

Netdev calls precise hardware
implementation

Measure
430

Basedriver execution and hand
control to NIC

Measure
400

Core IO write propagation delay
to wake up NIC

Estimate
180

NIC to process core write and
fetch descriptor of packet to
transmit

Estimate

580
NIC, based on descriptor, fetches
packet header/payload and sends
packet to PHY

Estimate

400
Total Transmit packet time 3,750

199199

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

registers (ICR) to determine exactly what generated the
interrupt. In the 82571 configuration this takes 1000ns
for the read to propagate to the PCIe device and
respond to the core. With emerging NICs (that use
MSI-X messages) to vector the core directly to the
interrupt source instructions to service the interrupt this
can soon be counted as zero time. The core, once it
enters the e1000_intr() routine takes 300ns to
process the descriptor pointers in the ring and start
calling the netif_rx() SoftIRQ. The SoftIRQ is
analogous to the Windows deferred procedure calls
(DPC) implementation of drivers and takes 1,287ns.
Part of this time is needed for the kernel to schedule the
call.

Table 2

Description of receive packet
activities

Source

Time
(ns)

MAC filter determines target
packet is for this machine

Estimate
200

NIC starts DMA packet header
and payload into memory

Estimate
400

NIC interrupts core with MSI-X
packet to APIC

Estimate
500

Hardware MSI-X interrupt service
routine to parse what caused
interrupt

Estimate

270
Interrupt cause register read
requirement

Measure
1,000

ISR packet processing of
descriptor to update receive queue

Measure
300

SoftIRQ (deferred procedure call
in Windows)

Measure
1,287

TCP and IP receive side
processing

Measure
570

Wakeup application to process
socket information

Measure
1,274

Kernel to application space data
copy.

Measure
208

ACK the pong received by the
remote sender

Measure
1,117

Application receive message
overhead to register completion

Measure
621

Total receive packet time 7,747

After updating the input packet queue, the

ip_rcv() is called starting the TCP/IP receive
process. Both TCP and IP layers take 570ns. The
application then needs to be scheduled taking 1,274ns.
This is the normal configuration where the application
is blocked, basically sleeping and not actively polling
the socket on data availability. In the NetPIPE

application, once the application is woken up, this
triggers the 208ns copy operation from kernel space to
memory space. Since the packet is a single cache line,
this time falls within the 80ns fully buffered DIMM
(FBD) latency to read and then write the data. At this
time the acknowledge (ACK) to the pong packet is
generated to provide a complete network connection
taking 1,117ns. Finally the application needs to
register that the ping-pong test is complete taking
621ns. The complete receive sequence is seen below
in table 2 for a total of 7,747ns.

Combining transmit, wire and receive breakdown
latencies, a total of instrumented, analytical and
specification based time is 12.2μs compared to the
14μs reported by the NetPIPE application. This 14%
difference is due to the different reporting mechanisms
and cumulative error in estimation and measurement.

7. Sources of Variation on Minimum
Latency

Variations on minimum latency discussed above are
factors that add latency to messages between two
systems, often by a 10X multiplication of time in a
10Gbps network. This is also termed message jitter or
skew. This section will explore four major causes for
variation which adds significantly to average TCP/IP
latencies.

Interrupt moderation is a method to reduce the
number of processor context switches due to interrupts.
Consider a 10Gbps NIC that in the process of
bidirectional 64-byte packets would need to interrupt
each 26ns. Instead of interrupting on each packet,
packets can be grouped together for more efficient
processing. While this process reduces the number of
interrupts the core needs to deal with, the cost is that
latency critical packets are delayed. By default
Windows specifies a 250μs window of interrupt
moderation to accumulate packet tasks and Linux has a
125μs window. These figures seriously dwarf the 14μs
minimum latency mentioned above.

The head-of-queue effect is also a problem. As
discussed with the ring buffer, to transmit and receive a
packet, the OS sees a serial sequence of packets to
service. These packets are serviced in order received
or order of pending transmits. As a result, a latency-
critical message can be blocked by other protocol
requests. In a similar manner this head-of-queue effect
is seen in the large buffers of today’s NICs. The
buffers are needed to support the bursty traffic patterns
of today’s network, and it is not uncommon to see a
320KB transmit buffer on a 10Gbps NIC. On such a
NIC, if the buffer is full and a latency sensitive packet

200200

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

L is attempting to be sent, it would take the PHY 20μs
to drain the buffer at a 10Gbps rate before packet L is
presented on the wire.

System bandwidth contention is another issue.
Although there can be contention on the processor
interface and memory interface, the most visible
conflicts are seen on the slower PCIe interfaces. In the
case of the 10Gbps NIC above, 28 outstanding PCIe
transactions are supported. Each NIC based PCIe
transaction on a PCIe x8 configuration can take up to
138ns for large packets. As a result the PCIe interface
can block for up to 4μs. This is one of the more
extreme bandwidth contentions, but a cumulation of
contentions on the various physical interfaces can be
considered to occur frequently.

A fourth area to consider is application core affinity.
If an incoming packet is being processed on a core, and
is not the core running the application, context switch
latency is seen for the packet processing core to hand
over to the application core. In Linux this is observed
to add 2μs and Windows 8μs typically to the complete
system-to-system latency. [16]

There are remotely possible conditions that will
affect latency as well. Overall processor load will also
play a role, but to some extent will fall into the figures
listed above. There could be a page fault to disk or a
complex OS context switch, but this is considered
extremely rare in a modern datacenter. An additional
rare occurrence would be a link layer contention or
packet retransmission.

In summary, the four estimations mentioned above
can add 282μs to minimum 12μs message latency. It
can be stated that less than 5% of potentially expected
latency that can be contributed to the deterministic
requirements of the application, stack, driver, hardware
and wire in a datacenter.

8. Methods to Reduce Variation

The primary task in reducing latency in a TCP/IP

environment is to first tag latency critical messages.
Once they are tagged, there must be a method to detect
and classify them both in transmit and receive path.
Once latency critical messages are detected, there is
need to prioritize over other messages. These methods
cannot be done in isolation, but the latency reduction
methods need to be propagated to the entire network
and systems on the network.

To help address interrupt moderation, New
Application Programming Interface (NAPI) is in
current use of Linux 2.5/2.6 kernels [11, 12]. This
attempts to intelligently monitor the receiving packet
flow, and in a low packet per second scenario allows

interrupts on a frequent basis. As packets per second
increase and the system cannot respond to interrupts
efficiently, polling by the kernel of the receive
descriptor ring is started. This assumes high packet
rates will continue, and if packet rates drop to a more
intermittent rate, interrupt based signaling of receive
packets can resume and active polling by the kernel
driver is stopped.

The Intel e1000 driver supports a form of adaptive
interrupt moderation [13] that attempts to classify
incoming traffic. The interrupt throttling is then based
on the class determined, such that large amounts of
packets will generate fewer interrupts and if the class
changes to small amounts of packets (or small packets),
less moderation will be placed on interrupt generation.
This can be extended to include heuristics that trigger
based on throughput and packet sizes such that
appropriate interrupts are generated at the optimal time.
Work by Hansen and Jul [17] ties the operating system
scheduler to the asynchronous data arrival to reduce the
overall system-to-system latency.

An additional approach in Data Center Ethernet
(DCE) [14] is to tag particular flows to differentiate as
low latency flows. By having different virtual channels
over the same Ethernet interface, different channels can
be applied with different interrupt schemes. One
option is simply to have certain TCP ports as being low
latency and interrupt upon receive traffic regardless of
any interrupt moderation control. This can be extended
to complex TCP connection information to low latency
flows.

As the network interface logic moves onto the die of
the core processing TCP/IP, interesting opportunities
arise in how to notify the core of pending receive
traffic. This could be in the form of having complex
monitor/mwait instructions or schemes to map
receiving data into a temporary cache in the coherent
domain.

The head-of-queue example in NIC data buffer can
also be addressed with DCE which will formulate the
order of transmit flows and potentially reorder based
on latency priority the order of the transmitted packets,
bypassing the 20μs mentioned above. Head-of-queue
latency impacts are also being addressed with Receive-
Side Scaling (RSS) [15] which generates a hash table
based on the n-tuple of the flow. This can be the
mapping of source IP address and port and destination
IP address and port. Based on this hash, different
flows can be mapped to different available processors.
In this manner a single core, or ring of descriptors,
does not become a bottleneck for latency critical
messages.

201201

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

As the NIC moves onto the same die as the core,
interesting methods to control the right data being
available to the right core such as Direct Cache Access
(DCA) [3] can be explored.

The third latency variation discussed is bandwidth
contention. The obvious method to affect this is
provide more system bandwidth such as bringing the
NIC closer to the core associated with processing
TCP/IP traffic. Another method is to use DCA based
on knowledge of when the core will need the data,
avoiding memory bandwidth contention.

The proper alignment of cores to application and
packet processing will also reduce the latency. In
supporting high throughput it may be appropriate to
sequester a core for efficient packet processing. To
ensure low latency, attaching the application core to be
the same core that processes the packets can reduce up
to 8μs in variation.

In short there are many aspects that are under
development to make TCP/IP system-to-system latency
have much more determinism.

9. Conclusions

End-to-end latency between applications is

emerging as an increasingly important metric in data
centers. Low latency may not only be a requirement
for niche HPC applications but also for much more
common applications that are storage intensive and
when solid-state storage technologies are adopted.

In current available commercial and relatively
inexpensive server systems that communicate via Gb
Ethernet we have measured a 12us latency to transmit a
message between two machines. In our experimental
analysis, we have accounted for all of the significant
contributors to this latency. We have observed that
much of this time is spent in the
application/stack/driver but there is also a significant
component in hardware. Further substantial reduction
in latency would require simplification of existing
driver to OS interface and also the application to
system software interface. Hardware latency can be
reduced by integration of the network interface
eliminating intermediate components such as chipsets.

One of the most significant issues with Ethernet
latencies has been the variability. However, it is
practical to implement a set of methods to classify
latency sensitive packets and to prioritize them
throughout the system is possible. Technologies such
as adaptive interrupt moderation, DCE, RSS, and NIC
integration will significantly bridge any remaining gap
between TCP/IP based Ethernet communication latency

and other specialized solutions such as Infiniband and
Myrinet.

10. References

[1] A. Foong, T. Huff, H. Hum, J. Patwardhan and
G.Regnier. “TCP performance re-visited”, Proc. of the
IEEE Intl. Symposium on Performance of Systems &
Software, Austin, Mar 2003.
[2] J. Mogul, “TCP Offload Is a Dumb Idea Whose
Time Has Come,” Proc. 9th Workshop on Hot Topics
in Operating Systems (HotOS IX), Usenix Assoc.,
2003;www.usenix.org/events/hotos03/tech/full_papers/
mogul/mogul.pdf
[3] R. Huggahalli et.al. “Direct Cache Access for High
Bandwidth Network I/O” International Symposium on
Computer Architecture (ISCA), 2005
http://www.cs.wisc.edu/~isca2005/papers/02A-02.PDF
[4] G Regnier et. al. “TCP Onloading for Data Center
Servers” IEEE Computer Nov 2004.
[5]http://download.intel.com/design/chipsets/datashts/3
1307103.pdf
[6] http://vmi.ncsa.uiuc.edu/performance/pmb_lt.php
[7] Feng, W.; Balaji, P.; Baron, C.; Bhuyan, L.N.;
Panda, D.K.; Performance characterization of a 10-
Gigabit Ethernet TOE; High Performance
Interconnects; Proceedings. 13th Symposium Aug.
2005
[8] http://www.top500.org/stats/28/connfam/
[9] IA-32 Intel® Architecture Software Developer’s
Manual Volume 3: System Programming Guide
Appendix A, June 2005.
[10] PCI Express Base Specification Revision 2.0,
2006; http://www.pcisig.com
[11] http://linux-net.osdl.org/index.php/NAPI
[12]http://www.usenix.org/publications/library/proceed
ings/als01/full_papers/jamal/jamal.pdf
[13]http://download.intel.com/design/network/applnots
/ap450.pdf
[14]http://www.ieee802.org/3/ar/public/0503/wadekar_
1_0503.pdf
[15]http://www.microsoft.com/whdc/device/network/N
DIS_RSS.mspx
[16] A. Foong, J. Fung, and D. Newell, “An In-Depth
Analysis of the Impact of Processor Affinity on
Network Performance,” Proc. IEEE Int’l Conf.
Networks, IEEE Press, 2004.
[17] J. Hansen and E. Jul, “Latency Reduction using a
Polling Scheduler,” Proc. of the Second Workshop on
Cluster-Based Computing, ACM-SIGARCH 2000.

202202

Authorized licensed use limited to: University of Cincinnati. Downloaded on November 4, 2009 at 20:36 from IEEE Xplore. Restrictions apply.

