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Abstract 

 
Adoption of the 10GbE Ethernet standard has been 
impeded by two important performance-oriented 
considerations: 1) processing requirements of common 
protocol stacks and 2) end-to-end latency.  The 
overheads of typical software based protocol stacks on 
CPU utilization and throughput have been well 
evaluated in several recent studies.  In this paper, we 
focus on end-to-end latency and present a detailed 
characterization across typical server system hardware 
and software stack components.  We demonstrate that 
application level end-to-end latency with a 10GbE 
connection can be as low as 10 microseconds for a 
single isolated request.  The paper analyzes the 
components of the latency and discusses possible 
significant variations to the components under realistic 
conditions.  We note that methods that are used to 
optimize throughput can often be responsible for the 
perception that Ethernet based latencies can be very 
high.  Methods to pursue reducing the minimum 
latency and controlling the variations are presented. 

  
 

1. Introduction 
 

The introduction of the 10GbE Ethernet as an IEEE 
802.3 standard in 2002 has led to a re-evaluation of 
data center infrastructures with particular attention to 
the server systems architecture.  The capability of 
typical server systems in efficiently terminating TCP/IP 
streams has been evaluated and led to several types of 
solutions in the industry.  Several methods of network 
acceleration ranging from state-full offloads (TOEs 
[1,2]) to stateless offloads with platform assists (I/OAT 
[3,4]) focusing exclusively on CPU utilization and 
network throughput have been proposed.  Very limited 
advancements have been proposed to comprehensively 
address the latency between systems in a data center 
under Ethernet-based networking.   We also observe 
that throughput oriented innovations may have skewed 

the perception of latency in Ethernet based networking 
[4]. 

The focus of this paper is the ‘end-to-end’ latency 
between applications running on two different systems.  
In Section 2, we present general motivation for 
addressing end-to-end latency and review previous 
attempts to quantify network latency.  We note that 
certain classes of high-performance computing (HPC) 
applications seek latencies of just a few microseconds 
and have motivated innovations such as MPI, Myrinet 
and Infiniband.  These innovations have tended to 
address Ethernet limitations but only by completely 
bypassing typical TCP/IP Ethernet systems 
architecture.  Emerging NVRAM based storage 
subsystems or storage caches are also likely to motivate 
aggressive latency reductions for a broader class of 
applications. 

Our study is divided into two main areas: we first 
present a detailed characterization under ideal 
circumstances, and then evaluate practical aspects that 
dilate latency.  After explaining the motivation in 
sections 3, section 4 contains a description of our 
experimental setup and methodology. For our studies, 
we instrumented the source code of a Linux stack 
running with nanosecond resolution timers on the latest 
Xeon processor systems.  Sections 5 and 6 quantify 
latency components associated with the application 
interface to system software, the network stack and 
hardware latencies between CPU cores, memory and 
I/O subsystems.  We observe that Ethernet based 
latency with 10GbE can be as low as 10μs.  Latency 
data can be very sensitive to the workload, software 
stack and system hardware assumptions.  In Section 7, 
we identify the primary sources of variation that 
significantly effect overall average latency.  In a 
heterogeneous application environment, a system may 
be exposed to throughput oriented connections and 
latency sensitive connections.  In current 1GbE and 
10GbE adapters with no specific expectations on 
latency, techniques to reduce the rate of interrupts may 
significantly bloat overall latency.  Three other issues 
discussed in this paper are head-of-queue effects, 
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contention for various system resources, and core 
affinity.  Each of the significant factors that influence 
latency is addressed comprehensively in Section 8.  We 
envision a set of techniques that collectively can 
achieve deterministic 10μs latencies for Ethernet based 
networked systems and under a wide range of 
circumstances. 
 

2. Background (Motivation & Prior Work) 
 

We are primarily focused on data center 
environments where latency differences of few 
microseconds can have a significant impact on 
application performance.  Transcontinental distances of 
the wild Internet involve speed of light dependency and 
multiple complex packet hops where latencies can 
easily get above many orders of magnitude beyond a 
data center.  A packet traveling 4800Km (3000 miles) 
accounting only for wire delay would take 27ms, while 
a packet in a data center traveling 50 meters would take 
278ns to propagate.  Within a datacenter the system-to-
system latency has the wire speed as a small fraction of 
the overall latency. 

Latency is orthogonal in definition to throughput.  
Increasing throughput means increasing the number of 
messages launched, processed or received.  Network 
and system capacity can be increased, but latency itself 
may or may not be affected by changes in throughput.  
The importance of latency relative to throughput is 
very application specific.  In a latency sensitive 
application, a compute resource being used by the 
application is stalled while waiting for an access to data 
to return from a network location.  If an application 
thread (a hardware context) stalls after making a 
request for data and no other thread is available to be 
scheduled or can be scheduled to hide the latency, the 
application is latency dependent.  If the latency can be 
hidden by scheduling other threads in place of the 
stalled thread, the application can become more 
throughput oriented. 

Many applications may be designed to spawn as 
many threads as possible to hide latency if the end-user 
response time is not the primary metric.  Several 
popular throughput-oriented benchmarks such as 
SPECjAppServer and TPC-C (non-clustered) exhibit 
such behavior.  In these benchmarks, the response time 
need only be within reasonable limits.  High network 
latencies and high queuing latencies within the system 
can be tolerated much more in such scenarios.   It is 
critical to note that the scheduling of many threads to 
hide latency compromises platform efficiency even if 
response time targets can be met.  Scheduling 
overheads including context switches, thread migration, 

and contention for shared resources such as caches can 
be reduced if latency can be reduced and a lower 
number of threads are active at any given time. 

There are several types of applications that have 
been known to exhibit a greater latency sensitivity 
compared to bandwidth sensitivity.  In particular, we 
are focused on scenarios where microsecond level 
difference in latency has an application level 
significance.   Three usage models of interest are 
recognized as follows: 

 
1) Synchronization latency: This is the latency 

associated with synchronization messages 
between multiple threads of an application that 
has been parallelized to run on different physical 
compute nodes.  Example: Parallel computing 

2) Distributed memory access latency: In a 
distributed memory application, threads running 
on one compute node access the memory of 
another compute node in a cluster.  i.e. HPC, 
database clusters, and business performance 
clusters (BPC)..   

3) Storage media access latency:  Traditionally, 
latency to access magnetic tapes or rotational 
media like disk drives has been several 
milliseconds.  However, with the advent of 
solid-state devices and the usage of DRAM 
based caches that front-end magnetic media, 
latencies can be expected to drop down to 
microseconds. 

 
Past studies have compared various interconnects 

and software interfaces with a focus on latency.  In an 
NCSA study, [6] a simple ping-pong test is done 
comparing TCP/IP messages with Myrinet and 
Infiniband.  For a small message of 64 bytes Infiniband 
is 5.3μs and Myrinet is 8.3μs compared to 60μs 
TCP/IP.  Infiniband is consistently 10 times lower 
latency than TCP/IP as messages increase until 64KB 
where the bandwidth available begins to impact 
latency.   

A significant portion of the latency for TCP/IP 
comes from the software interface.  In this protocol, the 
two ends that are communicating are not only assumed 
to be completely asynchronous but are even unaware of 
each other.   When a message arrives at a compute 
node, a processor must be interrupted and software 
must discover the application that must process the new 
message via protocol stacks.   Once the discovery takes 
place, the application must be context switched and the 
data is copied into the applications buffer before the 
message can be processed.  In addition to this 
fundamental overhead, several significant sources of 
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variation may occur.  For example, a NIC may use 
interrupt moderation to amortize the processing 
overhead of interrupts across a batch of packets.  Such 
techniques could artificially add latency irrespective of 
the latency sensitivity of a packet within a batch. 

In the HPC environment, often the solution is to use 
an interconnect based on Infiniband or Myrinet.  Of the 
top 500 supercomputers, about 30% use Infiniband or 
Myrinet interconnects [8].  Latencies between two 
systems to transmit and receive a message can be as 
low as 1.29μs with Qlogic InfiniPath HTX host 
channel adapters.  Attempts to reduce latency with TCP 
offload engines [7] do not yield significant results due 
in part to the context movement required by TOE. This 
context is the mapping of IP addresses, TCP ports, and 
other control flows normally done by the processor 
executing the application level software.  Even with the 
advent of Ethernet cut-through switches that result in 
Ethernet switch latencies of 300ns compared to 200ns 
Infiniband switch latencies, HPC customers are 
cautious to switch to Ethernet.  To summarize, it is 
generally perceived that Ethernet is about an order of 
magnitude away from low latency networks such as 
Infiniband and Myrinet.  

 

3. Problem Statement 
 

It may be obvious why TCP/IP has a much higher 
latency than Infiniband and Myrinet and other 
hardware based protocols to efficiently pass point-to-
point messages between applications.  Key to the 
differences is that the hardware supports the 
packetization, segmentation, reassembly and movement 
of payload data into user space.  This is directly 
accessible by the user space application without a 
transition from kernel space to user space with memory 
copies or complex pointer redirections.   

On the other hand, TCP/IP has shown remarkable 
flexibility in its 30 year history.  Although certain 
aspects remain constant (MTU, stack layer structure 
with TCB and memory descriptors, and a focus of core 
processing of the stack) several enhancements have 
streamlined the efficiency of using the incumbent 
networking protocol.  These include interrupt 
moderation schemes, receive side scaling (RSS) to map 
to multiple cores efficiently, transmit side offloading 
(TSO), and TCP/IP offloading schemes.  Additionally 
different protocols have been shown to work and have 
been widely adopted with the Ethernet hardware layer 
such as RDMA and layering on top of the TCP/IP stack 
such as iSCSI.   

As a result, with the growing importance of low 
latency in applications, what generates the latency 

becomes important.  The overall goal would be to 
improve TCP/IP if possible and if not reasonable, 
propose proper alternatives based on the importance of 
latency to an application.  The first question is: 

 What is the breakdown of minimal latency 
components to pass a message from one system’s 
application to another system’s application? 

To answer this we break down the sequence of 
operations between an application preparing a message 
and sending it out the wire.  Over a short wire, we 
observe the receiving of the message and follow the 
processes needed to pass the message to the receiving 
application.   

Once the minimal latency is understood between 
two systems in a simple connection, we can look at 
variations upon the message latency.  In other words, 
what is the variation and scope beyond the minimum 
latency in the previous question? 

By looking at how typical TCP/IP transactions 
encounter events that prolong latency, we can 
understand what can be done to improve TCP/IP 
latency. 
 

4. Experimental Setup 
 

Figure 2 below shows the logical experimental 
configuration which is a basic back-to-back fiber optic 
connection between two Intel Xeon 2.13GHz 5138 
based platforms.  To avoid core affinity mapping 
concerns, only a single core was enabled.  The NIC 
installed is an Intel 82571 1GbE based card using a 
PCIe x4 link [10] to the Intel® 5000P chipset. [5]   
This is a 1Gbps fiber optic NIC. 

 
Figure 2 

On the software configuration, the two systems are 
executing Linux 2.6.18 RC3 kernels.  NAPI [11] has 
been turned off so there is no interrupt moderation in 
the simple message tests being run.  NetPIPE 3.6.2 was 
used to send a simple TCP/IP ping-pong message 
between the two systems.  A complete test therefore 
constitutes 3 packets on the link layer:  

 
1. Ping to server 
2. Pong response to client (with ACK of ping) 
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3. ACK to server for pong. 
 

It should be noted that the stacks on each system 
sees three transactions.  The client processes a ping 
transaction and receives ACK and pong transactions.  
The server receives a ping and ACK and sends a pong 
(with ACK).  Figure 3 illustrates this with how the 
client system reacts to the ping-pong test. 

 
Figure 3 

 
The NetPIPE application is configured to run a 

single byte of information from the client to the server 
and pong back.  This results in a 64 byte packet seen on 
the wire which is the minimum TCP/IP packet size. 

With the application in a running configuration, a 
breakdown of application, stack components and driver 
latencies can be derived by adding kernel probes into 
the source code of the application and kernel.  These 
probes enable and disable performance monitoring 
event registers such as CPU_CLK_UNHALTED [9] 
counting the processor core clock cycles.  For a simple 
application where a single packet is being sent and a 
single packet is being received, there is enough control 
to deterministically enable/disable the counter.  

Below is an example code of counting cycles during 
the TCP sending copy operation.  Between the Start 
and End of instrumentation is the normal Linux kernel 
transaction. 

 
Start_Instrumentation(skb,   \ 

ACROSS_TCP_SENDMSG_COPY); 
err = skb_copy_to_page(sk, from, \ 

skb, page, off, copy); 
End_Instrumentation(1, \ 

ACROSS_TCP_SENDMSG_COPY); 
 
There is instrumentation latency added with this 

approach.  When the sampling is done, before sampling 
real data, an empty Start/End sequence is made to 
calculate the number of core cycles used to Start and 
Stop the instrumentation.  This time is subtracted from 
any data such as the example above. 

There is a certain amount of variation in the cycle 
count. The exact core clock cycle when the counter is 
enabled and disabled depends on the state of the 
processor when the event counter is called.  Even in a 

controlled environment as a single ping-pong test, up to 
30% variation can be seen in processor clock cycles.  
As a result, averaging each sample over 10,000 ping-
pong tests was captured and of these at least 7 were 
visually inspected for isolating extreme cases such as 
system warm up or other potential configuration 
perturbance.  The average of these averages was then 
used for each latency component discussed in section 
6.  Although we are concerned with the minimum 
latency of each component, we cannot simply take the 
minimum, since a minimum in one component (i.e. 
TCP) will result in a non-minimum of another 
component (i.e. IP) 

Although the variation in the core clock counter 
prevents an absolute minimum latency value to be 
measured, some checks can be done.  One was to re-
run the same test on another pair of client-servers.  
Accounting the difference between a 2.13GHz core and 
3.0GHz core, certain latency components were checked 
with very similar clock counts in this different 
environment.  Additionally the L2 miss performance 
register was tested, and all cases the last level cache 
misses of the Xeon processor matched in every ping-
pong test executed.   

In the measurements made, only a single client 
system was used to break down the latency 
components.  The time needed to send a packet is 
based on the client sending the ping.  The time needed 
to receive a packet is based on the client receiving the 
pong packet. 

There are hardware based latencies that cannot be 
instrumented with software noted in Table 1 and 2.  
These are based on estimated latencies based on 
previous hardware measurements. 

 

5. Overview of Latency 
 
The NetPIPE application responds with a 

measurement of time to complete the ping-pong round 
trip time.  This time is divided by two to represent the 
time required to send a packet and receive the packet.   

For the Intel 82571-based 1Gbps back-to-back 
configuration described above, NetPIPE reports 14μs.  
This is the round trip ping-pong transaction of 28μs.  
The next section will do a detailed breakdown of 
components leading to this 14μs. 

With 10Gbps NICs becoming available, a back-to-
back configuration with PCIe x8 cards and 3.0GHz 
Xeon 5160 cores was studied.  Again turning NAPI off, 
and using a single core configuration, the one-way 
latency reported by NetPIPE for a TCP single byte 
message was repeatedly 10.2μs.  A certain amount of 
speedup from the faster core is expected, but since 
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small 64 byte packets are being used, there is as 
expected little benefit from a 10Gbps link. 
 

6. Detailed Latency Breakdown 
First let us take the latency breakdown from the 

transmission of a packet through the physical interface 
 

and ending with the receive latencies.  To begin with 
the latency component breakdown, the NetPIPE 
application needs to prepare a transmit request for the 
ping operation.  This takes 950ns to send a message to 
the socket interface (on a connection that has already 
been established) with the sock_write() function.  
This then calls the tcp_sendmsg() to begin the 
TCP transmission. 

Once the TCP layer begins, the application buffer is 
copied into kernel space and pushed into the transmit 
queue.  At this point, after 220ns, the 
ip_queue_xmit() can be called to initiate the IP 
layer. 

The IP layer takes 450ns to do various tasks such as 
routing, segmentation, and IP header processing before 
calling the network device driver with 
dev_queue_xmit().  The network driver consumes 
430ns to construct the output packet queue entry and 
calling e1000_xmit_frame().  The e1000 1Gbps 
NIC driver sets up a DMA transfer with the 82571 NIC 
by indicating a packet is pending transmission.  This is 
done by writing to a NIC control register, taking 400ns 

to complete.  The value written to the NIC is a pointer 
into a ring of descriptors in main memory which the 
NIC can fetch the packet descriptor of the packet to 
transmit. 

A time of about 180ns is needed to propagate the 
tail pointer register write from the core to the NIC.  
The NIC, once it knows a packet is needed to transmit, 
fetches a descriptor from the memory (via DMA) that 
defines where the packet header and payload reside in 
memory.  Since the 82571 is running at a slower speed 
of about 135MHz, it takes about 180ns to interpret the 
descriptor.  A second DMA read by the NIC is 
generated to fetch the actual packet data.  Each 64-byte 
cache line access to memory takes an estimated 400ns 
to propagate from the PCIe signals pins to memory and 
back.  As a result, the hardware latency is 1,160ns for 
the NIC to launch the packet onto the fiber interface.  
The summation of the 3,750ns packet transmit process 
is shown in Table 1. 

The physical adapter (PHY) basically translates to 
optical waves and tunes the signal to pre-emphasize or 
de-emphasize the signal using DSP algorithms.  This is 
needed to counteract the number of “zeros” or “ones” 
in a serial pattern that may skew the receiving end 
incorrectly.  The latency specifications on 1GHz PHYs 
are usually <10ns.  The short fiber connection between 
the two machines of 3meters has a latency of light of an 
estimated 10ns.  Since the fiber speed is 1Gbps, an 
additional 672ns are needed to propagate the 64-byte 
minimum packet size and 20 bytes of inter-frame gap 
and preamble.  The total wire time including the PHYs 
is estimated at 702ns. 

For the receiving process, in this case the receiving 
of a pong packet from the server, is similar to the 
reverse of transmit.  The NIC, upon filtering a packet 
as its own packet, will start writing into main memory 
based on the contents of a pre-fetched packet 
descriptor.  This filtering takes 200ns at the 135MHz 
NIC speed at which point the NIC will start the DMA 
write into main memory.  Immediately after launching 
the DMA, the NIC will interrupt the processor that 
pending receive data is ready.  Based on the ordering 
rules of the PCIe specification [10] the interrupt will 
not be serviced before the write is finished into main 
memory to maintain data coherence.  This combined 
DMA and interrupt latency is calculated as 900ns 
based on the Intel® 5000P chipset specification, 
resulting in a total 1,100ns before core software is 
engaged.   

The interrupt handler takes about 270ns to switch 
out the current context and start to determine the source 
of the interrupt.  Most current systems follow a 
complex process of reading potential interrupt cause 

Table 1 
Description of transmit packet 
activities Source 

Time
 (ns)

Application sends a message to 
the socket interface  

Measure 
950 

TCP prepares a datagram to IP 
layer  

Measure 
260 

IP layer calls network device 
driver  

Measure 
550 

Netdev calls precise hardware 
implementation  

Measure 
430 

Basedriver execution and hand 
control to NIC 

Measure 
400 

Core IO write propagation delay 
to wake up NIC 

Estimate 
180 

NIC to process core  write and 
fetch descriptor of packet to 
transmit 

Estimate 

580 
NIC, based on descriptor, fetches 
packet header/payload and sends 
packet to PHY 

Estimate 

400 
Total Transmit packet time  3,750 
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registers (ICR) to determine exactly what generated the 
interrupt.  In the 82571 configuration this takes 1000ns 
for the read to propagate to the PCIe device and 
respond to the core.  With emerging NICs (that use 
MSI-X messages) to vector the core directly to the 
interrupt source instructions to service the interrupt this 
can soon be counted as zero time.  The core, once it 
enters the e1000_intr() routine takes 300ns to 
process the descriptor pointers in the ring and start 
calling the netif_rx() SoftIRQ.  The SoftIRQ is 
analogous to the Windows deferred procedure calls 
(DPC) implementation of drivers and takes 1,287ns.  
Part of this time is needed for the kernel to schedule the 
call.  

 
Table 2 

Description of receive packet 
activities 

   
Source 

Time 
(ns)  

MAC filter determines target 
packet is for this machine 

Estimate 
200 

NIC starts DMA packet header 
and payload into memory 

Estimate 
400 

NIC interrupts core with MSI-X 
packet to APIC  

Estimate 
500 

Hardware MSI-X interrupt service 
routine to parse what caused 
interrupt 

Estimate 

270 
Interrupt cause register read 
requirement  

Measure 
1,000 

ISR packet processing of 
descriptor to update receive queue 

Measure 
300 

SoftIRQ (deferred procedure call 
in Windows)  

Measure 
1,287 

TCP and IP receive side 
processing  

Measure 
570 

Wakeup application to process 
socket information 

Measure 
1,274 

Kernel to application space data 
copy. 

Measure 
208 

ACK the pong received by the 
remote sender   

Measure 
1,117 

Application receive message 
overhead to register completion 

Measure 
621 

Total receive packet time  7,747 
 
After updating the input packet queue, the 

ip_rcv() is called starting the TCP/IP receive 
process.  Both TCP and IP layers take 570ns.  The 
application then needs to be scheduled taking 1,274ns.  
This is the normal configuration where the application 
is blocked, basically sleeping and not actively polling 
the socket on data availability.  In the NetPIPE 

application, once the application is woken up, this 
triggers the 208ns copy operation from kernel space to 
memory space.  Since the packet is a single cache line, 
this time falls within the 80ns fully buffered DIMM 
(FBD) latency to read and then write the data.  At this 
time the acknowledge (ACK) to the pong packet is 
generated to provide a complete network connection 
taking 1,117ns.  Finally the application needs to 
register that the ping-pong test is complete taking 
621ns.  The complete receive sequence is seen below 
in table 2 for a total of 7,747ns. 

Combining transmit, wire and receive breakdown 
latencies, a total of instrumented, analytical and 
specification based time is 12.2μs compared to the 
14μs reported by the NetPIPE application.  This 14% 
difference is due to the different reporting mechanisms 
and cumulative error in estimation and measurement. 

 

7. Sources of Variation on Minimum 
Latency 
 

Variations on minimum latency discussed above are 
factors that add latency to messages between two 
systems, often by a 10X multiplication of time in a 
10Gbps network.  This is also termed message jitter or 
skew. This section will explore four major causes for 
variation which adds significantly to average TCP/IP 
latencies. 

Interrupt moderation is a method to reduce the 
number of processor context switches due to interrupts.  
Consider a 10Gbps NIC that in the process of 
bidirectional 64-byte packets would need to interrupt 
each 26ns. Instead of interrupting on each packet, 
packets can be grouped together for more efficient 
processing.  While this process reduces the number of 
interrupts the core needs to deal with, the cost is that 
latency critical packets are delayed.  By default 
Windows specifies a 250μs window of interrupt 
moderation to accumulate packet tasks and Linux has a 
125μs window.  These figures seriously dwarf the 14μs 
minimum latency mentioned above.  

The head-of-queue effect is also a problem.  As 
discussed with the ring buffer, to transmit and receive a 
packet, the OS sees a serial sequence of packets to 
service.  These packets are serviced in order received 
or order of pending transmits.  As a result, a latency-
critical message can be blocked by other protocol 
requests.  In a similar manner this head-of-queue effect 
is seen in the large buffers of today’s NICs.  The 
buffers are needed to support the bursty traffic patterns 
of today’s network, and it is not uncommon to see a 
320KB transmit buffer on a 10Gbps NIC.  On such a 
NIC, if the buffer is full and a latency sensitive packet 
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L is attempting to be sent, it would take the PHY 20μs 
to drain the buffer at a 10Gbps rate before packet L is 
presented on the wire.  

System bandwidth contention is another issue.  
Although there can be contention on the processor 
interface and memory interface, the most visible 
conflicts are seen on the slower PCIe interfaces.  In the 
case of the 10Gbps NIC above, 28 outstanding PCIe 
transactions are supported.  Each NIC based PCIe 
transaction on a PCIe x8 configuration can take up to 
138ns for large packets.  As a result the PCIe interface 
can block for up to 4μs.  This is one of the more 
extreme bandwidth contentions, but a cumulation of 
contentions on the various physical interfaces can be 
considered to occur frequently. 

A fourth area to consider is application core affinity.  
If an incoming packet is being processed on a core, and 
is not the core running the application, context switch 
latency is seen for the packet processing core to hand 
over to the application core.  In Linux this is observed 
to add 2μs and Windows 8μs typically to the complete 
system-to-system latency. [16] 

There are remotely possible conditions that will 
affect latency as well.  Overall processor load will also 
play a role, but to some extent will fall into the figures 
listed above.  There could be a page fault to disk or a 
complex OS context switch, but this is considered 
extremely rare in a modern datacenter.  An additional 
rare occurrence would be a link layer contention or 
packet retransmission.   

In summary, the four estimations mentioned above 
can add 282μs to minimum 12μs message latency.  It 
can be stated that less than 5% of potentially expected 
latency that can be contributed to the deterministic 
requirements of the application, stack, driver, hardware 
and wire in a datacenter.   

 

8. Methods to Reduce Variation 
 
The primary task in reducing latency in a TCP/IP 

environment is to first tag latency critical messages.  
Once they are tagged, there must be a method to detect 
and classify them both in transmit and receive path.  
Once latency critical messages are detected, there is 
need to prioritize over other messages.  These methods 
cannot be done in isolation, but the latency reduction 
methods need to be propagated to the entire network 
and systems on the network. 

To help address interrupt moderation, New 
Application Programming Interface (NAPI) is in 
current use of Linux 2.5/2.6 kernels [11, 12].  This 
attempts to intelligently monitor the receiving packet 
flow, and in a low packet per second scenario allows 

interrupts on a frequent basis.  As packets per second 
increase and the system cannot respond to interrupts 
efficiently, polling by the kernel of the receive 
descriptor ring is started.  This assumes high packet 
rates will continue, and if packet rates drop to a more 
intermittent rate, interrupt based signaling of receive 
packets can resume and active polling by the kernel 
driver is stopped. 

The Intel e1000 driver supports a form of adaptive 
interrupt moderation [13] that attempts to classify 
incoming traffic.  The interrupt throttling is then based 
on the class determined, such that large amounts of 
packets will generate fewer interrupts and if the class 
changes to small amounts of packets (or small packets), 
less moderation will be placed on interrupt generation.  
This can be extended to include heuristics that trigger 
based on throughput and packet sizes such that 
appropriate interrupts are generated at the optimal time.  
Work by Hansen and Jul [17] ties the operating system 
scheduler to the asynchronous data arrival to reduce the 
overall system-to-system latency. 

An additional approach in Data Center Ethernet 
(DCE) [14] is to tag particular flows to differentiate as 
low latency flows.  By having different virtual channels 
over the same Ethernet interface, different channels can 
be applied with different interrupt schemes.  One 
option is simply to have certain TCP ports as being low 
latency and interrupt upon receive traffic regardless of 
any interrupt moderation control. This can be extended 
to complex TCP connection information to low latency 
flows.  

As the network interface logic moves onto the die of 
the core processing TCP/IP, interesting opportunities 
arise in how to notify the core of pending receive 
traffic.  This could be in the form of having complex 
monitor/mwait instructions or schemes to map 
receiving data into a temporary cache in the coherent 
domain. 

The head-of-queue example in NIC data buffer can 
also be addressed with DCE which will formulate the 
order of transmit flows and potentially reorder based 
on latency priority the order of the transmitted packets, 
bypassing the 20μs mentioned above.  Head-of-queue 
latency impacts are also being addressed with Receive-
Side Scaling (RSS) [15] which generates a hash table 
based on the n-tuple of the flow.  This can be the 
mapping of source IP address and port and destination 
IP address and port.  Based on this hash, different 
flows can be mapped to different available processors.   
In this manner a single core, or ring of descriptors, 
does not become a bottleneck for latency critical 
messages.   
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As the NIC moves onto the same die as the core, 
interesting methods to control the right data being 
available to the right core such as Direct Cache Access 
(DCA) [3] can be explored. 

The third latency variation discussed is bandwidth 
contention.  The obvious method to affect this is 
provide more system bandwidth such as bringing the 
NIC closer to the core associated with processing 
TCP/IP traffic.  Another method is to use DCA based 
on knowledge of when the core will need the data, 
avoiding memory bandwidth contention. 

The proper alignment of cores to application and 
packet processing will also reduce the latency.  In 
supporting high throughput it may be appropriate to 
sequester a core for efficient packet processing.  To 
ensure low latency, attaching the application core to be 
the same core that processes the packets can reduce up 
to 8μs in variation. 

In short there are many aspects that are under 
development to make TCP/IP system-to-system latency 
have much more determinism. 

 

9. Conclusions 
 
End-to-end latency between applications is 

emerging as an increasingly important metric in data 
centers.  Low latency may not only be a requirement 
for niche HPC applications but also for much more 
common applications that are storage intensive and 
when solid-state storage technologies are adopted. 

In current available commercial and relatively 
inexpensive server systems that communicate via Gb 
Ethernet we have measured a 12us latency to transmit a 
message between two machines.  In our experimental 
analysis, we have accounted for all of the significant 
contributors to this latency.  We have observed that 
much of this time is spent in the 
application/stack/driver but there is also a significant 
component in hardware.  Further substantial reduction 
in latency would require simplification of existing 
driver to OS interface and also the application to 
system software interface.  Hardware latency can be 
reduced by integration of the network interface 
eliminating intermediate components such as chipsets. 

One of the most significant issues with Ethernet 
latencies has been the variability.  However, it is 
practical to implement a set of methods to classify 
latency sensitive packets and to prioritize them 
throughout the system is possible.  Technologies such 
as adaptive interrupt moderation, DCE, RSS, and NIC 
integration will significantly bridge any remaining gap 
between TCP/IP based Ethernet communication latency 

and other specialized solutions such as Infiniband and 
Myrinet. 
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