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Abstract

In this paper, we systematically analyze the connecting architectures of recurrent
neural networks (RNNs). Our main contribution is twofold: first, we present a
rigorous graph-theoretic framework describing the connecting architectures of
RNNs in general. Second, we propose three architecture complexity measures of
RNNs: (a) the recurrent depth, which captures the RNN’s over-time nonlinear
complexity, (b) the feedforward depth, which captures the local input-output non-
linearity (similar to the “depth” in feedforward neural networks (FNNs)), and (c)
the recurrent skip coefficient which captures how rapidly the information propa-
gates over time. We rigorously prove each measure’s existence and computability.
Our experimental results show that RNNs might benefit from larger recurrent depth
and feedforward depth. We further demonstrate that increasing recurrent skip
coefficient offers performance boosts on long term dependency problems.

1 Introduction

Recurrent neural networks (RNNs) have been shown to achieve promising results on many difficult
sequential learning problems [1, 2, 3, 4, 5]. There is also much work attempting to reveal the
principles behind the challenges and successes of RNNs, including optimization issues [6, 7], gradient
vanishing/exploding related problems [8, 9], analysing/designing new RNN transition functional
units like LSTMs, GRUs and their variants [10, 11, 12, 13].

This paper focuses on another important theoretical aspect of RNNs: the connecting architecture.
Ever since [14, 15] introduced different forms of “stacked RNNs”, researchers have taken architecture
design for granted and have paid less attention to the exploration of other connecting architectures.
Some examples include [16, 1, 17] who explored the use of skip connections; [18] who pointed out
the distinction of constructing a “deep” RNN from the view of the recurrent paths and the view of the
input-to-hidden and hidden-to-output maps. However, they did not rigorously formalize the notion
of “depth” and its implications in “deep” RNNs. Besides “deep” RNNs, there still remains a vastly
unexplored field of connecting architectures. We argue that one barrier for better understanding the
architectural complexity is the lack of a general definition of the connecting architecture. This forced
previous researchers to mostly consider the simple cases while neglecting other possible connecting
variations. Another barrier is the lack of quantitative measurements of the complexity of different
RNN connecting architectures: even the concept of “depth” is not clear with current RNNs.

In this paper, we try to address these two barriers. We first introduce a general formulation of
RNN connecting architectures, using a well-defined graph representation. Observing that the RNN
undergoes multiple transformations not only feedforwardly (from input to output within a time step)
but also recurrently (across multiple time steps), we carry out a quantitative analysis of the number of
transformations in these two orthogonal directions, which results in the definitions of recurrent depth
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and feedforward depth. These two depths can be viewed as general extensions of the work of [18]. We
also explore a quantity called the recurrent skip coefficient which measures how quickly information
propagates over time. This quantity is strongly related to vanishing/exploding gradient issues, and
helps deal with long term dependency problems. Skip connections crossing different timescales have
also been studied by [19, 15, 20, 21]. Instead of specific architecture design, we focus on analyzing
the graph-theoretic properties of recurrent skip coefficients, revealing the fundamental difference
between the regular skip connections and the ones which truly increase the recurrent skip coefficients.
We rigorously prove each measure’s existence and computability under the general framework.

We empirically evaluate models with different recurrent/feedforward depths and recurrent skip
coefficients on various sequential modelling tasks. We also show that our experimental results further
validate the usefulness of the proposed definitions.

2 General Formulations of RNN Connecting Architectures

RNNs are learning machines that recursively compute new states by applying transition functions
to previous states and inputs. Its connecting architecture describes how information flows between
different nodes. In this section, we formalize the concept of the connecting architecture by extending
the traditional graph-based illustration to a more general definition with a finite directed multigraph
and its unfolded version. Let us first define the notion of the RNN cyclic graph Gc that can be viewed
as a cyclic graphical representation of RNNs. We attach “weights” to the edges in the cyclic graph Gc

that represent time delay differences between the source and destination node in the unfolded graph.

Definition 2.1. Let Gc = (Vc, Ec) be a weighted directed multigraph 2, in which Vc = Vin ∪ Vout ∪
Vhid is a finite nonempty set of nodes, Ec ⊂ Vc × Vc × Z is a finite set of directed edges. Each
e = (u, v, σ) ∈ Ec denotes a directed weighted edge pointing from node u to node v with an integer
weight σ. Each node v ∈ Vc is labelled by an integer tuple (i, p). i ∈ {0, 2, · · ·m − 1} denotes
the time index of the given node, where m is the period number of the RNN, and p ∈ S, where S is
a finite set of node labels. We call the weighted directed multigraph Gc = (Vc, Ec) an RNN cyclic
graph, if (1) For every edge e = (u, v, σ) ∈ Ec, let iu and iv denote the time index of node u and v,
then σ = iv − iu + k ·m for some k ∈ Z. (2) There exists at least one directed cycle 3 in Gc. (3)
For any closed walk ω, the sum of all the σ along ω is not zero.

Condition (1) assures that we can get a periodic graph (repeating pattern) when unfolding the RNN
through time. Condition (2) excludes feedforward neural networks in the definition by forcing to
have at least one cycle in the cyclic graph. Condition (3) simply avoids cycles after unfolding. The
cyclic representation can be seen as a time folded representation of RNNs, as shown in Figure 1(a).
Given an RNN cyclic graph Gc, we unfold Gc over time t ∈ Z by the following procedure:

Definition 2.2 (Unfolding). Given an RNN cyclic graph Gc = (Vc, Ec, σ), we define a new infinite
set of nodes Vun = {(i + km, p)|(i, p) ∈ V, k ∈ Z}. The new set of edges Eun ∈ Vun × Vun is
constructed as follows: ((t, p), (t′, p′)) ∈ Eun if and only if there is an edge e = ((i, p), (i′, p′), σ) ∈
E such that t′ − t = σ, and t ≡ i(modm). The new directed graph Gun = (Vun, Eun) is called
the unfolding of Gc. Any infinite directed graph that can be constructed from an RNN cyclic graph
through unfolding is called an RNN unfolded graph.

Lemma 2.1. The unfolding Gun of any RNN cyclic graph Gc is a directed acyclic graph (DAG).

Figure 1(a) shows an example of two graph representations Gun and Gc of a given RNN. Consider
the edge from node (1, 7) going to node (0, 3) in Gc. The fact that it has weight 1 indicates that the
corresponding edge in Gun travels one time step, ((t+1, 7), (t+2, 3)). Note that node (0, 3) also has
a loop with weight 2. This loop corresponds to the edge ((t, 3), (t+ 2, 3)). The two kinds of graph
representations we presented above have a one-to-one correspondence. Also, any graph structure
θ on Gun is naturally mapped into a graph structure θ̄ on Gc. Given an edge tuple ē = (u, v, σ)
in Gc, σ stands for the number of time steps crossed by ē’s covering edges in Eun, i.e., for every
corresponding edge e ∈ Gun, e must start from some time index t to t + σ. Hence σ corresponds
to the “time delay” associated with e. In addition, the period number m in Definition 2.1 can be
interpreted as the time length of the entire non-repeated recurrent structure in its unfolded RNN graph
Gun. In other words, shifting the Gun through time by km time steps will result in a DAG which is

2A directed multigraph is a directed graph that allows multiple directed edges connecting two nodes.
3A directed cycle is a closed walk with no repetitions of edges.
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(a) (b)

Figure 1: (a) An example of an RNN’s Gc and Gun. Vin is denoted by square, Vhid is denoted by circle and Vout

is denoted by diamond. In Gc, the number on each edge is its corresponding σ. The longest path is colored in
red. The longest input-output path is colored in yellow and the shortest path is colored blue. The value of three
measures are dr = 3

2
, df = 7

2
and s = 2. (b) 5 more examples. (1) and (2) have dr = 2, 3

2
, (3) has df = 5, (4)

and (5) has s = 2, 3

2
.

identical to Gun, and m is the smallest number that has such property for Gun. Most traditional RNNs
have m = 1, while some special structures like hierarchical or clockwork RNN [15, 21] have m > 1.
For example, Figure 1(a) shows that the period number of this specific RNN is 2.

The connecting architecture describes how information flows among RNN units. Assume v̄ ∈ Vc

is a node in Gc, let In(v̄) denotes the set of incoming nodes of v̄, In(v̄) = {ū|(ū, v̄) ∈ Ec}. In
the forward pass of the RNN, the transition function Fv̄ takes outputs of nodes In(v̄) as inputs and
computes a new output. For example, vanilla RNNs units with different activation functions, LSTMs
and GRUs can all be viewed as units with specific transition functions. We now give the general
definition of an RNN:

Definition 2.3. An RNN is a tuple (Gc,Gun, {Fv̄}v̄∈Vc
), in which Gun = (Vun, Eun) is the unfolding

of RNN cyclic graph Gc, and {Fv̄}v̄∈Vc
is the set of transition functions. In the forward pass, for

each hidden and output node v ∈ Vun, the transition function Fv̄ takes all incoming nodes of v as the
input to compute the output.

An RNN is homogeneous if all the hidden nodes share the same form of the transition function.

3 Measures of Architectural Complexity

In this section, we develop different measures of RNNs’ architectural complexity, focusing mostly
on the graph-theoretic properties of RNNs. To analyze an RNN solely from its architectural aspect,
we make the mild assumption that the RNN is homogeneous. We further assume the RNN to
be unidirectional. For a bidirectional RNN, it is more natural to measure the complexities of its
unidirectional components.

3.1 Recurrent Depth

Unlike feedforward models where computations are done within one time frame, RNNs map inputs
to outputs over multiple time steps. In some sense, an RNN undergoes transformations along both
feedforward and recurrent dimensions. This fact suggests that we should investigate its architectural
complexity from these two different perspectives. We first consider the recurrent perspective.

The conventional definition of depth is the maximum number of nonlinear transformations from inputs
to outputs. Observe that a directed path in an unfolded graph representation Gun corresponds to a
sequence of nonlinear transformations. Given an unfolded RNN graph Gun, ∀i, n ∈ Z, let Di(n) be
the length of the longest path from any node at starting time i to any node at time i+ n. From the
recurrent perspective, it is natural to investigate how Di(n) changes over time. Generally speaking,
Di(n) increases as n increases for all i. Such increase is caused by the recurrent structure of the RNN
which keeps adding new nonlinearities over time. Since Di(n) approaches ∞ as n approaches ∞,4

to measure the complexity of Di(n), we consider its asymptotic behaviour, i.e., the limit of Di(n)
n

as n → ∞. Under a mild assumption, this limit exists. The following theorem prove such limit’s
computability and well-definedness:

Theorem 3.2 (Recurrent Depth). Given an RNN and its two graph representation Gun and Gc, we
denote C(Gc) to be the set of directed cycles in Gc. For ϑ ∈ C(Gc), let l(ϑ) denote the length of ϑ

4Without loss of generality, we assume the unidirectional RNN approaches positive infinity.
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and σs(ϑ) denote the sum of edge weights σ along ϑ. Under a mild assumption5,

dr = lim
n→+∞

Di(n)

n
= max

ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
. (1)

More intuitively, dr is a measure of the average maximum number of nonlinear transformations per
time step as n gets large. Thus, we call it recurrent depth:
Definition 3.1 (Recurrent Depth). Given an RNN and its two graph representations Gun and Gc,
we call dr, defined in Eq.(1), the recurrent depth of the RNN.

In Figure 1(a), one can easily verify that Dt(1) = 5, Dt(2) = 6, Dt(3) = 8, Dt(4) = 9 . . . Thus
Dt(1)

1 = 5, Dt(2)
2 = 3, Dt(3)

3 = 8
3 , Dt(4)

4 = 9
4 . . . ., which eventually converges to 3

2 as n → ∞. As
n increases, most parts of the longest path coincides with the path colored in red. As a result, dr
coincides with the number of nodes the red path goes through per time step. Similarly in Gc, observe
that the red cycle achieves the maximum ( 32 ) in Eq.(1). Usually, one can directly calculate dr from
Gun. It is easy to verify that simple RNNs and stacked RNNs share the same recurrent depth which is
equal to 1. This reveals the fact that their nonlinearities increase at the same rate, which suggests
that they will behave similarly in the long run. This fact is often neglected, since one would typically
consider the number of layers as a measure of depth, and think of stacked RNNs as “deep” and simple
RNNs as “shallow”, even though their discrepancies are not due to recurrent depth (which regards
time) but due to feedforward depth, defined next.

3.3 Feedforward Depth

Recurrent depth does not fully characterize the nature of nonlinearity of an RNN. As previous work
suggests [3], stacked RNNs do outperform shallow ones with the same hidden size on problems
where a more immediate input and output process is modeled. This is not surprising, since the growth
rate of Di(n) only captures the number of nonlinear transformations in the time direction, not in
the feedforward direction. The perspective of feedforward computation puts more emphasis on the
specific paths connecting inputs to outputs. Given an RNN unfolded graph Gun, let D∗

i (n) be the
length of the longest path from any input node at time step i to any output node at time step i+ n.
Clearly, when n is small, the recurrent depth cannot serve as a good description for D∗

i (n). In fact. it
heavily depends on another quantity which we call feedforward depth. The following proposition
guarantees the existence of such a quantity and demonstrates the role of both measures in quantifying
the nonlinearity of an RNN.
Proposition 3.3.1 (Input-Output Length Least Upper Bound). Given an RNN with recurrent
depth dr, we denote df = supi,n∈Z

D
∗
i (n) − n · dr, the supremum df exists and thus we have the

following upper bound for D∗
i (n):

D
∗
i (n) ≤ n · dr + df .

The above upper bound explicitly shows the interplay between recurrent depth and feedforward
depth: when n is small, D∗

i (n) is largely bounded by df ; when n is large, dr captures the nature
of the bound (≈ n · dr). These two measures are equally important, as they separately capture the
maximum number of nonlinear transformations of an RNN in the long run and in the short run.
Definition 3.2. (Feedforward Depth) Given an RNN with recurrent depth dr and its two graph
representations Gun and Gc, we call df , defined in Proposition 3.3.1, the feedforward depth6 of the
RNN.

The following theorem proves df ’s computability:
Theorem 3.4 (Feedforward Depth). Given an RNN and its two graph representations Gun and Gc,
we denote ξ(Gc) the set of directed paths that start at an input node and end at an output node in Gc.
For γ ∈ ξ(Gc), denote l(γ) the length and σs(γ) the sum of σ along γ. Then we have:

df = sup
i,n∈Z

D
∗
i (n)− n · dr = max

γ∈ξ(Gc)
l(γ)− σs(γ) · dr,

where m is the period number and dr is the recurrent depth of the RNN.

For example, in Figure 1(a), one can easily verify that df = D
∗
t (0) = 3. Most commonly, df is the

same as D∗
t (0), i.e., the maximum length from an input to its current output.

5See a full treatment of the limit in general cases in Theorem A.1 and Proposition A.1.1 in Appendix.
6Conventionally, an architecture with depth 1 is a three-layer architecture containing one hidden layer. But in

our definition, since it goes through two transformations, we count the depth as 2 instead of 1. This should be
particularly noted with the concept of feedforward depth, which can be thought as the conventional depth plus 1.
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3.5 Recurrent Skip Coefficient

Depth provides a measure of the complexity of the model. But such a measure is not sufficient to
characterize behavior on long-term dependency tasks. In particular, since models with large recurrent
depths have more nonlinearities through time, gradients can explode or vanish more easily. On the
other hand, it is known that adding skip connections across multiple time steps may help improve
the performance on long-term dependency problems [19, 20]. To measure such a “skipping” effect,
we should instead pay attention to the length of the shortest path from time i to time i+ n. In Gun,
∀i, n ∈ Z, let di(n) be the length of the shortest path. Similar to the recurrent depth, we consider the
growth rate of di(n).

Theorem 3.6 (Recurrent Skip Coefficient). Given an RNN and its two graph representations Gun

and Gc, under mild assumptions7

j = lim
n→+∞

di(n)

n
= min

ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
. (2)

Since it is often the case that j is smaller or equal to 1, it is more intuitive to consider its reciprocal.

Definition 3.3. (Recurrent Skip Coefficient)8. Given an RNN and corresponding Gun and Gc, we
define s = 1

j
, whose reciprocal is defined in Eq.(2), as the recurrent skip coefficient of the RNN.

With a larger recurrent skip coefficient, the number of transformations per time step is smaller. As a
result, the nodes in the RNN are more capable of “skipping” across the network, allowing unimpeded
information flow across multiple time steps, thus alleviating the problem of learning long term
dependencies. In particular, such effect is more prominent in the long run, due to the network’s
recurrent structure. Also note that not all types of skip connections can increase the recurrent skip
coefficient. We will consider specific examples in our experimental results section.

4 Experiments and Results

In this section we conduct a series of experiments to investigate the following questions: (1) Is
recurrent depth a trivial measure? (2) Can increasing depth yield performance improvements? (3)
Can increasing the recurrent skip coefficient improve the performance on long term dependency
tasks? (4) Does the recurrent skip coefficient suggest something more compared to simply adding
skip connections? We show our evaluations on both tanh RNNs and LSTMs.

4.1 Tasks and Training Settings

PennTreebank dataset: We evaluate our models on character level language modelling using the
PennTreebank dataset [22]. It contains 5059k characters for training, 396k for validation and 446k
for test, and has a alphabet size of 50. We set each training sequence to have the length of 50. Quality
of fit is evaluated by the bits-per-character (BPC) metric, which is log2 of perplexity.

text8 dataset: Another dataset used for character level language modelling is the text8 dataset9,
which contains 100M characters from Wikipedia with an alphabet size of 27. We follow the setting
from [23] and each training sequence has length of 180.

adding problem: The adding problem (and the following copying memory problem) was introduced
in [10]. For the adding problem, each input has two sequences with length of T where the first
sequence are numbers sampled from uniform[0, 1] and the second sequence are all zeros except two
elements which indicates the position of the two elements in the first sequence that should be summed
together. The output is the sum. We follow the most recent results and experimental settings in [24]
(same for copying memory).

copying memory problem: Each input sequence has length of T + 20, where the first 10 values are
random integers between 1 to 8. The model should remember them after T steps. The rest of the
sequence are all zeros, except for the last 11 entries in the sequence, which starts with 9 as a marker
indicating that the model should begin to output its memorized values. The model is expected to
give zero outputs at every time step except the last 10 entries, where it should generate (copy) the 10
values in the same order as it has seen at the beginning of the sequence. The goal is to minimize the
average cross entropy of category predictions at each time step.

7See Proposition A.3.1 in Appendix.
8One would find this definition very similar to the definition of the recurrent depth. Therefore, we refer

readers to examples in Figure 1 for some illustrations.
9http://mattmahoney.net/dc/textdata.
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(1) (2)

(3) (4)

Figure 2: Left: (a) The architectures for sh, st, bu and td, with their (dr, df ) equal to (1, 2), (1, 3), (1, 3) and
(2, 3), respectively. The longest path in td are colored in red. (b) The 9 architectures denoted by their (df , dr)
with dr = 1, 2, 3 and df = 2, 3, 4. In both (a) and (b), we only plot hidden states at two adjacent time steps
and the connections between them (the period number is 1). Right: (a) Various architectures that we consider
in Section 4.4. From top to bottom are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we
consider in Section 4.5 where we take k = 3 as an example. The shortest paths in (a) and (b) that correspond to
the recurrent skip coefficients are colored in blue.

DATASET MODELS\ARCHS sh st bu td

PENNTREEBANK tanh RNN 1.54 1.59 1.54 1.49

tanh RNN-SMALL 1.80 1.82 1.80 1.77
TEXT8 tanh RNN-LARGE 1.69 1.67 1.64 1.59

LSTM-SMALL 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

df \dr dr = 1 dr = 2 dr = 3
df = 2 1.88 1.86 1.86
df = 3 1.86 1.84 1.86
df = 4 1.85 1.86 1.88

Table 1: Left: Test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. Right: Test BPCs of tanh RNNs with
recurrent depth dr = 1, 2, 3 and feedforward depth df = 2, 3, 4 respectively.

sequential MNIST dataset: Each MNIST image data is reshaped into a 784× 1 sequence, turning
the digit classification task into a sequence classification one with long-term dependencies [25, 24].
A slight modification of the dataset is to permute the image sequences by a fixed random order
beforehand (permuted MNIST). Results in [25] have shown that both tanh RNNs and LSTMs did not
achieve satisfying performance, which also highlights the difficulty of this task.

For all of our experiments we use Adam [26] for optimization, and conduct a grid search on the
learning rate in {10−2, 10−3, 10−4, 10−5}. For tanh RNNs, the parameters are initialized with
samples from a uniform distribution. For LSTM networks we adopt a similar initialization scheme,
while the forget gate biases are chosen by the grid search on {−5,−3,−1, 0, 1, 3, 5}. We employ
early stopping and the batch size was set to 50.

4.2 Recurrent Depth is Non-trivial

To investigate the first question, we compare 4 similar connecting architectures: 1-layer (shallow)
“sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-up connection “bu”, and 2-layers
stacked with an extra top-down connection “td”, as shown in Figure 2(a), left panel. Although the
four architectures look quite similar, they have different recurrent depths: sh, st and bu have dr = 1,
while td has dr = 2. Note that the specific construction of the extra nonlinear transformations in td is
not conventional. Instead of simply adding intermediate layers in hidden-to-hidden connection, as
reported in [18], more nonlinearities are gained by a recurrent flow from the first layer to the second
layer and then back to the first layer at each time step (see the red path in Figure 2a, left panel).

We first evaluate our architectures using tanh RNN on PennTreebank, where sh has hidden-layer
size of 1600. Next, we evaluate four different models for text8 which are tanh RNN-small, tanh
RNN-large, LSTM-small, LSTM large, where the model’s sh architecture has hidden-layer size of
512, 2048, 512, 1024 respectively. Given the architecture of the sh model, we set the remaining
three architectures to have the same number of parameters. Table 1, left panel, shows that the td
architecture outperforms all the other architectures for all the different models. Specifically, td in
tanh RNN achieves a test BPC of 1.49 on PennTreebank, which is comparable to the BPC of 1.48
reported in [27] using stabilization techniques. Similar improvements are shown for LSTMs, where td
architecture in LSTM-large achieves BPC of 1.49 on text8, outperforming the BPC of 1.54 reported
in [23] with Multiplicative RNN (MRNN). It is also interesting to note the improvement we obtain
when switching from bu to td. The only difference between these two architectures lies in changing
the direction of one connection (see Figure 2(a)), which also increases the recurrent depth. Such a
fundamental difference is by no means self-evident, but this result highlights the necessity of the
concept of recurrent depth.

6



4.3 Comparing Depths

From the previous experiment, we found some evidence that with larger recurrent depth, the per-
formance might improve. To further investigate various implications of depths, we carry out a
systematic analysis for both recurrent depth dr and feedforward depth df on text8 and sequential
MNIST datasets. We build 9 models in total with dr = 1, 2, 3 and df = 2, 3, 4, respectively (as
shown in Figure 2(b)). We ensure that all the models have roughly the same number of parameters
(e.g., the model with dr = 1 and df = 2 has a hidden-layer size of 360).

Table 1, right panel, displays results on the text8 dataset. We observed that when fixing feedforward
depth df = 2, 3 (or fixing recurrent depth dr = 1, 2), increasing recurrent depth dr from 1 to
2 (or increasing feedforward depth df from 2 to 3) does improve the model performance. The
best test BPC is achieved by the architecture with df = 3, dr = 2. This suggests that reasonably
increasing dr and df can aid in better capturing the over-time nonlinearity of the input sequence.
However, for too large dr (or df ) like dr = 3 or df = 4, increasing df (or dr) only hurts models
performance. This can potentially be attributed to the optimization issues when modelling large
input-to-output dependencies (see Appendix B.4 for more details). With sequential MNIST dataset,
we next examined the effects of df and dr when modelling long term dependencies (more in Appendix
B.4). In particular, we observed that increasing df does not bring any improvement to the model
performance, and increasing dr might even be detrimental for training. Indeed, it appears that df
only captures the local nonlinearity and has less effect on the long term prediction. This result seems
to contradict previous claims [17] that stacked RNNs (df > 1, dr = 1) could capture information in
different time scales and would thus be more capable of dealing with learning long-term dependencies.
On the other hand, a large dr indicates multiple transformations per time step, resulting in greater
gradient vanishing/exploding issues [18], which suggests that dr should be neither too small nor too
large.

4.4 Recurrent Skip Coefficients

To investigate whether increasing a recurrent skip coefficient s improves model performance on long
term dependency tasks, we compare models with increasing s on the adding problem, the copying
memory problem and the sequential MNIST problem (without/with permutation, denoted as MNIST
and pMNIST). Our baseline model is the shallow architecture proposed in [25]. To increase the
recurrent skip coefficient s, we add connections from time step t to time step t+ k for some fixed
integer k, shown in Figure 2(a), right panel. By using this specific construction, the recurrent skip
coefficient increases from 1 (i.e., baseline) to k and the new model with extra connection has 2 hidden
matrices (one from t to t+ 1 and the other from t to t+ k).

For the adding problem, we follow the same setting as in [24]. We evaluate the baseline LSTM
with 128 hidden units and an LSTM with s = 30 and 90 hidden units (roughly the same number of
parameters as the baseline). The results are quite encouraging: as suggested in [24] baseline LSTM
works well for input sequence lengths T = 100, 200, 400 but fails when T = 750. On the other hand,
we observe that the LSTM with s = 30 learns perfectly when T = 750, and even if we increase T to
1000, LSTM with s = 30 still works well and the loss reaches to zero.

For the copying memory problem, we use a single layer RNN with 724 hidden units as our basic model,
and 512 hidden units with skip connections. So they have roughly the same number of parameters.
Models with a higher recurrent skip coefficient outperform those without skip connections by a large
margin. When T = 200, test set cross entropy (CE) of a basic model only yields 0.2409, but with
s = 40 it is able to reach a test set cross entropy of 0.0975. When T = 300, a model with s = 30
yields a test set CE of 0.1328, while its baseline could only reach 0.2025. We varied the sequence
length (T ) and recurrent skip coefficient (s) in a wide range (where T varies from 100 up to 300, and
s from 10 up to 50), and found that this kind of improvement persists.

For the sequential MNIST problem, the hidden-layer size of the baseline model is set to 90 and
models with s > 1 have hidden-layer sizes of 64. The results in Table 2, top-left panel, show that
tanh RNNs with recurrent skip coefficient s larger than 1 could improve the model performance
dramatically. Within a reasonable range of s, test accuracy increases quickly as s becomes larger.
We note that our model is the first tanh RNN model that achieves good performance on this task,
even improving upon the method proposed in [25]. In addition, we also formally compare with
the previous results reported in [25, 24], where our model (referred to as stanh) has a hidden-layer
size of 95, which is about the same number of parameters as in the tanh model of [24]. Table 2,
bottom-left panel, shows that our simple architecture improves upon the uRNN by 2.6% on pMNIST,

7



stanh s = 1 s = 5 s = 9 s = 13 s = 21
MNIST 34.9 46.9 74.9 85.4 87.8

s = 1 s = 3 s = 5 s = 7 s = 9
pMNIST 49.8 79.1 84.3 88.9 88.0

LSTM s = 1 s = 3 s = 5 s = 7 s = 9
MNIST 56.2 87.2 86.4 86.4 84.8

s = 1 s = 3 s = 4 s = 5 s = 6
pMNIST 28.5 25.0 60.8 62.2 65.9

Model MNIST pMNIST
iRNN[25] 97.0 ≈82.0
uRNN[24] 95.1 91.4
LSTM[24] 98.2 88.0

RNN(tanh)[25] ≈35.0 ≈35.0
stanh(s = 21, 11) 98.1 94.0

Architecture, s (1), 1 (2), 1 (3), k
2

(4), k
MNIST k = 17 39.5 39.4 54.2 77.8

k = 21 39.5 39.9 69.6 71.8

pMNIST k = 5 55.5 66.6 74.7 81.2
k = 9 55.5 71.1 78.6 86.9

Table 2: Results for MNIST/pMNIST. Top-left: Test accuracies with different s for tanh RNN. Top-right:
Test accuracies with different s for LSTM. Bottom-left: Compared to previous results. Bottom-right: Test
accuracies for architectures (1), (2), (3) and (4) for tanh RNN.

and achieves almost the same performance as LSTM on the MNIST dataset with only 25% number of
parameters [24]. Note that obtaining good performance on sequential MNIST requires a larger s than
that for pMNIST (see Appendix B.4 for more details). LSTMs also showed performance boost and
much faster convergence speed when using larger s, as displayed in Table 2, top-right panel. LSTM
with s = 3 already performs quite well and increasing s did not result in any significant improvement,
while in pMNIST, the performance gradually improves as s increases from 4 to 6. We also observed
that the LSTM network performed worse on permuted MNIST compared to a tanh RNN. Similar
result was also reported in [25].

4.5 Recurrent Skip Coefficients vs. Skip Connections

We also investigated whether the recurrent skip coefficient can suggest something more than simply
adding skip connections. We design 4 specific architectures shown in Figure 2(b), right panel. (1)
is the baseline model with a 2-layer stacked architecture, while the other three models add extra
skip connections in different ways. Note that these extra skip connections all cross the same time
length k. In particular, (2) and (3) share quite similar architectures. However, ways in which the skip
connections are allocated makes big differences on their recurrent skip coefficients: (2) has s = 1, (3)
has s = k

2 and (4) has s = k. Therefore, even though (2), (3) and (4) all add extra skip connections,
the fact that their recurrent skip coefficients are different might result in different performance.

We evaluated these architectures on the sequential MNIST and pMNIST datasets. The results show
that differences in s indeed cause big performance gaps regardless of the fact that they all have skip
connections (see Table 2, bottom-right panel). Given the same k, the model with a larger s performs
better. In particular, model (3) is better than model (2) even though they only differ in the direction of
the skip connections. It is interesting to see that for MNIST (unpermuted), the extra skip connection
in model (2) (which does not really increase the recurrent skip coefficient) brings almost no benefits,
as model (2) and model (1) have almost the same results. This observation highlights the following
point: when addressing the long term dependency problems using skip connections, instead of only
considering the time intervals crossed by the skip connection, one should also consider the model’s
recurrent skip coefficient, which can serve as a guide for introducing more powerful skip connections.

5 Conclusion

In this paper, we first introduced a general formulation of RNN architectures, which provides a solid
framework for the architectural complexity analysis. We then proposed three architectural complexity
measures: recurrent depth, feedforward depth, and recurrent skip coefficients capturing both short
term and long term properties of RNNs. We also found empirical evidences that increasing recurrent
depth and feedforward depth might yield performance improvements, increasing feedforward depth
might not help on long term dependency tasks, while increasing the recurrent skip coefficient can
largely improve performance on long term dependency tasks. These measures and results can provide
guidance for the design of new recurrent architectures for particular learning tasks.
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