
Architectural Considerations for a New Generation of Protocols

David D. Clark and David L. Tennenhouse

Laboratory for Computer Science, M. I. T.

Abstract

The current generation of protocol architectures, such as
TCP/IP or the IS0 suite, seem successful at meeting the
demands of todays networks. However, a number of new
requirements have been proposed for the networks of to-
morrow, and some innovation in protocol structuring may
be necessary. In this paper, we review some key require-
ments for tomorrow’s networks, and propose some architec-
tural principles to structure a new generation of protocols.
In particular, this paper identifies two new design principles,
Application Level Framing and Integrated Layer Processing.
Additionally, it identifies the presentation layer as a key as-
pect of overall protocol performance.

1 Introduction

Historically, there has been a sharp distinction between the
network architectures used in universal access environments,
such as the telephone network, and the architectures devel-
oped within the computer communications community. We
believe that both communities would benefit from a uni-
fied architecture that addresses new communication require-
ments. We have identified three key requirements that will
stress the existing protocol architectures. Future networks
will have considerably greater capacity, will be based on a
wider selection of technologies, and will support a broader
range of services.

The principle design goal for many research projects, and
some commercial products, is gigabit operation, both in ag-
gregate over trunks and to individual end points. As net-
works proceed to higher speeds, there is some concern that
existing protocols will represent a bottleneck, and various
alternatives have been proposed, such as outboard protocol
processors [l, 111 and new protocol designs [2, 14, 121. Since

*This research was supported by the Defense Advanced Research
Projects Agency, monitored by the National Aeronautics and Space
Administration under contract No. NAG2-582, and by the National
Science Foundation under grant NCR8814187.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1990 ACM 089791-405-8/90/000910200...$1.50

there is no clear consensus on the real source of protocol
overhead, it is hard to validate these various solutions.

Another requirement is that the protocols of tomorrow
operate over the range of coming network technology. An
obvious example of emerging technology is Broadband ISDN
[19,6] which is based on Asynchronous Transfer Mode (ATM).
This network technology provides a switching mode some-
what different from classic packet switching in that the data
to be transferred is divided up into small (currently 48 byte)
fixed size elements for transmission. A more futuristic net-
work technology is wavelength division over fiber.

Finally, there is the requirement for service in.tegration.
In the future, a single end system will be expected to sup-
port applications that orchestrate a wide range of media
(voice, video, graphics, text) and access pattern:; (interac-
tive, bulk transfer, real-time rendering). This cross-product
of media and access will generate new traffic patterns with
performance considerations, such as delay and jitter toler-
ance, that are not addressed by present architect,ures.

In summary, future networks must exhibit a significant
degree of flexibility and be based on an architecture that
admits a wide range of application demands and implemen-
tation strategies. In the remainder of this paper, we identify
some key principles for the elaboration of such an architec-
ture.

2 Structuring Principles for Protocol Architectures

Most discussions of protocol design refer to the IS0 refer-
ence model [9], or some other model that uses layering to
decompose the protocol into functional modules. There is,
however, a peril in using only a layered model to structure
protocols into components, which is that layering may not
be the most effective modularity for implementai,ion.

It is important to distinguish between the architecture
of a protocol suite and the engineering of a specific end sys-
tem or relay node. The architecture specifies the decomposi-
tion into functional modules, the semantics of the individual
modules and, the syntax used to effect the protocol. There
should be no a priori requirement that the decomposition
of the engineering design of a given system correspond to
the architectural decomposition of the protocol. [n the case
of layered architectures, practical experience [4, 171 provides
strong support for alternative engineering designs.. Wnfortu-
nately, the structure of the protocol architecture may uunec-

200

essarily constrain or complicate the engineering alternatives
available to the implementor [IS].

We conclude that a key architectural principle should
be flexible decomposition: the deferral of engineering deci-
sions to the implementor and the avoidance of inessential
constraints. Within the domain of a single protocol archi-
tecture, different engineering schemes may be appropriate
depending on the functions being performed (relay vs. end
systems), the performance requirements of the applications,
and the resources available to the designer.

In the next section of this paper we examine the core
functions of a protocol architecture and distinguish between
essential and inessential constraints. The objective through-
out is to identify architectural approaches that might lead to
streamlined engineering designs that are customized to suit
their environments. Therefore much of this paper discusses
engineering issues, with particular emphasis on the design
of end systems.

3 Protocol Functions

The core function of protocols is to transfer application in-
formation among machines. Thus, an obvious way to review
the function of protocols is to focus on the data transfer
phase of protocol operation and to observe and catalog the
operations that occur there. This leaves for separate con-
sideration those operations such as session initiation, service
location, and so on, which, while very import,ant, do not oc-
cur at the same time as data transfer.

A distinction which seems to have great relevance is the
separation of data transfer functions into two groups: those
which actually read or modify the data, which we will call
data manipulation and those functions that regulate the
transfer, which we will call transfer control. Despite the
great complexity of many protocol suites, there are in fact
not that many manipulation and transfer control functions
that actually occur at the time of data transfer. Based on

existing practice, the most important and universal of these
functions are the following.

Data Manipulation

There are six manipulation functions which are generally
found in protocols. Note that while we list them as separate,
several of them may be accomplished in the same operation.

Moving to/from the net - the most obvious and un-
avoidable manipulation function is the actual transfer of the
data in or out of the network itself, which usually involves
some sort of serial-to-parallel transformation. This function
is usually performed in custom hardware which decouples
the timing of the network from that of the host.

Error detection - data is usually protected by some sort
of checksum or related function, which is computed by read-
ing the data. When an error is detected, there may be an
error correction stage that also involves a data manipulation.

Buffering for retransmission - at the sending end of a
transfer, many protocols reserve a copy of the data, so that

if it is lost in transit it can be resent.

Encryption - either for privacy or integrity, data is en-
crypted. This function, if implemented, can sometimes also
provide error detection.

Moving to/from application address space - most com-
monly, data is not moved directly between user address
space and network interface, but is moved to some inter-
mediate buffer in system address space. This may be a fun-
damental requirement on input, as discussed below, but is
often dictated by the details of the system I/O structure.

Presentation formatting - most data transfers require
that the data be reformatted into some common or external
data representation. In the standards world, obvious ex-
amples include the IS0 ASN.1 [lo], or the SUN XDR [16].
Some data is sent across the network in what is called “im-

age, * “internal,” or “raw” mode, without such a conversion,
but even a universal standard such as ASCII may require
ref0rmatting.l

These six steps are generally associated with different
layers in the protocol suite, but they represent a common
class of overhead, since they all involve reading and writing
the data, and in some cases moving it from one part of
memory to another. Presentation formatting, for example,
usually involves moving the data into a new area, since the
result of formatting may, in general, be of a different size
than the original.

Transfer Control

There are a number of operations that are directly related
to the detailed control of the data transfer phase. We will
focus on these “transfer control” operations and set aside the
remaining control functions, such as connection initiation.
The most common transfer controls are the following:

Flow/Congestion control - To protect both the network
and the receiver, the sender must be regulated to send no
faster than the data can be accommodated. The minimal in-
band control function involves the pacing of the data at the

transmitter and the monitoring of arrivals at the receiver.
The actual computation and negotiation of the transfer rate
can be performed on an out-of-band basis.

Detecting network transmission problems - Networks,
especially packet switched networks, have specific failure
modes. Data may be lost due to congestion overflow, and it
may be reordered or duplicated as a part of processing. It is
sometimes convenient to think of lost packets as a different
problem from reordered packets, but we will have more to
say on this later.

Acknowledgement - A common control function is posi-
tive acknowledgement of data receipt. This control is some-
times thought of as universal. In truth, it is but one of
many methods for dealing with network errors. However,
it is a step with considerable complexity and thus deserves
separate mention.

‘Since ASCII is vague on the representation of its newline con-
vention, the Internet protocols [13] require a conversion from internal
ASCII to external ASCII.

201

Multiplexing - Several hosts share a network, and sev-
eral processes share one host. Thus several data streams
may interleave entering or leaving a host. These must be
delivered properly, both to insure basic function, and to pre-
vent security problems arising from mis-delivery.

Timestamping - Some real-time protocols rely on packet
timestamps to support the regeneration of inter-packet tim-
ing.

Framing - Encapsulation-based protocols require that
frame boundaries be conveyed between sending and receiv-
ing entities.

Some aspects of transfer control are required as a part of
data transfer, but need not be performed in lock-step with
the actual transfer operations. For example, the computa-
tion of flow control parameters is obviously a part of data
transfer, but it need not be synchronized with the manip-
ulation of individual data units. We will use the term “in-
band” for those controls that are integral to manipulation
steps, and the term “out-of-band” for those controls that
can be somewhat decoupled from the transfer and done in
the background. One of our design goals is to reduce to a
minimum the number of in-band control operations, thereby
increasing the number of engineering options for the manip-
ulation steps.

4 Performance - Control vs. Manipulation

The various control operations may interact in complex ways,
but in fact the list is very short. It may come as a surprise,
given the apparent complexity of protocol specifications, but
examination of efficient implementations, for example, the
current implementation of TCP for Berkeley BSD Unix [3],
show that not many instructions are required for the in-band
control operations.

Consider the following brief review of the control steps
for an incoming packet. First, the packet must be prop-
erly demultiplexed or dispatched. This requires that one
or more fields in the packet be examined, and a local state
structure retrieved. A manipulation step is required to check
for data errors, but the normal case (no errors) does not re-
quire control action. The only control test is to verify that
the packet is in order, which is a simple comparison with
the local state. The next step is to compute the proper ac-
knowledgement information, and trigger the sending (now
or later) of an acknowledgement packet. This step may also
involve the computation of some flow control information.

None of these control steps is computationally complex.
The largest, based on experience, is the computation of flow
control parameters, which most commonly occurs at the
sender of the data. But the total path lengths are tens,
not hundreds of instructions.*

In contrast, the data manipulations are much more pro-
cessing intensive, since they involve touching all the bytes
in the packet, perhaps several times. A typical large packet
today might have 4000 bytes, or 1000 long words of data.
Thus to touch the data even once is 1000 memory cycles,

*The true costs may be somewhat higher as a result of indirect
overheads associated with context switching, the invalidation of trans-
lation look-aside entries, cache depletion, etc.

PVax R2000

‘-1

Table 1: Speed in Mb/s for manipulation operations.

to copy is 2000, and there may be several such sl;eps. One
is thus led to the conclusion that the manipulation steps
are the more obvious target for overhead reduction and that
control need be examined only to the extent that it makes
the burden of manipulation worse than necessary. This con-
clusion is controversial, but is supported, for example, by
the work reported in [3].

Some specific numbers make the actual cost of data ma-
nipulation more concrete. In TCP, two fundamemal manip-
ulation operations are word-aligned copies and c’hecksums,
the latter requiring a read of the data, with a very simple
computation. Table 1 reports some actual measurements of
the speeds of these operations, in megabits per second (the
normal rating for protocols, if not hosts) using hand-coded
unrolled loops, for two machines, a PVax III and a MIPS
R2000.

The copy cost provides almost an absolute upper limit on
the throughput that can possibly be achieved for any CPU.
It is difficult to see how a useful protocol can be devised
that does not need to move the data at least once.

If the data manipulations listed above are examined, one
conclusion is that they are usually thought of a.s distinct
operations, since they occur in different protocol layers. But
this is not necessarily the most efficient design approach.
With current RISC chips, which pay a very high cost to
read or write memory, it is more efficient to read. the data
once and perform as many manipulations as possible while
holding the data in cache or registers. This approach may
prove even more effective with the advent of super-scaler
processors that perform a number of operations during each
memory cycle.

For example, in the case of the MIPS processor above,
the copy and the checksum ran at 130 and 115 Mb/s, re-
spectively. If they were done separately, the result would be
an effective throughput of about 60 Mb/s. In comparison, a
hand coded unrolled loop that did both operatious at once
ran at 90 Mb/s. This may not seem a dramatic improve-
ment, but the effect would be much more beneficial if several
of the necessary manipulation steps were combined. 3

Presentation Conversion

One manipulation step has a key impact on performance -
presentation conversion. This is because it is often so very
costly. Again, some simple experimental numbers may make
clear the typical costs. Using the R2000 as an experimen-
tal CPU, we compared the cost of a word-aligned copy (the

3The actual savings may be somewhat higher. Our simple analysis
does not take into account the previously noted indirect overheads
associated with the separate implementation of protocol loperations.

202

basic manipulation), with various sorts of presentation con-
versions. As noted above, the word-aligned copy ran at 130
Mb/s. In comparison, a hand coded conversion routine to
translate an array of integers into ASN.1 ran at 28 Mb/s, a
factor of 4-5 slower. Similar results for other processors are
reported in [8].

Another experiment was to examine the performance of
a protocol stack comprising the current Unix TCP package
and the ISODE implementation of the OSI upper layers. A
comparison of throughput with and without significant pre-
sentation conversion4 showed that about 97% of the total
protocol stack overhead was attributable to the presenta-
tion conversion function. In effect, the conversion-intensive
case ran about 30 times slower. In summary, the two exper-
iments provide a range of relative performance, presentation
us. lower layers, within which one might expect real systems
to performe5

The argument about combining manipulation operations
takes on a different nature when these large presentation
costs are included. Returning to the R2000 integer conver-
sion example, the basic ASN.1 conversion routine ran at an
average rate of 28 Mb/s. Adding the TCP checksum manip-
ulation to the code, so that it converted and checksummed
in one step, only slowed the result to about 24 Mb/s.’

5 Presentation Processing

Because of the large costs that we currently see for pre-
sentation conversion, it becomes clear that to achieve good
performance, one of two things must happen. Either the pre-
sentation layer must be omitted, or it must be the focus of
performance tuning. In fact, most applications that attempt
to achieve high performance today take the first approach
and transfer data in some raw or image format. However,
there is a loss of generality in eliminating the presentation
layer from all high performance protocols. We thus consider
how to maximize the speed of presentation conversion, be-
fore looking at the other option. One important activity
is the optimization of presentation conversion, through the
tuned implementation of existing standards or the introduc-
tion of alternatives, such as the light weight transfer syntax
described in [8].

A key aspect of presentcation conversion is that it needs
to be done in the context of the application. Part of presen-
tation conversion is moving the data to or from the appli-
cation data space. In some cases, such as file transfer, this
is a simple operation of placing the converted data in se-
quential locations. In general, however, the presentation is
to or from various language-level variables. For example, in
the case of Remote Procedure Call support, the transferred
data represents the arguments and results of a procedure
call, and must be moved to the stack of the application pro-

cess. In some cases, only the application will know what

4The baseline case transferred a very long OCTET STRING while
the conversion-intensive case transferred an equivalent length array
of 32 bit integers.

5To be fair, the present ISODE package is a prototype toolkit. If
it were subjected to the degree of tuning that has been applied to the
TCP package, the gap between its relative performance (30:l) and
that of the hand-tuned code (4-5:l) might be significantly reduced.

‘Here again, the indirect overheads associated with separate im-
plementation may be an important consideration.

the sequence of data items is, so that the actual sequence
of presentation conversions must be driven by application
knowledge.

Mechanically, what this means is that, if a presentation
conversion is involved, the application process (rather then
the system kernel or an outboard processor) will be the
usual bottleneck in overall network throughput.7 This point
should not impact the ability to attack performance using
special coding techniques such as hand-coded unrolled loops,
but it can have a great impact when one takes into account
the pipelined nature of the data manipulation steps. On the
receiving end, if the application cannot run whenever data
arrives from the network, it will fall behind, and since it is
the bottleneck, it will never catch up. A design goal must
be, therefore, to design protocols so that the application is
not prevented from performing presentation conversion as
the data arrives.

The Importance of Lost and Mis-Ordered Data

The relation between reordering and presentation processing
is in fact a key architectural consideration in protocol design,
a consideration which has not received explicit attention in
the past. In most current protocol designs it is difficult to
keep the presentation conversion running in real-time, since
data loss or reordering prevents immediate processing as the
data arrives. For this reason, we will consider in more detail
some aspects of loss and reordering.

Why does data get out of order in the first place? There
are two answers. Data may be mildly out of order because
two of the data units, e.g. packets, are reordered in some
switching node. The more drastic reordering occurs as an
indirect result of a lost packet. If a packet is lost, any data
after it can be thought of as being “out of order” with re-
spect to the lost packets Present day applications are not
equipped to deal with packet loss or reordering. Instead,
lower layer protocols such as TCP hold up all the follow-
ing data, request retransmission of the lost packet, and then
proceed with final manipulation after it arrives. Certainly,
with TCP, any presentation conversion can only occur after
TCP has completely reordered and recovered the incoming
data. Thus, a lost packet stops the application from per-
forming presentation conversion, and to the extent it is the
bottleneck, it can never catch up.

To permit some manipulations to be performed in the
presence of mis-ordering or loss, the typical approach is
to put “synchronization points” in the data stream, points
where manipulation can start even if data before that point
is missing. Thus for example, error detection checksums
are usually computed separately for each packet, permitting
each packet to be checked in isolation. The same is true
for many encryption schemes, though some sort of chaining
is often used to guard against malicious reordering. These
are examples from the lower layers of protocols; in brief our
goal is to extend this idea up through presentation to the
application.

7This point is overlooked when claims for performance are made
based on memory-to-memory transfers at the transport level.

‘In the remainder of this paper our use of the term “out of order”
includes this case where no reordering has occurred but an intervening
data unit has been lost in transmission.

203

What should the unit of synchronization be to permit
the application to perform presentation conversion on out
of order elements? One could consider some scheme based
on the transmission unit, or packet, for this purpose, but this
does not seem fruitful. Where the packet was a basic unit
of data transmission (and data reordering), it was natural
to consider the packet as the unit of manipulation as well.
This principle will not hold in the future. “Classic” packet
switching is not the only method of multiplexing that will
be used. Asynchronous Transfer Mode, or ATM, segments
data into small units called cells, with a data payload of 48
bytes.g This is probably too small a unit of data to permit
manipulation operations to be synchronized on each cell.
Fiber multiplexing based on wavelength division need not
provide transmission framing at all.

We adopt another design approach. Instead of starting
with the transmission unit such as the packet, we propose
to start with the application (which is, after all, the reason
for the data transfer in the first place) and consider what
its basic requirements are for dealing with lost or re-ordered
data.

Application Processing of Mis-ordered or lncorrplete Data

The manner of coping with data loss is highly dependent on
the needs of the application. The classic transport model
is that the protocol will suspend delivery of data to the re-
ceiving client, and retransmit from a copy of the data saved
at the sender. But this is not the only pattern. Another
option is for the application to accept less than perfect de-
livery and continue unchecked. This will work for real-time
delivery of video and voice. Another option is for the send-
ing end to retransmit, but for the application rather than
the transport protocol to provide the data. This permits
the sending application to recompute the lost data values,
rather than buffering them. Finally, in some real time situa-
tions, the application may not literally retransmit lost data,
but it might send some new data which eventually “fixes”
the consequences of the original loss.

A general purpose data transfer protocol ought to permit
any of these options to be selected: buffering by the sender
transport, recomputation by the sending application, or pro-
ceeding without retransmission.

What can be concluded from this goal? If the application
is to have the option of dealing with a lost data unit, either
by reconstituting it or by ignoring the error, then losses must
be expressed in terms meaningful to the application. Trans-
port protocols such as TCP do not have this feature. TCP
numbers the bytes in the data stream, and uses these num-
bers to achieve data ordering and retransmission. However,
these numbers have no meaning to the application. This is
true because the presentation layer, which lies between the
application and the transport, converts the format of the
data in a way that, in general, changes the size of the ele-
ments. So without understanding the transformation that
the presentation layer has done, it is impossible for the ap-
plication layer to relate lost data at the transport to the

‘We do not believe that ATM cell loss rates will be so low as to
eliminate order maintenance as a protocol issue. Although the draft
CCITT recommendations proscribe cell reordering, they make signif-
icant provisions for cell loss detection, primarily within the “Adapta
tion Layer.” The net cell payload, after adaptation, is 44-46 bytes.

equivalent application data.

Application Level Framing

The way to avoid this problem is for the lower layers such
as presentation and transport to deal with data in units
that the application specifies. In other words, the applica-
tion should break the data into suitable aggregates, and the
lower levels should preserve these frame boundaries as they
process the data. This proposal will call these aggregates
Application Data Units, or ADUs. ADUs will then take the
place of the packet as the unit of manipulation. We call this
design principle Application Level Framing.

What defines a suitable size for an ADU? The -fundamen-
tal characteristic of our definition is that each A:DU can be
processed out of order with respect to other ADUs. This rule
permits the ADU boundaries to take the place of the packet
boundaries for purposes of manipulation functions such as
end-to-end error detecting codes or moving into application
address space.

At the same time, the ADU now becomes the unit of
error recovery. Since the ADU is defined to be the small-
est unit which the application (or presentation conversion
function) can deal with out of order, it follows that if even
part of an ADU is lost in transmission, the application will,
in general, be unable to deal with it. Since our application
layer takes on the responsibility of recovering lost data, it
will almost certainly need to assume the whole ADU is lost,
even if parts exist.l’ Unless the presentation layer can trans-
late the identity of the lost data into terms the application
understands, the application cannot understand which of its
elements have actually been lost.

This suggests that ADU lengths should be reasonably
bounded, so that when data is lost the application need do
no more work than necessary. Indeed, since the loss of even
one bit will trigger the loss of a whole ADU, excessively
large ADUs might prevent useful progress at all, since the
probability of any ADU having at least one uncorrected error
would approach one.

However, there will be a minimum unit, based on the
details of the application data, below which the ,application
cannot break the data and still deal with parts lost or out of
order. If this minimum natural size of the ADU j.s too large
to provide a practical unit of error free transmissi,on, then it
will be necessary to define an artificial set of subunits into
which an ADU is broken for error recovery. Although this
partitioning may be provided by an independent protocol
module, the overall responsibility for retransmission must
rest with the application.

The Architecture of Presentation Conversion

To express the processing of ADUs in a more abstract way,
we note that an ADU exists in several representations or
“syntaxes.” Each application understands the ADU in its

lo We assume that ADUs may be broken into smaller units suitable
for transmission across physical links. Of course, lower layer recovery
schemes, such as forward error correction (FEC). may be al>plied to

these transmission units. Similarly, our gknerai’assertion iegarding
applications is not meant to preclude the use of ADU-level FEC.

204

own “local syntax.” The peer applications share a common
view of the ADU in some “abstract syntax.” The various
data transformations on the sending end (most obviously
presentation conversion) convert the ADU to some “transfer
syntax,” and the receiving end performs the reverse trans-
formation, Each of these syntactic forms can be viewed as
a name-space in which data elements within the ADU can
be identified. The abstract syntax will represent the data as
some application-level data structure; the transmission syn-
tax will probably represent the data as a numbered sequence

of bytes, as transport protocols do today.

For the receiving application to deal with the ADU out of
order, it is not sufficient that the receiving end understand
what presentation conversion to perform. The receiving end
needs to understand where to put the data that results from
the conversion. In the case of file transfer, for example,
this implies that, for each ADU, the sender must provide
information as to its eventual location within the receiver’s
file.

It is not obvious how, using today’s models of presenta-
tion, the sender can compute this information in order to
provide it to the receiver. Traditionally, some intermedi-
ate or “transfer” representation is used for the data, and
the sender and receiver do not exchange details concerning
their “local” representations. If the source and the destina-
tion are unaware of the presentation conversion used by the
other, then there is no guidance that the source can give the
destination as to the eventual size of each ADU. So if an
ADU is received out of order, there is no way to guess how
large the intervening ADUs are, and thus no way to guess
where in the eventual file the current ADU will go. While
the receiver can perform the presentation conversion for each
ADU, it must buffer it, and thereby clog the presentation
pipeline.

Thus, for a general external representation such as ASN.l,
there may be no way to allow ADUs to be totally processed
out of order at the receiver. As an alternative, the sender
and receiver can negotiate to translate in one step from the
sender to the receiver’s format. If this is done at the sender,
then the sender can label each ADU with its location in the
sender’s file (i.e. before conversion), and a separate location
which it will occupy in the receivers file. Using this infor-
mation, the receiver can copy the data into the file at the
correct location, even though intervening ADUs are missing.

In fact, the example of file transfer is too restricted to
suggest the most general form of this principle. A very differ-
ent application example is stream data such as video. In this
case, each ADU must be identified with its location, both in
space (where on the screen it goes) and in time (which video
frame it is a part of). In order for the sender to compute
this, it is not necessary to convert the data to the represen-
tation of the receiver; it is just necessary for the sender and
receiver to agree on some higher-level name-space in which
ADUs are named. The sender need only be able to compute
the receiver’s name for each ADU in this name-space.

Thus the more general architectural principle of presen-
tation conversion is that the sender must perform at least
enough of the conversion to be able to compute, in terms
meaningful to the receiver, where or when the ADU is to
be delivered. In some cases, this may imply that the sender
must do all the conversion; in other situations, the receiver
can do further processing as an implementation decision.

Always, the sender must be able to specify the disposition
of the ADU in terms meaningful to the receiver.

The final characterization of an ADU is thus the follow-
ing. The sending and receiving application must define what
data goes in an ADU such that

the sender can compute a name for each ADU that
permits the receiver to understand its place in the se-
quence of ADUs produced by the sender, and

the sender uses a transfer syntax that permits the ADU
to be processed out of order.

6 Integrated Lays Processing

Layered protocol suites provide isolation between the func-
tional modules of distinct layers. A major architectural ben-
efit of isolation is that it facilitates the implementation of
subsystems whose scope is restricted to a small subset of
the suite’s layers. For example, the implementation of a
network layer relay is largely independent of the upper layer
protocols used by its clients.

However, we are frequently concerned with the imple-
mentation of complete end systems that coincidentally ter-
minate most of the layers of the protocol stack. The naive
implementation of a layered suite involves the sequential
processing of each unit of information, as it is passed down
through the individual layer entities of the transmitter’s pro-
tocol stack, and as it is passed up through the peer entities
of the receiver’s stack. Such a simple ordering of operations
may well conflict with the efficient engineering of the end
systems, and it is sometimes possible to arrange the opera-
tions in a more efficient order that achieves the same result.

Ordering Constraints

Layered engineering designs should not be thought of as fun-
damental, but only as one approach, which must be evalu-
ated on the basis of overhead and simplicity against other
designs. As an alternative, we introduce an engineering prin-
ciple called Integrated Layer Processing, or ILP, which cap-
tures the idea that the protocol be so structured as to permit
the implementor the option of performing all the manipula-
tion steps in one or two integrated processing loops, instead
of performing them serially as is most often done today.

Unfortunately, traditional protocol suites often impose
“precedence” or “ordering” constraints that limit the op-
portunities for such optimization. In particular, the shuf-
fling of operations associated with different layers is often
restricted. To admit ILP, a protocol architecture must be
organized so that the interactions between processing steps,
both control and data manipulation, do not interfere with
their integration. We conclude that our new protocol archi-
tecture should minimize the inter-layer ordering constraints
imposed on its implementors. Although we favor the ILP ap-
proach described above, a “reduced constraint architecture”
would also facilitate pipelined implementations, such as the
interface design described in [ll]. Thus an ILP-compatible
architecture preserves the benefits of isolation, while increas-

205

ing the range of implementation options available to end
system designers.

One example of inter-layer optimization is the provision
for encryption processing in the system described in [Is].
The Autonet protocol suite has been carefully structured to
facilitate the implementation of end system interfaces that
entwine the session-specific encryption operations with data
link level operations. This relaxation of the conventional
ordering constraints does not interfere with layer isolation:
intermediate nodes perform the traditional data link and
network layer operations without regard to the session en-
cryption operation.

To understand how interactions among steps interfere
with integration, one must look at the receiving end of the
connection. When sending, the software knows the com-
plete state of the transfer, so that the manipulations can be
performed independent of the control steps. When receiv-
ing data, the protocol must perform certain of the control
actions in order to permit the manipulation. The details
of the protocol architecture, for example the layering, will
determine the ordering constraints, i.e., which manipulation
steps can only be done after specific control steps. These
details determine the implementation options and, thus, the
efficiency of the manipulation steps. This point is the key
to effective design and implementation of protocol suites.

One example of an ordering constraint is that at least
some part of the dat.a must be extracted from the net-
work before it can be demultiplexed. It is very hard to
combine the extraction and serial-to-parallel conversion step
with other manipulation, except perhaps error detection,
since most manipulations require the local state informa-
tion, which is only identified through demultiplexing. In
general, multiplexing at a given layer may impose ordering
constraints, or at least complicate the re-ordering of opera-
tions across layer boundaries.”

Another example, discussed above, is that many manipu-
lations can only be performed once the data unit is in order.
This is true of most error detection checksums, of many en-
cryption schemes, of most presentation transformations and
of moving the data to or from the user address space. Thus,
the protocol must insure that the data is in order, at least
within a certain range, before performing these manipula-
tions.

I LP Performance

This paper has presented two significant cases to consider in
exploring the performance impact of ILP. In one case, there
is no presentation layer; in the other, there is.

If there is no presentation conversion, then state-of-the-
art implementations are already running into the perfor-
mance limit imposed by the very simple data transforma-
tions of the transport and lower layers - data copying and
checksums. In these cases, ILP may be a very practical
next step to improve throughput, especially with RISC pro-
cessors. This will, of course, not be true universally; ILP
is just an engineering principle, to be applied only when
useful. But the very simple performance experiments we re-
ported above, as well as some of the advanced experiments

“The case against layered multiplexing is presented in [18, 121.

performed by Van Jacobson on TCP [3], suggest the utility
of this approach.

If there is a presentation conversion being performed,
then the cost of this step may well dominate the other ma-
nipulation costs. In this case, the application code, which
must participate in the presentation conversion, must be the
focus of performance tuning. ILP can help here, bec:ause the
processing steps can be pipelined in a flexible manner.

Up to this point, we have introduced a number of key
problems and concepts - the problem of reordering, the re-
quirement for efficient pipelining of the presentation con-
version, and so on. An overall structure that takes these
concepts into account is based on two manipulation stages.

First, the transmission data units are received from the
network. They are then examined to determine which ADU
they belong to (the demultiplexing control operation) and
where in the ADU they go (the re-ordering control opera-
tion). If part of an ADU is lost, then either some lower layer
may try to fix the problem (if it has buffered sufficient infor-
mation), the receiving application may cope, or the sending
application is instructed to resend the whole A:DU.

Once a complete ADU is received, even if it is out of order
with respect to other ADUs in the same applica5on associa-
tion, it can be passed to the application for the second stage
of processing. This processing will include all the required
data manipulations, including error and encryption checks,
and possibly presentation conversion, if the sender has not
performed this task completely. The two stage approach is
justified by the distinction between two classes of “out of
order” events: misordering of transmission units; and mis-
ordering of complete ADUs. In the normal case where all
transmission units arrive in order, the two sta.ges may be
fully integrated.

Even if the data does not require presentation conversion,
it will require dispatching to the proper locations in memory.
In some cases, this may be simple, if the data. is destined
for the file system as a sequence of linear disk blocks. A
more general case will require that the data in -the ADU be
separated into different values which are stored in different
variables of some program. This is the general paradigm of
the Remote Procedure Call, in which the incoming data is
made to appear as parameters of a subroutine call in some
high level programming language.

This requirement to copy the data into locations that
are part of the application address space, and which may be
distributed in that address space rather than being a linear
region, is a critical architectural constraint. One proposal
for speeding up protocols is to perform processmg on a spe-
cialized outboard processor. We assert that it will prove
too complex to provide a specialized processor with all the
information necessary for it to copy the data properly into
the application address space.” While in some cases, such
as raw file transfer, it might be easy, in gene:ral it would
require giving to the outboard processor information of the
same bulk and complexity as the incoming data itself. For
this reason, most proposals for outboard processors do not
include the presentation layer in the tasks to be performed
outboard.

“A more realistic proposition is the partitioning of application and
presentation processing across the general purpose nodes of a multi-
processor system.

206

The key argument in favor of ILP is that an integrated
processing loop is more efficient than several separate steps
which read the data from memory, possibly convert it, and
write it again. This point seems most obviously true for
RISC chips, where a major performance limitation is mem-
ory cycles. We claim that layered engineering designs should
not be thought of as fundamental, but only as one ap-
proach, which must be evaluated on the basis of overhead
and simplicity against other designs. ILP designs may lead
to greater efficiency through careful attention to the order-
ing of the processing steps and the delineation of the data
units.

7 Application Level Framing Revisited

The concept of Application Level Framing was a key to
achieving Integrated Layer Processing, because it provided
a single common unit of data, the ADU, over which ma-
nipulation was defined. In contrast, protocols today define
some operations over the packet, and others over application
boundaries.

We believe that once the concept of the ADU is under-
stood, it will provide a more natural and direct way to deal
with a variety of protocol problems. As a particular ex-
ample, consider the problem of connecting networks to a
parallel processor.

A network is usually thought of as a serial device. This
sort of device does not match the nature of some parallel
processors. One of the design goals of a parallel processor is
to avoid building any one hot spot in the architecture which
must run at the aggregate speed of the total processor. But
lacking such a spot, there is no place to connect a high-
speed serial network. The solution seems to be to separate
the network into several parts, each of which delivers part
of the data to part of the processor. But how is the data to
be dispatched to the correct part? If the data is sent to the
parallel processor using a traditional protocol such as TCP,
there is no way the transport can understand the structure
of the incoming data. However, if the data is organized into
ADUs, each ADU will contain enough information to control
its own delivery.

In summary, the next generation of protocol must have
a very general model of the application. Not only must the
network support traditional computers, but other devices,
including video sources and sinks, specialized memories, and
so on. Since the ADU delivery information is not just visible
at the “application protocol layer” but to all the protocol
functions, it can be used to permit a wide variety of imple-
mentation approaches for various sorts of devices.

8 Conclusions

In this paper, we make several structural observations about
protocols, and attempt to draw some architectural conclu-
sions. In summary, our reasoning has the following points.

l Data manipulation costs more than transfer control
operations.

Presentation can cost more than all other manipula-
tions combined.

To implement presentation efficiently, it is necessary
to keep the processing pipeline going, including the

. .
application process.

Application data units are the natural pipelining units.
They correspond to what applications want, not to
the network technology of the day, which can and will
change in the near future.

The key architectural principle we have identified is
Application Level Framing.

The key engineering principle is Integrated Layer Pro-
cessing, which allows applications to process their data
incrementally, and permits efficient implementation of
data manipulations on RISC processors.

In this approach to protocol architecture, the different
functions are “next to” each other, not “on top of,” to the
extent possible. The traditional functions of transport and
session are control functions, and as such should not have
a strict relation to the manipulation functions such as pre-
sentation conversion. This is a more parallel organizational
model, similar to the HOPS model of Haas [7].

This discussion of protocol structure should not be taken
to mean that layering is unsuited as a tool for protocol de-
sign. The principle role of layering is the semantic isolation
of functional modules. Although alternative organizational
schemes exist, layered isolation has proven to be particularly
effective in the network environment.

At the Network layer and below, intermediate relay enti-
ties must participate in some aspects of the communications
process. Within the context of a layered architecture, inter-
mediate entities can operate at one or more layers without
regard to the semantic content of the symbols being ex-
changed at the upper or lower layers. This constitutes a
powerful argument in favor of layered isolation.

However, the same reasoning does not apply at Trans-
port and above, where symbols are exchanged on an end-to-
end basis. Alternative organizational schemes may be better
suited to the functional decomposition of what are presently
referred to as the upper layer functions. In particular, we ob-
serve that many of the Transport, Session, and Presentation
functions can be structured in a less constrained manner.

A potential drawback to the ILP approach is that it could
lead to complex designs in which each protocol stack variant
has its own fully customized implementation. Clearly this
would complicate the maintainability and overall utility of
the protocol software. However, we believe that there are
approaches to protocol organization that can minimize the
liabilities associated with “vertical integration.”

In existing protocol suites the semantics of a functional
module, i.e., a layer protocol, are closely tied to the syn-
tax of the symbols that are exchanged. Usually there is
a one-to-one correspondence between semantic information
and specific fields within protocol data units. This arrange-
ment gives rise to the present day scheme of hierarchical
encapsulation in which each layer appends its own synt.acti-
cal symbols to those generated by the layers above.

207

We propose that the semantics of a functional module
be decoupled from the syntax used to effect the exchange
of protocol control information. A single syntactical field
could be interpreted by a number of modules, with each
applying its own semantic rules as appropriate. Thus, where
layering is appropriate, semantic isolation can be retained
without the present day overhead of layered encapsulation
and framing.r3

In many respects this approach corresponds to the “com-
pilation” of the protocol suite, while the encapsulation ap-
proach corresponds to its “interpretation”. We believe that
the principle of Application Layer Framing permits this shared
use of fields and structures across layers, and ILP is one
speculative example of a “compiled” implementation of a
protocol suite.

9 Acknowledgements

James Davin performed the presentation conversion experi-
ments described in section four. Karen Sollins provided con-
siderable assistance in detailed discussions concerning the
key principles and in the alignment of the sometimes di-
vergent views of the co-authors. John Wroclawski, Karen
Sollins, Chuck Davin, and the referees provided criticism of
earlier drafts which substantially improved the final version
of this paper.

In many respects, this paper represents the blending of
insights gained from our past activities, both at MIT and
the University of Cambridge. The ideas developed in this
paper were also extensively motivated by discussions with
the End to End Research Group of the Internet Research
Task Force, in particular the comments of Van Jacobson.

References

PI

PI

[31

[41

[51

PI

E.A. Arnould et al. The Design of Nectar: A
Network Backplane for Heterogeneous Multicomput-
ers. In ASPLOS-III Proceedings, Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 205-216,
IEEE/ACM, April 1989.

G. Chesson, B. Eich, V. Schryver, A. Cherenson, and
A. Whaley. XTP Protocol Definition. Technical Re-
port Revision 3.0, Silicon Graphics, Inc., January 1988.

D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
Analysis of TCP Processing Overhead. IEEE Commu-
nications, 27(6):23-29, June 1989.

David Clark. The Structuring of Systems Using Up-
calls. In Proceedings of the 10th ACM Symposium on
Operating Systems Princi;oZes, pages 171-180, Associa-
tion for Computing Machinery, Oakland, CA, Decem-
ber 1985.

A. G. Fraser and W. T. Marshall. Data Transport in a
Byte Stream Network. IEEE Journal on Selected Areas
in Communications, ‘7(7):1020-1033, September 1989.

Rainer Handel. Evolution of ISDN Towards Broadband
ISDN. IEEE Network, 3(1):7-13, January 1989.

PI

PI

PI

WI

WI

[I31

D41

WI

I161

D71

Pf31

WI

Zygmunt Hass. A Communication Architecture for
High-speed Networking. In preparation.

C. Huitema and A. Doghri. A High Speed Approach
for the OS1 Presentation Protocol. In H. Rudin and R.
Williamson, editors, Protocols for High-Speed Networks,
Elsevier Science Publishers, May 1989. IFIP.

ISO. Information Processing Systems - Open Systems
Interconnection - Basic Reference Model. 1!)84. ISO-
7498.

ISO. Information Processing Systems - Open Systems
Interconnection - Specification of Abstract Syntax No-
tation One (ASN.1). International Standard ISO-8824.

J. Kanakia and D.R. Cheriton. The b’MP Net-
work Adapter Board (NAB): High-Performance Net-
work Communication for Multiprocessors. Technical
Report, Stanford University, Stanford, CA, November
1987.

D. R. McAuley. Protocol Design for High Speed Net-
works. Technical Report TR No. 186, University of
Cambridge Computer Laboratory, January 1390.

J. Postel and 3. Reynolds. Telnet Protocol Specification
NIC-RFC-854. DDN Protocol Handbook, 2:2.575--2.589,
May 1983.

K. Sabnani and A. Netravali. A High Speed Trans-
port Protocol for Datagram / Virtual Circuit Networks.
In ACM Sigcomm ‘89, pages 146-157, Association for
Computing Machinery, Austin, Texas, September 1989.

M.D. Schroeder et al. Autonet: A High-speed, Self-
configuring Local Area Network Using Point-to-Point
Links. Technical Report Research Report 59, Digital
Systems Research Center, April 1990.

Sun Microsystems, Inc. XDR: External Data Repre-
sentation Standard. RFC - 1014, Network Information
Center, SRI International, June 1987.

L. Svobodova. Implementing OS1 Systems. IEEE Jour-
nal on Selected Areas in Communications, 7(7):1115-
1130, September 1989.

D. L. Tennenhouse. Layered Multiplexing Considered
Harmful. In H. Rudin and R. Williamson, editors, Pro-
tocols for High-Speed Networks, Elsevier Science Pub-
lishers, May 1989. IFIP.

CCITT Study Group XVIII. Draft 1990 B-ISDN Rec-
ommendations. January 1990.

13Datakit control byte codes [5] have these properties

208

