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Abstract

Decomposing 3D building models into architectural ele-

ments is an essential step in understanding their 3D struc-

ture. Although we focus on landmark buildings, our ap-

proach generalizes to arbitrary 3D objects. We formulate

the decomposition as a multi-label optimization that iden-

tifies individual elements of a landmark. This allows our

system to cope with noisy, incomplete, outlier-contaminated

3D point clouds. We detect three types of structural cues,

namely dominant mirror symmetries, rotational symmetries,

and polylines capturing free-form shapes of the landmark

not explained by symmetry. Combining these cues enables

modeling the variability present in complex 3D models, and

robustly decomposing them into architectural structural el-

ements. Our architectural decomposition facilitates signifi-

cant 3D model compression and shape-specific modeling.

1. Introduction

Modeling our environment is a common strive in pho-

togrammetry, computer vision and graphics. 3D model-

ing from imagery has been going through a great evolu-

tion over the past decades, maturing methods like incremen-

tal Structure-from-Motion (SfM) [52], internet-scale point

cloud reconstruction from imagery [1], high-accuracy de-

tailed surface reconstructions via dense Multi-View Stereo

(MVS) [15, 19], and achieved success in procedural mod-

eling of facades [37]. LiDAR is an alternative dominant

technology to obtain point clouds of urban scenes [48].

In this work 1, we tackle the abstraction and understand-

ing of 3D point clouds delivered by such state-of-the-art

technologies. Planar priors [51, 46], or a Manhattan-world

assumption [48] proved to be satisfactory for many man-

made structures. However, for a large mass of buildings,

especially landmark architecture or general objects, a sim-

ple planar abstraction will not suffice. We propose a method

for abstracting and decomposing 3D reconstructions by ex-

ploiting self-similarities within the model. Such a decom-
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Figure 1: Our method segments a point cloud of a complex

landmark building into coherent architectural structural el-

ements (ASE), such as walls, towers and free-form parts

based on symmetry cues only.

position is a first step towards understanding and compactly

modeling the architectural elements of a landmark.

Our method is based on weak architectural priors that

naturally hold for a majority of buildings, namely mir-

ror symmetries, rotational symmetries and vertical wall.

The method starts with a semi-dense 3D point cloud that

may be contaminated by noise and gross outliers, and may

be highly inhomogeneous. Structure-from-Motion (SfM)

point clouds often suffer from such contamination. We

show how to robustly detect structural cues, more precisely,

axis directions of dominant mirror symmetries, the pivot of

rotational symmetries, and free-form parts that are not ex-

plained by the symmetries. These cues provide a strong

guidance for extracting dominant and semantically mean-

ingful components of a model, such as wall, tower, arch etc.,

as illustrated in Figure 1. We refer to these components as

architectural structural elements (ASEs) in the paper. We

formulate the decomposition problem as an energy-driven,

multi-label point cloud segmentation, which we solve effi-

ciently via graph cuts. Our contributions:

• a model that combines symmetries and free-form poly-

lines for decomposing a point cloud into ASEs,

• methods for detecting structural cues (dominant mir-

ror symmetries and rotational symmetries, as well as

residual free-form parts) in point clouds,

• a global energy formulation and optimization approach

for partitioning a point cloud into meaningful struc-

tural components based on structural cues.



Our work paves the road to 3D model compression [53],

shape-specific models [10, 3] and guided navigation [50].

2. Related Work

Creating solid models from point clouds is a dominant

problem in computer vision as well computer graphics. The

range of research varies from volumetric segmentation to

the detection of symmetries and repetitions, enforcing shape

priors and shape primitives. Depending on the architecture

or manufacturing [4] there may be other constraints. For

example, for simple Manhattan-style skyscrapers the mod-

eling can be as simple as a rectangular box [48]. For Hauss-

mannian architecture, strong priors or regular floors may be

sufficient to model the buildings [47]. For more general ar-

chitecture, more relaxed structural principles such as sym-

metries have to be used [33, 41, 32]. Further even, in the

case of real cities with regular planar buildings and com-

plex shapes like statues, a hybrid model [26] or a topology

joining approach [31] may be applied. Finally, semantic

segmentation approaches [16, 40, 22, 45] may be useful for

urban scenes.

For landmark architecture there are very few rules that

hold across multiple landmarks, hence a more per-exemplar

approach is needed. In the direction we propose in this

work, we tackle the decomposition and understanding of

architectural structures for landmarks.

Primitive Detection In the line of shape priors for arbi-

trary surface reconstruction, there are two general cases.

Either the raw data is replaced by a fitted shape primitive

(hard assignment), or an attraction force to the fitted shape

primitive is used (soft assignment). Both hard and soft pri-

ors are used in various forms (e.g. primitive fitting, shape

grammars, etc.) to produce robust and clean results.

Methods for hard priors use robust fitting of models like

planes, cylinders [13]. Schnabel et al. [44] detect simple

primitives such as planes, spheres, cylinders, etc. and fur-

ther extend shape primitives across the remaining surfaces

for completion [43, 54].

For the soft assignments the prior is only included

within the optimization which smooths out the final sur-

face by guiding the shape as suggested by the prior.

Haene et al. [17] have shown this for piecewise planar pri-

ors and the works of Dame and Bao [10, 3] showed this for

arbitrary shape priors learned from 3D training data.

Bodis et al. [5, 6] follow a different approach and di-

rectly minimize the surface to extract locally planar super-

pixel surfaces to avoid complexity of shape primitives.

Lafarge et al. [25] detected multiple types of shape

primitives in a recognition-style method, as they first clus-

ter the input data into planar, concave, convex and non-

developable surface types. This in turn defines the type of

primitive to detect and removes much of the complexity of

detecting all feasible shape primitives.

Verdie and Lafarge [49] proposed an efficient Monte

Carlo sampler for detecting parametric objects in large

scenes exploiting parallel processing and reversible jump

between different primitive types.

Lafarge et al. [26] also propose a hybrid solution be-

tween shape primitives and arbitrary mesh topology. The

authors initially show how to estimate the fitting of multi-

ple shape primitives efficiently. The hybrid solution then

allows for compact models while still preserving the details

for arbitrary structures.

Overall, these methods provide a better understanding

through shape priors, yet cannot handle large, complex

shapes such as architectural elements in entire landmark

buildings. To the best of our knowledge, [53] is the only

related work for abstraction of MVS-obtained buildings as

it tries to decompose buildings into 2D sweeping profiles.

However, in our experience, iteratively finding profiles has

problems separating the actual architectural elements.

Symmetry Detection Symmetries have been explored in

computer vision for a long time and review reports are avail-

able [30, 36]. However, among the first to apply it for 3D

buildings were [34, 35, 39].

Mitra et al. [34] introduce a voting for symmetries

for reflection, rotation and translation. In their follow-

up work, [35], they use the voting space to create a sym-

metrization effect to enhance symmetries while maintain-

ing the shape of the model. Pauly et al. [39] discover struc-

tural regularity by detecting repeated structures in 3D ob-

jects, which have been generated by the means of computer

graphics. They simultaneously evaluate the repetition pat-

tern and detect the repeating geometric elements.

Cohen et al. [9] take it one step further and let the sym-

metries influence the Structure-from-Motion optimization,

whereas Koeser at al. [24] exploit mirror symmetries in

dense reconstructions from a single view.

Zheng et al. [55] rearrange parts of objects within

large yet clean shape collections. In their recent work,

Liu et al. [28] define replaceable substructures and use the

shape graph for remodeling.

Contrary to these approaches, we use noisy MVS point

clouds and tackle the decomposition and understanding of

real-world 3D landmark reconstructions. Hence, we aim

for the segmentation of such data into architectural struc-

tural elements (ASE). In particular, we propose a method

for segmenting complex landmark structures into parts us-

ing a range of structural cues such as mirror symmetries,

rotational symmetries and free-form polylines. More cues

can easily be included in our unified optimization scheme.



3. ASE Decomposition

The overall goal of our method is to decompose a

3D point cloud representing a landmark into semantically

meaningful architectural structural elements of the building.

Fig. 2 gives an overview of our approach.

In a preprocessing step, we align our input point cloud

with the gravity vector and scale it to real-world (metric)

scale, which can be easily automatized knowing the (coarse)

GPS positions of the cameras. Next, we extract normals

by Principal Component Analysis (PCA) over the 3D k-NN

neighborhood of each point. Exploiting the natural vertical

prior for walls, we project the points and their normals to the

ground. We denote an oriented 2D point by pi = (xi,ni)
and its height above the ground by hi. Further, we perform

detection of structural cues on the 2D point cloud.

First, we analyze the point cloud to detect its dominant

mirror symmetries (to find opposing walls) and rotational

symmetries (to detect surfaces of revolution, e.g. towers)

(Fig. 2b). Second, we extract a rough floor plan of the point

cloud to capture free-form structures that are not well ex-

plained by the symmetries (Fig. 2c). Finally, we formulate

a global energy minimization to robustly assign every 3D

point to the structural elements that are generated either by

a symmetry or a free-form shape (Fig. 2d).

It is important to note that the symmetry detection in

Section 3.1 and the free-form polyline extraction in Sec-

tion 3.2 only provide symmetries and polylines that enter

as hypotheses into a final optimization, discussion of which

is detailed in Section 3.3. The optimization can suppress

unlikely structural cues.

3.1. Symmetry Analysis

Symmetries are prominent properties of many land-

marks. It is common for buildings to have self-reflection

(e.g. opposite walls are often symmetric) or rotational sym-

metry (e.g. for towers or domes).

In this work, we demonstrate the detection of mirror

and rotational symmetries. We extract them in the afore-

mentioned 2D ground projection. Our symmetry extraction

scheme is general and can be extended other types of sym-

metries and to 3D symmetries. Our main scheme for col-

lecting symmetry evidence is Hough-space voting [2, 20].

Inspired by [34], we generate votes for each pair of points

for a symmetry in Hough-space.

3.1.1 Point Matching

In order to prevent filling in the voting space with votes for

unlikely 2D symmetries, only a selected subset of all possi-

ble point pairs is allowed to vote for symmetries. For sim-

plicity, our criterion for a point pair {pi, pj} (a matching

pair from now on) to generate a vote is

|hi − hj | < th, (1)

where hi is the height of pi over the ground as introduced

earlier, and th is a height difference threshold defined as

th = 0.1 · (maxi hi −mini hi). (2)

We note that this simple criterion could be replaced by a

more sophisticated matching of local 3D shape descriptors,

e.g. spin images [29], FPFH [42] or 3D SURF[21].

3.1.2 Detecting Mirror Symmetries

For mirror symmetries, every matching pair of oriented

points (pi, pj) votes for a hypothesized symmetry line,

which is the perpendicular bisector of the 2D segment con-

necting pi and pj , as shown in Fig. 3a. This symmetry

line is parametrized by a pair (Dij , φij) (i.e. a point) in

the Hough-space Hmir(D,φ), where Dij is the distance of

the line from the origin and φij is the characteristic angle

of the line shown in the figure. Figure 4a visualizes these

Hough-space votes for the example of Fig. 2a.

Next, we extract dominant peaks in Hough-space, which

correspond to likely axes of mirror symmetry. Here, we

restrict ourselves to the two dominant perpendicular sym-

metries, which allows for a robust and parameter-free peak

detection. More precisely, we seek the global maximum of

Hmir(D1, φ) +Hmir(D2, {φ+ π/2} mod 2π) (3)

as a function of (D1, D2, φ) to obtain the two peaks, i.e. two

symmetry axes (D∗
1 , φ

∗) and (D∗
2 , {φ

∗ + π/2}mod 2π).
This is solved exhaustively, where for each discrete value

of φ, the maximal Hmir(D1) and Hmir(D2) are found (1D

searches) and summed. However, this comes at virtually no

cost as a coarse discretization (in the order of 360× 200) of

our 2D Hough-space proved to work well with our datasets.

3.1.3 Detecting Rotational Symmetries

In the case of rotational symmetries, each matching point

pair (pi, pj) votes for a hypothesized rotational pivot point

(xij , yij) in a 2D Hough-space Hrot(x, y) of pivot points.

The hypothesized pivot resides at the intersection of the two

lines, each passing through the corresponding point parallel

to its normal direction, as shown in Fig. 3b.

Since for rotational symmetries we do not have such a

natural simplifying constraint for peak detection as in the

case of mirror symmetries, the standard scheme is employed

for peak extraction. We use non-maximum suppression

with window size w and perform repeated peak extraction

until a confidence threshold c is reached as Hrot(x, y) > c.
We note however, that parameters w and c are kept fixed
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Figure 2: An overview of our method: (a) semi-dense point cloud as input, (b) identification of mirror symmetries and

rotational symmetries (axes in red), (c) extraction of free-form polylines (red lines), (d) our segmentation result.

pi

pj

pi

pj

(a) (b)

Dij

Figure 3: Our voting schemes for mirror (a) and rotational

symmetries (b). (a) the points pi and pj vote for the direc-

tion of the red perpendicular bisector of the segment con-

necting the points, parametrized by its distance Dij to the

origin and its depicted angle φij . (b) The points pi and pj
vote for a pivot point that lies at the intersection of the green

lines passing through the points parallel to the normals.
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Figure 4: Hough-spaces for voting for (a) symmetry lines of

mirror symmetries, (b) pivot points of rotational symmetries

for the point cloud shown in Fig. 2. Red dots show the

extracted peaks (see the text for details).

throughout the datasets in the experimental section, and re-

call that the detected symmetries enter as hypotheses into

the final optimization in Section 3.3. An example of the

corresponding Hough-space is shown in Fig. 4b.

3.2. Detecting Free­form Shapes

To be able to describe parts of the input model that are

not explained by symmetries (free-form parts), we addi-

tionally summarize the 2D projected point cloud (including

symmetric parts) as a low number of polylines. In other

words, our method is designed to extract a set of 2D poly-

lines that approximate the entire floor plan of the object.

As a preprocessing, points lying on near-vertical surfaces

(walls, typically) are extracted, as these are more represen-

tative for creating a floor plan. We remove points lying on

slanted surfaces (e.g, roofs) and horizontal surfaces based

on the angle between their 3D normals and the vertical di-

rection, and we aim to summarize the remaining subset of

ground-projected points with a low number of 2D polylines.

First, we decompose the 2D point cloud into disjoint

local partitions and robustly extract a single dominant 2D

line segment from each such partition on-the-fly. The al-

gorithm performs a single run through all points for ef-

ficiency, selects the next unpartitioned point as seed, and

grows a partition in the 2D k-nearest neighborhood up to a

distance threshold. The latter controls the size of the aper-

ture, i.e. the extent of the partitions. The dominant line seg-

ment is extracted from each partition using RANSAC [13]

(with soft-scoring) and least-squares segment fitting to the

inliers. This simple approach tends to preserve locally lin-

ear structures while summarizing a 2D point cloud into 3

orders of magnitude less segments.

Second, the line segments are to be snapped and linked

into polylines. To do so, we mark two end-points of seg-

ments for snapping if they are nearest neighbors and are

within a distance threshold. From these pairwise adjacen-

cies, we identify connected groups of vertices and collapse

them into a single vertex at their centroid. Next, the full set

of segments is linked into polylines between end-points and

junctions in a tracing procedure based on vertex valence,

and the resulting polylines are subject to a Douglas-Peucker

polygon simplification [11]. In a final cleaning step, short

polylines are eliminated. The output is a set of polylines

roughly approximating the shape of dense clusters in the

2D point cloud. An example is shown in Fig. 2c.

3.3. Structural Element Assignment

The major and final part of our method is the assign-

ment of an architectural structural element to every oriented

point pi = (xi,ni) in the point cloud, where xi,ni ∈ R
2,

i = 1 . . . , N denote the 2D location and normal of point pi
on the ground, respectively. As will be discussed in detail,

each structural element is generated by one of the structural

cues: mirror symmetry, rotational symmetry, or free-form

polyline discussed in Sections 3.1 and 3.2.



(a) (b) (c)

Figure 5: Definition of angle αt
il between a point and a structural cue: (a) mirror symmetry (t = mir), (b) rotational symmetry

(t = rot), (c) free-form polyline (t = poly).

We formulate the assignment as a multi-label energy

minimization, where each point obtains a label li ∈
L of a structural element, and the optimal labeling

(l∗1, l
∗
2, . . . , l

∗
N ) ∈ LN is sought for the following energy:

E(l1, l2, . . . , lN ) =
∑

i=1...N

Θ(pi, li)

+ γ1 ·
∑

i

∑

j

Ψ(pi, pj , li, lj) + γ2 ·
∑

∀l∈L

Γ(l), (4)

where Θ(pi, li) is the unary cost of assigning a point pi to

a structural element li, Ψ(pi, pj , li, lj) is a pairwise term

enforcing smoothness of the labeling solution, and Γ(l) en-

codes our prior for a particular structural element l. In the

following discussion, we define these terms in detail and ex-

plain how each structural cue generates structural elements.

Our unary cost for each of the structural cues is

Θ(pi, li) = 1−W t(li) ·K
t(xi, li) · C

t(ni, li). (5)

where index t ∈ {mir, rot, poly} refers to the type of struc-

tural cue, i.e. mirror symmetry, rotational symmetry and

polyline, respectively, and the terms are as follows:

• Ct(n, l) ∈ [0, 1] is a measure of how consistent the

normal n of a point p is with a structural element l,

• Kt(x, l) ∈ [0, 1] is a kernel, namely a function of the

position x of a point p w.r.t. a structural element l,

• W t(l) ∈ [0, 1] is a weight encoding how important

each structural element l ∈ L is for the understanding

of the building.

We postpone the exact definition of these terms to the next

subsections, as they differ per structural cue (index t).
Our pairwise term in (4) is the weighted Potts penalty

Ψ(pi, pj , li, lj) =

{

0, li = lj

e−λEdE(pi,pj), li 6= lj .
(6)

This term penalizes any pair of adjacent points (pi, pj) hav-

ing different labels, where adjacency is defined in 3D via

k-NN search, k = 100. The penalty vanishes with the 3D

Euclidean distance dE(pi, pj) between adjacent points, and

λE controls the speed of decrease. In our experiments, we

set λE as the smallest ball neighborhood radius such that

75% of all input points have at least 100 neighbors, as also

suggested in [53].

Finally, our label cost Γ(l) penalizes once for each label

l ∈ L occurring in the solution, i.e. it reduces the number

of structural elements occurring in the solution:

Γ(l) =

{

1, ∃i : li = l

0, otherwise.
(7)

We solve the multi-label optimization efficiently via the

α-expansion algorithm [8, 7, 23]. The parameters γ1 and γ2
balance the relative importance of the three major energy

terms. Their choice is discussed in Section 4.

Next, we explain how each type of cue t =
{mir, rot, poly} is incorporated into the unary term (5) by

defining each of its subterms Ct(n, l), Kt(x, l) and W t(l).

3.3.1 Energy Terms for Mirror Symmetries

Every detected mirror symmetry generates two architectural

structural elements (represented by two labels), one for each

side of the symmetry axis, designed to separate points into

symmetric halves, e.g. opposing walls. As discussed in Sec-

tion 3.1.2, we extract the two dominant orthogonal mirror

symmetries for simplicity and robustness (see Figure 2b).

It should be noted, however, that our optimization scheme

allows for more than two mirror symmetries.

We now define the subterms of (5) for mirror symmetries

(t = mir). The consistency between the normal ni ∈ R
2 of

a point pi and a structural element of label l generated by a

mirror symmetry is defined by

Cmir(ni, l) = 1− sin(αmir
il ), (8)

where αmir
il ∈ [0, π

2 ] is the angle between the point’s normal

ni and the normal of the symmetry axis (see Figure 5a).

Separation of points on the two sides of the symmetry axis



is encoded into the definition of Kmir(xi, l). For the struc-

tural element l+ generated by the positive side of the axis,

Kmir(pi, l
+) =

{

1, xi cosφ+ yi sinφ+Di ≥ 0

0, otherwise
(9)

where xi = (xi, yi) is the position of point pi and (D,φ)
is the Hough-parametrization of the symmetry axis. For the

structural element l− on the negative side, we use ≤ in (9)

The weight Wmir(l) in (5) is set to 1 for all structural el-

ements generated by mirror symmetries (high importance).

3.3.2 Energy Terms for Rotational Symmetries

Each rotational symmetry generates a single structural el-

ement identified by a label l ∈ L. Herein, we define the

subterms of (5) for rotational symmetries (t = rot).

The consistency between the normal ni ∈ R
2 of a point

pi and the structural element l generated by a rotational

symmetry is defined by

C rot(ni, l) = 1− sin(αrot
il ), (10)

where αrot
il is the angle between the point’s normal ni and

the line passing through the point and the pivot point of the

rotational symmetry (red dot in Figure 5b).

Unlike dominant mirror symmetries, which tend to be

more global for a dataset, we aim to extract local rotational

symmetries. The area of influence is determined by the

points which vote for the rotational symmetry. Hence, we

define the kernel as

K rot(xi, l) = exp

{

−
||xi − cl||

2

2σl
2

}

, (11)

where xi is the 2D position of any point pi in the dataset, cl
is the pivot/center of rotation and σl is the standard devia-

tion of the distances between cl and all support points.

As for mirror symmetries, the importance weight W rot(l)
is set to 1 for all rotational symmetries (high importance).

3.3.3 Energy Terms for Free-form Polylines

Each of the 2D polylines representing the floor plan of the

building (Section 3.2) generates a single structural element

(hence, a label l ∈ L). They serve to capture free-form

structural elements that are not well explained by symmetry

cues. Here, we define the subterms of (5) for t = poly.

The consistency between the normal ni ∈ R
2 of a point

pi and a polyline identified by label l is

Cpoly(ni, l) = 1− sin(αpoly

il ), (12)

where αpoly

il is the angle between the point’s normal ni and

the line passing through pi and the closest point p̂il of the

polyline, as shown in Figure 5c.

Similarly to rotational symmetries, polylines have a local

influence, encoded in the sigmoid kernel

Kpoly(xi, l) = 1−
1

1 + exp{λp(τp − ||xi − x̂il||)}
, (13)

where xi, x̂il ∈ R
2 are the 2D positions of pi and of the

closest point p̂il on the polyline, respectively. The inflex-

ion point of the sigmoid is fixed at tp = 1 meter, and the

steepness of the descent to λp = 20 in all our experiments.

A strong symmetry cue should dominate over polylines

in its area of influence. Therefore, each polyline needs to

be weighted depending on how well it can fit to any sym-

metry cue. In this vein, we extract the oriented mid-point

mlk from each segment elk of every polyline l, and evaluate

Θ(mlk, l
′) defined in (5) for each structural element l′ gen-

erated by detected mirror (t = mir) and rotational (t = rot)

symmetries. Θ(mlk, l
′) measures how well the mid-point

mlk fits to a symmetry cue and define polyline usefulness

Ul =
∑

k

flk ·min(
∑

l′=1...L

Θ(mlk, l
′), 1), (14)

where flk is the normalized length of segment elk of poly-

line l, such that
∑

k flk = 1. A high Ul indicates that the

polygon contains a large number of segments unexplained

by symmetry cues, hence, it is worth considering the poly-

line to explain the neighboring points as free-form parts.

The weight of the polyline is defined as the sigmoid

W poly(l) =
1

1 + exp{λw(tw − Ul)}
, (15)

where we set an abrupt change λw = 20 similarly to (13),

and tw is set to 0.6 in all experiments.

4. Experiments

In this section we evaluate the properties of our ASE de-

composition. All used 3D models are reconstructed from

unordered image collections. Despite tremendous progress

in the research, these models are still incomplete and very

noisy compared to clean computer generated collections

used in prior work. The method is tested on 6 noisy

datasets. They have different architectural elements like

towers, arches, ellipsoids, planar and free-form walls, as

summarized in Table 1.

We evaluate our results quantitatively by comparing

them with our ground truth segmentations. The segmen-

tation accuracy is measured by the Jaccard index for every

ground truth label and the corresponding label. Due to pos-

sible over-segmentation, a mapping is needed between the

predicted labeling (where the number of labels can vary) to

the fixed labels of the ground truth segmentation. We se-

lect the most frequent label per ground truth label, mark it

used and as corresponding to the ground truth label. This

is a similar procedure as used in the PASCAL VOC chal-

lenge [12]. We report the mean accuracy over all labels.



Dataset # pts 3D Source
# ASE

Method
Segmentation accuracy [%]

mir rot poly Per label, sorted by type of architectural structural element (ASE) Mean

Orebro [38]
1.7M PMVS [14]

Clustering 6.0 0 26.8 0 1.3 7.3 8.5 2.9 7.1 0.9 6.1

2 4 2 Plane fitting 89.8 81.7 72.3 58.7 0 0 25.0 7.3 14.5 10.5 36.0

Method [44] 75.2 78.0 81.0 77.9 68.5 63.6 70.9 53.0 39.7 59.4 66.7

Our method 97.5 97.4 97.6 96.3 96.9 97.9 98.6 98.5 100.0 100.0 98.1

Arch [38]
300K PMVS [14]

Clustering 35.5 13.1 3.6 5.5 14.4

2 0 0 Plane fitting 76.4 67.3 67.5 44.2 63.8

Method [44] 58.1 62.8 63.1 15.1 49.8

Our method 94.6 86.6 94.4 51.3 81.7

Colosseum [53]
200K SfM [53]

Clustering 20.8 2.9 33.9 19.2

0 0 3 Plane fitting 17.9 7.7 29 18.2

Method [44] 49.3 52.8 35.0 45.7

Our method 99.9 78.6 98.8 92.4

Sant’Angelo [18]
60K SfM [53]

Clustering 3.1 1.7 8.2 2.7 0.5 6.5 0.8 24.4 6.0

0 0 3 Plane fitting 39.5 33.3 8.6 22.3 77.7 0 7.7 18.1 25.9

Method [44] 91.1 58.6 33.7 68.2 83.2 97.3 97.5 99.6 78.7

Our method 59.4 55.5 100 99.8 97.5 98.3 96.1 89.1 87.0

Trinity Chapel

(failure case)

200K SfM [53]

Clustering 27.6 4.9 0 1.6 5.2 7.86

0 0 3 Plane fitting 24.7 55.9 24.3 26.0 9.5 28.1

Method [44] 28.2 29.2 44.2 24.3 61.8 37.5

Our method 63.0 86.7 0 75.5 0 45.1

Table 1: Datasets and comparison of our method with the baselines. Reported is segmentation accuracy (Jaccard index [%])

4.1. Method Parameters

In this section we investigate the stability of our method

against the internal parameters. Since all the models are

metrically scaled, the geometric parameters are fixed to me-

ter scale as described in the text above. The main remain-

ing parameters are the multi-label optimization weights γ1
(smoothing cost) and γ2 (label cost). We empirically evalu-

ate the mean accuracy over the ground truth labels as well as

the number of labels that appear in the final decomposition.

Using a grid search over a range of feasible parameters we

fix these for all other experiments.

The final values are γ1 = 1 (smoothing cost) and γ2 =
100 (label cost). Increasing γ1 = 1 smooths the labels. It

is robust in the range of 1 to 5. Changing the value of γ2
affects the number of detected labels yet is robust. Only

very low values result in an over-segmentation.

The computational bottleneck is Hough voting that is de-

termined by its quadratic complexity. For voting for sym-

metries, we downsample the datasets to maximally 350K

points, computation time for which is 600K seconds.

4.2. Comparison to Baselines

In this section we evaluate our method against baseline

approaches. Due to absence of directly comparable work,

we compare to alternative ways of unsupervised decompo-

sition of a point cloud.

The first baseline groups the points based on their geo-

metric proximity. For that, we use Power Iteration Cluster-

ing [27] which propagates information about point similar-

ity and then explicitly use k-means clustering to group the

points. The input is a sparse distance matrix that contains

the distances of every point to their 100 closest neighbors.

Although k is generally unknown, we set it to the number of

ground truth structural elements. As a second baseline, we

iteratively fit planes with an inlier threshold of 0.1 meters

until 90% of the point cloud is assigned to a plane. For every

ground truth structural element, we choose one plane that is

best at covering it. As a third baseline, we use a method of

Schnabel et al. [44] that decomposes a point cloud into a set

of primitives like planes, tori, spheres etc.

The results are provided in Fig. 6 and in Tab. 1. The

clustering baseline does not arrive at a reasonable decom-

position. The segmentation it provides separates the point

clouds either over the edges where the point density is lower

(curved areas of Orebro and Arch) or completely arbitrarily

(Colosseum), resulting in low mean segmentation accuracy.

Plane fitting results in significantly better results. For

suitable landmarks, such as Arch, it is able to capture the

ASEs very well. Orebro’s walls are identified reasonably

well, resulting in high scores for their segmentation. The

method fails with towers and arbitrarily-shaped construc-

tions, resulting in a low mean accuracy for this dataset. Fi-

nally, in the absence of planar objects, this method does not

provide any reasonable solution (see Colosseum).

The method from [44] is very efficient at fitting prim-

itives into point clouds. However, it suffers from several

drawbacks. First, in the absence of clear primitives it fails

to fit a sensible model (see Colosseum, where each side is

shared between several models). Our method is capable of

dealing with these elements due to the free-form polylines

cue. Second, the primitives are too simple for buildings.

For example, in Orebro different parts of towers that have

different width get different cylinders assigned to them.
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Figure 6: Our method on Orebro, Arch and Colosseum datasets. The baselines fail to capture all structural elements as

they either contain no higher level features (clustering), enforce hard priors (plane fitting) or fit redundantly many primitives

(method [44]). Our method successfully decomposes the complex scenes due to the global optimization.

Our method successfully and consistently outperforms

the baselines as it is optimized for multiple specialized

structural features rather than hard constraints or local clus-

tering. In the quantitative evaluation shown in Tab. 1. The

method prioritizes the structural cues based on the dataset.

For Colosseum, that does not have a strong support for ro-

tational or mirror symmetries, it explains the whole model

based on the polylines. Conversely, Arch is completely ex-

plained by the mirror symmetries. For Orebro, the method

is able to capture all four wall and side towers, as well as the

two half moon-shaped structures at the entrance. The parts

of the meadow are assigned to the closest ASEs (cyan).

Overall our method successfully decomposes all models

into their ASEs. For models without any mirror or rotational

symmetries it will revert to only using free-form polylines.

Failure cases occur when the symmetries or free-form lines

are not correctly detected. Missing data effects any of the

methods as no direct structural cues exist.

5. Conclusions and Future Work

This work takes a step towards understanding the archi-

tectural and structural elements of landmarks. Although for

simple buildings a basic planar abstraction should suffice,

we look at more complex architectural landmarks.

Our method for decomposing 3D reconstructions ex-

ploits multiple structural cues like mirror and rotational

symmetries, and free-form polylines. As we formulate it

as a multi-label optimization, our method works on noisy

3D point clouds from image-based reconstruction. Experi-

mental evaluation confirms the solid results for the decom-

position of complex landmark buildings.

In future work we plan to iterate symmetry extrac-

tion and structural element assignment, infer long-distance

graph connections to complete empty areas of the 3D re-

construction, and enlarge the list of detected symmetries.
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