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Abstract

The myriad of connected things promoted by the Internet of Things (IoT) and the data

captured by them is making possible the development of applications in various markets,

such as transportation, buildings, energy, home, industrial and healthcare. Concerning

the healthcare market, it is expected the development of these applications as part of the

future, since it can improve e-Health to allow hospitals to operate more efficiently and

patients to receive better treatment. The IoT can be the main enabler for distributed

healthcare applications, thus having a significant potential to contribute to the overall de-

crease of healthcare costs while increasing the health outcomes. However, there are a lot of

challenges in the development and deployment of this kind of application, such as interope-

rability, availability, performance, and security. The complex and heterogeneous nature of

IoT-based healthcare applications makes its design, development and deployment difficult.

It also causes an increase in the development cost, as well as an interoperability problem

with the existing systems. To contribute to solve the aforementioned challenges, this the-

sis aims at improving the understanding and systematization of the IoT-based healthcare

applications’ architectural design. It proposes a software reference architecture, named

Reference Architecture for IoT-based Healthcare Applications (RAH), to systematically

organize the main elements of these applications, its responsibilities and interactions, pro-

moting a common understanding of these applications’ architecture. To establish RAH, a

systematic mapping study of existing publications regarding IoT-based healthcare applica-

tions was performed, as well the study about quality attributes, tactics, architectural pat-

tern and styles used in software engineering. As a result, RAH presents domain knowledge

and software architectural solutions (i.e., architectural patterns and tactics) documented

using architectural views. To assess RAH, a case study was performed by instantiating



it to design the software architecture of a computational platform based on the Internet

of Things (IoT) infrastructure to allow the intelligent remote monitoring of the patient’s

health data (biometrics). With this platform, the clinical staff can be alerted of the health

events that require immediate intervention and then prevent unwanted complications. Re-

sults evidenced that RAH is a viable reference architecture to guide the development of

secure, interoperable, available, and efficient IoT-based healthcare applications, bringing

contributions for the areas of e-Health and software architecture.

Keywords : Internet of Things (IoT), healthcare, e-Health, reference architecture, software

architecture.



Design arquitetural de aplicações para cuidados de
saúde baseadas na infraestrutura da IoT
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Resumo

A miríade de coisas conectadas promovidas pela Internet das Coisas (IoT) e os dados

capturados por elas estão tornando possível o desenvolvimento de aplicações em vários

mercados, tais como transporte, edifícios, energia, casa, industria e cuidados de saúde. Em

relação ao mercado de saúde, espera-se o desenvolvimento dessas aplicações como parte

do futuro, uma vez que pode melhorar a e-Health e permitir que os hospitais funcionem

de forma mais eficiente, e pacientes recebam melhores tratamentos. A IoT pode ser o

principal facilitador para distribuição de aplicações de saúde, tendo assim um potencial

significativo para contribuir para a diminuição global dos custos dos cuidados de saúde, e

melhorar os seus resultados. No entanto, há muitos desafios no desenvolvimento e implan-

tação desse tipo de aplicação, tais como interoperabilidade, disponibilidade, performance

e segurança. A natureza complexa e heterogênea das aplicações de saúde baseadas na

infraestrutura da IoT dificulta o seu projeto, desenvolvimento e implantação. Também

provoca um aumento no custo de desenvolvimento, bem como um problema de interoper-

abilidade com os sistemas existentes. Para contribuir com a solução dos desafios supracita-

dos, esta tese tem como objetivo melhorar a compreensão e sistematização da arquitetura

de software das aplicações de saúde baseadas em IoT. Ela propõe uma arquitetura de

referência de software, chamada Arquitetura de Referência para Aplicações de Cuidados

de Saúde Baseadas em IoT (RAH), para organizar sistematicamente os principais elemen-

tos dessas aplicações, suas responsabilidades e interações, promovendo uma compreensão

comum da arquitetura dessas aplicações. Para estabelecer RAH, um mapeamento sis-

temático de publicações sobre aplicações de saúde baseadas em IoT foi realizado, bem

como um estudo sobre atributos de qualidade, táticas, padrões arquiteturais e estilos usa-

dos na engenharia de software. Como resultado, RAH apresenta conhecimento de domínio



e soluções de arquitetura de software (ou seja, padrões arquiteturais e táticas) documen-

tado usando visões arquiteturais. Para avaliar a RAH, foi realizado um estudo de caso

instanciando-a para projetar a arquitetura de software de uma plataforma computacional

baseada na infraestrutura da Internet das Coisas (IoT) para permitir monitoramento re-

moto inteligente dos dados de saúde do paciente (biometrias). Com esta plataforma, a

equipe clínica pode ser alertada dos eventos de saúde que requerem intervenção imediata

e então evitar complicações indesejáveis. Os resultados evidenciaram que RAH é uma ar-

quitetura de referência viável para o desenvolvimento de aplicações de saúde baseadas em

IoT seguras, interoperáveis, disponíveis e eficientes, trazendo contribuições para as áreas

de e-Health e arquitetura de software.

Keywords : Internet das Coisas (IoT), Cuidados de saúde, e-Health, Arquitetura de Ref-

erencia, Arquitetura de Software.
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1 Introduction

New technologies can change lives! That is what is happening with the use of the

Internet of Things (IoT). The IoT denotes a trend where a large number of embedded

devices employ communication services offered by Internet protocols. Many of these de-

vices, often called “smart objects” or “things”, are not directly operated by humans but

exist as components in buildings or vehicles, or are spread out in the environment (ARKKO

et al., 2015). Thus, the basic idea of this paradigm is the pervasive presence, around all

of the users, of a variety of things - such as Radio-Frequency IDentification (RFID) tags,

sensors, actuators, mobile phones, etc. - which, through unique addressing schemes, are

able to interact with each other and cooperate with their neighbors to reach common

goals (ATZORI; IERA; MORABITO, 2010).

It is estimated that by 2025, 80 billion IoT devices will be online, creating 180 ZB

of data (IDC, 2017). This myriad of connected things, the data captured by them, and

the connectivity between them will make possible the development of IoT applications in

various markets, such as transportation, buildings, energy, home, industrial, and health-

care. Regarding these applications, six elements are needed to deliver its functionalities:

identification, sensing, communication, computation, services and semantics (AL-FUQAHA

et al., 2015), as illustrated in Figure 1. The identification element is crucial for the IoT

to name and match services and demands. The sensing element is responsible for gath-

ering data from related objects, such as smart sensors and actuators. The data, which is

essential to the IoT-based applications, is analyzed and used to direct the applications

to perform specific actions. The communication element, in its turn, connects different

things to deliver the IoT-based applications’ requirements.

These applications use processing units, such as microcontrollers and microprocessors,

which are the computational elements responsible for processing the data from the sensing

elements and sending it to the service’s database in the cloud. The services and semantics

elements implement the IoT-based applications’ requirements by extracting the knowledge

from the received data. This extraction includes recognizing and analyzing data that will
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base the decision-making process required for the application to provide the exact service

needed (BARNAGHI et al., 2012).

Figure 1: The IoT elements (AL-FUQAHA et al., 2015).

Therefore, the potential for change in the quality of life that can be promoted by IoT is

unquestionable. The IoT has become the major disruptive technology changing software

and society (EBERT et al., 2016). Creating integrated utilities will lead to a qualitative

change in services to integrate information systems, computing and communication with

extensive control (CHEN, 2016). The main strength of IoT applications is the high impact

that has on changing aspects and behaviors of the potential users’ everyday life. Regarding

the users, there are two points of view: private and business users. To private users,

the application’s impact will be related to areas such as home and healthcare, making

their lives more comfortable. To business users, it will highly impact on aspects such as

transportation and industry, changing automation and industrial manufacturing, logistics,

business/process management, and smart transportation of people and goods.

Figure 2: Projected market share of dominant IoT applications by 2025 (AL-FUQAHA et
al., 2015).

Concerning the healthcare market, it is expected the development of these applica-

tions as part of the future, since it can improve e-Health to allow hospitals to operate
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more efficiently and patients to receive better treatment. This paradigm is reshaping mod-

ern healthcare, connecting everything to the Internet, shifting “from anytime, anyplace

connectivity for anyone” to “connectivity for anything”. The IoT can be the main enabler

for distributed healthcare applications, thus having a significant potential to contribute

to the overall decrease of healthcare costs while increasing the health outcomes. In other

words, it has the potential to open entire new paths to generate benefits for the patients,

health systems and society at large (COUTURIER et al., 2012).

A type of IoT healthcare application in which developers will focus is the mobile

health application (mHealth). The primary goal of mHealth is to allow remote moni-

toring of the patients’ health status (biometrics) and treatment from anywhere in the

world (JARA; ZAMORA-IZQUIERDO; SKARMETA, 2013). Moreover, IoT-based healthcare

applications are projected to provide the biggest economic impact, as presented in Figure

2. These applications, such as mHealth and telecare, which help to afford medical well-

ness, prevention, diagnosis, treatment and monitoring services to be delivered efficiently

through electronic media, are expected to create about $ 1.1 - $ 2.5 trillion annually in

global economy growth by 2025 (AL-FUQAHA et al., 2015).

On the other hand, the population aging and the rise of chronic diseases are becoming a

global concern since they might result in an increase in the number of patients at hospitals.

There are several studies that indicate the need for strategies to minimize the institution-

alization process and the effects of the high cost of patient care (HOCHRON; GOLDBERG,

2015). With the intention of reducing this concern, a promising trend in health treatments

is to move the medical check routines from the hospital (hospital-centric) to the patient’s

home (home-centric). Nowadays, this trend is supported by e-Health technologies and can

be improved with IoT, with the promotion of distributed healthcare, helping to enhance

the outcome of health services and decrease related costs. The progress in wireless tech-

nologies with related performance improvements heavily support real-time monitoring of

physiological parameters, thus easing the uninterrupted care of chronic diseases, enabling

early diagnosis, and the management of medical emergencies (ISLAM et al., 2015).

1.1 Problem Statement

There is a variety of IoT-based applications that do not contemplate interoperation

with other existing systems and devices. Research trends in IoT-based healthcare include

network architectures and platforms, new services and applications, interoperability, and
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security, among others (ISLAM et al., 2015). Moreover, as presented in the previous section,

there is also a projection of the development of technologies and applications related to

IoT infrastructure for healthcare.

However, there are a lot of challenges in the development and deployment of this kind

of application, such as (i) interoperability (DOUKAS; MAGLOGIANNIS, 2012) (KHATTAK et

al., 2014) (SEBESTYEN et al., 2014): there are heterogeneous sources of data, the devices’

protocol is not open, so a given device cannot be integrated to another (or multiple)

applications, and there are also different studies and proposals for patient monitoring

at hospitals or personal monitoring at home; (ii) availability (DOUKAS; MAGLOGIANNIS,

2012): the proposed applications do not provide a way to ensure that the systems are avail-

able when needed; (iii) usability (KEVIN et al., 2014): the existing home healthcare systems

have drawbacks, such as simple and few functionalities, weak interaction and poor mobil-

ity; (iv) security (DOUKAS; MAGLOGIANNIS, 2012): the existing proposed systems lacks of

permission control, privacy and data anonymity, etc; (v) flexibility (EBERT et al., 2016):

the existing products can not autonomously adapt to usage scenarios, such as assisted

living, intelligent buildings, smart transportation, energy, healthcare, transportation, or

entire supply chains; (vi) productivity (EBERT et al., 2016): IoT services need to extend

toward predictive maintenance and proactive enhancements, improving uptime and thus

productivity.

There are also challenges related to data storage and management (DOUKAS; MA-

GLOGIANNIS, 2012), since the vast volume of data produced by the sensors is in an un-

structured format, which is very complicated to understand and requires data storage

mechanisms that are different from the typical database management system (DBMS)

(MOHAMMED et al., 2014).

In short, this complex and heterogeneous nature of the IoT-based healthcare ap-

plications makes its design and development difficult. It also causes an increase in the

development cost, as well as an interoperability problem with the existing systems. Thus,

a strategy to design a software reference architecture to systematically organize the main

elements of IoT-based healthcare applications, its responsibilities, and interactions, pro-

motes a common understanding of these applications’ architecture. Software reference

architectures have emerged as abstractions of concrete software architectures from a cer-

tain domain (ANGELOV; GREFEN; GREEFHORST, 2012). A reference architecture (RA) is

used to design concrete architectures in multiple contexts, serving as an inspiration or

standardization tool (MULLER, 2008). Nowadays, the increasing complexity of software,
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the need for efficient and effective software design processes and the need for high levels

of system interoperability lead to the increase in the importance of reference architectures

in the software design process. IoT architecture and modeling solutions must connect

heterogeneous communities to understand and work together (EBERT et al., 2016).

For the existing and emerging IoT applications, it is very well known that they have

different architectural requirements such as scalability, flexibility, interoperability, diverse

QoS support, and security, to name a few (YAQOOB et al., 2017). Aiming for guidelines to

develop these applications, several reference architectures have been proposed considering

the necessity to address these requirements. Examples of reference architectures are the

three layers architectures proposed by Yang et al. (YANG et al., 2011) and Gubbi et al.

(GUBBI et al., 2013); the middleware based architectures proposed by Tan et al. (TAN;

WANG, 2010) and Atzori et al. (ATZORI; IERA; MORABITO, 2010); the five layers archi-

tecture proposed by Wu et al. (WU et al., 2010); the wearable architectures proposed by

Hiremath et al (HIREMATH; YANG; MANKODIYA, 2014) and Sharma et al. (SHARMA et al.,

2014); IoT-A Reference Architecture; Industrial Internet Reference Architecture (IIRA);

and WSO2’s Reference Architecture. In spite of the existence of reference architectures to

guide the development of IoT-based applications, they are too abstract and none of them

is focused to support the development of IoT-based healthcare applications.

Finally, the definition of a Software Reference Architecture (SRA) for IoT-based

healthcare applications could facilitate and standardize the design of concrete architec-

tures, as well as the development of interoperable, secure, efficient and available systems

for healthcare. Thus, the problem addressed in this thesis is the lack of guidelines to

conduct the development of interoperable, secure, efficient, available and standardized

IoT-based healthcare applications.

1.2 Objective

Considering the challenges associated at developing IoT-based healthcare applications,

mentioned in Section 1.1, the main objective of this thesis is to propose a reference archi-

tecture, named Reference Architecture for IoT-based Healthcare Applications(RAH), to

improve the understanding and systematization of the IoT-based healthcare applications’

architectural design, and offer guidelines for the development of these applications.

Hypothesis: A software reference architecture for IoT-based healthcare applications is

a suitable approach to address the challenges of security, interoperability, availability, and
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performance, found in developing this kind of applications.

In order to confirm the hypothesis, the following specific activities were executed:

• Perform a mapping study based on the Systematic Mapping Study (SMS) methodol-

ogy : the study described in Chapter 4 was able to find the main characteristics of

IoT-based healthcare applications, their elements and how they relate to each other.

• Establishment of a reference architecture for IoT-based healthcare applications (RAH):

it was defined the architectural significant requirements (functional and nonfunc-

tional) for RAH, described in Chapter 5, and the design decisions that allow to

achieve such requirements.

• Evaluation of RAH : The proposed reference architecture was evaluated through the

conduction of a case study, presented in Chapter 6, to obtain evidences that allowed

to confirm the hypothesis and discover improvements to be done.

1.3 Methodology

Aiming to achieve the objective of this research, the methodology, which is presented

in Figure 3, consisted of the following steps: Review of Concepts, State-of-the-art Review,

Establishment and Evaluation of RAH. In the step of the Review of Concepts, it was

performed a review of the concepts of software architecture mainly, but no exclusively,

on the Software Engineering Institute Books (BASS; CLEMENTS; KAZMAN, 2003) (BASS;

CLEMENTS; KAZMA, 2013) (CLEMENTS et al., 2010) (BACHMANN et al., 2011).

In the step of the State-of-the-art Review, it was performed a mapping study based on

the Systematic Mapping Study (SMS) methodology (PETERSEN et al., 2008) (KITCHEN-

HAM; BUDGEN; BRERETON, 2011) aiming to comprehend the current state and future

trends for IoT-based healthcare applications, as well as to find areas for further investi-

gations. With this study, it was possible to determine the main characteristics, functional

requirements, quality attributes or nonfunctional requirements, challenges and opportu-

nities of IoT-based healthcare applications. Moreover, in this step, it was performed the

study of the related works focused on reference architectures for IoT-based applications.

With the result found, it was started the step of the Establishment of the software

reference architecture for IoT-based healthcare applications, named RAH, considering

the elements and the relationships between them discovered by the SMS. To establish
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and document this reference architecture, the concepts of software architecture design

methods, views, styles, patterns and tactics were used.

Figure 3: Methodology steps.

Finally, after the establishment of RAH, it was performed the step of the Evaluation

of RAH, accomplished through the conduction of a case study, to obtain evidences that

allowed to confirm the hypothesis and discover improvements to RAH.

1.4 Thesis Outline and Summary of Contributions

This thesis is structured as follows. Chapter 2 brings an overview of the background

information that supports the topics investigated in this thesis. Initially, the terminology

and key concepts related Software Architecture, such as Architectural Structures and

Views and Quality Attributes are discussed. Continuing with the background, the Internet

of Things (IoT) concepts, such as Vision, Scope and Characteristics are presented. Then,

concepts of IoT for Healthcare and e-Health are discussed.

In Chapter 3, the related works regarding reference architectures for IoT-based appli-

cations are presented. To find the studies of reference architectures for IoT-based applica-

tions, an exploratory review of literature was performed. Continuing, Chapter 4 describes

the state-of-the-art of IoT-based healthcare applications, presenting a mapping study

based on the Systematic Mapping Study (SMS) methodology. This study was performed

by Barroca and Aquino (BARROCA; AQUINO, 2017a) and updated to be used in this thesis.

Chapter 5 presents the proposed software reference architecture, describing its ele-

ments and the relationship between them. This reference architecture was proposed by

Barroca and Aquino (BARROCA; AQUINO, 2017b) (BARROCA; AQUINO, 2018). Chapter 6

presents the evaluation of RAH, describing the case study performed to answer if RAH

is a suitable approach to address the challenges of interoperability, performance, security
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and availability found at developing IoT-based healthcare applications.

The IoT-based healthcare platform used in this case study was defined by Barroca and

Aquino (BARROCA; AQUINO, 2017b) (BARROCA; AQUINO; LIMA, 2018). Finally, Chapter

7 presents the conclusions and future works, revisiting the achieved contributions, sum-

marizing limitations, and presenting perspectives of future researches.
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2 Background

In this chapter, the theoretical background containing the main topics embraced in

this thesis, namely, software architecture, and Internet of Things (IoT) is given. Section 2.1

details the main concepts of software architecture, such as architectural structures and

views, software architecture terminology, reference architecture, quality attributes and

architecture and requirements. Section 2.2 presents the concepts related to the Internet of

Things (IoT), such as IoT vision, scope, and characteristics. Finally, Section 2.3 presents

key concepts related to the usage of IoT in healthcare, such as e-health and m-health.

2.1 Software architecture

Software systems are developed to satisfy organizations’ business goals. The archi-

tecture is a bridge between those (often abstract) business goals and the final (concrete)

resulting system. While the path from abstract goals to concrete systems can be challeng-

ing, the good news is that software architectures can be designed, analyzed, documented,

and implemented using known techniques that will support the achievement of these busi-

ness and mission goals. The complexity can be tamed, made tractable (BASS; CLEMENTS;

KAZMA, 2013).

Thus, according to Bass et al. (BASS; CLEMENTS; KAZMA, 2013), the software ar-

chitecture of a computing system is the set of structures needed to reason about the

system, which comprises software elements, the relations between them, and properties

from both. When it comes to structures, it is simply a set of elements held together by

a relation. Software systems are composed of many structures. There are three categories

of architectural structures, which will play an important role in the architectures design,

documentation, and analysis:

1. Module structures: The systems are partitioned into implementation units called

modules. Modules are assigned specific computational responsibilities and are the
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basis of work assignments for programming teams (Team A works on the database,

Team B works on the business rules, Team C works on the user interface, etc.)

(BASS; CLEMENTS; KAZMA, 2013). In some projects, the modules are subdivided to

assign work to sub teams, for example, the subsystems of a system can be decom-

posed into many parts. The module structure that captures the decomposition is

the decomposition module structure. Another kind of module structure emerges as

an output of object-oriented analysis and design class diagrams. If the modules are

aggregated into layers, another module structure is created. Module structures are

static structures that focus on the way the system’s functionality is divided up and

assigned to implementation teams (BASS; CLEMENTS; KAZMA, 2013).

2. Component-and-connector (C&C) structures: The elements of a system interact with

each other at runtime to carry out the system’s functionalities. To capture the

system’s runtime characteristic, it is used the component-and-connector structures.

Thus, a component is always a runtime entity that interacts with another component

by using a connector.

3. Allocation structures: This structure describes the mapping from the software struc-

tures to the system’s organizational, developmental, installation, and execution envi-

ronments. For example, modules are assigned to teams to be developed and assigned

to places in a file structure for implementation, integration, and testing. Components

are deployed onto hardware to be executed. These mappings are called allocation

structures (BASS; CLEMENTS; KAZMA, 2013).

Still regarding structures, a structure supports reasoning about the system and the

system’s properties. The reasoning should be related to an attribute of the system that

is important to some stakeholder. These include functionalities achieved by the system,

the system’s availability when it comes to faults, the difficulty of making specific changes

to the system, the system’s responsiveness to user requests, and many others. Finally,

other important definitions of software architecture presented in the software engineering

community are (CLEMENTS et al., 2010): architecture is a high-level design; architecture

is the system’s overall structure; and architecture is the components and connectors.

2.1.1 Architectural Structures and Views

As presented in the previous section, a structure is a set of elements as they exist in

software or hardware. To represent a software architecture, the structures are related to



30

views. A view is a representation of a coherent set of architectural elements, as written

by and read by system stakeholders. It consists of a representation of a set of elements

and the relations among them (BASS; CLEMENTS; KAZMA, 2013). Therefore, a view is a

representation of a structure. For example, a module structure is the set of the system’s

modules and their organization. A module view is the representation of that structure,

documented according to a template in a chosen notation, and used by some system’s

stakeholders. Thus, architects design structures and document views of those structures.

The module structures embody decisions of how the system has to be structured and

what set of code or data units have to be constructed. In this structure, the elements are

modules of some kind, for example, classes or layers, all of which are units of implemen-

tation. The modules represent a static way of considering the system and are assigned to

areas of functional responsibility. It allows us to reason about the functional responsibil-

ity assigned to each module; the software elements that a module is allowed to use; the

dependencies with others software; and the relationships between the modules by gen-

eralization or specialization (i.e., inheritance). Thus, the module structures convey this

information directly, but they can also be used by extension to ask questions about the

impact on the system when the responsibilities assigned to each module change. In other

words, examining a system’s module structures that is, looking at its module views, is an

excellent way to reason about a system’s modifiability (BASS; CLEMENTS; KAZMA, 2013).

The component-and-connector structures embody decisions of how the system will be

structured as a set of elements that have runtime behavior (components) and interactions

(connectors). In these structures, the elements are runtime components (which are the

main units of computation and could be services, peers, clients, servers, filters, or many

other types of runtime elements) and connectors (which are the vehicles of communication

between components, such as call-return, process synchronization operators, pipes, or

others) (BASS; CLEMENTS; KAZMA, 2013). These views allow us to reason about the main

executing components and how they interact at runtime; the shared data stores; data

progress through the system; and the parts of the system that can run in parallel. By

extension, component-and-connector views are crucially important for asking questions

about the system’s runtime properties such as performance, security, availability, and

more.

The allocation structures embody decisions of how the system will relate to non soft-

ware structures in its environment, such as CPUs, file systems, networks, and development

teams. These structures show the relationship between software elements and elements in
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one or more external environments in which the software is created and executed. Thus,

allocation views help us to reason about the processor in which each software element

executes; directories or files in which each element is stored during the system’s develop-

ment, testing, and building; and the assignment of each software element to development

teams.

2.1.2 Software Architecture Terminology

The architectural patterns, reference models, and reference architectures are some

important terms related to software architecture that represents the outcome of a set

of architectural decisions. Thus, according to Bass et al. (CLEMENTS et al., 2010), an

architectural pattern is a description of element and relation types together with a set of

constraints on how they may be used. A pattern can be thought of as a set of constraints

on an architecture and on the element types and their patterns of interaction. These

constraints define a set or family of architectures that satisfy them.

The terms architectural style and architectural pattern are used in similar ways (HOFMEIS-

TER; NORD; SONI, 2000). For example, client-server is a common architectural pattern.

Client and server are two element types, and their coordination is described regarding

the protocol that the server uses to communicate with each of its clients. The use of the

term client-server implies only that multiple clients exist; the clients themselves are not

identified, and there is no discussion of what functionality other than the implementation

of protocols has been assigned to any of the clients or the server. Countless architectures

follow the client-server pattern under this (informal) definition, but they are different from

each other.

Another example of an architectural pattern is the pipes and filters, composed of two

types of elements - pipes and filters. A pipe can be connected to a filter, but not to other

pipes, nor filters to other filters. In this style, processing is mapped to filters, and pipes

act as data conduits. Finally, an architectural pattern or style is not an architecture, but

it conveys a useful image of the system and imposes useful constraints on the software

architecture.

One of the most useful aspects of patterns is that they present known quality at-

tributes. This is why the architect chooses a particular pattern and not one at random.

Some patterns represent known solutions to performance problems, while others lend

themselves well to high-security systems; other patterns have been successfully used in

high-availability systems. Choosing an architectural pattern is often the architect’s first
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significant design choice. The term architectural style has also been widely used to describe

the same concept.

Regarding the reference model, according to Bass et al. (CLEMENTS et al., 2010), it is

a division of functionality together with data flow between the pieces. A reference model

is a standard decomposition of a known problem into parts that cooperatively solve the

problem. Arising from experience, reference models are a characteristic of mature domains,

for example, it can be named the standard parts of a compiler or a database management

system, and that is why it has been taught about these applications’ reference model.

Finally, still according to Bass et al. (CLEMENTS et al., 2010), a reference architecture

is a reference model mapped onto software elements (that cooperatively implement the

functionality defined in the reference model) and the data flows between them. While

a reference model divides the functionality, a reference architecture is the mapping of

that functionality onto a system decomposition. The mapping may be, but by no means

necessarily is, one to one. A software element may implement part of a function or several

functions.

The terms “reference architecture” and “domain-specific software architecture” are

used in similar ways (HOFMEISTER; NORD; SONI, 2000). Thus, it defines how the domain

functionality is mapped to the architecture elements. An example of a reference archi-

tecture is a compiler. There is a general notion of the basic elements of a compiler, for

example, the lexical and syntax and semantic analyzers (parsers).

Reference models, architectural patterns or architecture styles, and reference archi-

tectures or domain-specific software architecture are not concrete software architectures;

they are useful concepts that capture elements of an architecture. Each one is the outcome

of early design decisions, and the relationship among them is presented in Figure 4.

2.1.2.1 Comparison of Concrete and Reference Architectures

There are a number of differences between reference architectures and concrete archi-

tectures (ANGELOV; TRIENEKENS; GREFEN, 2008):

1. Reference architectures are of a generic nature. A reference architecture is designed

to address the functionalities and qualities desired by all stakeholders in their specific

contexts, as presented in Figure 5.

2. There is not a clear group of stakeholders of a reference architecture. As stakeholders
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Figure 4: Relationship between reference models, architectural patterns, reference archi-
tectures, and software architectures (CLEMENTS et al., 2010).

can be seen all companies from the domain, all companies developing software for

the domain, etc. However, it is not possible to involve all these stakeholders in the

definition of a reference architecture (due to logistic, political, etc. reasons).

3. Due to their generic nature, reference architectures are defined on a high level of

abstraction. They may provide details only for specific elements.

4. A reference architecture has to address more functional requirements and quality

attributes than a concrete architecture. These additional architectural qualities are

due to the generic nature of reference architectures and their wider audience. For

example, an “applicability” quality would be of importance for a reference architec-

ture to indicate the level of applicability of the architecture to different contexts

in the domain. This quality is superfluous for a concrete architecture as a concrete

architecture is designed to be applicable for a specific context.

Because of these differences between concrete and reference architectures, reference

architectures are considered by some authors as very distant from concrete architectures:

“reference architectures are not architectures; they are useful concepts that capture el-

ements of an architecture”(CLEMENTS et al., 2010) (ANGELOV; TRIENEKENS; GREFEN,

2008).

2.1.3 Quality Attributes or Nonfunctional Requirements

The qualities of a software architecture go beyond functionality, which is the primary

statement of the system’s capabilities, services, and behavior. For example, systems are

often redesigned not because they are functionally deficient, but because they are difficult
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Figure 5: The role of stakeholders and contexts for reference and concrete architectures
(ANGELOV; TRIENEKENS; GREFEN, 2008).

to maintain, port, or scale or they are too slow. Thus, when it refers to these charac-

teristics, it is referring to quality attributes. According to Bass et al. (BASS; CLEMENTS;

KAZMA, 2013), a quality attribute (QA) is a measurable or testable property of a system

used to indicate how well the system satisfies the needs of its stakeholders. This way, it

can understand that a quality attribute is a measure of “how good” a system is along with

some dimension of how interesting it is to a stakeholder.

2.1.3.1 Architecture and Requirements

Therefore, requirements for a system come in a variety of forms: textual requirements,

mockups, existing systems, use cases, user stories, etc. All requirements encompass the

following categories (BASS; CLEMENTS; KAZMA, 2013):

1. Functional requirements. These requirements state what the system must do and

how it must behave or react to runtime stimuli.

2. Quality attributes or Nonfunctional requirements. These requirements are qualifi-

cations of the functional requirements or the overall product. A qualification of a

functional requirement is an item such as how fast the function must be performed,

or how resilient it must be to erroneous input. A qualification of the overall product

is an item such as the time to deploy the product or a limitation on operational

costs.
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3. Constraints. A constraint is a design decision that should be made with no freedom

at all. That is, it’s a design decision that’s already been made. Examples include the

requirement to use a certain programming language or to reuse a certain existing

module, or a management fit to make the system service-oriented. These choices are

arguably in the in the architect’s scope, but external factors such as not being able

to train the staff in a new language, having a business agreement with a software

supplier or pushing business goals of service interoperability) have led those with

the power to dictate these design outcomes.

The software architecture has “responses” for each of these requirements:

1. Functional requirements are satisfied by assigning an appropriate sequence of re-

sponsibilities throughout the design. As it will be seen later in this chapter, assign-

ing responsibilities to architectural elements is a fundamental architectural design

decision.

2. Quality attributes or Nonfunctional requirements are satisfied by the various struc-

tures designed into the architecture, and the behaviors and interactions of the ele-

ments included in those structures.

3. Constraints are satisfied by accepting a design decision and reconciling it with other

affected design decisions.

2.1.3.2 Specifying Quality Attribute Requirements

A quality attribute requirement should be unambiguous and testable (BASS; CLEMENTS;

KAZMA, 2013). There is a common form to specify all quality attribute requirements,

which has the advantage of emphasizing the commonalities among all quality attributes.

This common form of quality attribute expression is formed of:

1. Source of stimulus. An entity (a human, a computer system, or any other actuator)

that generated the stimulus.

2. Stimulus. The stimulus is a condition that requires a response when it arrives at a

system.

3. Environment. The stimulus occurs under certain conditions. The system may be

in an overload condition or in normal operation, or some other relevant state. For
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many systems, “normal” operation can refer to different modes. For these kinds of

systems, the environment should specify in which mode the system is executing.

4. Artifact. An artifact is stimulated. This may be a collection of systems, the whole

system, or some piece or pieces of it.

5. Response. The response is the activity undertaken as the result of the stimulus

arrival.

6. Response measure. When the response occurs, it should be measurable in any way

so that the requirement can be tested.

These parts are presented in Figure 6.

Figure 6: Parts of a quality attribute scenario (BASS; CLEMENTS; KAZMA, 2013).

2.2 Internet of Things

The Internet of Things (IoT) is a paradigm that is rapidly gaining ground in the mod-

ern wireless telecommunications scenario. This is mainly due to the growing number of

physical objects that are being connected to the Internet. These objects achieve the idea

of the Internet of Things (IoT), which is the pervasive presence of a variety of things or

objects such as Radio-Frequency IDentification (RFID) tags, sensors, actuators, mobile

phones, etc., around the users, which, through unique addressing schemes, are able to

interact with each other and cooperate with their neighbors to reach common goals (AT-

ZORI; IERA; MORABITO, 2010). Examples of these things include thermostats and HVAC

(Heating, Ventilation, and Air Conditioning) monitoring and control systems which makes

smart homes possible. The “things” are related to systems that have different domains,

such as transportation, healthcare, industrial automation, and emergency response. Thus,

in this context, the IoT can play a remarkable role and improve the quality of our lives
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(AL-FUQAHA et al., 2015). Moreover, according to Atzori et al. (ATZORI; IERA; MORABITO,

2010), the main strength of the IoT concept is the high impact it will have on several

aspects of the everyday life and the behavior of potential users.

From a private user’s point of view, the most apparent effects of the use of the IoT will

be visible in both working and domestic fields. In this context, domotics, assisted living,

healthcare, and enhanced learning are only a few examples of possible application scenarios

in which the new paradigm will play a leading role in the near future. Similarly, from the

business users’ perspective, the most apparent consequences will be equally visible in fields

such as automation and industrial manufacturing, logistics, business/process management,

and the intelligent transportation of people and goods.

IoT enables things to see, hear, think and perform tasks, as well as to share data and

coordinate decisions. The IoT transforms these objects from plain and traditional things

to smart objects by exploiting its underlying technologies such as ubiquitous and perva-

sive computing, embedded devices, communication technologies, sensor networks, Internet

protocols and applications (AL-FUQAHA et al., 2015). Smart objects, along with their sup-

posed tasks, constitute specific domain applications (vertical markets) while ubiquitous

computing and analytical services form independent domain services (horizontal markets).

Figure 7 illustrates the overall concept of the IoT in which every specific domain appli-

cation is interacting with independent domain services, whereas in each domain sensors

and actuators communicate directly with each other.

Figure 7: Overall picture of the IoT emphasizing the vertical markets and the horizontal
integration between them (AL-FUQAHA et al., 2015).
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2.2.1 IoT Vision and Scope

From a conceptual vision, the IoT is built on three pillars, related to the ability

of things to (i) be identifiable (anything identifies itself), (ii) communicate (anything

communicates) and (iii) interact (anything interacts), either among themselves, building

networks of interconnected objects, or with end-users or other entities in the network

(MIORANDI et al., 2012). Therefore, the development of technologies and solutions to enable

such a vision is the main challenge for us. Regarding the definition of “things”, they are

entities that (MIORANDI et al., 2012):

• Have a physical embodiment and a set of associated physical features (e.g., size,

shape, etc.);

• Have a minimal set of communication functionalities, such as the ability to be dis-

covered and to accept incoming messages and reply to them.

• Own a unique identifier;

• Have some basic computing capabilities;

• May hold means to sense physical phenomena (e.g., temperature, light, electromag-

netic radiation level) or to trigger actions affecting the physical reality (actuators).

From a system perspective, the IoT can be looked at as a highly dynamic and rad-

ically distributed networked system composed of a substantial number of smart objects

producing and consuming information. The ability to interface with the physical reality is

achieved through the presence of devices able to sense physical phenomena and translate

them into a stream of information data (thereby providing information on the current

context and/or environment), as well as through the presence of devices able to trigger

actions that have an impact on the physical field (through suitable actuators).

By using these technologies combined it will be possible to create what is referred to as

a smart world. For example, nowadays, many buildings already have sensors in an attempt

to save energy; home automation is occurring; cars, taxis, and traffic lights have devices

to try and improve safety and transportation; people have smartphones with sensors to

run many useful apps; industrial plants are connecting to the Internet, and healthcare

services are relying on increased home sensing to support remote medicine and wellness.

Finally, from a human perspective, it will often be the integral parts of the IoT system,

and consequently, in the future, the scope of IoT will be enormous and will affect every

aspect of all our lives (STANKOVIC, 2014).
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2.2.2 IoT Characteristics

From a research perspective, according to Pereira et al. (PERERA et al., 2014) (SUND-

MAEKER et al., 2010), the IoT has seven major characteristics: intelligence, architec-

ture, complex system, size considerations, time considerations, space considerations, and

everything-as-a-service. These characteristics need to be considered throughout all the

phases of the development of IoT solutions, which are design, development, implementa-

tion, and evaluation.

Regarding the intelligence, it means the generation of knowledge. First, to generate

knowledge, it needs to collect the raw data. The data is transformed into knowledge (high-

level information) mainly by modelling and reasoning the context of the application. The

context can be used to fuse the sensor data together to infer new knowledge. Once it has

the knowledge, it can be applied towards more intelligent interaction and communication.

IoT should be facilitated by a hybrid architecture which comprises many different

architectures. Primarily there would be two architectures: an event-driven and a time-

driven (PERERA et al., 2014). Some sensors produce data when an event occurs (e.g., door

sensor), while the rest provide data continuously, based on specified time frames (e.g.,

temperature sensor).

The complex system characteristic is related to the fact that the IoT comprises a large

number of objects/things (sensors and actuators) that interact autonomously. Currently,

there are millions of sensors deployed around the world (LE-PHUOC et al., 2010), and a

projection of billions of things connected in the next years. The size considerations is that

IoT needs to facilitate the interaction between these objects. These numbers will grow

continuously and will never decrease, and similar to the number of objects, the number

of interactions may also increase significantly. These interactions may differ considerably

depending on the objects’ capabilities. Moreover, some objects may have very few capa-

bilities, as well as store insufficient information and do no process it at all or, in other

cases, may have more significant memory, processing, and reasoning capabilities, which

make them more intelligent.

The time considerations regards the fact that IoT could handle billions of parallel

and simultaneous events due to the massive number of interactions; therefore, real-time

data processing is essential. Beyond time, the space considerations regards the locations

of the objects. These locations play a significant role in context-aware computing. When

the number of objects gets larger, tracking becomes an essential requirement. Interactions
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are highly dependent on the objects’ positions, their surroundings, and the presence of

other entities (e.g., objects and people) (PERERA et al., 2014).

Finally, the everything-as-a-service characteristic concerns the popularity of cloud

computing, consuming resources as a service such as Platform-as-a-Service (PaaS), In-

frastructure -as-a- Service (IaaS), and Software-as-a-Service (SaaS). The everything-as-a-

service model is highly efficient, scalable, and easy to use (BANERJEE et al., 2011). IoT

demands significant amounts of infrastructure to be put in place to make its vision a

reality, where it would follow a community or crowd-based approach. Therefore, sharing

would be essential and an everything-as-a-service model would suit sensing-as-a-service

the most (ZASLAVSKY; PERERA; GEORGAKOPOULOS, 2013).

2.3 Internet of Things for Healthcare

Traditionally, the motivation of utilizing modern Information and Communication

Technologies (ICT) in healthcare system is to offer promising solutions for efficiently

delivering all kinds of medical healthcare services to patients, named as e-health, such

as electronic record systems, telemedicine systems, personalized devices for diagnosis, etc

(QI et al., 2017). E-health involves a broad group of activities that use electronic means

to deliver health-related information, resources and services. It encompasses a range of

standards, tools and activities that use electronic means to deliver information, resources

and services in relation to health and social care. At the heart of e-health is a vision of

improving the quality of health information, strengthening national health systems and

ensuring accessible, high-quality health care for all (ORGANIZATION, 2018).

Driven by a sustained increase in longevity, many developed countries are now facing

the fact that their fast-growing demographics is the over- 80s (QI et al., 2017). This trend

brings with some key concerns about the economic viability of traditional healthcare

systems, and thus it needs to design and develop more coherent and ubiquitous ICT

enabled solutions for delivering high quality patient-centered healthcare services. In this

context, the use of IoT technology will enable faster and safer preventive care, lower overall

cost, improved patient-centered practice and enhanced sustainability. This technology will

play a prominent role in patient tele-monitoring in hospitals and more importantly at

home (AHMADI et al., 2018).

There are several applications for healthcare in IoT, which can potentially deliver

comprehensive patient care in various settings, including acute (in-hospital), long-term
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(nursing homes), and community-based (typically, in-home). With patients attached to

sensors to measure vital signs and other biometric information, problems could be more

rapidly diagnosed, a better quality of care given, and resources used more efficiently (LA-

PLANTE; LAPLANTE, 2016). Healthcare sector always seeks new approaches for the services

delivery, reducing the costs and improving the healthcare quality; therefore, reliance of

this sector on IoT technology will be increased.

IoT-based healthcare applications can be used in a diverse array of fields, includ-

ing care for pediatric and elderly patients, the supervision of chronic diseases, and the

management of private health and fitness, among others. Most of the current IoT-based

applications for healthcare were proposed for home healthcare monitoring (AHMADI et al.,

2018). In this regard, Ambient-Assisted Living (AAL) technologies can create suitable

solutions for disabled and elderly people suffering from different disabilities and chronic

diseases.

AAL by means of a dynamic and interconnected environment has the potential to im-

prove people’s quality of life (CALVARESI et al., 2017). Based on Blackman et al. (BLACK-

MAN et al., 2016), three generations of AAL systems can be distinguished. The first gen-

eration includes wearable devices, usually alarms for emergency situations. The second

generation is home sensors that provide automatic response to detection of hazards. Fi-

nally, the third generation is based on the integration of wearable devices and home

sensors, applicable for monitoring of patient situation and prevention of health risks.

Another e-health and IoT related component is mHealth. To date, no standardized

definition of mHealth has been established. The World Health Organization (WHO) (OR-

GANIZATION, 2011) defined mHealth or mobile health as medical and public health prac-

tice supported by mobile devices, such as mobile phones, patient monitoring devices,

personal digital assistants (PDAs), and other wireless devices. mHealth involves the use

and capitalization on a mobile phone’s core utility of voice and short messaging service

(SMS) as well as more complex functionalities and applications including general packet

radio service (GPRS), third and fourth generation mobile telecommunications (3G and 4G

systems), global positioning system (GPS), and Bluetooth technology (ORGANIZATION,

2011).

Finally, the main scenarios of usage of IoT-based healthcare applications, supported by

e-health and ICT, are monitoring physiological and pathological signals; self-management,

wellness monitoring and prevention; medication intake monitoring; personalized health-

care; cloud-based health information systems; disease monitoring and telepathology; as-
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sisted living; and rehabilitation.

2.4 Final Remarks

This chapter presented the essential concepts related to this thesis, such as software

architecture and Internet of Things. In the software architecture section, it was presented

the concepts of architecture structure and views; the software architecture terminology;

and quality attributes. In the Internet of Things section, it was defined the IoT vision,

scope, and characteristics. Moreover, In Internet of Things for Healthcare subsection,

some concepts of home healthcare, e-health and m-health, and scenarios of IoT-based

applications were presented. Finally, The next chapter will present the related works of

this thesis.
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3 Related Work

In this chapter, a review on the existing architectures and reference architectures

for Internet of Things (IoT) is provided. These architectures were identified through the

conduction of an exploratory review. Currently, to the best of our knowledge, there is

no specific reference architecture for IoT-based healthcare applications. The chapter is

organized as follows: in Section 3.1, the reference architectures for IoT are detailed. Section

3.2, in its turn, presents the existing architectures for IoT applications.

3.1 Reference Architectures for IoT

Identifying and structuring an architecture or model is a long and tedious process with

much negotiation to abstract from specific needs and technologies. Such a reference can

serve as an overall, generic guideline; not all domain applications will require each detail

for real-life implementation (EBERT et al., 2016). In the IoT context, the applications have

been based on fragmented software implementations for specific systems and use cases,

and usually do not follow reference architectures. The need for reference architectures in

industry has become tangible with the fast-growing number of initiatives working toward

standardized architectures. These initiatives aim to facilitate interoperability, simplify de-

velopment, and ease implementation (EBERT et al., 2016). There are three major reference

architectures found in the literature for IoT: IoT-A, IIRA, and WSO2. In the following

sections, these reference architectures will be presented.

3.1.1 IoT-A - Reference Architecture

The lack of standardization in the IoT domain has resulted in the fragmentation of

the approaches in IoT systems design and implementation. To address this problem, the

IoT-A project of the EU (BASSI et al., 2016) proposed a Architecture Reference Model

(ARM) defining the principles and guidelines for generating IoT architectures, provid-
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ing the means to connect systems in the communication (how devices interact with the

system) and service (how services are integrated).

The IoT-A Reference Architecture is, among others, designed as a reference for the

generation of compliant IoT concrete architectures that are tailored to one’s specific needs

(BAUER et al., 2013). It is an abstract framework that comprises of a minimal set of

unifying concepts, axioms and relationships for understanding significant relationships

between entities of the IoT domain. It consists of several submodels that set the scope for

the IoT design space (STRAVOSKOUFOS; SOTIRIADIS; PETRAKIS, 2016):

1. IoT domain model: It is a top-level description (a UML diagram or ontology) of the

IoT domain that describes the main concepts of the IoT like Devices, IoT Services

and Virtual Entities (VEs) that is, anything that has a distinct existence, and also

relations between these concepts.

2. IoT Information model: An abstract description (UML diagram or ontology) for

explaining information about elements or concepts defined in the IoT Domain Model

(e.g., applicability of concepts).

3. IoT Functional model: It identifies Functional Groups (FGs) that is, groups of func-

tionalities, grounded in key concepts of the IoT Domain Model.

4. IoT Communication model: Introduces concepts for handling the complexity of com-

munication in an IoT environment. It is one FG in the IoT Functional model.

5. Trust, Security and Privacy (TSP) model: Introduces functionality related to Trust,

Security and Privacy. TSP is also one FG in the IoT functional model.

This reference architecture is based on the concepts of architectural views and archi-

tectural perspectives. The IoT-A RA’s views addressing one aspect of the architectural

structure are (STRAVOSKOUFOS; SOTIRIADIS; PETRAKIS, 2016):

1. Physical Entity View: It describes all physical entities and their relations (e.g.,

sensors, actuators, environment measurements) in an IoT system. This view is not

covered by IoT-A because it is use-case independent.

2. IoT context View: It provides context information about physical entities such as

the Physical Entity View, this view is also not covered by IoT-A as it is use-case

independent.
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3. Functional View: It describes the system’s runtime Functional Components, their re-

sponsibilities, default functions, interfaces and primary interactions. The Functional

View derives from the Functional Model and reflects the developer’s perspectives on

the system.

4. Information View: Provides an overview on how (a) static information (i.e., VEs

by means of hierarchies, semantics) and (b) dynamic information (i.e., information

processing, storage, flow) is represented.

5. Deployment View: It explains the operational behavior of the functional components

and the interplay of them.

Finally, Figure 8 demonstrates the relationship between IoT-A architectural views and

model in the process of designing the actual system architecture, and Figure 9 presents

the Functional-decomposition viewpoint of the IoT Reference Architecture.

Figure 8: Relationship of IoT-A architectural views and models (BASSI et al., 2016)
(ROZANSKI; WOODS, 2012).

The IOT RA’s stakeholder requirements clearly show the need of addressing non-

functional requirements. Based on them, perspectives which are most important for IoT-

systems are (BAUER et al., 2013):

• Evolution and Interoperability;

• Availability and Resilience;

• Trust, Security and Privacy;
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Figure 9: IoT-A functional view (BAUER et al., 2013).

• Performance and Scalability.

However, according to Bauer et al. (BAUER et al., 2013), as these requirements are

requiring some kind of quality for a real system, the perspectives aim more on the concrete

system architecture, than at a Reference Architecture. Thus, although identified, these

requirements are not evaluated.

3.1.2 IIRA - Industrial Internet Reference Architecture

The IIRA is a standards-based open architecture for Industrial IoT (IIoT) systems.

The IIRA maximizes its value by having broad industry applicability to drive interopera-

bility, to map applicable technologies, and to guide technology and standard development.

The architecture description and representation are generic and at a high level of abstrac-

tion to support the requisite broad industry applicability. The IIRA distills and abstracts

common characteristics, features and patterns from use cases defined in the Industrial

Internet Consortium (IIC) as well as elsewhere. It will be refined and revised continually

as feedback is gathered from its application in the testbeds developed in IIC as well as

real-world deployment of IIoT systems. The IIRA design is also intended to transcend

today’s available technologies and so can identify technology gaps based on the architec-

tural requirements. This will in turn drive new technology development efforts by the IIC

(LIN; CRAWFORD; MELLOR, 2017).
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The IIRA documents the outcome of applying its framework to the intended class

of systems of interest: Industrial Internet of Things systems. It first identifies and high-

lights the most important architectural concerns commonly found in IIoT systems across

industrial sectors and classifies them into viewpoints along with their respective stake-

holders. It then describes, analyzes and, where appropriate, provides guidance to resolve

these concerns in these viewpoints, resulting in a certain abstract architecture represen-

tations. Figure 10 illustrates the key ideas about the constructs of the Industrial Internet

Reference Architecture and its application.

Figure 10: IIRA constructs and application (LIN; CRAWFORD; MELLOR, 2017).

The IIRA viewpoints are defined by analyzing the various IIoT use cases developed

by the IIC and elsewhere, identifying the relevant stakeholders of IIoT systems and de-

termining the proper framing of concerns. These four viewpoints are (LIN; CRAWFORD;

MELLOR, 2017):

• business: The business viewpoint attends to the concerns of the identification of

stakeholders and their business vision, values and objectives in establishing an IIoT

system in its business and regulatory context.

• usage: The usage viewpoint addresses the concerns of expected system usage. It is

typically represented as sequences of activities involving human or logical (e.g. sys-

tem or system components) users that deliver its intended functionality in ultimately

achieving its fundamental system capabilities

• functional: The functional viewpoint focuses on the functional components in an

IIoT system, their structure and interrelation, the interfaces and interactions be-
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tween them, and the relation and interactions of the system with external elements

in the environment, to support the usages and activities of the overall system.

• implementation: The implementation viewpoint deals with the technologies needed

to implement functional components (functional viewpoint), their communication

schemes and their lifecycle procedures.

Considering the Functional Viewpoint, a typical IIoT system is decomposed in five

functional domains: control, operation, information, application, and business. These do-

mains and its data flow is presented in Figure 11.

Figure 11: IIRA Functional Domains (LIN; CRAWFORD; MELLOR, 2017).

The IIRA is at a level of abstraction that excludes architectural elements and re-

quirements whose evaluation requires specificities only available in concrete systems (LIN;

CRAWFORD; MELLOR, 2017). It does not describe all the architecture constructs as out-

lined in Figure 10.

3.1.3 WSO2’s Reference Architecture

The WSO2’s reference architecture, presented in Figure 12, consists of a set of com-

ponents organized in layers and cross-cutting layers (FREMANTLE, 2014). The layers are
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• Device: The bottom layer of the architecture is the device layer. Devices can be of

various types, but in order to be considered as IoT devices, they must have some

communications that either indirectly or directly attaches to the Internet. Examples

of devices are: Arduino and Raspberry PI.

• Communications: The communication layer supports the connectivity of the devices.

There are multiple potential protocols for communication between the devices and

the cloud. Example of communications protocols are: HTTP/HTTPs and MQTT.

• Aggregation/Bus: This layer that aggregates and brokers communications. It pro-

vides the followings abilities: to support an HTTP server and/or an MQTT broker

to talk to the devices; to aggregate and combine communications from different de-

vices and to route communications to a specific device (possibly via a gateway); to

bridge and transform between different protocols, e.g. to offer HTTP-based APIs

that are mediated into an MQTT message going to the device.

• Event processing and analytics: This layer takes the events from the bus and provides

the ability to process and act upon these events. It is the layer related to big data

analytics platform.

• Client/external communications: The reference architecture needs to provide a way

for these devices to communicate outside of the device-oriented system. This includes

three main approaches: web/portal, dashboards, and API management. This layer

is responsible for these approaches.

The cross-cutting layers are:

• Device management: This layer is handled by two components. A server-side system

(the device manager) communicates with devices via various protocols and provides

both individual and bulk control of devices. It also remotely manages software and

applications deployed on the device. It can lock and/or wipe the device if necessary.

The device manager works in conjunction with the device management agents. There

are multiple different agents for different platforms and device types.

• Identity and access management: This layer is responsible for identification and ac-

cess management. It provides the following services: OAuth2, SAML2 SSO, XACML,

LDAP, etc.
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Figure 12: WSO2 reference architecture (FREMANTLE, 2014).

This reference architecture highlight the scalability and security requirements, map-

ping it to components of WSO2 platform. The WSO2 platform is based on a technology

called WSO2 Carbon, which is in turn based on OSGi. Each product in the platform

shares the same kernel based on Carbon. In addition, each product is made from features

that are composed to provide the required functionality (FREMANTLE, 2014). Thus, al-

though the requirements are identified, they are not evaluated and its is not clear how to

instantiate them differently from the technologies provided by WSO2 platform.

3.2 IoT Architectures

There are many architectures found in the literature for IoT applications. The major

architectures are proposed by Yang et al. (YANG et al., 2011), Gubbi et al. (GUBBI et al.,

2013), Tan and Wang (TAN; WANG, 2010), Atzori et al. (ATZORI; IERA; MORABITO, 2010),

and Wu et al. (WU et al., 2010). Although they are too abstract, they define important

layers and components regarding IoT applications in various domains. In the following

sections, these architectures will be presented.
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3.2.1 Three Layers Architectures

The architecture proposed by Yang et at. (YANG et al., 2011), presented in Figure

13 is a three layers architecture composed of the following layers: perception, network

and application. The perception layer main task is to collect and process information. It

consists of traditional wireless sensor network, WSN radio frequency identification, RFID

and final controlling element.

Figure 13: Yang et at. three layers architecture (YANG et al., 2011).

IoT’s network layer is established on the basis of the current mobile telecommunication

and Internet. Its main feature is to convey the information between a long distance.

Network layer comprises various communication network and integrated network based

on Internet, which is generally regarded as the most mature part. The main task for

the application layer is to provide services. The application layer is a connection of IOT

technologies and sector professional technologies and a layer to realize the wide intelligent

application by providing various solutions (GUBBI et al., 2013).

Another three layers architecture, presented in Figure 14, is proposed by Gubbi et

al. (GUBBI et al., 2013). This architecture is similar to the architecture proposed by Yang

et al. (YANG et al., 2011). The wireless sensor networks (“network of things”) layer has

the same responsibility as the perception layer. The cloud computing layer has the same

responsibility to the network layer, but with the use of cloud computing concepts (SaaS,

IaaS and Paas). The application layer contains the IoT applications and services.
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Figure 14: Gubbi et at. three layers architecture (GUBBI et al., 2013).

3.2.2 Middleware Based Architectures

The architecture proposed by Tan and Wang (TAN; WANG, 2010), presented in Figure

15, is a middleware based architecture composed of six layers. The access and edge tech-

nology layers are responsible for the intelligent objects (things) and how to access it. The

backbone network layer allows the things to connect to the Internet. The coordination

layer responses to process the structure of packages from different application systems

and reassemble them to an unified structure which can be identified and processed by ev-

ery application system (TAN; WANG, 2010). The middleware layer allows the interaction

between objects and services with different hardware specificity. Finally, the application

layer is responsible for executing applications for the users.

Another architecture, presented in Figure 16, is proposed by Atzori et al. (ATZORI;

IERA; MORABITO, 2010). This architecture is a Server Oriented Architecture (SOA) mid-

dleware based composed of the following layers: applications, service composition, service

management, object abstraction, objects, management of trust, privacy and security. The

applications layer are on the top of the architecture, exporting all the system’s function-

alities to the final user.

The service composition layer is on top of a SOA-based middleware architecture. It
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Figure 15: Tan and Wang middleware based architecture (TAN; WANG, 2010).

provides the functionalities for the composition of single services offered by networked

objects to build specific applications. On this layer there is no notion of devices and the

only visible assets are services.The service management layer provides the main functions

that are expected to be available for each object and that allow for their management in

the IoT scenario. A basic set of services encompasses: object dynamic discovery, status

monitoring, and service configuration (ATZORI; IERA; MORABITO, 2010).

The IoT relies on a vast and heterogeneous set of objects, each one providing specific

functions accessible through its own dialect. There is thus the need for an abstraction

layer capable of harmonizing the access to the different devices with a common language

and procedure (ATZORI; IERA; MORABITO, 2010). Finally, the layer of management of

trust, privacy and security is responsible for security and privacy of the data exchanged

between the other layers.

3.2.3 Five Layers Architecture

The architecture proposed by Wu et al. (WU et al., 2010), presented in Figure 17, is

composed of the following five layers: business, application, processing, transport, and per-

ception. The perception layer is responsible to perceive the physical properties of objects

(such as temperature, location etc.) by various sensors (such as infrared sensors, RFID,

2-D barcode), and convert these informations to digital signals which is more convenient
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Figure 16: Atzori et al. SOA-based middleware architecture (ATZORI; IERA; MORABITO,
2010).

for network transmission.

The Transport Layer (or Network Layer) is responsible for transmitting data received

from the Perception Layer to the processing center through various network, such as

wireless or cable network, even the enterprise Local Area Network (LAN). The Processing

Layer mainly store, analyze and process the informations of objects received from the

transport layer.

The task of the Application Layer is based on the data processed in the Process Layer,

and develops diverse applications of the Internet of Things, such as intelligent transporta-

tion, logistics management, identity authentication, location based service (LBS), and

safety, etc.

The Business Layer is a manager of the Internet of Things, including managing the

applications, the relevant business model and other business. The Business Layer not only

manages the release and charging of various applications, but also the research on business

model and profit model (WU et al., 2010).
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Figure 17: Wu et al. architecture (WU et al., 2010).

3.3 Discussion

As presented in the previous sections, IoT RA, IIRA and WSO2 RA are reference

architectures for IoT. These reference architectures work with concepts, such as IoT do-

main and IoT service, trying to address as many IoT applications scenarios as possible.

The IoT RA presents the need to address the following quality attributes: interoperability,

availability, security, performance and scalability. However, as these attributes are requir-

ing some kind of quality for a real system, they are not evaluated or its is not presented

what are the components that address them. IIRA is at a level of abstraction that ex-

cludes architectural elements and requirements whose evaluation requires specificities only

available in concrete systems, not presenting what are the addressed quality attributes.

The WSO reference architecture highlight the scalability and security quality attributes

mapping them into proprietary components of WSO2 platform.

Moreover, it was not found examples of how to instantiate these reference architec-

tures into concrete architectures, and their evaluation. On the other hand, the previous

sections also presented IoT architectures with three layers, middleware based, and five

layers. Although these architectures have definitions of layers’ responsibilities, they are

too abstract and focused on general scenarios of IoT-based applications. There are no

definitions of components or how it address requirements and quality attributes.

Finally, the idea to address as many IoT applications requirements and scenarios as

possible without specifying the quality attributes required for the IoT-based healthcare

applications or the components that address these requirements, make it difficult to use

these reference architectures as guidelines for the development of these applications. In
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this context, despite the fact that there are existing reference architectures for IoT-based

applications, they are too general and abstract, and do not focus on IoT-based healthcare

applications. Therefore, currently, to the best of our knowledge, there is no reference

architecture for these specific applications.

3.4 Final Remarks

This chapter presented the related works, providing a review about existing archi-

tectures and reference architectures for Internet of Things (IoT). Thus, the described

reference architectures were IoT RA, IIRA and WSO2 RA. The described architectures

were three, five layers, and middleware based architectures. In this chapter, it was possi-

ble to note that, to best the knowledge, there is no reference architecture for IoT-based

healthcare applications. Finally, The next chapter will present the state-of-the-art of the

IoT-based healthcare applications.
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4 State-of-the-art Review

Before the proposal of the software reference architecture for IoT-based healthcare

applications, it is essential to understand the state-of-the-art of this area, and to realize

that, it was performed a study based on Systematic Mapping Study (SMS) methodology

(PETERSEN et al., 2008). According to Wohlin et al. (WOHLIN et al., 2012), SMS searches

a broader field for any kind of research, in order to get an overview of the state-of-

art or state-of-practice on a topic. It follows the same principled process as Systematic

Literature Reviews (KITCHENHAM; CHARTERS, 2007), but it has different criteria for

inclusions/exclusions and quality. Due to its broader scope and varying type of studies,

the collected data and the synthesis tend to be more qualitative than for Systematic

Literature Reviews (WOHLIN et al., 2012).

Therefore, this chapter presents a study based on the SMS methodology that was per-

formed aiming to comprehend the current state and future trends for IoT-based health-

care applications, and also in order to find areas for further investigations. This Chapter

is structured as follows: in section 4.1, it is presented the method for this study, focusing

on the research questions, search process, inclusion and exclusion criteria, quality assess-

ment and data collection. Continuing, in section 4.2, it is presented the results for this

method, regarding search results, quality evaluations and factors. Section 4.3 presents the

discussion about the results, and in section 4.4, the conclusions and future works of this

research are presented.

4.1 Method

This study has been undertaken as a systematic mapping study based on the guidelines

as proposed by Petersen et al. (PETERSEN et al., 2008). In this case, the goal of the study is

to comprehend the current state and future trends in IoT-based healthcare applications.

The steps in the systematic mapping study method are documented in the following

subsections.
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4.1.1 Research Questions

Considering the context of IoT-based healthcare applications, the research questions

addressed by this study are:

RQ1. What are the main characteristics of healthcare applications based on IoT infras-

tructure?

RQ2. What are the protocols used in healthcare applications based on IoT infrastructure?

RQ3. What are the challenges related to healthcare applications based on IoT infras-

tructure?

Regarding RQ1, about the characteristics of healthcare applications, it intends to an-

alyze the functional and nonfunctional requirements, and for which area of healthcare the

applications are intended.

4.1.2 Search Process

The studies selection was made on Scopus from Elsevier1, as it indexes the main

sources of computing in the academic area. The example of sources indexed by Scopus

are presented in Table 1.

Table 1: Example of sources indexed by Scopus.

Source Link
ACM Digital Library http://dl.acm.org
IEEExplorer http://ieeexplore.ieee.org
Science Direct http://www.sciencedirect.com
Springer Link http://link.springer.com

To define the search string, it was used terms related to health and Internet of Things

(IoT). The main goal was to obtain the major number of researches of this particular

applications. Thus, the defined search string was: (“Internet of Things” OR “IoT”) AND

health.
1http://scopus.com
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4.1.3 Inclusion and exclusion criteria

This review included works published at any year because it was intended to find

the biggest number of researches regarding the development of healthcare applications

based on IoT infrastructure. The duplicated works, those that not presented IoT-based

healthcare applications and, those that the researchers did not have access were excluded

from this review.

4.1.4 Quality assessment

Each selected study was evaluated according to the following quality assessment (QA)

questions:

QA1. Is the paper based on research (or is it merely a “lessons learned” report based

on expert opinion)?

QA2. Is there a clear statement of the aims of the research?

QA3. Is there an adequate description of the context in which the research was carried out?

QA4. Is the study of value for research or practice?

QA5. Is there a clear statement of findings?

These criteria were based on Dyba and Dingsoyr (DYBÅ; DINGSØYR, 2008) and they

are grounded in three points that need to be addressed in the appreciation of the studies

of the literature review:

• Rigour. Has a thorough and appropriate approach been applied to key research

methods in the study?

• Credibility. Are the findings well-presented and meaningful?

• Relevance. How useful are the findings to the software industry and the research

community?

These five quality assessment questions were scored as follows: 0 - in case of not attend
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the criteria; 0.5 - in case of partial attend of the criteria; and 1 - in case of fully attend of

the criteria.

4.1.5 Data collection

The data extracted from each study were: authors country, publication year, venue

(journal of conference), goal, app characteristics, functional requirements, nonfunctional

requirements, transfer protocols, formatting pattern, IoT platform, define ontologies?,

communication protocols, application domain, hardware, interoperability with other sys-

tems, application deployment, challenges and additional comments.

4.2 Results

This section summarizes the results of this study. It specifies each stage of its execution

and also presents an overview of the papers that were useful for answer the research

questions. Finally, it describes the quality evaluation results of the read studies.

4.2.1 Search Results

With the execution of the search with the string described in Section 4.1.2 at Scopus

(stage 1), 1355 papers were retrieved. It was performed the analysis of the titles and

abstracts of each one of them (stage 2). After the analysis, 46 papers presented in Table

2 remained. Finally, it was performed a carefully read of these 46 papers and 33 of them

were useful to answer the proposed research questions (stage 3). Figure 18 presents these

stages of the study selection process. The results of the extraction of the 46 studies are

presented in https://goo.gl/skZmns.

Figure 18: Stages of the papers selection process.
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Table 2: The 46 carefully read papers of stage 2.

Id Authors Year Venue

S1 Geng Yang et al (YANG et al., 2014a) 2014 Conference

S2 Antonio J. Jara et al (JARA; ZAMORA-

IZQUIERDO; SKARMETA, 2013)

2013 Journal

S3 Yuan Jie Fan et al (FAN et al., 2014) 2014 Conference

S4 Pedro Castillejo et al (CASTILLEJO et al.,

2013)

2013 Journal

S6 Charalampos Doukas and Ilias Maglogiannis

(DOUKAS; MAGLOGIANNIS, 2012)

2012 Conference

S7 Elena Poenaru and Calin Poenaru (POE-

NARU; POENARU, 2013)

2013 Conference

S8 Chao-Tung Yang et al (YANG et al., 2013) 2013 Conference

S9 Pawel Swiatek and Andrezej Rucinsky

(SWIATEK; RUCINSKI, 2013)

2013 Conference

S10 Pablo Lopez et al (LÓPEZ et al., 2013) 2013 Conference

S11 Denis Trcek and Andrej Brodnik (TRCEK;

BRODNIK, 2013)

2013 Journal

S12 Fang Hu et al (HU; XIE; SHEN, 2013) 2013 Conference

S13 Yannick Le Moullec et al (MOULLEC et al.,

2014)

2014 Conference

S14 Junaid Mohammed et al (MOHAMMED et al.,

2014)

2014 Conference

S18 Lin Yang et al (KEVIN et al., 2014) 2014 Conference

S19 Gheorghe Sebestyen et al (SEBESTYEN et al.,

2014)

2014 Conference

S20 Mohammad Mehedi Hassan et al (HASSAN;

ALBAKR; AL-DOSSARI, 2014)

2014 Conference

S21 Iuliana Chiuchisan et al (HASSAN; ALBAKR;

AL-DOSSARI, 2014)

2014 Conference

S24 Hasan Ali Khattak et al (KHATTAK et al.,

2014)

2014 Conference

S25 Antonio J. Jara et al (JARA; ZAMORA;

SKARMETA, 2014)

2014 Journal
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S26 Rohan Tabish et al (TABISH et al., 2014) 2014 Conference

S27 Tuan Nguyen Gia et al (GIA et al., 2014) 2014 Conference

S28 Partha Pratim Ray (RAY, 2015) 2015 Conference

S29 Muhammad Wasim Raad (RAAD; SHELTAMI;

SHAKSHUKI, 2015)

2015 Conference

S30 Ruiling Gao et al (GAO et al., 2015) 2015 Conference

S34 Steven van der Valk et al. (VALK et al., 2015) 2015 Conference

S35 Mirjana Maksimovic et al (MAKSIMOVIĆ; VU-

JOVIĆ; PERIŚIĆ, 2015)

2015 Conference

S37 Wan Abdullah et al (YAAKOB et al., 2016) 2016 Conference

S38 Jemal Abawajy and Mohammad Hassan

(ABAWAJY; HASSAN, 2017)

2017 Journal

S39 JMin Chen et al (CHEN et al., 2017) 2017 Journal

S40 Zhe Yang et al (YANG et al., 2016) 2016 Journal

S41 Alexandru Archip et al (ARCHIP et al., 2016) 2016 Conference

S42 Ravi Kodali et al (KODALI; SWAMY; LAK-

SHMI, 2015)

2015 Conference

S43 Tuan Gia et al (GIA et al., 2015) 2015 Conference

S44 Majid Al-Taee et al (AL-TAEE et al., 2015) 2015 Conference

S45 Soumya Datta et al (DATTA et al., 2015) 2015 Conference

S46 Shamim Hossain and Ghulam Muhammad

(HOSSAIN; MUHAMMAD, 2016)

2016 Journal

4.2.2 Papers Overview

Considering the venue (journal or conference) of the selected papers, 72.7% are from

conferences and 27.3% are from journals. Moreover, 6.1% of these papers are from 2017,

12.1% are from 2016. Only 3% are from 2012 and it was not found IoT-based healthcare

applications before 2012. It is believed that this is because of the maturity of the Internet

of Things area, and the not inclusion of the terms used before "IoT" in the search string,

such as cyber-physical systems. Figure 19 presents this distribution of the selected papers

by year.
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Figure 19: Distribution of the papers by year.

Regarding the applications described in the papers, 63.7% of the papers do not specify

where the healthcare application is deployed. Considering the other 36.3%, 12.1% presents

solutions deployed at hospitals and 24.7% deployed at home. Moreover, these studies de-

scribe that main characteristics of these healthcare applications are the body and ambient

monitoring. From the applications presented, only two studies, S6 and S34, presented the

use of IoT Platforms, in this case, the ThingSpeak Platform2. Another observation is that

seven of them define ontologies, they are S2, S3, S4, S10, S19, S25 and S45. One impor-

tant point of these applications is that only S1 and S2 present interoperability with other

systems, in the case of S1, with medical supply chain, emergency center and hospital, and

S2 with clinical devices. So, the consequence of it is that the use of most of the presented

healthcare applications in 93% of the selected papers would demand the change of the

existing systems of the hospitals.

4.2.3 Quality evaluation results

The papers were evaluated using the criteria described in section 4.1.4. The score of

each paper is presented in https://goo.gl/skZmns. The results show that all studies scored

more than 1, and only 7 of them had the maximum score (5): S1, S2, S18, S34, S35, S40

and S41. Figure 20 presents the histogram of the grades of each paper.

4.3 Discussion

In this section, it is discussed the answers to the research questions and then, it is

presented the limitations and conclusions of this study.

2https://thingspeak.com/
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Figure 20: Histogram with grades of each paper.

4.3.1 What are the main characteristics of healthcare applica-
tions based on IoT infrastructure?

Regarding the main characteristics of healthcare application based on IoT infrastruc-

ture, it was collected their functional and nonfunctional requirements from the papers.

The functional requirements described in the papers are related to the patient’s body and

environment monitoring. Considering the body monitoring, the data monitored by sensors

attached to patient’s body are the pulse oximeter, heart rate, galvanic skin, transpiration,

muscle activity, body temperature, oxygen saturation, blood pressure, airflow, body move-

ment, blood glucose, breathing rate and ECG. Moreover, the environment monitoring is

about sensors deployed in the patient’s environment that capture data from temperature,

light, humidity, location, body position, motion data, SPO2, atmospheric pressure and

CO2. Table 3 presents the papers and the patient’s body and environment data captured

by the IoT-based healthcare applications, and Figure 21 presents a word cloud regarding

it. It can be noted that the most frequent captured data of the IoT-based healthcare

applications are related to ECG, body temperature, heart rate and blood pressure.

Figure 21: Word cloud of body and environment captured data of the IoT-based healthcare
applications.
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Table 3: Patient’s body and environment data captured by the IoT-based healthcare
applications and the papers.

Data Freq. Papers
ECG 22 S1, S2, S6, S7, S10, S14, S19, S20, S26,

S27, S28, S29, S30, S35, S37, S38, S39,
S40, S41, S42, S43, S46.

Body temperature 17 S1, S2, S4, S6, S7, S19, S20, S21, S24,
S26, S28, S34, S35, S39, S41, S42, S45.

Heart rate 11 S2, S4, S6, S18, S21, S24, S27, S29, S34,
S39, S46.

Blood pressure 9 S2, S8, S19, S20, S22, S28, S29, S35,
S44.

Oxygen saturation 6 S6, S19, S21, S24, S29, S39.
Ambient temperature 5 S6, S8, S21, S30, S34.
Body movement 4 S28, S30, S34, S37.
SPO2 4 S27, S35, S41, S42.
Pulse oximeter 3 S24, S28, S35.
Breathing rate 3 S4, S21, S27.
Muscle activity 2 S19, S35.
Galvanic skin 2 S34, S35.
Blood glucose 2 S7, S36.
Ambient humidity 2 S8, S21.
Airflow 2 S19, S35.
Body position 2 S19, S35.
Motion data 2 S6, S21.
CO2 1 S8.
Transpiration 1 S19.
Ambient light 1 S30.
Location 1 S6.
Atmospheric pressure 1 S21.

About the features of IoT-based healthcare applications, there are some important

nonfunctional requirements (quality attributes) that represent a concern in this kind of

applications. The nonfunctional requirements cited by the papers are scalability, reliabil-

ity, ubiquity, portability, interoperability, robustness, performance, availability, privacy,

integrity, authentication and security. Table 4 specifies the nonfunctional requirements

in the studies, and Figure 22 presents a word cloud regarding it. It can be noted that

the most cited nonfunctional requirements are security, interoperability, reliability and

privacy.

Finally, it can be concluded that the main characteristics of IoT-based healthcare

applications in terms of functional requirements are the patient’s body and environment

monitoring, with the mainly capture of data from ECG, body temperature, heart rate
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Table 4: Nonfunctional requirements of IoT-based healthcare applications and the papers.

NFR Freq. Papers
Security 13 S2, S3, S6, S9, S10, S14, S19, S20, S28, S30,

S38, S45, S46.
Interoperability 10 S2, S3, S4, S6, S24, S27, S35, S38, S43, S45.
Reliability 8 S2, S9, S20, S27, S30, S35, S37, S40.
Privacy 8 S2, S6, S14, S19, S20, S28, S35, S38.
Scalability 6 S2, S6, S14, S39, S44, S46.
Availability 4 S2, S6, S9, S45.
Performance 2 S14, S20.
Authentication 2 S35, S46.
Ubiquity 1 S10.
Portability 1 S14.
Robustness 1 S2.
Integrity 1 S35.

Figure 22: Word cloud of nonfunctional requirements of IoT-based healthcare applications.

and blood pressure. With respect to nonfunctional requirements, the most important are

security, interoperability, reliability and privacy.

4.3.2 What are the protocols used in healthcare applications based
on IoT infrastructure?

With respect to protocols, the collected data of the papers showed that there are

two categories of protocols: communication, regarding network protocols, and application,

regarding data transfer protocols. The communication protocols cited by the studies on the

healthcare applications are 6LoWPAN, IEEE 802.15.4, Zigbee, Bluetooth, RFID, WIFI,

Ethernet, GPRS, IEEE 802.15.6, 3G/4G, NFC and IrDA. Regarding the applications

protocols, the studies cited: REST, YOAPY, HTTP, CoAP, XML-RPC and Web Services.

Table 5 presents the communication protocols and the papers, and Figure 23 presents a

word cloud regarding it. It can be noted that the most used communication protocols are
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Bluetooth, WIFI, 6LoWPAN, Zigbee and 3G/4G.

Table 5: Communication protocols of IoT-based healthcare applications and the papers.

Com. Proto-
cols

Freq. Papers

Bluetooth 19 S1, S2, S4, S6, S10, S14, S18, S19, S20, S28,
S34, S35, S38, S39, S40, S43, S44, S45, S46.

WIFI 17 S1, S3, S6, S19, S21, S29, S31, S34, S35, S37,
S38, S39, S40, S43, S44, S45, S46.

6LoWPAN 11 S2, S10, S17, S21, S24, S25, S26, S27, S28,
S30, S43.

Zigbee 11 S1, S2, S4, S8, S18, S28, S35, S40, S42, S43,
S45.

3G/4G 10 S1, S7, S20, S26, S31, S35, S37, S38, S40,
S44.

RFID 7 S1, S2, S3, S18, S25, S29, S37.
IEEE 802.15.4 6 S4, S7, S9, S26, S35, S41.
GPRS 3 S21, S35, S40.
NFC 2 S10, S25.
Ethernet 2 S1, S21.
IEEE 802.15.6 1 S7.
IrDA 1 S25.

Figure 23: Word cloud of communication protocols of IoT-based healthcare applications.

Table 6 presents the application protocols and the papers, and Figure 24 presents a

word cloud regarding it. It can be noted that the most used application protocols are

REST, HTTP and CoAP.

About the data format, the studies presented that the healthcare applications use HL7,

XML, EHR, CSV, JSON and PHR. Table 7 presents the data format and the papers, and

Figure 25 presents a word cloud regarding it. It can be noted that the most used are

JSON, XML, HL7 and EHR.
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Table 6: Application protocols of IoT-based healthcare applications and the papers.

Com. Proto-
cols

Freq. Papers

REST 7 S4, S6, S14, S20, S35, S41, S45.
HTTP 5 S34, S35, S40, S44, S45.
CoAP 4 S2, S24, S30, S45.
Web services 2 S27, S46.
YOAPY 1 S2.
XML-RPC 1 S9.

Figure 24: Word cloud of application protocols of IoT-based healthcare applications.

4.3.3 What are the challenges related to healthcare applications
based on IoT infrastructure?

The papers presented that there are many challenges related to healthcare applica-

tions based on IoT infrastructure. In S6, the authors presented that health information

management through mobile devices introduces several challenges: data storage and man-

agement (e.g., physical storage issues, availability and maintenance), interoperability and

availability of heterogeneous resources, security and privacy (e.g., permission control, data

anonymity, etc.), unified and ubiquitous access are a few to mention. According to S6,

the vast amount of sensor data generated by the capture of these applications need to be

Table 7: Data format and the papers.

Data format Freq. Papers
JSON 9 S4, S6, S18, S24, S34, S35, S41, S44, S45.
XML 6 S6, S8, S18, S19, S27, S45.
HL7 3 S2, S8, S24.
EHR 3 S2, S25, S45.
CSV 2 S6, S34.
PHR 1 S25.
HTML 1 S40.
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Figure 25: Word cloud of data format of IoT-based healthcare applications.

managed properly for further analysis and processing. Another challenge regarding the

data is the unstructured format of it, that, according to S14, the huge volume of data pro-

duced by the sensors is in an unstructured format, which is very complex to understand

and requires different data storage mechanisms than the typical database management

system (DBMS).

Still about challenges, in S18, the authors highlight that the existing home healthcare

systems have drawbacks such as simple and few functionalities, weak interaction and poor

mobility, and IoT is considered an effective method for healthcare monitoring system of

the disabled and elderly people by the people-object interaction. Moreover, the authors,

in S18, describe that their future work is focused on the wireless body area networks

combined with social networks, exploring the mobility impaired healthcare services based

on social networking, and sharing the information of smart objects.

The authors in S19 describe an interoperability, political and administrative chal-

lenges, since the communication protocol of the devices is not open and a given device

cannot be integrated in other (or multiple) applications. Moreover, according to S19, the

implementation of these applications is technical as well as political and administrative

challenge, once it implies not only in a technical infrastructure but also a number of

regulatory measures, such as standards, regulations and institutional reorganization. Any

regional or national implementation of such system must fulfill not only quality and safety

requirements but also economical efficiency conditions.

In S20, the authors present the need for the development of new protocols that are

reliable and energy efficient in data transmission, since routing protocols are critical for

the system to work efficiently. In addition, they say that even though several protocols

have been proposed for various domains, none of them has been accepted as a standard,

and with the growing number of things, further research is required. Still, in S20, the
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authors also describe the need for the development of efficient data mining techniques

for extracting useful knowledge from IoT data. Moreover, sometimes IoT-generated data

are not always ready for direct consumption using visualization platforms and, therefore,

new visualization schemes need to be developed. Another key challenge described by the

authors in S20 regards the need to protect privacy information. They say that more

innovative solutions need to be developed in privacy and security aspects.

The authors in S24 highlight the interoperability challenge, once there are different

studies and proposals for patient monitoring at hospital or at home for personal mon-

itoring, a shared goal to produce an interoperable system adopting open standards for

healthcare, for example HL7, and a seamless framework to be easily deployed in any

given scenario for healthcare is still missing. Table 8 presents a summary of the found

challenges.

Table 8: Summary of the found challenges of IoT-based healthcare applications.

Paper Challenges
S6 Data store and management, interoperability and

availability of heterogeneous resources, security
and privacy, unified and ubiquitous access.

S14 The huge volume of data produced by the sensors
in an unstructured format.

S18 The current home healthcare applications have few
functionalities, weak interaction and poor mobil-
ity.

S19 The interoperability, political and administrative.
S20 Protocols that are reliable and energy efficient

in data transmission. Efficient data mining tech-
niques for extracting useful knowledge from IoT
data, and privacy and security.

S24 Interoperability and a shared goal to produce an
interoperable system adopting open standards for
healthcare.

4.3.4 A technology view for IoT-based healthcare applications

Through the discussion of the results of this study, it was possible to define layers

and organize the technologies used in IoT-based healthcare applications into them. The

defined layers were users, requirements, systems and services, communication, middleware,

monitoring, and patients. The users layer is composed of the users of IoT-based healthcare

applications. They are physicians, hospital administrators, nurses, family, pharmaceutical,



71

clinical staff and patients.

The requirements cross-cutting layer is composed of nonfunctional requirements (qual-

ity attributes). These requirements are scalability, reliability, ubiquity, portability, inte-

roperability, robustness, performance, availability, privacy, integrity, authentication and

security. This is a cross-cutting layer because of the importance of these requirements to

the other layers. Another cross-cutting layer is the communication cross-cutting layer, that

is composed of communication protocols. These protocols are 6LoWPAN, IEEE 802.15.4,

Zigbee, Bluetooth, RFID, WI-FI, Ethernet, GPRS, IEEE 802.15.6, 3G/4G, NFC and

IrDA.

The patients layer is composed of the usual patients of IoT-based healthcare applica-

tions. They are usually patients in rehabilitation, with breathing problems, elderly and

with critical condition. The monitoring layer is composed of body and environment mon-

itoring. The body monitoring is related to pulse oxymeter, heart rate, galvanic skin, tran-

spiration, muscle activity, body temperature, oxygen saturation, blood pressure, airflow,

body movement, blood glucose, breathing rate and ECG. The environment monitoring

is related to environment temperature, light and humidity, location data, body position,

motion data, SPO2, atmospheric pressure and CO2.

The middleware layer is composed of middleware, such as ThingSpeak, Fiware, Kaa,

Azure IoT and AWS IoT. The systems and services layer is composed of services, data

formats, and applications protocols. The services are ambulance, hospital and pharmacy

systems. The data formats are HL7, XML, EHR, CSV, JSON and PHR. The applications

protocols are REST, YOAPY, HTTP, CoAP, XML-RPC and web services. Finally, this

technology view is presented in Figure 26.

4.3.5 Limitations of this study

The main limitation of this study is on the bias in the selection of publications and

inaccuracy in data extraction. However, it was strictly followed the defined protocol,

described in section 4.1, to ensure that the selection process was unbiased. Another lim-

itation is the used search string, described in section 4.1.2, that although it was defined

guided by the research questions, that there is a risk that some studies were omitted.

Another limitation of this study is that it was used Scopus from Elsevier to proceed with

the search of the papers and, although it indexes other scientific repositories, inclusion

in Scopus once a paper has been published takes some time, and so, there is a risk that

some already published studies were not yet included. The final limitation of this study
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Figure 26: Technology view of IoT-based healthcare applications.

is that it was not considered the works realized by companies, such as patents, software,

etc (gray literature).

4.4 Final Remarks

This study was made aiming to comprehend the current state and future trends of

healthcare applications based on IoT infrastructure, and also in order to find areas re-

garding it for further investigations. It was started this study defining the method with

research questions, search process, quality assessments and data collection. Then, it was

performed the search using the defined search string at Scopus from Elsevier (stage 1),

resulting in 1355 papers. After this search, it was performed the analyses of the titles and

abstract of the papers (stage 2). Then, 46 papers remained in this study and they were

carefully read (stage 3). For these 46 selected papers, they were evaluated according to

the quality assessment and 7 of them had the maximum score. From these 46 selected

papers, 33 papers were useful to answer the research questions.

Using the extraction data, it was possible to answer the research questions and provide

the characteristics of healthcare applications based on IoT infrastructure (section 4.3.1).

It was also described the protocols and data formats used in the papers (section 4.3.2).

Moreover, using the extract data from studies, it was possible to find some challenges for

healthcare applications (section 4.3.3). The challenges are related to the development of
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new solutions to resolve interoperability problems, data mining techniques for extraction

of knowledge for IoT data, privacy and security problems. There is also an industry op-

portunity for companies that develop IoT-based healthcare applications, since healthcare

industry is estimated to be more than $2 trillion by 2020 with an annual consumer mar-

ket for remote/mobile monitoring devices at $40 billion globally (POENARU; POENARU,

2013). Besides, it was also defined a technology view for IoT-based healthcare applica-

tions (section 4.3.4) that relate the technologies used in the papers and the layers of these

applications.

Finally, with this study it was possible to define a layered architecture for healthcare

applications based on IoT Infrastructure. It considers the characteristics of these appli-

cations, functional requirements, nonfunctional requirements (quality attributes), used

protocols, and is composed of a layer of monitoring, quality attributes, middleware, and

services. In Chapter 5 this architecture will be described, and it will be used for the de-

velopment of IoT-based healthcare applications that will address issues like security and

interoperability.
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5 RAH - A Software Reference

Architecture for IoT-based

Healthcare Applications

As presented in Chapter 4, there are a lot of challenges related to the development and

deployment of IoT-based healthcare applications, such as interoperability (DOUKAS; MA-

GLOGIANNIS, 2012) (KHATTAK et al., 2014) (SEBESTYEN et al., 2014), availability (DOUKAS;

MAGLOGIANNIS, 2012), usability (KEVIN et al., 2014), security (DOUKAS; MAGLOGIANNIS,

2012), flexibility (EBERT et al., 2016), and productivity. Regarding interoperability, the

overview of the papers presented in section 4.2.2, showed that 93% of the described new

solutions would demand a change in the existing healthcare hardware and software.

Although there are many proposed protocols and different studies about IoT-based

healthcare applications, as presented in Chapter 4, a shared goal to produce an interop-

erable system adopting open standards for healthcare, for example, HL7, and a seamless

framework to be easily deployed in any given scenario for healthcare is still missing (KHAT-

TAK et al., 2014). On the other hand, even though there are reference architectures for

IoT-based applications, as presented in Chapter 3, they are too general and abstract and

do not focus on IoT-based healthcare applications. The outcome of this situation is the de-

velopment of independent IoT-based healthcare applications that do not interoperate and

communicate with each other, making its deployment difficult in scenarios with existing

healthcare solutions (hardware and software). With the perspective of expanding these

applications market, and consequently the development of new solutions, this problem

will grow significantly.

In this context, one of the possible cause for this lack of interoperability and commu-

nication between IoT-based healthcare applications is the absence of a software reference

architecture (SRA) to serve as a guideline for the design of their architectures. SRA facil-

itates the development process, acting as a tool for standardization and making modular

configuration and interoperability with IoT-based healthcare solutions from different sup-
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pliers possible. Furthermore, with an SRA, different vendors would be able to provide

specific modules that can be integrated among themselves. Finally, its existence would

provide a standardized view for these applications which promotes communication be-

tween the potential stakeholders (business professionals, software developers).

Therefore, in this thesis, it was designed a software reference architecture for IoT-

based healthcare applications, which was named RAH, to serve as a guideline for the

design of these applications’ architectures. This SRA systematically organizes the main

elements of these applications, its responsibilities and interactions, promoting a common

understanding of these applications’ architecture and addressing the challenges of inte-

roperability, security, performance and availability related to its development. RAH is

defined based on a set of functional and nonfunctional requirements (quality attributes)

related to IoT-based healthcare applications. These requirements were extracted from

existing publications collected through the study presented in Chapter 4.

Some of the benefits of an SRA (MARTÍNEZ-FERNÁNDEZ et al., 2017) that are expected

to achieve with RAH are: (i) standardizing concrete software architectures by using the

SRA as a template for designing a portfolio of applications that use the standardized

design; (ii) facilitating the design of concrete software architectures by providing guide-

lines and inspiration for the applications’ developers; (iii) systematically reusing standard

functionalities and configurations throughout the applications’ development; (iv) reducing

risks through the use of proven and partly pre-qualified architectural elements included in

the SRA; (v) enhancing quality by facilitating the achievement of software quality aspects

already addressed by the SRA; (vi) allowing interoperability between different applica-

tions and their software components by establishing common mechanisms for information

exchange; (vii) creating a knowledge repository, since SRA inherently acts as a repository

of applied knowledge such as architectural and design principles; (viii) improving com-

munication in the organization and with multiple suppliers since stakeholders share the

architectural mindset established in the SRA. Preliminary, SRAs are usually designed to

provide innovative design solutions concerning the existing state of the art.

Finally, in this chapter, it is presented the proposed software reference architecture for

IoT-based healthcare applications. It is structured as follows: in Section 5.1, it is described

the requirements of a reference architecture for IoT-based healthcare applications, speci-

fying the requirements(functional and nonfunctional), and architecture qualities. Section

5.2 describes RAH, the software reference architecture for IoT-based healthcare applica-

tions. Finally, in Section 5.3, the final remarks of this chapter are presented. This chapter
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organization was inspired by the structure defined by Angelov and Grefen to describe

their software reference architecture (ANGELOV; GREFEN, 2008).

5.1 Requirements of a reference architecture for IoT-

based healthcare applications

In this section, it is discussed the functional and nonfunctional requirements that must

be addressed in RAH. The functional requirements express the functionalities that must be

supported by an IoT-based healthcare application. The study presented in Chapter 4 was

used to define these requirements. The quality attributes or nonfunctional requirements,

in their turn, are separated into two groups: applications’ nonfunctional requirements and

architecture qualities. The applications’ nonfunctional requirements must be addressed in

the development of an IoT-based healthcare application. The architecture qualities are

directly related to the architecture itself, and are important for the design of a reference

architecture.

Therefore, to define the nonfunctional requirements of a reference architecture for

IoT-based healthcare applications, it was used the list of quality attributes of information

systems presented by Bass et al. (BASS; CLEMENTS; KAZMA, 2013), as well as the existing

publications presented in Chapter 4. Based on these list of requirements, the first version

of RAH was defined.

Finally, in section 5.1.1 it is presented the functional requirements of IoT-based health-

care applications. In section 5.1.2, it is presented the quality attributes (nonfunctional

requirements) of these applications, and in section 5.1.3, it is presented the architecture

qualities for a software reference architecture.

5.1.1 Functional requirements

According to Bass et al., the functional requirements state what the system must

do, and how it must behave or react to runtime stimuli (BASS; CLEMENTS; KAZMA,

2013). Thus, considering the evidence collected in the study presented in Chapter 4,

the functional requirements of IoT-based healthcare applications consist of monitoring

the patient’s body and environment. Regarding the body monitoring, the applications

use sensors attached to the patient’s body and capture data from:

1. Electrocardiogram (ECG) (DOUKAS; MAGLOGIANNIS, 2012) (JARA; ZAMORA-
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IZQUIERDO; SKARMETA, 2013) (YANG et al., 2014b) (MAKSIMOVIĆ; VUJOVIĆ; PER-

IŚIĆ, 2015) (YANG et al., 2016) (ABAWAJY; HASSAN, 2017): recording of the electrical

activity of the heart in the form of specific waves. The ECG monitoring can be used

to monitor the heart rate of a patient, assess the effects of an illness or injury on

the function of the pacemaker, and evaluate the response after a physician’s proce-

dure. The ECG can give information about the orientation of the heart, conduction

disturbances, electrical effects of medications and electrolytes, the mass of the heart

muscle and the presence of ischemic damage. However, to evaluate the effectiveness

of the mechanical activity of the heart the pulse and blood pressure of the patient

is evaluated (AEHLERT, 2012).

2. Blood pressure (JARA; ZAMORA-IZQUIERDO; SKARMETA, 2013) (RAAD; SHELTAMI;

SHAKSHUKI, 2015) (MAKSIMOVIĆ; VUJOVIĆ; PERIŚIĆ, 2015): recorded as a ratio be-

tween two numbers, systolic - the top number, which is also the higher of the two

numbers, measures the pressure in the arteries when the heart beats (when the heart

muscle contracts); diastolic - the bottom number, which is also the lower of the two

numbers, measures the pressure in the arteries between heartbeats (when the heart

muscle is resting between beats and refilling with blood) (ASSOCIATION, 2017b).

For example: read as 140X90 mmHg (millimeters of mercury). This measure can be

decisive for patient’s life in the early identification of cardiac and vascular problems

(VIDAL-PETIOT et al., 2016). In cases of high pressure, it control reduces the risk of

cardiovascular events and death (ZANCHETTI; THOMOPOULOS; PARATI, 2015).

3. Blood glucose (POENARU; POENARU, 2013): monitoring is the main tool you have

to check patient diabetes control (ASSOCIATION, 2017a). Population data indicate

that 30-40% of people with type 1 diabetes experience an average of 1 to 3 episodes

of severe hypoglycemia each year. With self-monitoring and patient education and

care, the patient may benefit from a controlled glycemic rate with individual goals

set by the team of health professionals. During the last decade, the introduction

of continuous glucose monitoring to facilitate the self-administration has shown an

improvement in glucose control and reduced exposure to hypoglycemia (BOLINDER

et al., 2016). Experience shows the beneficial effect of continuous monitoring of blood

glucose (THABIT; BALLY; HOVORKA, 2016).

4. Heart rate (VALK et al., 2015) (RAAD; SHELTAMI; SHAKSHUKI, 2015) (GIA et al.,

2015) (KHATTAK et al., 2014) (YANG et al., 2016) (CHEN et al., 2017): the number of

heartbeats per unit of time, usually per minute (ASSOCIATION, 2017b). The heart
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rate is based on the number of contractions of the ventricles (the lower chambers

of the heart) (MEDICINET, 2017). The heart rate variability has been used as a

noninvasive means of assessing the neural control of the heart and is used to identify

hemodynamic problems.

5. Oxygen saturation (DOUKAS; MAGLOGIANNIS, 2012) (SEBESTYEN et al., 2014)

(CHIUCHISAN; COSTIN; GEMAN, 2014) (RAAD; SHELTAMI; SHAKSHUKI, 2015): it is

especially useful to detect hypoxemia associated with critical problems such as car-

diovascular ones (EWER, 2014). The oxygen uptake occurs primarily in the lungs,

constituting the first step in the process of oxygen to the tissues. The oxygen taken

up in the lungs is transported in the blood in two ways: by dissolving in plasma

and also combined with hemoglobin. Hemoglobin is capable of carrying 98-99% of

all oxygen in the blood and can be viewed through the oxygen saturation measured

by pulse oximetry. The arterial oxygen saturation is determined as a percentage, on

average it is in the range of 95% to 100%. There may be some changes and false

readings of oxygen saturation, which are usually caused by chills, hypotension, low

perfusion and edema (BAZERBASHI et al., 2014).

6. Temperature (RAY, 2015) (TABISH et al., 2014): the human being is homeother-

mic, i.e. has the ability to maintain body temperature within a certain predeter-

mined range despite variations in the thermal environment - thermal homeostasis

(GASPARRINI et al., 2015). Increased body temperature may indicate increased cell

metabolism, consumption of O2 and CO2 production, demands on the heart and

lungs and additional stress to the cardiopulmonary system and infectious processes,

and therefore may justify a continued investigation in critically ill patients (CAHILL;

PRENDERGAST, 2016). Measured in degrees Celcius (C), it is taken by means of a

catheter close to the skin in the axillary region continuously (HALL, 2011).

7. Breathing rate (CASTILLEJO et al., 2013) (CHIUCHISAN; COSTIN; GEMAN, 2014): it

is measured by the respiratory motion for one minute, measured in rpm. It demon-

strates not only lung function but can denote problems in other systems, such as

neurological and cardiac (CAHILL; PRENDERGAST, 2016).

When it comes to monitoring the environment, the applications use sensors deployed

in the patient’s environment to capture data from temperature, light, humidity, location,

body position, motion data, SpO2, atmospheric pressure and CO2. They are important,

because the environment measures can directly affect the patient’s treatment.
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5.1.2 Quality attributes

The quality attributes or nonfunctional requirements are qualifications of the func-

tional requirements or of the overall product. A qualification of a functional requirement

is an item such as how fast the function must be performed, or how resilient it must be

to erroneous input. A qualification of the overall product is an item such as the time to

deploy the product or a limitation on operational costs (BASS; CLEMENTS; KAZMA, 2013).

Thus, the main nonfunctional requirements/quality attributes of IoT-based healthcare

applications evidenced in the study presented in Chapter 4 are:

• Availability: refers to a property that is found in software when it is available to

be used and ready to carry out its task when you need it to be (BASS; CLEMENTS;

KAZMA, 2013). In the healthcare context, the availability quality can be decisive

between a patient’s life or death. This quality is also related to dependability, which

is the ability to avoid failures that are more frequent and more severe than it is

acceptable (BASS; CLEMENTS; KAZMA, 2013).

• Interoperability: it is related to the degree to which two or more systems can

usefully exchange meaningful information via interfaces in a particular context. The

definition includes not only having the ability to transfer data (syntactic intero-

perability) but also having the capacity to interpret the data exchanged correctly

(semantic interoperability) (BASS; CLEMENTS; KAZMA, 2013). The interoperability

is an important quality in the healthcare context but, as presented in Chapter 4,

the existing applications usually do not interoperate with each other, thus creating

isolated solutions.

• Performance: it is about time and the software system’s ability to meet timing

requirements (BASS; CLEMENTS; KAZMA, 2013). In the healthcare context, the in-

formation should reach stakeholders as fast as possible. Moreover, the performance

quality can also be decisive between a patient’s life or death.

• Security: the measure of the system’s ability to protect data and information from

unauthorized access while still providing access to people and systems that are au-

thorized (BASS; CLEMENTS; KAZMA, 2013). Thus, this attribute is related to privacy,

integrity, and authentication. In the healthcare context, the patient’s data should

be protected and available only to authorized and authenticated personnel.
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5.1.3 Architecture qualities

In Bass et al. (BASS; CLEMENTS; KAZMAN, 2003), several architecture qualities are

presented. Inspired by them and the quality attributes defined by Angelov and Grefen

(ANGELOV; GREFEN, 2008), it was elaborated the following list of architectural qualities

expected for a software reference architecture for IoT-based healthcare applications:

• Completeness: it is essential for the architecture to allow all of the system’s re-

quirements and runtime resource constraints to be met (BASS; CLEMENTS; KAZMAN,

2003). Thus, completeness is necessary for RAH, as it has to serve as a guiding model

for designing concrete software architectures of IoT-based healthcare applications

regardless of the business and technological context. A quality closely related to

completeness is the scope (ANGELOV; GREFEN, 2008). A reference architecture for

IoT-based healthcare applications must give a clear scope description of the business

aspects that it addresses.

• Buildability: an architecture specification must be implementable (buildable), prefer-

ably in an easy and timely manner. Another aspect of the buildability is the knowl-

edge about the problem to be solved (BASS; CLEMENTS; KAZMAN, 2003). Further-

more, being a reference architecture, RAH must have a clear structure and coherent

design (conceptual integrity).

• Applicability (ANGELOV; GREFEN, 2008): RAH must be able to be applied for

the design of a new IoT-based healthcare application as well as for the analysis of

existing applications. Thus, RAH must applicable in different kinds of IoT-based

healthcare applications.

• Usability (ANGELOV; GREFEN, 2008) (BASS; CLEMENTS; KAZMA, 2013): to be suc-

cessfully adopted for the development of IoT-based healthcare applications, RAH

must be easy to understand by both business and IT professionals. It must foster

communications between the IoT-based healthcare applications’ stakeholders. Fur-

thermore, architecture designers should be able to use RAH as a starting step in

the design of concrete IoT-based healthcare architectures.
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5.2 RAH - Reference Architecture for IoT-based Health-

care Applications

From the requirements of a reference architecture for IoT-based healthcare applica-

tions, which were previously defined, RAH was designed, a SRA for IoT-based health-

care applications. The stakeholders for this reference architecture are systems analysts,

software architects and developers of IoT-based healthcare applications. Thus, RAH, pre-

sented in Figure 27, is organized in layers according to its requirements. Layers help to

bring the modifiability and portability quality attributes to a software system (BACH-

MANN et al., 2011). A layer is an application of the principle of information hiding, whose

main theory is that a change to a lower layer can be hidden behind its interface and will

not impact the layers above it.

RAH is composed of five layers: sensing, middleware, services, applications and quality

attributes. Interacting with the sensing layer, there are patients with devices to capture

their biometrics and environment data. Interacting with applications layer, there are the

users, such as physicians, hospital administrators, nurses, family, patients, pharmaceutical

and clinical staff, who can be using an IoT-based healthcare application integrated with

cloud-based health information systems, e-Health and mHealth applications. Hospital, am-

bulance and pharmacy systems are example of cloud-based health information systems.

Moreover, applications for assisted living, personalized healthcare, monitoring physiolog-

ical and pathological signals, disease monitoring, self-management, wellness monitoring

and prevention, rehabilitation, telepathology and medication intake are examples of e-

Health and mHealth applications.

The Sensing Layer is responsible for monitoring the patient’s body and environment,

and is composed of the following components:

1. Devices : it is a hardware component that represents the devices used for monitoring

the patient’s body and environment. The patient’s body monitoring involves sensors

to capture heart rate, temperature, oxygen saturation, blood pressure, blood glucose,

breathing rate and ECG. Regarding the environment monitoring, the devices are

sensors that capture data related to temperature, light, humidity, location, body

position, motion, SpO2, pressure, and CO2.

2. Gateway Component : it is a software component that receives the data from the

Devices and makes it available to the Middleware Layer. This component is com-

posed of the Raw Data Receive Service, Raw Data Send Service, Filter Service and
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Figure 27: RAH reference architecture.

Network Service.

Table 9 presents the Sensing Layer’s components and services.

Table 9: Sensing Layer’s components and services.

Component

Name

Service Name Description

Devices EGC Hardware Hardware to measure ECG of the pa-

tients.

Devices Blood Pressure Hard-

ware

Hardware to measure blood pressure of

of the patients.

Devices Blood Glucose Hard-

ware

Hardware to measure blood glucose of

of the patients.
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Devices Temperature Hard-

ware

Hardware to measure temperature of of

the patients’ body and environment.

Devices Location Hardware Hardware to locate the patients.

Devices Heart Rate Hardware Hardware to measure heart rate of the

patients.

Devices Oxygen Saturation

Hardware

Hardware to measure oxygen satura-

tion of the patients.

Devices Breathing Rate Hard-

ware

Hardware to measure breathing rate of

the patients.

Devices Light Hardware Hardware to measure light conditions

of the patients’ environment.

Gateway Com-

ponent

Raw Data Receive

Service

Responsible for receiving the raw data

of the devices. In this receiving, it uses

the authorization service to verify if the

device sending the data is authorized.

Moreover, it uses the filter service to

eliminate noises in the received data.

Gateway Com-

ponent

Raw Data Send Ser-

vice

Responsible for sending the raw data

to the Middleware Layer. In this send-

ing, it locates the data receive service

of the IoTDataCollector using the dis-

covery service.

Gateway Com-

ponent

Filter Service Responsible for eliminating possible

noises of the signals measured by the

devices. It applies the filter according

to the characteristic of the signal (e.g.,

ECG hardware and low pass filter).

Gateway Com-

ponent

Network Service Responsible for defining the method

of remapping the IP address space of

the devices (e.g., NAT, application level

gateway).

Regarding the Middleware Layer, it is responsible for receiving the patient’s sensors

and environment data from the Sensing Layer, processing it, persisting it and making it

available for the Services Layer. This layer is composed of the following components:
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1. IoTDataCollector Component : the collector is a software component that receives

the raw data sent by the Gateway component. It is composed of Data Receive,

Data Persistence, Transformation, IoT Data Send services. Thus, this component

is responsible for persisting, processing and transforming the raw data in a data

format that are understandable by the Intelligence component.

2. Intelligence Component : it is a software component that receives data from the IoT-

DataCollector and uses its inference engines to classify and persist the information

in a repository. This information can be specific alerts configured by the clinical

staff for the patients, or automatic alerts detected by the use of Artificial Intelli-

gence techniques. This component also sends this information to the Services Layer,

and is composed of IoT Data Receive, Inference Engine, Information Persist and

Information Send services.

Table 10 presents the Middleware Layer’s components and services.

Table 10: Middleware Layer’s components and services.

Component

Name

Service Name Description

IoT Data Collec-

tor Component

Data Receive Service Responsible for receiving the data in

the IoT Data Collector Component. It

verifies the authorization of the origin

component using authorization service,

and send the received data to the trans-

formation service.

IoT Data Collec-

tor Component

Data Persistence Ser-

vice

Responsible for persisting the received

raw data. This persistence is necessary

to lower the possible loss of patients’

monitored data. Moreover, this data is

consumed by the Intelligence Compo-

nent.
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IoT Data Collec-

tor Component

Transformation Data

Service

Responsible for transforming the raw

data in a format understandable by the

Intelligence Component (e.g., JSON,

XML, and HL7). It uses the data for-

mat service to parse and format the

received data. Moreover, during this

transformation, it adds semantic of

health in the data.

IoT Data Collec-

tor Component

IoT Data Send Service Responsible for sending the data to the

Intelligence Component. In this send-

ing, it locates the IoT data receive ser-

vice of the Intelligence component us-

ing the discovery service.

Intelligence

Component

IoT Data Receive Ser-

vice

Responsible for receiving the data of

the IoT Data Collector Component. In

this receiving, it verifies the authoriza-

tion of the origin component using the

authorization service, and send the re-

ceived data to the inference engine.

Intelligence

Component

Inference Engine Ser-

vice

Responsible for applying logical rules to

the knowledge base to deduce intelli-

gent information (e.g., Expert Systems

and Deep Learning).

Intelligence

Component

Information Persist

Service

Responsible for persisting the classified

data after the process of the inference

engine. This persistence is necessary

to lower the possible loss of patients’

classified data. Moreover, the classified

and non-classified data is presented and

consumed by the Services Layer.
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Intelligence

Component

Information Send Ser-

vice

Responsible for sending the informa-

tion (classified and non-classified data)

to the Services Layer. In this sending,

it locates the components of the service

layer using the discovery service.

The Services Layer is responsible for establishing a set of available operations related

to the consumption of the patients monitored data (body and environment) by the ap-

plications. It centralizes access to this data providing a bridge between the applications

in the Application Layer and the Middleware Layer. Thus, this layer is composed of the

following components:

1. Body Monitoring Component : it is a software component composed of services that

provides informations about patients’ biometrics data. This component is composed

of ECG, blood glucose, oxygen saturation, breathing rate, blood pressure, heart rate,

and temperature services.

2. Environment Monitoring Component : it is a software component composed of ser-

vices that provides informations about patients’ environment data. This component

is composed of light, humidity, location, body position, motion, SpO2, atmospheric

pressure, CO2, and temperature services.

Thus, the data about patients’ biometrics and environment are available to the Ap-

plications Layer. Table 11 presents the Services Layer’s components and services.

Table 11: Services Layer’s components and services.

Component

Name

Service Name Description

Body Monitor-

ing Component

ECG Service Responsible for making patients ECG

data available to Applications Layer.

This service verifies if the Intelligence

Component is authorized to send the

ECG data and if the applications trying

to consume this data are authorized.

Moreover, it can access the Middleware

Layer to read ECG data.
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Body Monitor-

ing Component

Blood Glucose Service Responsible for making patients Blood

Glucose data available to Applications

Layer. This service verifies if the Intelli-

gence Component is authorized to send

the Blood Glucose data and if the ap-

plications trying to consume this data

are authorized. Moreover, it can access

the Middleware Layer to read Blood

Glucose data.

Body Monitor-

ing Component

Oxygen Saturation

Service

Responsible for making patients Oxy-

gen Saturation data available to Ap-

plications Layer. This service verifies

if the Intelligence Component is au-

thorized to send the Oxygen Satura-

tion data and if the applications trying

to consume this data are authorized.

Moreover, it can access the Middleware

Layer to read Oxygen Saturation data.

Body Monitor-

ing Component

Breathing Rate Ser-

vice

Responsible for making patients

Breathing Rate data available to

Applications Layer. This service ver-

ifies if the Intelligence Component is

authorized to send the Breathing Rate

data and if the applications trying

to consume this data are authorized.

Moreover, it can access the Middleware

Layer to read Breathing Rate data.
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Body Monitor-

ing Component

Blood Pressure Ser-

vice

Responsible for making patients Blood

Pressure data available to Applications

Layer. This service verifies if the Intelli-

gence Component is authorized to send

the Blood Pressure data and if the ap-

plications trying to consume this data

are authorized. Moreover, it can access

the Middleware Layer to read Blood

Pressure data.

Body Monitor-

ing Component

Heart Rate Service Responsible for making patients Heart

Rate data available to Applications

Layer. This service verifies if the Intelli-

gence Component is authorized to send

the Heart Rate data and if the appli-

cations trying to consume this data are

authorized. Moreover, it can access the

Middleware Layer to read Heart Rate

data.

Body Monitor-

ing Component

Temperature Service Responsible for making patients Tem-

perature data available to Applications

Layer. This service verifies if the Intelli-

gence Component is authorized to send

the Temperature data and if the appli-

cations trying to consume this data are

authorized. Moreover, it can access the

Middleware Layer to read Temperature

data.
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Environment

Monitoring

Component

Light Service Responsible for making patients Light

data available to Applications Layer.

This service verifies if the Intelligence

Component is authorized to send the

Light data and if the applications try-

ing to consume this data are autho-

rized. Moreover, it can access the Mid-

dleware Layer to read Light data.

Environment

Monitoring

Component

Humidity Service Responsible for making patients Hu-

midity data available to Applications

Layer. This service verifies if the In-

telligence Component is authorized to

send the Humidity data and if the ap-

plications trying to consume this data

are authorized. Moreover, it can access

the Middleware Layer to read Humidity

data.

Environment

Monitoring

Component

Location Service Responsible for making patients Lo-

cation data available to Applications

Layer. This service verifies if the In-

telligence Component is authorized to

send the Location data and if the ap-

plications trying to consume this data

are authorized. Moreover, it can access

the Middleware Layer to read Location

data.
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Environment

Monitoring

Component

Body Position Service Responsible for making patients Body

Position data available to Applications

Layer. This service verifies if the Intelli-

gence Component is authorized to send

the Body Position data and if the ap-

plications trying to consume this data

are authorized. Moreover, it can access

the Middleware Layer to read Body Po-

sition data.

Environment

Monitoring

Component

Motion Service Responsible for making patients Mo-

tion data available to Applications

Layer. This service verifies if the In-

telligence Component is authorized to

send the Motion data and if the appli-

cations trying to consume this data are

authorized. Moreover, it can access the

Middleware Layer to read Motion data.

Environment

Monitoring

Component

SPO2 Service Responsible for making patients SPO2

data available to Applications Layer.

This service verifies if the Intelligence

Component is authorized to send the

SPO2 data and if the applications try-

ing to consume this data are autho-

rized. Moreover, it can access the Mid-

dleware Layer to read SPO2 data.
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Environment

Monitoring

Component

Atmospheric Pressure

Service

Responsible for making patients Atmo-

spheric Pressure data available to Ap-

plications Layer. This service verifies if

the Intelligence Component is autho-

rized to send the Atmospheric Pres-

sure data and if the applications trying

to consume this data are authorized.

Moreover, it can access the Middle-

ware Layer to read Atmospheric Pres-

sure data.

Environment

Monitoring

Component

CO2 Service Responsible for making patients CO2

data available to Applications Layer.

This service verifies if the Intelligence

Component is authorized to send the

CO2 data and if the applications trying

to consume this data are authorized.

Moreover, it can access the Middleware

Layer to read CO2 data.

Environment

Monitoring

Component

Temperature Service Responsible for making patients Tem-

perature data available to Applications

Layer. This service verifies if the Intelli-

gence Component is authorized to send

the Temperature data and if the appli-

cations trying to consume this data are

authorized. Moreover, it can access the

Middleware Layer to read Temperature

data.

The Applications Layer contains the primary usage scenarios of IoT-based healthcare

applications. Therefore, these examples of applications are grouped in cloud-based health

information systems, e-Health, and mHealth applications. The cloud-based health infor-

mation systems are for hospitals, ambulance, and pharmacy systems. The e-Health and

mHealth applications are for the assisted living, personalized healthcare, self-management,

wellness monitoring and prevention, disease monitoring, medication intake monitoring,

telepathology, and rehabilitation. Table 12 presents the Applications Layer’s with appli-
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cations group and name.

Table 12: Applications Layer’s components and services.

Application

Group

Application Name Description

Cloud-based

Health Informa-

tion Systems

Hospital Systems Hospitals informations systems.

Cloud-based

Health Informa-

tion Systems

Ambulance Systems Ambulance service informations sys-

tems.

Cloud-based

Health Informa-

tion Systems

Pharmacy Systems Pharmacy service informations sys-

tems.

e-Health and

mHealth Appli-

cations

Assisted Living Apps Ambient assisted living applications.

e-Health and

mHealth Appli-

cations

Personalized Health-

care Apps

Applications for personalized health-

care.

e-Health and

mHealth Appli-

cations

Self-management,

Wellness Monitoring

and Prevention Apps

Applications for wellness monitoring

and prevention.

e-Health and

mHealth Appli-

cations

Disease Monitoring

Apps

Applications for specifics diseases mon-

itoring.

e-Health and

mHealth Appli-

cations

Medication Intake

Monitoring Apps

Applications for support and follow

medications intake.

e-Health and

mHealth Appli-

cations

Monitoring Physiolog-

ical and Pathological

Signals Apps

Applications for monitoring physiolog-

ical and pathological signals.

e-Health and

mHealth Appli-

cations

Telepathology Apps Applications for practicing of pathol-

ogy at a distance.
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e-Health and

mHealth Appli-

cations

Rehabilitation Apps Application to support rehabilitation of

patients.

Finally, the Quality Attributes Cross-Cutting Layer is responsible for features that

make IoT-based healthcare applications secure, interoperable, available and efficient. Its

components address availability, interoperability, performance, and security. It is impor-

tant to emphasize that because of the responsibility of this layer, it interacts with the

Applications, Services, Middleware and Sensing layers. Therefore, it is composed of the

following components:

1. Security Component : it is a software component responsible to for protecting pa-

tients data and information from unauthorized access while still providing access

to people (patients, clinical staff, family, and physicians), systems and services that

are authorized. It is composed of authentication, authorization, encryption, audit,

security information, and intrusion detection services.

2. Interoperability Component : it is a software component responsible for allowing the

IoT-based healthcare applications to have the ability to exchange data (syntactic

interoperability) with the devices, and also to interpret the data being exchanged

(semantic interoperability). It is composed of data format, discovery and driver

services.

3. Control and Management Resource Component : it is a software component respon-

sible to the performance of IoT-based healthcare applications. This performance

regards to the time and IoT-based healthcare applications ability to meet timing re-

quirements. It is composed of event response, event prioritization, execution limiter

services.

4. Fault Recovery Component : it is a software component related to availability and

faults recoveries of IoT-based healthcare applications. It is composed of retry, re-

dundancy, exception handler and state resynchronization services.

5. Fault Detector Component : it is a software component related to availability and

faults detections of IoT-based healthcare applications. It is composed of monitor,

self-test and exception detection services.
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6. Fault Prevention Component : it is a software component related to availability and

faults preventions of IoT-based healthcare applications. It is composed of exception

prevention and removal services.

Table 13 presents the Quality Attributes Cross-Cutting Layer’s components and ser-

vices.

Table 13: Quality Attributes Cross-Cutting Layer’s com-

ponents and services.

Component

Name

Service Name Description

Security Compo-

nent

Authentication Ser-

vice

Responsible for users’ (person, device,

application, component or service) au-

thentication. Authentication means en-

suring that a user (person, device, ap-

plication, component or service) is ac-

tually who or what it purports to be.

Therefore, this service validates the

submitted credentials, e.g., passwords,

one-time passwords, tokens, digital cer-

tificates, and biometric identification,

querying its database of users.

Security Compo-

nent

Authorization Service Responsible for users’ (person, device,

application, component or service) au-

thorization. Authorization means en-

suring that an authenticated actor has

the rights to access and modify either

data or services. It uses the authentica-

tion service to authenticate these users.
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Security Compo-

nent

Encryption Service Responsible for data encryption. It en-

crypts each message exchanged by the

components. Data should be protected

from unauthorized access. Confiden-

tiality is usually achieved by apply-

ing some form of encryption to data

and communication. Encryption pro-

vides extra protection to persistently

maintained data beyond that available

from authorization (e.g., virtual private

network (VPN) or by a Secure Sockets

Layer (SSL) can be used for data en-

cryption).

Security Compo-

nent

Audit Service Responsible for keeping the record of

users (person, device, application, com-

ponent or service) actions in the IoT-

based healthcare application and their

effects. It extracts user, input, out-

put date and time data of the action

and persists it into a log of informa-

tion about the operations performed in

these applications.

Security Compo-

nent

Security Information

Service

Responsible for notifying the adminis-

trators of the IoT-based healthcare ap-

plication of ongoing attacks security in-

formation. These attacks may require

action by these administrators, other

personnel, or cooperating systems. It

uses the intrusion detection service to

detect a security problem and notifies

them.
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Security Compo-

nent

Intrusion Detection

Service

Responsible for monitoring the network

traffic to detect intrusion (e.g., detect

intrusion by the comparison of net-

work traffic or service request patterns

within a system to a set of signatures

or known patterns of malicious behav-

ior stored in a database. The signatures

can be based on protocol, TCP flags,

payload sizes, applications, source or

destination address, or port number).

Interoperability

Component

Data Format Service Responsible for parse and format-

ting the data exchanged in the IoT-

based healthcare application’ compo-

nents and devices, according to de-

fined standards (e.g., JSON, XML, and

HL7). Thus, the driver and transforma-

tion data services use this service.

Interoperability

Component

Discovery Service Responsible for maintaining a directory

of the components services. These ser-

vices can be located by type of service,

name, component, location, or some

other attribute. Moreover, it registers

new services using these attributes.
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Interoperability

Component

Driver Service Responsible for defining the drivers

used to allow communication between

the devices and the IoT-based health-

care applications. For example, sup-

pose that a device needs to send raw

data to the Gateway. To process the

raw data, the Gateway needs to have a

driver for this kind of device. A driver

is a software that understands the de-

vice protocol and converts the received

data into a format understandable by

the IoTDataCollector. Thus, this ser-

vice locates the driver for the device,

understands its protocol and converts

the data for the IoTDataCollector. It

is necessary to emphasize that this ser-

vice uses the data format service in the

process of data conversion.

Control and

Management

Resource Com-

ponent

Event Response Ser-

vice

Responsible for queuing the arrived

events in a service/component of

an IoT-based healthcare application.

When discrete events arrive at a ser-

vice/component too rapidly to be pro-

cessed, then the events are queued un-

til they can be processed. Because these

events are discrete in IoT-based health-

care applications, it is typically not de-

sirable to "downsample" them. Thus,

this service creates a queue to the

events that were not processed when

the component was busy. For each new

event, the service verifies if the queue

is empty and processes the possible ex-

isting events in it.
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Control and

Management

Resource Com-

ponent

Event Prioritization

Service

Responsible for prioritization of ser-

vices/components’ events. If not all

events are equally important, it can

impose a priority scheme that ranks

events according to how important it is

to service them. If there are not enough

resources available in the component

to service them when they arise, low-

priority events might be queued or ig-

nored. Thus, it uses the event response

service bypassing the queue if the com-

ponent is busy for a high priority event.

Moreover, it also can be used to define

events for priority patients depending

of its health condition.

Control and

Management

Resource Com-

ponent

Execution Limiter

Service

Responsible for placing a limit on how

much execution time is used by the

services/components of an IoT-based

healthcare application to respond to an

event. If this limit is passed, it defines

the component as busy, using the event

response service to process the next

events.
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Fault Recovery

Component

Retry Service Responsible for defining the limit on

the number of retries to process and

send events of a service/component

of an IoT-based healthcare application

that is attempted before a permanent

failure is declared. This service assumes

that the fault (exception) that caused a

failure can be transient and retrying the

operation may lead to success. Thus, if

this limit is reached, it uses the removal

service to set the component in an out-

of-service state.
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Fault Recovery

Component

Redundancy Service Responsible for defining the redun-

dancy configuration of services/compo-

nents of IoT-based healthcare appli-

cations. It can allow the use of con-

figurations such as active redundancy

(hot spare), passive redundancy (warm

spare) and spare (cold spare). The ac-

tive redundancy refers to a configu-

ration where all of the nodes (active

or redundant spare) in a protection

group receive and process identical in-

puts in parallel, allowing the redundant

spare(s) to maintain synchronous state

with the active node(s). A protection

group is a group of processing nodes

where one or more nodes are "active,"

with the remaining nodes in this group

serving as redundant spares. The pas-

sive redundancy refers to a configura-

tion where only the active members of

the protection group process input traf-

fic, requiring that the active members

provide the redundant spare(s) with

periodic state updates. Cold sparing

refers to a configuration where the re-

dundant spares of a protection group

remain out of service until a fail-over

occurs, at which point a power-on-reset

procedure is initiated on the redundant

spare before its being placed in service.
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Fault Recovery

Component

Exception Handler

Service

Responsible for handle exceptions in

components/services of an IoT-based

healthcare application. The mechanism

employed for exception handling de-

pends largely on the programming en-

vironment employed, ranging from sim-

ple function return codes (error codes)

to the use of exception classes that con-

tain information helpful in fault corre-

lation, such as the name of the excep-

tion thrown, the origin of the exception,

and the cause of the exception thrown.

Software can then use this information

to mask the fault, usually by correcting

the cause of the exception and retrying

the operation.
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Fault Recovery

Component

State Resynchroniza-

tion Service

This service is used with the redun-

dancy service and is responsible for syn-

chronizing the state of the nodes in a

protection group of the service/com-

ponent of an IoT-based healthcare ap-

plication. When used with the active

redundancy configuration (hot spare),

the state resynchronization occurs nat-

urally, because the active and standby

components each receive and process

identical inputs in parallel. The states

of the active and standby components

are periodically compared to ensure

synchronization. This comparison may

be based on a cyclic redundancy check

calculation (checksum) or, message di-

gest calculation (a one-way hash func-

tion). When used with the passive re-

dundancy configuration (warm spare),

state resynchronization is based only on

periodic state information transmitted

from the active node to the standby

node, via check-pointing.
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Fault Detector

Component

Monitor Service Responsible for monitoring the health

status of the services/components of

an IoT-based healthcare application.

This service can detect failure or con-

gestion in the network or other hard-

ware resources. It periodically queries

the services/components of these ap-

plications for the current health sta-

tus. This health status is a message

mainly composed of information, such

as detected exceptions, usage of pro-

cessors, disk, memory, tasks, load av-

erage, uptime, threads, network and

server status (up or down). Moreover,

if this service detects an anomaly sta-

tus, it alerts the administrators of the

possible or imminent failure providing

information about the component/ser-

vice health status.

Fault Detector

Component

Self-test Service Responsible for allowing self-test of ser-

vices/components of IoT based health-

care applications. It can run procedures

to test themselves for correct opera-

tion, verifying information, such as de-

tected exceptions, usage of processors,

disk, memory, tasks, load average, up-

time, threads, network and server sta-

tus (up or down). These self-test pro-

cedures can be initiated by the compo-

nent/service itself or invoked from time

to time by the monitor service.
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Fault Detector

Component

Exception Detection

Service

Responsible for exception detection in

IoT-based healthcare applications. An

exception refers to a condition that al-

ters the normal flow of execution. (e.g.,

division by zero, address faults, ille-

gal instructions, array bounds, time-

outs, etc.). Therefore, this service de-

tects and logs the exceptions so that it

can be used by the self-test and moni-

tor services.

Fault Prevention

Component

Exception Prevention

Service

Responsible for exception prevention

in components/services of IoT based

healthcare applications. It defines tech-

niques employed for the purpose of pre-

venting system exceptions from occur-

ring. It can use exception classes to

threat values, which allows an applica-

tion to transparently recover from its

exceptions, abstract data types, and

the use of wrappers to prevent faults,

and defensive programming techniques.

Fault Prevention

Component

Removal Service Responsible for removing compo-

nents/services of IoT-based healthcare

applications. It places an IoT-based

healthcare application componen-

t/service in an out-of-service state for

the purpose of mitigating potential

application failures. Thus, its use

is associated with the redundancy

service that defines which redundancy

configuration and what node in the

protection group is going to replace

the out-of-service node.

RAH is presented in the layered and decomposition view in Figures 28 and 29. The
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Figure 28: Layered view of the RAH reference architecture.

decomposition view describes the organization of the software into modules and submod-

ules and shows how the system’s responsibilities are partitioned across them. The layered

view is based on the layered style, which reflects a division of the software into layers

that represent a group of modules that offers a cohesive set of services (BACHMANN et al.,

2011).

Continuing with the RAH documentation, Figure 30 presents the uses view based on

the uses styles. The uses style results when the depends-on relation is specialized to uses.

A module uses another module if its correctness depends on the correctness of the used

module. Thus, this style goes one step further to reveal which modules use which other

modules, enabling incremental development and the deployment of useful subsets of full

systems (BACHMANN et al., 2011).

Therefore, the Gateway uses the Devices, and the IoTDataCollector uses the Gateway.

The Intelligence uses the IoTDataCollector and is used by the Body and Environment

Monitoring components. The Body and Environment Monitoring components are used
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Figure 29: Decomposition view of the RAH reference architecture.

by Cloud-based health information systems and e-health and mHealth applications. All

theses components use the components of the Quality Attributes Cross-Cutting Layer.

5.3 Final Remarks

This chapter presented RAH, a software reference architecture for IoT-based health-

care applications, which was designed to serve as a guideline for the design of the architec-

tures of these applications. This SRA systematically organizes the main elements of these

applications, its responsibilities, and interactions, promoting a common understanding of

these applications’ architecture and addressing the challenges of interoperability, security,

performance, and availability related to its development. RAH is defined based on a set

of functional and nonfunctional requirements (quality attributes) related to IoT-based

healthcare applications. These requirements were extracted from existing publications

collected through the study presented in Chapter 4.

Regarding the functional requirements of IoT-based healthcare applications, it in-

volves the patient’s body and environment monitoring. The nonfunctional requirements

(quality attributes) of these applications are availability, interoperability, performance,

and security. The architecture qualities of RAH are completeness, buildability, applicabil-

ity, and usability. When it comes to functional requirements, the Gateway, the IoTDatacol-

lector, the Intelligence, Body and Environment Monitoring components are responsible
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Figure 30: Uses view of the RAH reference architecture.

for providing them. Considering the nonfunctional requirements (quality attributes), -

availability, interoperability, performance, and security -, Table 14 specifies the strategies

that were used to provide these qualities.

Finally, RAH was detailed, presenting its modules and elements, and documenting

them using the decomposition, layered, and uses views. Finally, in Chapter 6 the archi-

tectural evaluation of RAH will be presented.
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Table 14: Quality attributes and strategies.

Quality attribute Strategies
Availability The definition of fault recovery, detector and

prevention components, that are composed of
retry, redundancy, exception handler, state
resynchronization, monitor, self-test, excep-
tion detection, exception prevention, and re-
moval services.

Interoperability The definition of interoperability compo-
nent composed of data format, discovery and
driver services.

Performance The definition of control and management
resource component composed of event re-
sponse, prioritization and execution limiter
services.

Security The definition of security component com-
posed of authentication, authorization, en-
cryption, audit, security information and in-
trusion detection services.



109

6 Architectural Evaluation of RAH

This chapter presents the evaluation of RAH. For this evaluation a case study was

conducted aiming to search evidence to test the hypothesis that a software reference ar-

chitecture for IoT-based healthcare applications is a suitable approach to address the

challenges of security, interoperability, availability, and performance, found in developing

this kind of applications. For this, the case study research process presented by Runeson

and Host (RUNESON; HOST, 2009) was followed. Results of conducting such process are

presented in this chapter. Section 6.1 describes the case study design and planning, de-

tailing objectives, hypothesis, research questions, and methods to collect data. Section 6.2

presents the collected data used to bring the required evidence to answer each research

question. Section 6.3 presents the analysis and synthesis, based on collected data, to re-

solve the research questions, hypothesis, and objective. Discussion of the results obtained

through this case study are detailed in Section 6.4. Threats of validity are discussed in

Section 6.5. Finally, Section 6.6 concludes this chapter.

6.1 Case Study Design

To assess RAH, the software architecture of a platform for intelligent remote mon-

itoring of patients, named PAR, was designed as an instance of such reference archi-

tecture. PAR is an IoT-Based healthcare platform to integrate patients, physicians and

ambulance services (BARROCA; AQUINO, 2017b) in order to promote better care and fast

preventive and reactive urgent actions for patients in a critical situation. It is composed

of five modules: Remote Patient and Environment Monitoring, Patient Healthcare Data

Management, Patient Health Condition Management and Emergency and Crisis Manage-

ment. This platform was developed considering the need to transfer the healthcare from

the hospital (hospital-centric) to the patient’s home (home-centric) and is based on RAH

(Reference Architecture for IoT-based Healthcare Applications).

In this section, the case study plan is presented, detailing the research questions (RQs)
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that were proposed to confirm the hypothesis stated in this thesis. Moreover, methods to

collect data and bring evidence to answer the RQs are also defined in this section.

6.1.1 Objective

The main objective of this case study is to validate the suitability of RAH to sup-

port the software architecture design of IoT-based healthcare applications capable of ad-

dressing their requirements and overcoming the challenges of interoperability, security,

performance, and availability presented in its domain.

6.1.2 Research Questions (RQs)

To achieve the general objective, six RQs were proposed. For each RQ, an hypothesis

is intended to be confirmed or refuted through the assessment of units of analysis, which

are assessed using collected data. Table 15 presents the RQs and related hypothesis, units

of analysis, and data to be collected during the conduction of this case study.

Table 15: Research questions, hypothesis, units of analy-

sis and data collected.

RQ Hypothesis Unit of Analy-

sis

Data Collected

RQ1 - Can a software

architecture of an IoT-

based healthcare ap-

plication be designed

by using RAH?

RAH allows to

design software

architectures

of IoT-based

healthcare ap-

plications.

Instantiation of

RAH to design

and implement

the software

architecture of a

platform for in-

telligent remote

monitoring of

patients.

Documents resulting

of conducting the

instantiation of RAH

(diagrams, models,

etc). Analysis of time

spent and people in-

volved of conducting

the process for creat-

ing the architectural

design of a platform

for intelligent re-

mote monitoring of

patients.
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RQ2 - Is RAH an

alternative to address

interoperation issues

of IoT-based health-

care applications?

At using RAH,

an architecture

of an IoT-based

healthcare appli-

cation can ad-

dress interopera-

bility of services

provided by the

components, de-

vices and appli-

cations.

Interoperability

scenario.

Information from in-

teroperability scenario

template. Architec-

tural views of RAH.

Diagrams and mod-

els of the platform

for intelligent re-

mote monitoring of

patients.

RQ3 - Is RAH an

alternative to address

availability issues of

IoT-based healthcare

applications?

At using RAH,

software archi-

tectures of IoT-

based healthcare

applications

can address

availability of

components and

services.

Availability sce-

nario

Information from

availability scenario

template. Architec-

tural views of RAH.

Diagrams and models

of the platform for

intelligent remote

monitoring of patients

RQ4 - Is it possible to

instantiate software

architectures of secure

IoT-based healthcare

applications using

RAH?

At using RAH,

software ar-

chitectures

of IoT-based

healthcare ap-

plications can

address security

requirements.

Security sce-

nario.

Information from

security scenario

template. Architec-

tural views of RAH.

Diagrams and mod-

els of the platform

for intelligent re-

mote monitoring of

patients.
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RQ5 - Is RAH an

alternative to address

performance issues of

IoT-based healthcare

applications?

At using RAH,

software ar-

chitectures

of IoT-based

healthcare ap-

plications can

address per-

formance of

components and

services.

Performance

scenario.

Information from

performance scenario

template. Architec-

tural views of RAH.

Diagrams and mod-

els of the platform

for intelligent re-

mote monitoring of

patients.

RQ6 - Can a software

architecture of IoT-

based healthcare ap-

plication, designed us-

ing RAH, be imple-

mentable?

At using RAH,

it is possible

to design and

implement

software archi-

tectures of IoT-

based healthcare

applications.

Instantiation of

RAH to design

and implement

the software

architecture of a

platform for in-

telligent remote

monitoring of

patients.

Code resulting of con-

ducting the implemen-

tation process. Anal-

ysis of time spent

and people involved

of conducting the pro-

cess for implementing

the platform for intel-

ligent remote monitor-

ing of patients.

6.1.3 Procedures for Data Collection

In order to obtain valid information to investigate the established units of analysis,

answer the RQs, and confirm or refute the pre-defined hypothesis, the following procedures

were performed.

Procedure 1 - Documenting the platform software architecture design

To support the investigation of the RQ1, the documentation of the platform architec-

ture design was performed, and the effort (time, people) required to conduct each activity

were collected. In summary, the data collected and documented in this process were:

• Requirements document containing functional and nonfunctional requirements of

PAR;
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• Services, their related health data, and functional requirements that each service is

involved in. Services and components conforming PAR are represented as instances

of services defined in RAH.

Moreover, a mapping between PAR requirements and RAH architecture was made.

This mapping gives evidence that all requirements are addressed by at least one architec-

tural element of RAH. Elements showed in Tables 16 and 17 were used to document such

mapping, registering the ID of the functional or non-functional requirement specified in

the requirements document of PAR. Following, the element (e.g., component or service)

responsible for each requirement is described.

Procedure 2 - Specifying and documenting quality scenarios

Aiming to answer the research questions RQ2, RQ3, RQ4, and RQ5, quality scenar-

ios specifications were proposed. Scenarios help to understand how the system behaves,

and which is the system’s response when a stimulus is given in determined environmental

settings (BASS; CLEMENTS; KAZMA, 2013). In this context, scenarios assist the validation

of architectural decisions made to address quality attributes requirements. In the con-

text of this case study, general scenarios templates as those provided by Clements et al.

(CLEMENTS et al., 2003) were used to establish scenarios to assess the architecture of PAR

regarding interoperability, security, availability, and performance attributes.

Therefore, for analyzing how the software architecture of PAR (as instance of RAH)

addresses these qualities, one scenario was defined for each attribute. In summary, a

scenario specification is composed of eight parts as defined by Clements et al. (CLEMENTS

et al., 2003):

• Scenario identities: Detailing the ID number and scenario objective;

• Attribute(s): Specifying the quality attribute(s) with which the scenario is con-

cerned;

• Environment: Detailing relevant assumptions about the environment in which the

system resides, and the relevant conditions when the scenario is carried out;

• Stimulus: Describing a precise statement of the quality attribute stimulus embodied

by the scenario;

• Response: Exposing a precise statement of the designed quality attribute response.

Such response should be measurable in some way to further test the quality attribute

requirement;
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• Architectural decision(s): Describing architectural decisions relevant to the scenario

that affect the quality attribute requirement;

• Reasoning: Explaining the rationale (in a qualitative or quantitative way) behind

the architectural decisions, detailing why such decisions support the achievement of

quality attribute requirement; and

• Architectural diagram: Illustrating architectural information to support the above

reasoning.

Procedure 3 - Implementing the platform based on software architecture

designed

To investigate research question RQ6, PAR was implemented from the concrete soft-

ware architecture instantiated by RAH. The code and effort (time, people) required to

conduct the development activity were collected.

6.1.4 Methods for Data Analysis

Qualitative data analysis is used to generate the evidence for confirming or denying the

established hypothesis. Hence, to answer each RQ and validate the respective hypothesis,

conclusive statements were made, as proposed by Runeson and Host (RUNESON; HOST,

2009).

6.2 Collecting Evidence

Nine people participated of this case study during its conduction: (i) The software

architect of RAH, in charge of verifying the correct conduction of the instantiation process

of RAH, and responsible for collecting and analyzing the evidence to answer the RQs; (ii)

the software architect of PAR, responsible for conducting and documenting the instanti-

ation process; (iii) five developers responsible for supporting the requirements elicitation

and implementation of PAR; and (iv) two registered nurses assisting the domain analysis

activity. The remainder of this section presents the information collected at conducting

each procedure described in 6.1.
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6.2.1 Procedure 1 - Documenting the platform software architec-
ture design

In this procedure, the scope and architectural design of PAR were established. PAR

is an IoT-based healthcare platform for intelligent remote monitoring of patients in a

critical situation and was developed considering the necessity to transfer the healthcare

from the hospital (hospital-centric) to the patient’s home (home-centric). This platform

integrates patients, physicians, and ambulance services to promote better care and provide

fast preventive and reactive urgent actions. It addresses challenges like interoperability,

performance, security, and availability.

The two registered nurses involved in the case study were responsible to define with

the developers and architects the requirements of PAR. In total, 05 functional require-

ments and 12 nonfunctional requirements were defined for PAR. These functional require-

ments are summarized in Table 16. The software architecture of PAR identified what are

RAH’s services and components that address these functional requirements. Stakeholders

identified in the context of PAR are the patient, family, physician, nurse, hospital and

ambulance operators.

Table 16: Functional requirements of PAR and RAH’s

components and services.

Id Functional requirements RAH’s component and services

FR01 Remote body monitoring of pa-

tients: ECG, heart rate, oxygen

saturation, temperature, breath-

ing rate.

RAH’s body monitoring component:

ECG, heart rate, oxygen saturation,

temperature, and breathing rate ser-

vices.

FR02 Remote environment monitoring

of patients: temperature and hu-

midity.

RAH’s environment monitoring com-

ponent: temperature and humidity ser-

vices.

FR03 Patient healthcare data manage-

ment: records data of patients,

physicians, nurses, health insur-

ance, health condition, history of

monitoring and emergency alerts.

RAH’s cloud based health information

systems: Hospital systems.
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FR04 Patient’s health condition man-

agement: definition of critical lev-

els for the values read by the sen-

sors.

RAH’s cloud based health information

systems: Hospital systems.

FR05 Emergency and crisis manage-

ments: patient’s health condition

and the services that should be

alerted in case of emergency.

RAH’s cloud based health information

systems: Ambulance systems; RAH’s e-

health and mhealth applications.

To attend these functional requirements, the following twenty seven use cases were

specified and refined through several iterations conducted during group meeting:

• Patient’s Data Management (FR03): A.1.1.1 - Create patient data, A.1.1.2 - Read

patient data, A.1.1.3 - Update patient data, Appendix A.1.1.4 - Delete patient data;

• Clinical Staff Data Management (FR03): Appendix A.1.2.1 - Create health profes-

sional data, Appendix A.1.2.2 - Read health professional data, Appendix A.1.2.3

- Update health professional Data, Appendix A.1.2.4 - Delete health professional

Data;

• Health Insurance Data Management (FR03): Appendix A.1.3.1 - Create health in-

surance data, Appendix A.1.3.2 - Read health insurance data, Appendix A.1.3.3 -

Update health insurance data, Appendix A.1.3.4 - Delete health insurance data;

• Patient And Health Professional Association (FR03): Appendix A.1.4.1 - Associate

patient with health professional, Appendix A.1.4.2 - Disassociate patient with health

professional,

• Patient’s Critical Values Configuration (FR04): Appendix A.1.5.1 - Create patient

critical values, Appendix A.1.5.2 - Read patient critical values, Appendix A.1.5.3 -

Update patient critical values;

• Health Data Management (FR03): Appendix A.1.6.1 - Create patient evolution data,

Appendix A.1.6.2 - Read patient evolution data;

• Emergency Alert Data Management (FR05): Appendix A.1.7.1 - Receive patient

emergency alert, Appendix A.1.7.2 - Read patient emergency alert;
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• Ambulance Data Management (FR03): Appendix A.1.8.1 - Create ambulance data,

Appendix A.1.8.2 - Read ambulance data, Appendix A.1.8.3 - Update ambulance

data, Appendix A.1.8.4 - Delete ambulance data;

• Health Data Monitoring and Reporting (FR01, FR02): Appendix A.1.9.1 - Real

time health monitoring, and Appendix A.1.9.2 - Read health data report.

These use cases specification are detailed in Appendix A. Regarding non functional

requirements (quality attributes), the software architecture of PAR identified what are

RAH’s services and components that address these requirements. Thus, the non functional

requirements and RAH’s components and services are summarized and presented in Table

17.

Table 17: Non functional requirements of PAR and

RAH’s components and services.

Id Non functional requirements RAH’s component and ser-

vices

NFR01 The platform must be able to in-

terface (exchange data and inter-

pret it) with an OMNI 612 Mul-

tiparametric Monitor using HL7

v2.6, and an eHealth Shield using

a hashmap (interoperability).

Interoperability component:

driver service.

NFR02 Each device of the platform must

be able to be located by its type,

protocol, and IP (interoperabi-

lity).

Interoperability component: dis-

covery service.

NFR03 The platform must allow stan-

dard communication between

participating services (interope-

rability).

Interoperability component: data

format service.

NFR04 The platform must allow access to

patient data only for authorized

users (security).

Security component: authoriza-

tion service.
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NFR05 The platform must authenticate

users and participating services

(security).

Security component: authentica-

tion service.

NFR06 The platform must offer autho-

rization mechanisms for users and

participating services (security).

Security component: authoriza-

tion service.

NFR07 The platform must respect pa-

tients privacy and protect its data

with confidentiality and integrity

(security).

Security component: encryption

service, authorization and au-

thentication services.

NFR08 The platform must detect fail-

ures in the participating services

(availability).

Fault detector component: Ex-

ception detection service.

NFR09 The platform must provide errors

handling (availability).

Fault recovery component: Ex-

ception handler service.

NFR10 The platform must monitor the

participating services and devices

(availability).

Fault detector component: moni-

tor service.

NFR11 The platform must be aware of its

situation, and prevent and correct

internal faults and failures (avail-

ability).

Fault detector component: moni-

tor service.

NFR12 The platform must be able to

monitor 19 patients and to handle

133 transactions per second (per-

formance).

Control and management re-

source component: event

response, prioritization and

execution limiter services.

The number of monitored patients (19) proposed in NFR12 is based on the current

capacity of the Intensive Care Unit (ICU) of the Onofre Lopes Hospital. The nurses par-

ticipating in this case study work at this hospital, and suggested that this platform should

be able to handle the current capacity of this ICU. The number of transactions (133) pro-

posed in NFR12 is based on the 19 patients and the necessity of PAR to monitor ECG,

heart rate, oxygen saturation, temperature, breathing rate, temperature, and humidity

(NFR01 and NFR02). This results in 19 patients with 7 monitored data per second (one

for each sensor).
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In the discussion, the software architect and the developers chosen to use JSON as

the standard data format to exchange clinical data between the platform components and

services. JSON (JavaScript Object Notation) is a lightweight data-interchange format

that is easy for humans to read and write it. Moreover, it is also easy for machines to

parse and generate JSON data (JSON, 2016).

Based on the requirements documents, and RAH reference architecture, defined in

section 5.2, PAR’s software architect designed PAR architecture instantiating the identi-

fied components and services of RAH. Figure 31 presents RAH layered view highlighting

the instantiated elements for PAR. Descriptions of RAH components and services respon-

sibilities were detailed in Section 5.2.

Figure 31: Layered view of the RAH reference architecture with highlighted elements for
PAR.

Figure 32 presents PAR layered view as an instance of RAH. The layered style (BACH-

MANN et al., 2011) was used to design the layered view. This view was used to to represent

PAR according to layers’ division (stereotype layer) and the its components (stereotype
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segment), according to RAH’s structure, presented in Figure 28. Another motivation for

this view is to present PAR in an abstract way, without detailing the components and

services, permitting the developers team to have a simple view of the layers and its re-

sponsibilities in PAR.

Moreover, this layered view presents the interactions between the layers of PAR,

representing it through the stereotype allowed-to-use. The top layer is only allowed to

access the next-lower-layer, except the cross-cutting layer that can be accessed by any

other layer presented in this view. Thus, the Application Layer accesses only the Service

Layer, that accesses only the Middleware Layer. This last layer, access only the Sensing

Layer, and the Quality Attributes Cross-cutting Layer can be accessed by the others

layers. With this layer division, the PAR software architect intend to achieve portability

and maintainability.

Figure 32: PAR layered view as an instance of RAH.

Figure 33 presents PAR decomposition view. This view presents PAR in a fragmented

way, beyond the layers and components presented in PAR Layered View, it details the

PAR’s services. This view was created by the PAR software architect following the re-

quirements, and selecting which services of RAH would be instantiated for PAR. The

importance of PAR decomposition view is the simplicity of the presentation of PAR frag-

mented in services, without showing its relationships, that are the focus of the following
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architecture views, designed from this decomposition. The services of RAH selected for

the components are necessary to achieve the functional and nonfunctional requirements

of PAR.

Figure 33: PAR decomposition view as an instance of RAH.

For PAR architecture, it was important the representation through the architectural

view of "use" of the services. Figure 34 presents the PAR Uses View. In this view, the

services that are presented in the decomposition view are now related to the dependencies

between them. This relation is understood as depends-on if a stereotype arrow "uses" exits

from one service to another. It is important to emphasize that this view does not present

the data flow between the services, but only the dependencies between them, which obey

the definitions of allowed to use presented PAR layer view (Figure 32).

Dependencies start with the Gateway Component, which depends on the Devices,

which are collecting patient biometrics and environment data, and Quality Attributes
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services. Internally to the Gateway, there is a dependency between services: the Network

service is required for the Filter and DataReceive services, which also depends on the

Filter. Finally, the DataSend service of Gateway depends only on the DataReceive of

the IoTDataCollector. Moreover, FilterService of the Gateway depends on Authorization

Service of the Security Component, and the DataReceive service of the IoTDataCollector

Component depends on all services of the Interoperability Component (Driver, DataFor-

mat, and Discovery).

The IoTDataCollector Component, being the "entrance" of the Middleware Layer,

depends on the Gateway Component, since the IoTDataCollector’s DataReceive service

depends on the Gateway’s DataSend service. Then, there is the DataReceive as a depen-

dency of the DataPersist and the TransformationData, which is the dependency of the

IoTDataSend. Also, DataReceive depends on the Driver and Authorization services, and

the TransformationData depends on the DataFormat.

In the Intelligence Component, the dependency starts with IoTDataReceive service,

which depends on the IoTDataSend of the IoTDataCollector Component. Information-

Persist depends on IoTDataReceive and is dependent on IntelligentEngine and Informa-

tionSend. In its turn, InformationSend relies on the Control and Management of Resource

services (EventPriorization, ExecutionLimiter, EventResponse).

The services of the Quality Attributes Layer, being cross-cutting, may have a depen-

dency association for the services of the other layers. The Monitor service of the Fault

Detector Component will check the availability of the Gateway services, so it depends on

them, except the Network Service, which is independent of the others services of this com-

ponent. Finally, the components of the Service Layer (environment and body monitoring)

depend on the InformationSend service of the Middleware Layer and are dependencies

for the components of the Application Layer. The Service Layer services also depend on

the ExceptionHandler and Authorization services. In the Application Layer, the services

depend on Encryption and Authentication services.

PAR software architect designed PAR data model view, presented in Figure 35. This

view was chosen to represent the PAR domain entities, as well as the relationship between

them, and it was built according to the use cases specification presented in Appendix A.

The Patient entity represents a person who is under the care of a health professional, and

it is the central entity of this model since practically all other entities have a direct or

indirect relationship with it.

A HealthProfessional entity is the representation of a person who acts professionally
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Figure 34: PAR uses view as an instance of RAH.

in the health area, working in a hospital, clinic, or ambulance, and may have a specific spe-

cialization, which is represented through the generalization relationship of Physician and

Nurse. A HealthProfessional relates to a Patient through the HealthProfessionalCaring

entity, which corresponds to professional performing health procedures in a patient.

The PatientEvolution entity refers to these procedures that are being recorded and

the evolution of the clinical condition of a patient. HealthData is the entity that represents

data (biometrics) from the patients. This data is gathered through the devices represented

by HealthDevice entity. Patient data can generate alerts for the EmergencyAlert entity,

which may vary according to patient alert rules defined in PatientCriticalRule entity.

EmergencyAlert may allow the use of the Ambulance service and other services, depending

on the patient’s HealthInsurance entity.

The Component and Connector view, presented in Figure 36, exposes the PAR com-

ponents connected according to the data flow between them, informing the types of data

that flow in this platform, and the communication interfaces between the components.
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Figure 35: PAR data model view.

This view was constructed from the Uses and Decomposition views, presented in Figures

33 and 34, following the rules established in it regarding the communication between com-

ponents. The rationale for this view is to allow the PAR implementation team to have an

idea of how the data should enter and exit each component, and promote more clarity in

the technical aspects that they should consider when developing each component.

Moreover, in this view, it is possible to note the following PAR quality attributes:

interoperability and availability. Interoperability can be achieved in the communication

between the devices and the Gateway component, which allows connection with different

device types and different data flows. Availability can be achieved through the presence

of the Fault Detector component, which monitors the PAR components, to identify any

anomalies in their behavior. Regarding the data flow presented in this view, it starts with

the devices sending the raw data (HL7 V2.6 and HashMap) to the Gateway. The Gateway

packets the data, it defines the packet headers and sends them to the IoTDataCollector

(IDC). The IDC will receive the data packets, persist and treat them so that the output

to the Intelligent Component is like IoTData.

Therefore, the Intelligent Component will apply its rules of inference about the IoT-

Data, so that this data is semantically understood and presents information about the

health status of a patient. The service layer components (Body and Environment Moni-

toring) act as interfaces that abstract the requests for information about patients’ health

and the environment in which they are accommodated. Finally, this information reaches

the applications and is presented to the end users of PAR. Next, the component and con-

nector views are presented from the internal perspective of the PAR components, which



125

Figure 36: PAR component and connector view.

are shown in Figure 36. It is important to note that the services in the component-specific

views have stereotypes that represent the RAH services that are being implemented.

Figure 37 presents the component and connector view of PAR Gateway component.

This view details the data flow between services in the Gateway component. With this

view, it is possible to note the achievement of security quality attribute with the exis-

tence of the AuthService, which deals with the authentication and authorization of the

devices connected to the Gateway. Another important aspect is the presence of the Mon-

itor interface, which allows the monitoring of Gateway services by the Fault Detector

Component.

The data stream starts with the data (HL7 V2.6 and HashMap) of the devices enter-

ing the Gateway. First, it passes through the NATService without experiencing change

and going to the RawDataService. RawDataService, in turn, uses the FilterService, De-

viceDiscoveryService, and AuthService services to perform its filter operations on the

signals, device discovery, authentication, and authorization, respectively. Then the data

goes to the Drivers service, which classifies the data according to the device. Finally, the

data goes to the RawDataSendService, which is responsible for sending the data to the
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Figure 37: Gateway component and connector view.

IoTDataCollector.

Figure 38 presents the detailed component and connector view of IoTDataCollector

(IDC). In this view, it is possible to note that, in addition to the information of the

input and output data types of this component, it has the data flow between the services

that compose it. Starting the stream, the DataReceiveService uses the AuthService and

DataPersistService services to perform authentication, authorization of data sources, and

persists the raw data in the Gateway component.

Also, the DataPersistService has the service responsibilities (represented by the stereo-

types) of EventResponseService, ExecutionLimiterService, and EventPriorizatonService.

Following the flow, TransformationService is responsible for transforming (or convert-

ing, parsing) RawData into IoTData, which has the semantics of the device context. To

perform this transformation, TransformationService uses the DataFormatService, which

functions as a dictionary that assists in the translation of RawData. Finally, the stream

ends with the IoTDataSendService, which is responsible for sending the IoTData to the

Intelligence component.

The component and connector view of the Intelligence component (IC) is presented in

Figure 39. It receives the data (IoTData) sent by the IDC and classifies them according
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Figure 38: IoT Data Collector component and connector view.

to the type of output information, which may be health or environment information. The

data flow between the Intelligence component services starts with the IoTDataReceiveSer-

vice, which similar to the Gateway’s DataReceiveService, has the responsibilities of the

EventResponseService, ExecutionLimiterService, and EventPriorizatonService defined in

the stereotypes. It also uses an AuthService to authenticate and authorize the component

of the data source. Then, the InferenceEngineService (IE) is responsible for performing

possible classifications of the data and can generate health alerts related to patients being

monitored by the platform. For this, the IE uses the DataPersistService to read and write

the sort data. As a final step, the flow goes on with the InformationSendService receiving

the information from IE and sending it to health or environment monitoring services.

The component and connector view of the patient’s body and environment monitoring

components are presented in Figure 40. These components have as input the information

that arrives from the Intelligent component. In the case of the Body Monitoring component

(BMC), the health information is received and, in the case of the Environment Monitoring

Component (EMC), environment information is received. For these components, the input

information is the same as the output, but at the output, this information is made available

through interfaces that represent the component’s use call.

The services of these components do not communicate with each other, including those

internal to the same components. This is because each service handles the information

regarding your domain, to avoid the coupling and ensure the maintainability of them.
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Figure 39: Intelligence component and connector view.

Figure 40: Body and environment components and connectors view.

In this way, the information flow becomes very simple, since the information enters the

component, through the services of its respective domain and goes to the applications
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that requested them, through the interfaces.

These components also use AuthService, but in this case, it is used to authenticate

and authorize the applications that request patient information, and since the same appli-

cations can require information from the two components, they use the same AuthService.

Finally, the Monitor interface is used to allow the monitoring of these components by the

FaultDetector component.

Figure 41 presents the component and connector view of the Fault Detector Compo-

nent (FDC), which belongs to the cross-cutting layer of PAR, as explained in the PAR

decomposition view (Figure 33). In this way, the FDC can communicate with the com-

ponents of all other layers and, for this reason, the input data is represented by the

ServicesData, which contains data about the PAR components, such as Gateway, IoT-

DataCollector, Intelligence, Body and Environment Monitoring.

This monitoring by the FDC is possible through the use of the Monitor interface, which

is presented in Figures 37, 38, 39, and 40. In this view, it is noted that the quality attributes

of performance and availability are addressed, since FDC is constantly monitoring the

PAR components to identify anomalies in their behavior, such as the execution time

above the desired or unavailability.

Figure 41: Fault detector components and connectors view.

The FDC data stream starts with the SeviceData arriving at the component, according

to the constant requests that are made to the monitored components in search of services

status. The MonitorService then receives this data and uses the ExceptionDetection and

ExceptionHandler services to perform the appropriate treatment for unusual situations.

FDC does not have a data output since no function needs to consume the results of its

services.
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Figure 42: Applications components and connectors view.

The last component and connector view, presented in Figure 42, is about PAR appli-

cations. They are the final destiny of the data, so, this view does not display output data,

only the input information, which comes from the health and environment monitoring

components. The applications services consume this information.

The PAR architect design the repositories views, based on RAH decomposition view

presented in Figure 29. The instanced repositories are presented in Figure 43. These

repositories views represent interactions between PAR services and the databases specific

to the components to which they belong. Thus, the team involved in the project has an

artifact that presents the platform databases, which component they are located in, the

services they access, and how this access is made (read and write).

The services are represented by the blocks, the databases by the disks, and the types of

database access are represented by the arrows that connect the services to the databases.

The relations can be of three types: just write, arrow leaving the service destined to

the database; read-only, arrow leaving the database to the service; and read and write,

bi-directional arrow.

The repository view of the Gateway component is presented in Figure 44. The Gateway

services use an in-memory DB (H2DB) because of the hardware limitations in which they

are running. The DeviceDiscoveryService stores device-specific information to identify

them at the moment they connect to the Gateway to send data. The AuthService accesses

this database to authenticate and authorize devices attempting to connect to the Gateway.

In the IoTDataCollector, presented in Figure 45, services access two databases: a non-

relational database (NoSQL) for storing data from devices, and a relational database for

authentication and authorization from the devices which attempt to connect to it for data
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Figure 43: Decomposition view of the RAH reference architecture with highlighted ele-
ments for PAR.

Figure 44: Repository view of the PAR Gateway component.

transmission. The use of the non-relational database is necessary because of the variety of

data that can be received from the devices and, hence, it is possible to maintain its state

before being transformed into IoTData.

Figure 45: Repository view of the PAR IoTDataCollector component.
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The Intelligence component uses a single database in your services, that is described

in the repository view presented in Figure 46. The DataPersistService is the main service

of access to the database IntelligenceDB since it is used by other Intelligence services,

which require the data of it to carry out its operations. For example, the InferenceEngine

that constantly needs to classify the data of the devices. AuthService also makes access to

the database to authorize and authenticate those who try to connect to the Intelligence

Component for sending data.

Figure 46: Repository view of the PAR Intelligent component.

The repository view of the monitoring components (body and environment) is pre-

sented in Figure 47. These components do not require operations that imply in the storage

of information. However, they have a database of an AuthService that performs autho-

rization and authentication of applications that request information from patients.

Figure 47: Repository view of the PAR monitoring components.

The Fault Detector Component (FDC) has its relational database, that is accessed by

the MonitorService, and it is used for registering the status information about the running

components of PAR. The FDC repository view is presented in Figure 48.

Figure 48: Repository view of the PAR Fault Detector component.
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Resources - This procedure took 118 hours:

1. Nine persons, of which two were nurses, one was the RAH’s software architect, one

was the PAR’s software architect and five were developers, were involved in the

PAR’s requirements and use cases specifications and documentations. This activity

took 26 hours to be completed.

2. Two persons, the software architect of PAR and the software architect of RAH

were involved in the identification of what are RAH’s services and components that

address the defined requirements. This activity took 9 hours to be completed.

3. Two persons, the software architect of PAR and the software architect of RAH

were involved in the design of PAR’s services and components to attend the defined

requirements, based on RAH’s instantiation. Most of the work made in this activity

was under responsibility of the architect of PAR. The PAR’s software architect spent

67 hours to complete this activity. The RAH’s software architect spent 16 hours in

this activity, to resolve doubts and in the reviewing meetings made jointly with

the software architect of PAR. Considering the time spent by both architects, this

activity demanded 83 hours to be completed.

6.2.2 Procedure 2 - Specifying and documenting quality scenarios

This procedure is oriented to support the activity of architectural evaluation of PAR.

Specifically, this procedure gives evidence to assess architectural decisions regarding qual-

ity attributes requirements. In this context, four quality scenarios were used to validate

the software architecture of PAR regarding quality attributes of interoperability, avail-

ability, security and performance. For each quality attribute one scenario was proposed

following the guidelines offered by Clements et al. (CLEMENTS et al., 2003). The four qual-

ity scenarios are presented as follows.

Scenario 1 - Interoperability scenario

Attribute: Syntactic and Semantic Interoperability between Devices and the

Platform;

Environment: The platform is connected to a multi-parametric monitor that sends

data using HL7 V2.6. This data goes through the Gateway, and it sends the raw data to

the IoTDataCollector. This data is transformed by the IoTDataCollector (syntactic) and
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it is classified according to the patient’s critical values configuration (semantic) by the

Intelligent Component. Finally, the data is presented to the applications by the Service

Layer.

Stimulus: An e-health shield needs to be connected to the platform to monitor a new

patient biometrics. This data is sent by the e-health shield using a hashmap (key, value

structure) where the key is the sensor’s name and the value is the captured data. This data

needs to be received by the Gateway, transformed by the IoTDataCollector Component,

and classified by the Intelligent Component. Finally, this data needs to presented to the

applications by the Service Layer.

Response: The data is received and sent by the Gateway. It is transformed in the

IoTDataCollector, classified according to the patient’s critical values configuration by

Intelligent component, and presented in the applications by the Service Layer.

Architectural decisions:

• Development of a driver for e-health shield in the Gateway Component. To create

this driver, it is used the data format service responsible for defining the data format

used in the platform components (syntactic interoperability). This e-Health shield

driver understands its protocol (hashmap) and converts the received data in the

Gateway into a format understandable by the IoTDataCollector (JSON).

• Definition of this driver in the Driver service for e-health shields. This driver can be

reused for the communication of a new e-health shield.

• Registration of the e-health shield in the Authorization service. With this autho-

rization, the raw data of this device can be received and processed in the Gateway.

• Usage of transformation data service in the IoTDataCollector to transform the raw

data received and persisted in a format understandable by the Intelligent Compo-

nent, to be classified according to the patient’s critical values configuration (semantic

interoperability).

Reasoning:

• Benefits: (i) Allows to put new and change existing devices. (ii) Syntactic and seman-

tic interoperation between devices and the platform components. (iii) Reusability

of drivers, transformation and data formats services.
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• Liabilities: (i) Necessity to define new drivers and data formats for unknown devices.

(ii) Definition of a transformation rule for the transformation data service.

Architectural diagrams: PAR layered, decomposition, and component and connector

views, in Figures 32, 33, 36, 37 and 38.

Scenario 2 - Availability scenario

Attribute: Availability;

Environment: The platform is connected to a multi-parametric monitor and e-health

shield that send data through the Gateway. The Gateway sends it to the IoTDataCollector.

This data is transformed by the IoTDataCollector, and it is interpreted by the Intelligent

Component. Finally, this data is presented to the applications by the Service Layer.

Stimulus: The IoTDataCollector stops sending the data to the Intelligent Component,

presenting an increase of memory load average.

Response: The monitor service detects the possible failure and alerts the adminis-

trators of the application providing the health status of the IoTDataCollector; the retry

service attempts three times to process and send received data to the Intelligence compo-

nent. The limit is reached and this service uses the removal service to declare failure of

the IoTDataCollector, and put it in an out-of-service state. The exceptions are captured

and logged by the exceptions services. The redundancy service activates another node in

the protection group of the IoTDataCollector.

Architectural decisions:

• Definition of a monitor, retry, exceptions, removal, redundancy, and state resyn-

chronization services;

• Registration of the platform services and components to be monitored by the mon-

itor service;

• Definition in the retry service to perform three attempts to process and send data

before declare failure of a component/service;

• Definition in the redundancy service of the redundancy configuration (hot, warm or

cold spare), and the location of the protection group with redundant nodes of the

components and services;
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• Based on the redundancy configuration of the redundancy service, definition of the

strategy of the state resynchronization service (checksum, hash-function or check-

pointing).

Reasoning:

• Benefits: (i) Detection of failures is automatic. (ii) Provision of mechanisms to cap-

ture exceptions for analyzes. (iii) Provision of redundancy of the components.

• Liabilities: (i) Negative Impact on the performance of the components and services

monitored, since the response requires information processing demanding additional

time to answer the monitor service. (ii) The necessity of additional infrastructure

and computational resources to the copy of nodes of the components for redundancy.

Architectural diagrams: PAR layered, decomposition, and component and connector

views, in Figures 32, 33, 36, 38, and 41.

Scenario 3 - Security scenario

Attribute: Security;

Environment: The platform is connected to a multi-parametric monitor and e-health

shield that send data through the Gateway. The Gateway sends it to the IoTDataCollector.

This data is transformed by the IoTDataCollector, and it is interpreted by the Intelligent

Component. Finally, this data is presented to the applications by the Service Layer.

Stimulus: A hacker connects a device in the network and tries to send data to the

platform posing as an existing patient.

Response: The hacker’s attached device does not achieve to send data to the platform.

The administrators of the platform are notified of the attempt of intrusion.

Architectural decisions:

• Definition of authorization and authentication services to the devices and compo-

nents of the platform;

• Register of the devices and components on the authorization service. The autho-

rization and authentication services contain a database of registered devices and

components specifying the IP, type, and authorization token. In each exchanged
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packet of data in the platform, the authorization token of each device/component

is present. The authorization service verifies this token, and if it is not valid, the

packet is discarded;

• Definition of encryption service for the packet of data exchanged by the platform

components/services and devices. The encryption is essential to ensure the confi-

dentiality of the data, protecting the token and patient’s data. The packet of data

is encrypted and sent using HTTPs protocol;

• Definition of security information and intrusion detection services to detect the

attempt of intrusion and notification of the platform administrators.

Reasoning:

• Benefits: (i) Improvement of detection of unauthorized access. (ii) Provision of mech-

anisms to register and authenticate the authorized devices. (iii) Provision of encryp-

tion to protect patient’s data. (iv) Provision of mechanisms to detect and notify

intrusions attempts.

• Liabilities: Negative impact on performance, since to every sent data it is verified if

it come from an authorized device.

Architectural diagrams: PAR layered, decomposition, and component and connector

views, in Figures 32, 33, 36, 37, and 38.

Scenario 4 - Performance scenario

Attribute: Performance;

Environment: The platform is monitoring 1000 patients. They are connected to a

multi-parametric monitors, e-health shields and environment sensors that send data through

the Gateway. The Gateway sends it to the IoTDataCollector. This data is transformed

by the IoTDataCollector, and it is interpreted by the Intelligent Component. Finally, this

data is presented to the applications by the Service Layer.

Stimulus: A network instability occurs in the Gateway damning the packets of patients

monitored data. All the packets that should be sent during the network instability are

queued and sent at once to the Intelligent Component too rapidly to be processed by it.
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Response: The Intelligent Component queue the packets of monitored data until they

can be processed by it. All the packets are processed by this component and sent to the

Services layer components to be available to the applications Applications Layer.

Architectural decisions:

• Definition of an event response service to control resource demand in the Intelligent

Component;

• Definition of a limit of the maximum rate of received packets to process. If the rate

of the received packets passes the set maximum rate, the number of excess packets

are queued to be processed later with the next packets.

Reasoning:

• Benefits: (i) Performance controlled. (ii) Guarantees that even in a stress situation

in the platform, it will attend the requests. (iii) No "downsample" of packets of

patients monitored data, since it is not acceptable to lose any packet.

• Liabilities: (i) The necessity of additional computational resources to the queues of

the components. (ii) The necessity to ensure that the queues are large enough to

handle the excess of packets of patients monitored data in the worst case.

Architectural diagrams: PAR layered, decomposition, and component and connector

views, in Figures 32, 33, 36, 38, 39, and 41.

Resources - This procedure took 32 hours:

1. To establish quality scenarios, both software architects, of PAR and RAH, were

involved.

2. 20 hours spent by the architect of PAR analyzing the architectural decisions, benefits

and liabilities for the scenarios.

3. 12 hours spent by the architect of RAH designing and validating the scenarios.
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6.2.3 Procedure 3 - Implementing the platform based on software
architecture designed

This procedure is oriented to collect evidences of the development of PAR based

on the concrete architecture instantiated from RAH. Thus, in this procedure PAR was

implemented, and its deployment view is presented in Figure 49. This view details the

physical structure of virtual machines and servers for this platform. Moreover, it also

shows the layout of PAR software artifacts, developed in this procedure, based on the

software architecture of PAR.

The devices and servers allocated for this platform are presented in Table 18.

Table 18: Devices and servers allocated for PAR.

Devs/servers Responsibility OS Resources

Raspberry PI 3 -

Model B

Gateway Raspbian Quad-core, 1GB of RAM

e-Health Shield Shield sensor - -

Omni 6122 Multi-parametric

monitor

- -

chi.imd.ufrn.br Components of mid-

dleware and service

layer

CentOS 8vCPUs, 8GB of RAM and

20GB storage

imam.imd.ufrn.br Fault components CentOS 8vCPUs, 8GB of RAM and

20GB storage

par.imd.ufrn.br Applications CentOS 8vCPUs, 8GB of RAM and

20GB storage

To the development of the software artifacts of PAR, the technologies presented in

Table 19 were used.

Table 19: Technologies used in the development of PAR.

Technology Frameworks

Languages Java, JavaScript

Frameworks Spring MVC, Hibernate

IDEs Eclipse

Databases H2, PostgreSQL and MongoDB
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Broker ActiveMQ

The software artifacts created by the developers team of PAR are presented and de-

tailed as follows.

Gateway.jar

This artifact is a stand-alone component that is responsible for performing the data

capture of the monitoring equipment and sending them to the IotDataCollector artifact.

It is deployed in the PAR platform infrastructure on the Raspberry PI 3 - Model B.

This equipment has two network interfaces, one connected to a network that enables

external access to the Internet and another connected to the subnet in which the devices

for monitoring of patients are located. In this way, this device can communicate with

both networks, which allows the capture of data from patient monitoring devices and the

subsequent sending of this data to the IotDataCollector artifact, available in the PAR

infrastructure.

It was necessary to verify the involved formats of the data in the devices. Thus,

the HL7 format was used to the Omni 6122 Multi-Parameter Monitor, and the JSON

format to the E-Health Shield device. The implementation of the connection ports for

data capture was performed using the DataReceiver service, that provides sockets in

the following ports: 2575 / TCP (Omni 6122) and 5000 / TCP (e-HealthShield). All

of these formats are carried over the network through the TCP protocol and are made

available in the layers above the transport layer of the TCP/IP stack. Thus, after the

establishment of the connection through the sockets, the Driver component, which can

understand each specific format, is triggered for the consolidation of the data capture. This

component knows the specificities of each format and implements the necessary routines

for adequate data capture. In gateway.jar, these services are implemented by methods in

the DriverEHealth and DriverHL7 classes.

This data is captured and sent, through the RawDataSender service, to the IotDat-

aCollector artifact using publish-subscribe pattern. The authorization service was imple-

mented, which has methods that perform authentication and authorization control for the

establishment of a connection between the devices and the gateway. In some cases, the

need for the implementation of the Filter service was verified, which will be responsible

for filtering the data before sending it to IoTDataCollector. The filter was implemented
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Figure 49: PAR deployment view.

as a Python application whose function is to remove noise from digital-analog sensors

and converters which are present in the signal provided by e-HealthShield. Thus, its goal

is to provide better signal quality for better data extraction in the intelligence component.

IoTDataCollector.jar
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The IotDataCollector artifact is the component responsible for receiving the data

sent by the Gateway, persisting it in a non-relational database, and then converting it

to a format known by the other platform components. This artifact, deployed in server

chi.imd.ufrn.br, receives the data coming from the gateway through the publish-subscribe

pattern. This communication is established through Apache ActiveMQ1, which is a multi-

lingual Message Broker capable of managing a bus for message exchange. This component

also implements gateway authentication and authorization to publish data in a particular

subscriber topic.

For the IoTDataCollector artifact receives the data from the Gateway, it is necessary

to register and authorize this component to collect the raw data. Once the raw data is

received, it is persisted in a non-relational MongoDB2 database through the DataPersis-

tence service. Then it is sent to the Transformation service that performs the conversion

of it, through the identification and characterization of different formats (HL7, JSON,

etc.) performed by the DataFormat service. This transformation results in a JSON object

known by the platform components. After this transformation, the IoTDataSend service

publishes the data in the intelligence topic, which will be consumed by the Intelligence

artifact.

Intelligence.war

The intelligence artifact, available from the chi.imd.ufrn.br server, is responsible for

applying inference rules to the data so that it can be semantically understood and present

relevant information about the health status of a patient. Thus, in this component, a set of

rules are defined and applied directly to in this data. The data of the sensors arrive in the

Intelligence component through the component IoTDataCollector. The pattern Publish-

Subscribe does the communication of messages between these components. It is also used

ActiveMQ to manage these messages and to implement this component authentication

and authorization for the publication of data on a particular topic in the subscriber.

It is necessary to register and authorize the Intelligence component to receive the

data from the IoTDataCollector. Once received, the data is sent to the InteligenceEngine

service, which is responsible for classifying and applying rules in the data about the

patient’s condition. If it finds any value outside the defined rules for the sensors, the

component generates an alert and sends it to the InfomationSend and Persist services to

1http://activemq.apache.org/
2https://www.mongodb.com
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be stored in a database. The values that are inside the rules that set limits for the sensors

are also sent to the InformationSend service.

Finally, the Persist service is responsible for storing the alerts generated by the In-

telligenceEngineService component in a PostgreSQL3 relational database. The Informa-

tionSend service is responsible for receiving the data analyzed by the IntelligenceEngine

service and sending it to the Body Monitoring component, if it is a patient sensor data,

and for the Environment Monitoring component if it is an environment sensor data.

BodyMonitor.war and EnvironmentMonitor.war

The BodyMonitor and EnvironmentMonitor artifacts, available from chi.imd.ufrn.br

server, are responsible for providing interfaces to applications located on the par.imd.ufrn.br

server. In this way, this artifact sends data of HTTP / REST or Publish-Subscribe re-

quests to real-time data related to information about the health status of patients and

the environment in which they are accommodated. For the applications to consume the

information delivered by these artifacts, they must send in the request an authentication

token produced by the AuthService. With this token, they will be able to validate if the

applications that are requesting the data are properly authorized and what are the pa-

tient’s data that it can be consumed.

AuthService.war

The AuthService artifact, available from the chi.imd.ufrn.br server, is responsible for

the authentication and authorization of the applications, mobile or web, which will con-

sume data through the interfaces provided by the components BodyMonitor and Envi-

ronmentMonitor. The service will also check which users have permissions for accessing

the patient’s data history and real-time data captured by the monitoring devices. This

authentication of the services is provided through the JSON Web Token (JWT)4 standard.

For the applications to communicate with the BodyMonitor and EnvironmentMon-

itor components, they will have to authenticate themselves in the AuthService artifact

through informing a client-id and a secret-id. When performing the authentication pro-

cedure, the AuthService will check whether the requesting application is allowed access

to the monitoring components. If the application has the necessary access permissions, a

valid token will be generated so that it can connect with the monitoring components.

3https://www.postgresql.org
4https://jwt.io
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Hospital.war, Ambulance.war and Mobile App

Hospital, Ambulance, and Mobile applications, available from par.imd.ufrn.br, are re-

sponsible for displaying information collected from sensors to users. It is important to

emphasize that the use cases that concern the presentation of the data to the users de-

fined in the requirements phase are implemented in these components. These applications

present, in real time, data and alerts that of the monitored patient’s health situation, mak-

ing possible for them to be monitored remotely by the clinical staff. For these artifacts

to consume data provided through the BodyMonitor and EnvironmentMonitor compo-

nents in the service layer, registration and permission are required. This authorization is

implemented through queries that use the JSON Web Token standard.

The Hospital.war artifact implements the functionalities related to the management

of patients and clinical staff, as well as monitoring, reporting, and configuration of critical

patient data. The development of this artifact follows the Model View Control pattern.

The Mobile artifact presents the monitoring, display of alerts and reports based on the

patients’ health data. The Ambulance artifact is responsible for notifying critical alerts

due to altered health conditions of monitored patients.

Monitor.jar and MonitorWebInterface.jar

The monitor artifact, available from the imam.imd.ufrn.br server, performs availabil-

ity checking and collect application and equipment infrastructure monitoring data. Also,

this component sends alerts in case of failures to the user and, in certain situations, act

proactive by executing commands for the recovery of failed services and applications. This

component implements four main functionalities, which are: periodic verification of the

availability of applications and equipment through the implementation of the ping/echo

strategy; collection of monitoring data from the SNMP protocol for equipment and servers

(virtual or physical) and, for applications, through endpoints made available by applica-

tions developed from the Spring framework and application servers such as JBoss/Tomcat;

in case of fault identification in the services, this component receives instructions to per-

form actions of recovery and re-adaptation of computational resources in the environment;

and send alert with information to the user in case a fault is identified.

The monitor web interface artifact is complementary to the monitor and will allow

users to register the applications and equipment that will be monitored, as well as related
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endpoints of applications, attributes that will have data collected through SNMP, among

others. Through panels dashboards, the user can check reports, messages, graphs, data

processing results and analysis of the monitored environment. Also, through the web in-

terface, it is possible to define the control steps. In this way, the user can define commands

to be executed by the monitor, in cases of anomalies being identified.

The source code is available in the repositories5, and the developers made a video6

that presents PAR execution.

Resources - This procedure took 358 hours:

1. Seven persons, of which five were developers, one was the RAH’s software architect,

and one was the PAR’s software architect, were involved in PAR development.

2. Five persons, all developers, were involved in the Gateway component development.

This activity took 63 hours to be completed.

3. Five persons, all developers, were involved in the IoTDataCollector component de-

velopment. This activity took 58 hours to be completed.

4. Five persons, all developers, were involved in the Intelligence component develop-

ment. This activity took 45 hours to be completed.

5. Five persons, all developers, were involved in the Body and Environment monitoring

component development. This activity took 62 hours to be completed.

6. Five persons, all developers, were involved in the Monitor component development.

This activity took 48 hours to be completed.

7. Five persons, all developers, were involved in the Hospital, Ambulance and Mobile

applications development. This activity took 70 hours to be completed.

8. Two persons, of which one was the RAH’s software architect, and the other one

was the PAR’s software architect, were involved in the review of the implemented

artifacts to avoid software architecture deviations. This activity took 12 hours to be

completed.
5https://projetos.imd.ufrn.br/iothealthcareplatform
6https://par.imd.ufrn.br/video
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6.3 Analysis of Collected Data

In this section conclusions are derived based on the collected evidences in Section

6.2. For each research question, conclusive statements are proposed offering evidence to

support or refute the related hypothesis.

RQ1 - RAH allows to design software architectures of IoT-based healthcare

applications

To answer RQ1 - Can a software architecture of an IoT-based healthcare application

be designed by using RAH?, time and people required to conduct and document the

instantiation of RAH was registered. Therefore, at the end of the Procedure 1, presented

in Section 6.2.1, information about time spent and people involved to design software

architecture of PAR was detailed.

To support the hypothesis that RAH allows to design software architectures of IoT-

based healthcare applications, the concrete software architecture of PAR was designed, as

an instantiation of RAH. In this procedure, presented in Section 6.2.1, the requirements

and architectural elements of PAR were mapped into requirements and architectural ele-

ments of RAH. This mapping, presented in Tables 16 and 17, shows that each requirement

of PAR is under the responsibility of at least one component and service of RAH. Figures

31 and 43 presents the services, components and repositories instanced of RAH for PAR.

Moreover, the architectural views of PAR were created following the guidelines and

views of RAH, as presented in Figures 32, 33, and 34. With these evidences, it is possible

to affirm that RAH facilitated the design of the software architecture of PAR, an IoT-

based healthcare application. However, additional instantiations of RAH for the design

of concrete architectures of IoT-based healthcare applications must be performed to offer

more evidence to support this hypothesis.

Finally, as presented in the Procedure 1, the RAH’s software architect spent 16 hours

to resolve doubts and in the reviewing meeting made jointly with the software architect

of PAR. The PAR’s software architect spent 67 hours to complete this instantiation of

RAH and documentation of PAR. It is possible that this time could be less if there were

a specific instantiation process to use with RAH.

RQ2 - RAH address interoperability in IoT-based healthcare applications
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To answer RQ2 - Is RAH an alternative to address interoperation issues of IoT-based

healthcare applications?, an interoperability scenario detailed in Procedure 2, Section 6.2.2,

was analyzed. This scenario was intended to support the hypothesis that at using RAH, an

architecture of an IoT-based healthcare application can address interoperability of services

provided by the components, devices and applications. In IoT-based healthcare applica-

tions, interoperability is mainly related with the capacity of integration of new devices

and standard communication between participating components and services. Thus, the

proposed scenario involved the necessity of connection for a new unknown device (e-health

shield) in PAR.

To address interoperability, architectural decisions made and identified analyzing the

proposed scenario include (i) Development of a driver for e-health shield in the Gateway

Component. This driver uses the data format service responsible for defining the data for-

mat used in the platform components (syntactic interoperability), understands its protocol

(hashmap) and converts the received data in the Gateway into a format understandable

by the IoTDataCollector; (ii) Definition of this driver in the Driver service for e-health

shields. This driver can be reused for the communication of a new e-health shield; (iii)

Registration of the e-health shield in the Authorization service. With this authorization,

the raw data of this device can be received and processed in the Gateway (security); (iv)

Usage of transformation data service in the IoTDataCollector to transform the raw data

received and persisted in a format understandable by the Intelligent Component, to be

classified according to the patient’s critical values configuration (semantic interoperabi-

lity). The scenario related architectural diagrams were: PAR layered, decomposition, and

component and connector views, presented in Figures 32, 33, 36, 37, and 38.

The proposed scenario also presented the benefits of the architectural decisions, such

as syntactic and semantic interoperation between devices and the PAR components, and

the possibility of reusability of drivers, transformation, and data formats services. The

evidence obtained allows arguing that architectural decisions made in RAH and instanti-

ated in PAR support the hypothesis that at using RAH, an architecture of an IoT-based

healthcare application can address interoperability of services provided by the compo-

nents, devices and applications. Therefore, it is possible to address semantic and syntactic

interoperability between devices, components, and services in these applications.

RQ3 - RAH address availability in IoT-based healthcare applications

To answer RQ3 - Is RAH an alternative to address availability issues of IoT-based
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healthcare applications?, an availability scenario detailed in Procedure 2, Section 6.2.2,

was analyzed. This scenario was intended to support the hypothesis that at using RAH,

software architectures of IoT-based healthcare applications can address availability of com-

ponents and services. In IoT-based healthcare applications, availability refers to a property

of services and components that it is there and ready to carry out its task when you need

it to be.

To address availability, architectural decisions made and identified analyzing the pro-

posed scenario include (i) Definition of a monitor, retry, exceptions, removal, redundancy,

and state resynchronization services; (ii) Registration of the platform components to be

monitored by the monitor service; (iii) Definition in the retry service to perform three

attempts to send data before declare failure of a component/service; (iv) Definition in

the redundancy service of the redundancy configuration (hot, warm or cold spare), and

the location of the protection group with redundant nodes of the components and ser-

vices; (v) Based on the redundancy configuration of the redundancy service, definition

of the strategy of the state resynchronization service (checksum, hash-function or check-

pointing). The scenario related architectural diagrams were: PAR layered, decomposition,

and component and connector views, presented in Figures 32, 33, 36, 38, and 41.

The proposed scenario also presented the benefits of architectural decisions, such as

the detection of failures is automatic, Provision of mechanisms to capture exceptions for

analyzes, provision of redundancy of the components. The evidence obtained allows ar-

guing that architectural decisions made in RAH and instantiated in PAR support the

hypothesis that at using RAH, software architectures of IoT-based healthcare applica-

tions can address the availability of components and services.

RQ4 - RAH address security in IoT-based healthcare applications

To answer RQ4 - Is it possible to instantiate software architectures of secure IoT-

based healthcare applications using RAH?, a security scenario detailed in Procedure 2,

Section 6.2.2, was analyzed. This scenario was intended to support the hypothesis that

at using RAH, software architectures of IoT-based healthcare applications can address

security requirements. In IoT-based healthcare applications, security is related to the

application’s ability to protect user’s (patients, clinical staff, etc.) data and information

from unauthorized access while still providing access to people and systems that are

authorized.

To address security, architectural decisions made and identified analyzing the pro-
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posed scenario include (i) Definition of authorization and authentication services to the

devices and components of the platform; (ii) Register of the devices and components

on the authorization service. The authorization and authentication services contain a

database of registered devices and components specifying the IP, type, and authoriza-

tion token. In each exchanged packet of data in the platform, the authorization token of

each device/component is present. The authorization service verifies this token, and if it

is not valid, the packet is discarded; (iii) Definition of encryption service, and usage of

encryption between the components and devices. The encryption is essential to ensure

the confidentiality of the data, protecting the token and patient’s data. The packet of

data is encrypted and sent using HTTPs protocol; (iv) Definition of security information

and intrusion detection services to detect the attempt of intrusion and notification of the

platform administrators. The scenario related architectural diagrams were: PAR layered,

decomposition, and component and connector views, presented in Figures 32, 33, 36, and

37.

The proposed scenario also presented the benefits of the architectural decisions, such

as improvement of detection of unauthorized access, provision of mechanisms to register

and authenticate the authorized devices, provision of encryption to protect patient’s data,

and provision of mechanisms to detect and notify intrusions attempts. The evidence ob-

tained allows arguing that architectural decisions made in RAH and instantiated in PAR

support the hypothesis that at using RAH, software architectures of IoT-based healthcare

applications can address security requirements. Therefore, it is possible to provide authen-

tication, authorization, intrusion detection, and encryption between devices, components,

and services in these applications.

RQ5 - RAH address performance in IoT-based healthcare applications

To answer RQ5 - Is RAH an alternative to address performance issues of IoT-based

healthcare applications?, a performance scenario detailed in Procedure 2, Section 6.2.2,

was analyzed. This scenario was intended to support the hypothesis that at using RAH,

software architectures of IoT-based healthcare applications can address performance of

components and services. In IoT-based healthcare applications, performance is related to

time and the application’s ability to meet timing requirements. This attribute is critical

since time can be decisive in a life and death situation.

To address performance, architectural decisions made and identified analyzing the

proposed scenario include: (i) Definition of an event response service to control resource
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demand in the Intelligent Component; (ii) Definition of a limit of the maximum rate of

received packets to process. If the rate of the received packets passes the set maximum rate,

the number of excess packets are queued to be processed later with the next packets. The

scenario related architectural diagrams were: PAR layered, decomposition, and component

and connector views, presented in Figures 32, 33, 36, 38, 39, and 41.

The proposed scenario also presented the benefits of architectural decisions, such as

performance controlled, guarantees that even in a stress situation the platform will attend

the requests, and no "downsample" of packets of patients monitored data, since it is not

acceptable to lose any packet. The evidence obtained allows arguing that architectural

decisions made in RAH and instantiated in PAR support the hypothesis that at using

RAH, software architectures of IoT-based healthcare applications can address the perfor-

mance of components and services.

RQ6 - RAH allows to design and implement software architectures of IoT-

based healthcare applications

To answer RQ6 - Can a software architecture of IoT-based healthcare application, de-

signed using RAH, be implementable?, time and people required to implement PAR, as an

instantiation of RAH, was registered. Therefore, at the end of the Procedure 3, presented

in Section 6.2.3, information about time spent and people involved the development of the

artifacts of PAR was detailed. To support the hypothesis that At using RAH, it is possi-

ble to design and implement software architectures of IoT-based healthcare applications,the

concrete software architecture of PAR was implemented.

In this procedure, presented in Section 6.2.3, the Gateway (Gateway.jar), IoTData-

Collector (IoTDataCollector.jar), Intelligence (Intelligence.war), Body and Environment

monitoring (BodyMonitor.war and EnvironmentMonitor.war), FaultDetector (Monitor.jar

and MonitorWebInterface.jar), and Applications (Hospital.war, Ambulance.war and Mo-

bile App) components were implemented based on the following architectural diagrams:

PAR layered, decomposition, repositories, and component and connector views, presented

in Figures 32, 33, 36, 37, 38, 39, 40, 42, 41, 44, 45, 46, 47 and 48. Moreover, PAR deploy-

ment view, presented in Figure 49, describes the mapping between the PAR components

and connectors and the hardware on which the platform executes.

As presented in the Procedure 3, the team composed of the developers, software

architects of PAR and RAH spent 358 hours to create the proposed components for

PAR. Finally, the evidence obtained in this procedure allows arguing that it is possible
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to implement software architectures of IoT-based healthcare applications instanced from

RAH. However, additional instantiations of RAH for the design and implementations of

concrete software architectures of IoT-based healthcare applications must be performed

to offer more evidence to support this hypothesis.

6.4 Discussion of Results

The conduction of this case study allowed the software architecture design and imple-

mentation of PAR. PAR, which is an IoT-Based healthcare platform, was designed as an

instantiation of RAH reference architecture for IoT-based healthcare applications. This

instantiation procedure was detailed in Section 6.2.1, and it was not possible to measure

time and effort required to understand how to use RAH adequately. It is believed that this

learning curve of RAH can affect the time associated with this procedure. The collected

evidence presented that is possible to affirm that RAH allowed the design of the software

architecture of PAR, an IoT-based healthcare application. However, more instantiation of

RAH is needed to support the hypothesis that this reference architecture allows designing

software architectures of IoT-based healthcare applications.

Moreover, the evidence of this procedure revealed that is necessary to define techniques

to assist the instantiation, verification and validation processes in the use of RAH. An

approach for continuous updating RAH must be established, since new elements, stake-

holders and requirements of this kind of applications can appear. The lack of updates

might lead to its misuse since without updates its components cannot contemplate the

possible elements in new IoT-based healthcare applications. Additionally, these updates

could be used to ensure the sustainability, evolution, and maturity of RAH and its in-

stances over time. Another important fact is that the current version of RAH does not

support code generation of its instantiated architectures, and does not provide common

components and services, such as Gateway, IoTDataCollector, Intelligence, Fault Detec-

tor, etc. The existence of standard components and services could help in the instantiation

and implementation process of IoT-based healthcare applications.

After the design of the software architecture of PAR, it was started a procedure

of architectural evaluation, presented in Section 6.2.2. In this procedure, four scenarios

were created and used to validate this software architecture regarding quality attributes

of interoperability, availability, security, and performance. The hypothesis involved the

capabilities of this instanced architecture of RAH to address these quality attributes.
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The evidence obtained allows arguing that architectural decisions made in RAH and

instantiated in PAR confirm the hypothesis that at using RAH, software architectures of

IoT-based healthcare applications can address these attributes.

Finally, following with case study conduction, PAR was implemented. This implemen-

tation, presented in Section 6.2.3, was performed to support the hypothesis that using

RAH, it is possible to design and implement software architectures of IoT-based health-

care applications. Thus, ten artifacts related to the components and services defined in

RAH were implemented based on the architectural diagrams documented for PAR and

presented in Section 6.2.1. The collected evidence presented that is possible to affirm that

RAH allowed the design and implementation of the software architecture of PAR. It is

believed that some of these components and services, such as the Gateway, IoTData-

Collector, Intelligence, and Monitoring components could be offered in standard versions

to facilitate the instantiation and implementation procedures. Moreover, PAR could be

evolved into a middleware for IoT-based healthcare applications. However, it necessary

more study in this regard.

6.5 Threats to Validity

The validity of a study denotes the trustworthiness of the results, to what extent the

results are true and not biased by the researchers’ subjective point of view (RUNESON;

HOST, 2009). Thus, to ensure the validity of the results obtained at conducting the case

study presented in this chapter, the four aspects of validity proposed by Runeson and

Host (RUNESON; HOST, 2009) were considered, namely, construct, internal, external, and

reliability of the study. For each threat to the validity aspects, one or more approaches to

mitigate its impact in results analysis were proposed, and are presented as follows.

Construct validity: This aspect of validity reflects what extent the operational mea-

sures that are studied represent what the researcher has in mind and what is investigated

according to the research questions (RUNESON; HOST, 2009). To avoid threats to the con-

struct validity, the guidelines proposed by Runeson and Host (RUNESON; HOST, 2009)

were followed to support the planning, conduction, analysis, and reporting of this case

study. Moreover, the case study planning was reviewed to ensure correct execution of the

study. Hence, general objective, research questions, units of analysis, and collected data

were reviewed by a software engineering researcher before the case study conduction.

Internal validity: This aspect of validity is of concern when causal relations are
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examined. When the researcher is investigating whether one factor affects an investigated

factor there is a risk that the investigated factor is also affected by a third-factor (RUNE-

SON; HOST, 2009). The following factors that could prejudice the objective of this case

study were identified: (i) Learning curve of RAH, which had no impact on results, since

this reference architecture was presented to the architect of PAR before conducting the

study; (ii) The comprehension of architectural views of RAH, its components and services,

which was prevented, since this reference architecture was described using views, and the

responsibility of each service and component was described; (iii) The experience of the

software architect of PAR in the process of documenting software architectures, which

was resolved, since this process was presented and reviewed before conducting the study;

(iv) The experience of the developers with the technologies used to develop PAR, which

was resolved, since all the developers had previous experience using these technologies

before the case study conduction. (v) The problems at defining the scope of the IoT-

based healthcare application, which was resolved through the involvement of nurses for

definition and validation of PAR requirements and documentation.

External validity: This aspect of validity is concerned with to what extent it is

possible to generalize the findings, and to what extent the findings are of interest to

other people outside the investigated case (RUNESON; HOST, 2009). The documentation

of RAH, and its example of instantiation for design the concrete software architecture and

implementation of PAR, an IoT-based healthcare application, could be used to instantiate

others concrete software architecture and implementations of these applications. To gen-

eralize the findings of this case study, more extensive research should be done involving

multiple cases with more variations in different scenarios of IoT-based based healthcare

applications. It is possible that during the establishment of other IoT-based healthcare

applications, modifications in RAH could be required depending on the specificities of

systems under design. However, the results reported here are expressive for IoT-based

healthcare applications, since PAR requirements of remote intelligent monitoring were

responsible for instantiating 13 of the 14 components proposed in RAH.

Reliability of the study: This aspect is concerned with to what extent the data and

the analysis are dependent on the specific researchers (RUNESON; HOST, 2009). To improve

the reliability of the results presented in this case study, the guidelines proposed by Rune-

son and Host (RUNESON; HOST, 2009) were followed. Therefore, the study was designed

and planned, defining its objective, research questions, hypothesis, units of analysis, and

methods to collect data, as presented in Section 6.1. These data were collected following

the planned methods, correctly coded to avoid misunderstandings, and documented in
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the procedures. Collected data are available in Appendix A, Section 6.2, and PAR source

code repositories7 to be consulted by other researchers that desire to replicate the results

obtained in this study. Finally, a qualitative analysis of these data was performed and

reported in Section 6.3.

6.6 Final Remarks

In this chapter, results of evaluating RAH were presented. This evaluation was made

through the conduction of a case study that was designed, planned, conducted, and re-

ported following the guidelines proposed by Runeson and Host (RUNESON; HOST, 2009).

The objective of this case study is to validate the suitability of RAH to support the

software architecture design of IoT-based healthcare applications. Therefore, the software

architecture of PAR, an IoT based healthcare application for intelligent remote monitor-

ing of patients in a critical situation, was designed as an instance of RAH. Moreover, it

was specified and documented for scenarios to support architectural evaluation of PAR,

regarding quality attributes of interoperability, availability, security, and performance.

Following, PAR was implemented considering its proposed software architecture.

The procedures performed in this case study conduction, presented in Section 6.2,

allowed to collect evidence for investigating each research question, presented in Section

6.1, offering support or refute their related hypothesis. Thus, in Section 6.3, all evidence

was analyzed to answer these research questions. Section 6.4 presented a discussion about

results of this case study, revealing the necessity to define techniques to assist the instanti-

ation, verification and validation processes in the use of RAH, and continuous updating of

this reference architecture. Finally, threats to the four validity aspects found in case stud-

ies (RUNESON; HOST, 2009), presented in Section 6.5, namely, construct, internal, external,

and reliability of the study were identified and mitigated, to ensure the trustworthiness

of results obtained in the case study presented in this chapter.

7https://projetos.imd.ufrn.br/iothealthcareplatform
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7 Conclusions

The IoT-based technologies are allowing the development of applications in many mar-

kets, such as healthcare, manufacturing, electricity, agriculture, and others. Particularly

in the healthcare market, it is expected to see the development of applications following

this trend as part of the future, since it can improve e-Health to allow hospitals to operate

more efficiently and patients to receive better treatment. This paradigm is reshaping mod-

ern healthcare, connecting everything to the Internet, shifting "from anytime, anyplace

connectivity for anyone" to "connectivity for anything." IoT can be the main enabler for

distributed healthcare applications, thus having a significant potential to contribute to the

overall decrease in healthcare costs while increasing the health outcomes. Moreover, with

the projections of the increase of population aging and chronic diseases that might result

in more patients at hospitals, the use of IoT-based healthcare applications is a strategy to

minimize the institutionalization process and the effects of the high cost of patient care.

There is a variety of IoT-based applications that do not contemplate interoperation

with other existing systems, and research trends in IoT-based healthcare include network

architectures and platforms, new services and applications, interoperability, and security

among others (ISLAM et al., 2015). There is also a projection of the development of tech-

nologies and applications related to IoT infrastructure for healthcare (AL-FUQAHA et al.,

2015). In this scenario, there are a lot of challenges in the development and deployment of

this kind of application, such as interoperability, availability, usability, security, flexibility,

productivity, and others. This complex and heterogeneous nature of the IoT-based health-

care applications makes its design and development difficult. It also causes an increase in

the development cost, as well as an interoperability problem with the existing systems.

Therefore, a strategy to design a software reference architecture to systematically or-

ganize the main elements of IoT-based healthcare applications, its responsibilities, and

interactions, promotes a common understanding of these applications’ architecture. Aim-

ing for guidelines to develop IoT-based applications, several reference architectures have

been proposed considering the necessity to address these requirements, but they are too
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abstract, and none of them is focused on supporting the development of IoT-based health-

care applications. The problem addressed in this thesis is the lack of guidelines to conduct

the development of interoperable, secure, efficient, available and standardized IoT-based

healthcare applications. Its main objective is to establish a reference architecture, named

Reference Architecture for IoT-based Healthcare Applications (RAH), to improve the un-

derstanding and systematization of the IoT-based healthcare applications’ architectural

design, and offer guidelines for the development of these applications.

The RAH reference architecture was established and evaluated through conduction of

a case study for the design and implementation of an IoT-based healthcare application,

named PAR, for intelligent remote monitoring of patients in a critical situation. Finally,

this chapter presents important contributions to different topics that have been made as a

result of the design of RAH. Specifically, contributions made during the conduction of this

thesis are revisited in Section 7.1. Limitations and future works are detailed in Section

7.2, and possible extensions are described in Section 7.3.

7.1 Revisiting the Thesis Contributions

The main contributions of this thesis are framed in topics of Internet of Things (IoT),

e-Health, IoT-based healthcare applications, reference architecture and software architec-

ture. They are enumerated as follows.

1. Review of the reference architectures for IoT: an exploratory review on the

existing architectures and reference architectures for Internet of Things (IoT), pre-

sented in Chapter 3. With this review findings, currently, to the best of knowledge,

there is no specific reference architecture for IoT-based healthcare applications.

2. Systematic mapping study on IoT-based healthcare applications: A study

based on Systematic Mapping Study methodology (PETERSEN et al., 2008), presented

in Chapter 4, that was performed aiming to comprehend the current state and

future trends for IoT-based healthcare applications, and also in order to find areas

for further investigations (BARROCA; AQUINO, 2017a). Thus, the research questions

of this study addressed functional and nonfunctional requirements, protocols, and

challenges related to IoT-based healthcare applications. The results of this study

were used to the establishment of RAH.

3. RAH - A software reference architecture for IoT-based healthcare appli-



157

cation: A reference architecture, named RAH, for guiding the architectural design of

IoT-based healthcare applications was proposed, and presented in Chapter 5. This

reference architecture systematically organizes the main elements of these appli-

cations, its responsibilities, and interactions, promoting a common understanding

of these applications’ architecture and addressing the challenges of interoperabi-

lity, security, performance, and availability related to its development (BARROCA;

AQUINO, 2018). RAH is defined based on a set of functional and nonfunctional re-

quirements (quality attributes) related to IoT-based healthcare applications. These

requirements were extracted from existing publications collected through the study

presented in Chapter 4.

4. PAR - A platform for intelligent remote monitoring of patients in a criti-

cal situation: PAR is an IoT-Based healthcare platform, detailed in Chapter 6, to

integrate patients, physicians and ambulance services (BARROCA; AQUINO, 2017b)

to promote better care and fast preventive and reactive urgent actions for patients

in a critical situation. It is composed of five modules: Remote Patient and Environ-

ment Monitoring, Patient Healthcare Data Management, Patient Health Condition

Management, and Emergency and Crisis Management. As an instance of RAH, PAR

inherits architectural decisions, demonstrating, thus, its capability to address secu-

rity, interoperability, performance, and availability. It is expected that PAR can be

used by real patients in real conditions, and its code is released in the repository1,

under creative commons licensing2.

7.2 Limitations and Future Works

This section describes limitations of this thesis and how they can be tackle in the fu-

ture. Notice that specific limitations have already been discussed in Chapter 6. Therefore,

herein, general limitations identified during the establishment and evaluation of RAH are

described, and possible solutions to overcome limitations are detailed as follows.

• During the establishment of RAH, mapping of information contained in the re-

quirements of IoT-based healthcare applications into architectural views was made

manually, increasing design time. The definition of transformation techniques can

1https://projetos.imd.ufrn.br/iothealthcareplatfom
2https://creativecommons.org/licenses/
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support the automatic configuration of services and components of these applica-

tions based on requirements, decreasing thus required time for this activity.

• RAH was designed mainly using as input a systematic mapping study that was

performed to comprehend the current state and future trends for IoT-based health-

care applications, and also to find areas for further investigations. It was possible

by this study to extract the main characteristics (functional and nonfunctional re-

quirements), protocols and challenges related to these applications. However, its

characteristics and the IoT technologies are evolving, and that will possibly require

updates in RAH. In this perspective, approaches to supporting the evolutionary

design of RAH and its instantiated architectures are required.

• Despite RAH offer services and components to address availability, interoperability,

security, and performance in IoT-based healthcare applications, some challenges

presented in this domain must still be considered in this reference architecture, such

as usability, productivity, and flexibility. Thus, it is necessary to offer services and

strategies to address these challenges.

• For the instantiation of RAH to design PAR, no process was followed by the soft-

ware architect of PAR. It is believed that the definition of techniques to assist the

instantiation, verification and validation processes in the use of RAH to design IoT-

based healthcare applications can affect the design time and quality of the instanced

software architectures.

• PAR was instanced from RAH and implemented. The components and services de-

veloped for PAR can be reused in new IoT-based healthcare applications. Thus, the

update of RAH to support code generation of its instanced software architectures,

providing common components and services can help in the instantiation of new

applications.

• The quality attributes addressed by this reference architecture were evaluated using

four scenarios, one for each one of them. Replications of different scenarios for these

quality attributes must be performed in different types of IoT-based healthcare

applications. Moreover, the test and validation of these scenarios in the implemented

applications must help to confirm the results obtained in this case study.

• Finally, the suitability of RAH was assessed using evidence from conducting the

instantiation process to design and implement PAR, an IoT-based healthcare appli-

cation for intelligent remote monitoring of patients in a critical situation. Although
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the obtained results were positive, replications of case study must be conducted in

different types of IoT-based healthcare applications. Moreover, it is important to

perform a workshop with software architects to generate more scenarios and simu-

lations to evaluate this reference architecture.

7.3 Possible Extensions

Many opportunities for research emerged during the development of this thesis. They

represent perspectives of future research that can contribute to the areas of e-Health,

IoT-based healthcare applications, and software architecture. Some of them are described

as follows.

• Development framework for IoT-based healthcare applications: The archi-

tectural views contained in RAH can be concreted as a development framework for

building IoT-based healthcare applications. Moreover, some common components

and services can be developed for general purposes and fit in several applications.

• RAH as middleware for IoT-based healthcare applications: The architec-

tural knowledge contained in RAH can be evolved in middleware for IoT-based

healthcare applications. This middleware can be used as an alternative to facilitate

the deployment and interoperation between these applications. It can also provide

components for security, performance and availability qualities for this context.

• RAH as a product line architecture: Since RAH contains the architectural

knowledge required to design software architectures of IoT-based healthcare appli-

cations, it can be used as the basis to formalize products line architectures for these

applications, being each product oriented to specific patient’s condition.

• Integration of IoT-based healthcare applications in the context of systems-

of-systems (SoS): SoS are complex, large-scale software systems in which oper-

ationally and managerially independent systems cooperate to provide new, unique

features that can not be provided by any constituent separately (DAGLI; KILICAY-

ERGIN, 2008). In this perspective, research on the integration of IoT-based health-

care applications and other health applications in the context of SoS can contribute

to increasing the use of e-health, improving the treatments of the patients.
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APPENDIX A -- PAR - An IoT-based

Healthcare Platform for

Remote Monitoring of

Patients in Critical

Conditions. Version 1.1

This Appendix presents PAR, an IoT-based healthcare platform for intelligent re-

mote monitoring of patients, developed to evaluate RAH software reference architecture,

presented in Chapter 5. It describes the actors and use cases that guided its development.

Table 20: Review History

Date Version Description Authors
13.07.2018 1.0 This document is a

specification of use
cases of PAR, an
IoT-based Health-
care Platform for
intelligent remote
monitoring of patients
in critical condition.

Cephas Barreto, Ita-
mir Filho, Rafael
Queiroz, Lúcio
Oliveira, Rubem
Kalebe, Katia Maria
and Maria Alzete.

06.08.2018 1.1 Improvements on
grammar, further
clarifications on the
use cases and titles on
figures.

Cephas Barreto, Ita-
mir Filho, Rafael
Queiroz, Lúcio
Oliveira, Rubem
Kalebe, Katia Maria
and Maria Alzete.

A.1 Use Cases Specifications

The next parts of this document will show the aspects for each use case under the most

summarized format as possible. Note that, in general, use cases with term “management”
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are related to CRUD - Create, Read, Update and Delete operations.

A.1.1 Patient’s Data Management

This use case describes tasks for managing patient data. Some context and scenarios

are presented for addressing the way actors will use the platform and some observations

will also be made, when necessary.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.

Use Case Diagram: Figure 50.

Figure 50: Use case diagram of Patient’s Data Management.

Actors:

•Primary Actors: Hospital Operator; Physicians and Nurses.

•Secondary Actors: Hospital Module.

A.1.1.1 Create Patient Data

Basic Flow

1.INSERT PATIENT DATA
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(a)The platform provides a way to insert data of a patient.

(b)The actor inserts the patient data: name, gender, date of birth, contacts,

address, family information, physician information (name and contacts) and

health insurance information.

2.SAVE PATIENT DATA

(a)The actor selects the option Save Patient.

(b)The platform validates the inserted patient data.

(c)The platform shows a message confirming insertion was done successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT SAVE PATIENT

(a)PATIENT ALREADY EXISTS. If in step 2.b of the basic flow, the platform

identifies the patient already exists on the system, then the platform shows a

message warning about this. The use case ends.

(b)INVALID DATA INSERTED. If in step 2.b of the basic flow, the platform

identifies invalid data or required data not provided, then the system shows a

warning message and does not proceed. The use case resumes at step 1.b of

the basic flow.

A.1.1.2 Read Patient Data

Basic Flow

1.FIND PATIENT

(a)The platform provides a way to find a patient.

(b)The actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.

2.CHOOSE A PATIENT

(a)The actor selects a patient.
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(b)The platform shows the patient data.

3.READ PATIENT DATA

(a)The actor reads the patient data.

(b)The use case ends.

Alternative Flows

1.CANNOT FIND PATIENT

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verifies the patient (according to the entered data) does not exist on the

system, then the platform shows a message warning about this. The use case

ends.

A.1.1.3 Update Patient Data

Specific Preconditions

1.ACTOR READING PATIENT DATA

(a)It is necessary that the actor is visualizing the detailed patient data, so he can

select the update option. Thus, the basic flow continues from the step 3.a of

the Use Case A.1.1.2.

Basic Flow

1.READ PATIENT DATA

(a)Actor is at step 3.a of the Use Case A.1.1.2.

2.CHOOSE UPDATE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Update.

3.MODIFY PATIENT DATA

(a)The platform shows the previous patient data in a editable way.
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(b)The actor modifies any patient data as needed.

4.UPDATE PATIENT DATA

(a)The actor selects Update Patient.

(b)The platform validates the inserted patient data.

(c)The platform shows a message confirming the update operation was performed

successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT UPDATE PATIENT

(a)INVALID DATA INSERTED. If in step 4.b of the basic flow, the platform

verifies that are invalid data or required data not provided, then the system

shows a warning message and does not proceed the use case. Finally, the use

case resumes at step 3.b of the basic flow.

A.1.1.4 Delete Patient Data

Specific Preconditions

1.ACTOR READING PATIENT DATA

(a)It is needed that the actor is visualizing the detailed patient data, so he can

select the delete option. Thus, the basic flow continues from the step 3.a of

the Use Case A.1.1.2.

Basic Flow

1.READ PATIENT DATA

(a)Actor is at step 3.a of the Use Case A.1.1.2.

2.CHOOSE DELETE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Delete.
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3.CONFIRM DELETE

(a)The platform asks the actor for confirming deletion.

(b)The actor confirms the operation inserting his password.

4.DELETE PATIENT DATA

(a)The platform marks the patient as inactive.

(b)The platform shows a message confirming the delete operation was performed

successfully.

(c)The use case ends.

Alternative Flows

1.CANNOT DELETE PATIENT

(a)WRONG PASSWORD. If in step 3.b of the basic flow, the platform asks for

confirmation and receives a wrong password, then the system shows a message

warning about this. The use case resumes at step 3.a of the basic flow.

A.1.2 Clinical Staff Data Management

This use case describes tasks for managing clinical staff data. Clinical staff includes

data of physicians and nurses. Along this document, the members of a clinical staff will

be called health professional.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.

Use Case Diagram: Figure 51.

Actors:

•Primary Actors: Hospital Operator.

•Secondary Actors: Hospital Module.
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Figure 51: Use case diagram of Clinical Staff Data Management.

A.1.2.1 Create Health Professional Data

Basic Flow

1.INSERT HEALTH PROFESSIONAL DATA

(a)The platform provides a way to insert data of a health professional.

(b)The actor inserts the health professional data: name, gender, date of birth,

contacts, address and medical specialty.

(c)The actor chooses the professional type: physician or nurse.

2.SAVE HEALTH PROFESSIONAL DATA

(a)The actor selects the option Save Health Professional.

(b)The platform validates the health professional data.

(c)The platform shows a message confirming insertion was done successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT SAVE HEALTH PROFESSIONAL

(a)HEALTH PROFESSIONAL ALREADY EXISTS. If in step 2.b of the basic

flow, the platform identifies the health professional already exists on the system,

then the platform shows a message warning about this. The use case ends.
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(b)INVALID DATA INSERTED. If in step 2.b of the basic flow, the platform

identifies invalid data or required data not provided, then the system shows a

warning message and does not proceed. The use case resumes at step 1.b of

the basic flow.

A.1.2.2 Read Health Professional Data

Basic Flow

1.FIND HEALTH PROFESSIONAL

(a)The platform provides a way to find a health professional.

(b)Actor inserts only one or a combination of: ID; CPF, health professional name

and its professional type.

(c)The platform shows a list of health professionals that matches with the inserted

data.

2.CHOOSE A HEALTH PROFESSIONAL

(a)The actor selects a health professional.

(b)The platform shows the health professional data.

3.READ HEALTH PROFESSIONAL DATA

(a)The actor reads the health professional data.

(b)The use case ends.

Alternative Flows

1.CANNOT FIND HEALTH PROFESSIONAL

(a)HEALTH PROFESSIONAL DATA DO NOT EXIST. If in step 1.c of the

basic flow, the platform verifies the health professional (according to the entered

data) does not exist on the system, then the platform shows a message warning

about this. The use case ends.
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A.1.2.3 Update Health Professional Data

Specific Preconditions

1.ACTOR READING HEALTH PROFESSIONAL DATA

(a)It is necessary that the actor is visualizing the detailed health professional

data, so he can select the update option. Thus, the basic flow continues from

the step 3.a of the Use Case A.1.2.2.

Basic Flow

1.READ HEALTH PROFESSIONAL DATA

(a)Actor is at step 3.a of the Use Case A.1.2.2.

2.CHOOSE UPDATE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Update.

3.MODIFY HEALTH PROFESSIONAL DATA

(a)The platform shows the previous health professional data in a editable way.

(b)The actor modifies any health professional data as needed.

4.UPDATE HEALTH PROFESSIONAL DATA

(a)The actor selects the option Update Health Professional.

(b)The platform validates the inserted health professional data.

(c)The platform shows a message confirming the update operation was performed

successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT UPDATE HEALTH PROFESSIONAL

(a)INVALID DATA INSERTED. If in step 4.b of the basic flow, the platform

verifies that are invalid data or required data not provided, then the system

shows a warning message and does not proceed the use case. Finally, the use

case resumes at step 3.b of the basic flow.
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A.1.2.4 Delete Health Professional Data

Specific Preconditions

1.ACTOR READING HEALTH PROFESSIONAL DATA

(a)It is needed that the actor is visualizing the detailed health professional data,

so he can select the delete option. Thus, the basic flow continues from the step

3.a of the Use Case A.1.2.2.

Basic Flow

1.READ HEALTH PROFESSIONAL DATA

(a)Actor is at step 3.a of the Use Case A.1.2.2.

2.CHOOSE DELETE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Delete.

3.CONFIRM DELETE

(a)The platform asks the actor for confirming deletion.

(b)The actor confirms the operation inserting his password.

4.DELETE HEALTH PROFESSIONAL DATA

(a)The platform marks the health professional as inactive.

(b)The platform shows a message confirming the deletion was performed success-

fully.

(c)The use case ends.

Alternative Flows

1.CANNOT DELETE HEALTH PROFESSIONAL

(a)WRONG PASSWORD. If in step 3.b of the basic flow, the platform asks for

confirmation and receives a wrong password, then the system shows a message

warning about this. The use case resumes at step 3.a of the basic flow.
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A.1.3 Health Insurance Data Management

This use case describes tasks for managing health insurance data.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.

Use Case Diagram: Figure 52.

Figure 52: Use case diagram of Health Insurance Data Management.

Actors:

•Primary Actors: Hospital Operator.

•Secondary Actors: Hospital Module.

A.1.3.1 Create Health Insurance

Basic Flow

1.INSERT HEALTH INSURANCE DATA

(a)The platform provides a way to insert data of a health insurance.

(b)The actor inserts the health insurance data: name, code and initials.

2.SAVE HEALTH INSURANCE DATA
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(a)The actor selects the option Save Health Insurance.

(b)The platform validates the health insurance data.

(c)The platform shows a message confirming insertion was done successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT SAVE HEALTH INSURANCE

(a)HEALTH INSURANCE ALREADY EXISTS. If in step 2.b of the basic flow,

the platform identifies the health insurance already exists on the system, then

the platform shows a message warning about this. The use case ends.

(b)INVALID DATA INSERTED. If in step 2.b of the basic flow, the platform

identifies invalid data or required data not provided, then the system shows a

warning message and does not proceed. The use case resumes at step 1.b of

the basic flow.

A.1.3.2 Read Health Insurance Data

Basic Flow

1.FIND HEALTH INSURANCE

(a)The platform provides a way to find a health insurance.

(b)Actor inserts only one or a combination of: ID; health insurance name and

initials.

(c)The platform shows a list of health insurances that matches with the inserted

data.

2.CHOOSE A HEALTH INSURANCE

(a)The actor selects a health insurance.

(b)The platform shows the health insurance data.

3.READ HEALTH INSURANCE DATA

(a)The actor reads the health insurance data.
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(b)The use case ends.

Alternative Flows

1.CANNOT FIND HEALTH INSURANCE

(a)HEALTH INSURANCE DATA DO NOT EXIST. If in step 1.c of the basic

flow, the platform verifies the health insurance (according to the entered data)

does not exist on the system, then the platform shows a message warning about

this. The use case ends.

A.1.3.3 Update Health Insurance Data

Specific Preconditions

1.ACTOR READING HEALTH INSURANCE DATA

(a)It is necessary that the actor is visualizing the detailed health insurance data,

so he can select the update option. Thus, the basic flow continues from the

step 3.a of the Use Case A.1.3.2.

Basic Flow

1.READ HEALTH INSURANCE DATA

(a)Actor is at step 3.a of the Use Case A.1.3.2.

2.CHOOSE UPDATE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Update.

3.MODIFY HEALTH INSURANCE DATA

(a)The platform shows the previous health insurance data in a editable way.

(b)The actor modifies any health insurance data as needed.

4.UPDATE HEALTH INSURANCE DATA

(a)The actor selects the option Update Health Insurance.
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(b)The platform validates the inserted health insurance data.

(c)The platform shows a message confirming the update operation was performed

successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT UPDATE HEALTH INSURANCE

(a)INVALID DATA INSERTED. If in step 4.b of the basic flow, the platform

verifies that are invalid data or required data not provided, then the system

shows a warning message and does not proceed the use case. Finally, the use

case resumes at step 3.b of the basic flow.

A.1.3.4 Delete Health Insurance Data

Specific Preconditions

1.ACTOR READING HEALTH INSURANCE DATA

(a)It is needed that the actor is visualizing the detailed health insurance data, so

he can select the delete option. Thus, the basic flow continues from the step

3.a of the Use Case A.1.3.2.

Basic Flow

1.READ HEALTH INSURANCE DATA

(a)Actor is at step 3.a of the Use Case A.1.3.2.

2.CHOOSE UPDATE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Delete.

3.CONFIRM DELETE

(a)The platform asks the actor for confirming deletion.

(b)The actor confirms the operation inserting his password.
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4.DELETE HEALTH INSURANCE DATA

(a)The platform marks the health insurance as inactive.

(b)The platform shows a message confirming the deletion was performed success-

fully.

(c)The use case ends.

Alternative Flows

1.CANNOT DELETE HEALTH INSURANCE

(a)WRONG PASSWORD. If in step 3.b of the basic flow, the platform asks for

confirmation and receives a wrong password, then the system shows a message

warning about this. The use case resumes at step 3.a of the basic flow.

A.1.4 Patient And Health Professional Association

This use case describes tasks for associating and disassociating patients and health

professionals.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.

2.PATIENT EXISTS. It is a precondition that the patient is already registered in the

platform.

3.PHYSICIAN EXISTS. It is a precondition that the physician is already registered

in the platform.

Use Case Diagram: Figure 53.

Actors:

•Primary Actors: Hospital Operator.

•Secondary Actors: Hospital Module.
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Figure 53: Use case diagram of Patient And Health Professional Association.

A.1.4.1 Associate Patient with Health Professional

Basic Flow

1.FIND PATIENT

(a)The platform provides a way to find a patient.

(b)Actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.

2.CHOOSE A PATIENT

(a)The actor selects a patient.

3.FIND HEALTH PROFESSIONAL

(a)The platform provides a way to find health professionals.

(b)Actor inserts only one or a combination of: ID; medical specialty and health

professional name.

4.CHOOSE HEALTH PROFESSIONALS

(a)The platform shows a list of health professionals that matches with the inserted

data.

(b)The actor selects one or more health professionals.

5.ASSOCIATE

(a)Platform provides a way to associate health professionals and patient.

(b)Actor selects Associate Patient and Health Professionals.
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6.CONFIRM ASSOCIATION

(a)The platform asks actor for confirmation.

(b)The actor confirms association.

(c)The use case ends.

Alternative Flows

1.FIND MORE HEALTH PROFESSIONALS

(a)In step 5.b of the basic flow, the actor can do a new search for other health

professionals to be associated with the patient. The platform provides a way to

perform a new search with the same parameters. Then, the use case resumes

at step 3.a of the basic flow.

2.CANNOT FIND PATIENT

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verify the patient data do not exist on the system (according to the

entered data), the platform shows a message warning about this. The use case

ends.

3.CANNOT FIND HEALTH PROFESSIONAL

(a)HEALTH PROFESSIONAL DATA DO NOT EXIST. If in step 4.a of the

basic flow, the platform verify the health professional data do not exist on the

system (according to the entered data), the platform shows a message warning

about this. The use case ends.

A.1.4.2 Disassociate Patient with Health Professional

Basic Flow

1.FIND PATIENT

(a)The platform provides a way to find a patient.

(b)Actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.
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2.CHOOSE A PATIENT

(a)The actor selects a patient.

3.VIEW ASSOCIATED HEALTH PROFESSIONALS

(a)The platform provides a way to visualize the health professionals associated

with the patient.

4.CHOOSE HEALTH PROFESSIONAL

(a)Actor chooses one or more health professionals.

5.DISASSOCIATE HEALTH PROFESSIONAL

(a)The platform provides a way to choose disassociate health professionals.

(b)The actor chooses Disassociate.

6.CONFIRM DISASSOCIATION

(a)The platform asks actor for confirmation.

(b)The actor confirms the disassociation.

(c)The use case ends.

Alternative Flows

1.CANNOT FIND PATIENT

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verify the patient data do not exist on the system (according to the

entered data), the platform shows a message warning about this. The use case

ends.

A.1.5 Patient’s Critical Values Configuration

This use case describes tasks for very first configuration of health critical values and

also provides a mean to update these values.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.
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2.PATIENT EXISTS. It is a precondition that the patient is already registered in the

platform.

Use Case Diagram: Figure 54.

Figure 54: Use case diagram of Patient’s Critical Values Configuration.

Actors:

•Primary Actors: Nurse, Physician.

•Secondary Actors: Intelligence Module.

A.1.5.1 Configure Patient Critical Values

Basic Flow

1.GET DEFAULT CRITICAL VALUES

(a)At the moment of patient creation, the platform must get updated default

values for all health parameters of body and also of environment.

2.CRITICAL VALUES ATTRIBUTION

(a)The platform attributes values to the created patient.

(b)The use cases end.

Alternative Flows

1.CANNOT CREATE VALUES
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(a)DEFAULT VALUES DO NOT EXIST. If in step 1.a of the basic flow, the

platform identifies that default values do not exist, the system asks actor for

manually update the values. The platform provides a way to choose Update

Critical Values Manually.

A.1.5.2 Read Patient’s Critical Values

Basic Flow

1.FIND PATIENT

(a)The platform provides a way to find a patient.

(b)Actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.

2.CHOOSE A PATIENT

(a)The actor selects a patient.

3.READ PATIENT CRITICAL VALUES

(a)The platform provides a way to read the patient’s critical values.

(b)Actor reads the patient’s critical values.

(c)The use case ends.

Alternative Flows

1.CANNOT FIND PATIENT

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verify the patient data do not exist on the system (according to the

entered data), the platform shows a message warning about this. The use case

ends.

A.1.5.3 Update Patient Critical Values

Specific Preconditions
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1.ACTOR VISUALIZING PATIENT’S CRITICAL VALUES. It is necessary that the

actor is visualizing the patient’s critical values, so he can select the update option.

Thus, the basic flow continues from the step 3.a of the Use Case A.1.5.2.

Basic Flow

1.READ PATIENT’S CRITICAL VALUES

(a)Actor is at step 3.a of the Use Case A.1.5.2.

2.CHOOSE UPDATE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Update.

3.MODIFY PATIENT’S CRITICAL VALUES

(a)The platform shows the previous patient’s critical values in a editable way.

(b)The actor modifies any critical value as needed.

4.UPDATE PATIENT CRITICAL VALUES

(a)The actor selects Update Critical Values.

(b)The platform validates the critical values.

5.CONFIRM UPDATE

(a)The platform asks actor for confirmation.

(b)The actor confirms the update with his password.

(c)The use case ends.

Alternative Flows

1.CANNOT UPDATE PATIENT’S CRITICAL VALUES

(a)INVALID DATA INSERTED. If in step 4.b of the basic flow, the platform

identifies invalid data or required data not provided, then the system shows a

warning message and does not proceed. The use case resumes at step 3.b.
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(b)WRONG PASSWORD. If in step 5.b of the basic flow, the platform asks for

confirmation and receives a wrong password, then the system shows a message

warning about this. The use case resumes at step 5.a of the basic flow.

2.SET VALUE TO DEFAULT. In step 3.b, the platform must provide a way for the

user choose the default value by the option set default. The use case continues its

flow.

A.1.6 Health Data Management

To the platform, health data is composed by: body sensors data; environment sensors

data and patient evolution. The next use cases are related with automatic tasks made by

sensors and platform and, also with the interaction and manipulation of this kind of data

by health professionals.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.

2.PATIENT EXISTS. It is a precondition that the patient is already registered in the

platform.

Use Case Diagram: Figure 55.

Figure 55: Use case diagram of Health Data Management.

Actors:

•Primary Actors: Health Professionals.

•Secondary Actors: Hospital Module.
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A.1.6.1 Create Patient Evolution Data

Basic Flow

1.FIND PATIENT

(a)The platform provides a way to find a patient.

(b)Actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.

2.CHOOSE A PATIENT

(a)The actor selects a patient.

3.CHOOSE INSERT

(a)The platform provides an option for inserting evolution data for a patient:

Insert.

(b)The actor chooses Insert.

4.INSERT PATIENT EVOLUTION DATA

(a)The platform provides a way to insert information about the patient evolution.

(b)The actor inserts evolution information, including conscience level and physical

exams.

5.CONFIRM INSERTION

(a)The platform asks actor for confirmation.

(b)The actor confirms the update with his password.

6.ADD TIME AND SENSORS DATA

(a)The platform adds a timestamp to the evolution information.

(b)The platform adds data from body and environment sensors to the evolution

information.

(c)The use case ends.

Alternative Flows
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1.INSERT CUSTOM INFORMATION

(a)INSERT FREE NOTES. In step 4.b, the actor can insert a free annotation

about patient context and his health that makes sense for future references.

2.CANNOT FIND PATIENT.

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verify the patient data do not exist on the system (according to the

entered data), the platform shows a message warning about this. The use case

ends.

A.1.6.2 Read Patient Evolution Information

Basic Flow

1.FIND PATIENT

(a)The platform provides a way to find a patient.

(b)Actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.

2.CHOOSE A PATIENT

(a)The actor selects a patient.

3.LIST EVOLUTION INFORMATION

(a)The platform shows a list with evolution information from the last 3 (three)

days.

4.CHOOSE AN EVOLUTION INFORMATION

(a)Actor chooses an evolution information to see more details.

5.READ PATIENT’S EVOLUTION INFORMATION

(a)The platform provides a way to read patient’s evolution information.

(b)Actor reads patient’s evolution information.

(c)The use case ends.
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Alternative Flows

1.FIND SPECIFIC DATES. In step 3.a of the basic flow, the platform provides a

way to select evolution information for a specific date range. The actor sets the

dates and then the platform shows a list of the patient evolution on that period.

The use case ends.

2.CANNOT FIND PATIENT.

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verify the patient data do not exist on the system (according to the

entered data), the platform shows a message warning about this. The use case

ends.

3.CANNOT FIND EVOLUTION INFORMATION

(a)EVOLUTION INFORMATION DOES NOT EXIST. If in step 3.a of the basic

flow, the platform verifies the patient does not have evolution information, the

platform shows a message warning about this. The use case ends.

(b)DATE RANGE DOES NOT HAVE EVOLUTION INFORMATION. If in the

step 1.a of the Alternative Flow 1 (Find Specific Dates), the platform verifies

the patient does not have evolution information for that specific date range,

the system shows a message warning about this. The use case ends.

A.1.7 Emergency Alert Data Management

To the platform, health data is composed by: body sensors data; environment sensors

data and patient evolution. The next use cases are related with automatic tasks made by

sensors and platform and, also with the interaction and manipulation of this kind of data

by health professionals.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.

2.PATIENT EXISTS. It is a precondition that the patient is already registered in the

platform.
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3.CRITICAL VALUES EXIST. It is a precondition that the patient’s critical values

already exist in the platform.

Considerations

It is important to note that alert messages are related to a patient. When an alert is

triggered, every situation that results from it is related to the patient as well. In simple

words, an alert must work as follows:

1.The platform identifies one or more values out of limit defined by the patient’s

critical values;

2.According to values identified, platform defines the emergency level from alert that

will be triggered.

Use Case Diagram: Figure 56.

Figure 56: Use case diagram of Emergency Alert Data Management.

Actors:

•Primary Actors: Health Professionals, Ambulance, Family.

•Secondary Actors: Hospital Module.

A.1.7.1 Receive Patient Emergency Alert

Basic Flow

1.RECEIVE PATIENT ALERT

(a)The actor receives an alert from the platform.

2.READ ALERT DATA
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(a)The platform provides a way to read data from alert.

(b)The actor reads data from alert.

(c)The use case ends.

Alternative Flows

1.READ MORE DETAILS.

(a)SEE REAL TIME DATA. In step 2.b of the basic flow, the actor can choose

to see in real-time data from sensors in the patient’s body and environment.

The actor views the data. The use case ends.

2.SEE PATIENT EVOLUTION INFORMATION. In step 1.a of the alternative flow,

the actor can choose to see the patient’s evolution information. The platform pro-

vides a way to choose one or more patients evolution. The actor views the data. The

use case ends.

A.1.7.2 Read Patient Emergency Alert

Basic Flow

1.FIND PATIENT

(a)The platform provides a way to find a patient.

(b)Actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.

2.CHOOSE A PATIENT

(a)The actor selects a patient.

3.LIST EMERGENCY ALERT

(a)The platform shows a list with alerts from the last 30 days.

4.CHOOSE ONE EMERGENCY ALERT

(a)Actor chooses one alert to see more details.

5.READ EMERGENCY ALERT DETAILS
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(a)The platform provides a way to read alert details.

(b)Actor reads detailed alert information.

(c)The use case ends.

Alternative Flows

1.FIND SPECIFIC DATES. In step 3.a of the basic flow, the platform provides a

way to choose emergency alerts of a specific date range. The actor sets the dates

and then the platform shows a list of alerts on that period. The use case ends.

2.CANNOT FIND PATIENT.

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verify the patient data do not exist on the system (according to the

entered data), the platform shows a message warning about this. The use case

ends.

3.CANNOT FIND EMERGENCY ALERTS

(a)EMERGENCY ALERTS DOES NOT EXIST. If in step 3.a of the basic flow,

the platform verifies the patient does not have emergency alerts, the system

show a message warning about this. The use case ends.

(b)DATE RANGE DOES NOT HAVE EMERGENCY ALERTS. If in step 1.a of

the Alternative Flow 1 (Find Specific Dates), the platform verifies the patient

does not have emergency alerts for that specific date range, the system shows

a message warning about this. The use case ends.

A.1.8 Ambulance Data Management

This use case describes tasks for managing ambulance data. Some context and sce-

narios are presented for addressing the way actors will use the platform for this goal and

some observations will also be presented, when needed.

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform.
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Figure 57: Use case diagram of Ambulance Data Management.

Use Case Diagram: Figure 57.

Actors:

•Primary Actors: Ambulance Service Operator.

•Secondary Actors: Ambulance Module.

A.1.8.1 Create Ambulance Data

Basic Flow

1.INSERT AMBULANCE DATA

(a)The platform provides a way to insert data of an ambulance.

(b)The actor inserts the ambulance data: plate number, type and complexity level.

2.SAVE AMBULANCE DATA

(a)The actor selects the option Save Ambulance.

(b)The platform validates the ambulance data.

(c)The platform shows a message confirming insertion was done successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT SAVE AMBULANCE
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(a)AMBULANCE ALREADY EXISTS. If in step 2.b of the basic flow, the plat-

form identifies the ambulance already exists on the system, then the platform

shows a message warning about this. The use case ends.

(b)INVALID DATA INSERTED. If in step 2.b of the basic flow, the platform

identifies invalid data or required data not provided, then the system shows a

warning message and does not proceed. The use case resumes at step 1.b of

the basic flow.

A.1.8.2 Read Ambulance Data

Basic Flow

1.FIND AMBULANCE

(a)The platform provides a way to find an ambulance.

(b)Actor inserts only one or a combination of: ID and Plate Number.

(c)The platform shows a list of ambulances that matches with the inserted data.

2.CHOOSE A AMBULANCE

(a)The actor selects a ambulance.

(b)The platform shows the ambulance data.

3.READ AMBULANCE DATA

(a)Actor reads the ambulance data.

(b)The use case ends.

Alternative Flows

1.CANNOT FIND AMBULANCE

(a)AMBULANCE DATA DO NOT EXIST. If in step 1.c of the basic flow, the

platform verifies the ambulance (according to the entered data) does not exist

on the system, then the platform shows a message warning about this. The use

case ends.
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A.1.8.3 Read Ambulance Data

Specific Preconditions

1.ACTOR READING AMBULANCE DATA. It is necessary that the actor is visu-

alizing the detailed ambulance data, so he can select the update option. Thus, the

basic flow continues from the step 3.a of the Use Case A.1.8.2.

Basic Flow

1.READ AMBULANCE DATA.

(a)Actor is at step 3.a of the Use Case A.1.8.2.

2.CHOOSE UPDATE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Update.

3.MODIFY AMBULANCE DATA

(a)The platform shows the previous ambulance data in a editable way.

(b)The actor modifies any ambulance data as needed.

4.UPDATE AMBULANCE DATA

(a)The actor selects the option Update Ambulance.

(b)The platform validates the inserted ambulance data.

(c)The platform shows a message confirming the update operation was performed

successfully.

(d)The use case ends.

Alternative Flows

1.CANNOT UPDATE AMBULANCE

(a)INVALID DATA INSERTED. If in step 4.b of the basic flow, the platform

verifies that are invalid data or required data not provided, then the system

shows a warning message and does not proceed the use case. Finally, the use

case resumes at step 3.b of the basic flow.
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A.1.8.4 Delete Ambulance Data

Specific Preconditions

1.ACTOR READING AMBULANCE DATA. It is necessary that the actor is visu-

alizing the detailed ambulance data, so he can select the update option. Thus, the

basic flow continues from the step 3.a of the Use Case A.1.8.2.

Basic Flow

1.READ AMBULANCE DATA.

(a)Actor is at step 3.a of the Use Case A.1.8.2.

2.CHOOSE DELETE

(a)The platform provides two options to be performed: Update and Delete.

(b)The actor chooses Delete.

3.CONFIRM DELETE

(a)The platform asks the actor for confirming deletion.

(b)The actor confirms the operation inserting his password.

4.DELETE AMBULANCE DATA

(a)The platform marks the ambulance as inactive.

(b)The platform shows a message confirming the deletion was performed success-

fully.

(c)The use case ends.

Alternative Flows

1.CANNOT DELETE AMBULANCE

(a)WRONG PASSWORD. If in step 3.b of the basic flow, the platform asks for

confirmation and receives a wrong password, then the system shows a message

warning about this. The use case resumes at step 3.a of the basic flow.
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A.1.9 Health Data Monitoring and Reporting

This use case is to real time monitoring and history of patient’s body and environment

(health data).

General Preconditions

1.ACTOR LOGGED IN. The actor needs to be logged in the platform. An actor is

logged if his inserted login and password are validated by the platform. Besides that,

if the actor is a member of the patient’s family, he also can access the platform and

it is authorized for visualizing the data.

2.PATIENT EXISTS. It is a precondition that the patient is already registered in the

platform.

Use Case Diagram: Figure 58.

Figure 58: Use case diagram of Health Data Monitoring and Reporting.

Actors:

•Primary Actors: Health Professionals, Ambulance, Family.

•Secondary Actors: Hospital Module.

A.1.9.1 Real Time Health Monitoring

Basic Flow

1.READ REAL TIME DATA.

(a)The platform provides a way to read patient data in real time.

(b)The actor reads real time data.
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(c)The use case ends.

Alternative Flows

1.READ MORE DETAILS

(a)SEE PATIENT EVOLUTION INFORMATION. In step 1.b of the alterna-

tive flow, the actor can choose to see the patient’s evolution information. The

platform provides a way to choose one or more patients evolution. The actor

views the data. The use case ends.

(b)In step 1.a of the alternative flow, the actor can choose to see the patient alerts

information. The platform provides a way to choose one or more emergency

alerts. The actor views the data. The use case ends.

A.1.9.2 Read Health Data Report

Basic Flow

1.FIND PATIENT.

(a)The platform provides a way to find a patient.

(b)Actor inserts only one or a combination of: ID; CPF and patient name.

(c)The platform shows a list of patients that matches with the inserted data.

2.CHOOSE A PATIENT

(a)The actor selects a patient.

3.BUILD REPORT SELECT

(a)Actor selects the option Read Report.

(b)The platform build a report with patient data, health data and alerts.

4.READ HEALTH DATA REPORT

(a)The platform provides a way to read the report.

(b)Actor reads the report.

(c)The use case ends.
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Alternative Flows

1.FAMILY MEMBER REPORT

(a)When the actor is a family member, or even the patient, the use case must

start at step 3.a of the basic flow. The use case resumes at the same way for

the remainder.

2.FIND SPECIFIC DATES

(a)In step 3.a of the basic flow, the platform provides a way to generate report

from a specific date range. The actor sets the dates and then the platform

produces the report. The use case ends.

3.CANNOT FIND PATIENT

(a)PATIENT DATA DO NOT EXIST. If in step 1.c of the basic flow, the plat-

form verify the patient data do not exist on the system (according to the

entered data), the platform shows a message warning about this. The use case

ends.

4.CANNOT FIND HEALTH DATA

(a)EMERGENCY HEALTH DATA DO NOT EXIST. If in step 3.a of the basic

flow, the platform verifies the patient does not have any health data, the system

shows a message warning about this. The use case ends.

(b)DATE RANGE DOES NOT HAVE HEALTH DATA. If in step 1.a of the

Alternative Flow 1 (Find Specific Dates), the platform verifies the patient does

not have health data for that specific date range, the system shows a message

warning about this. The use case ends.
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