
Architectural Knowledge and Rationale – Issues, Trends, Challenges
Paris Avgeriou

University of Groningen,
The Netherlands

paris@cs.rug.nl

Philippe Kruchten
University of

British-Columbia,
Canada

pbk@ece.ubc.ca

Patricia Lago
VU University
Amsterdam,

The Netherlands
patricia@cs.vu.nl

Paul Grisham and Dewayne Perry
University of Texas at Austin,

USA
{grisham, perry}@ece.utexas.edu

Abstract
The second workshop on Sharing and Reusing Architectural
Knowledge (SHARK) and Architecture rationale and Design
intent (ADI) was held jointly with ICSE 2007 in Minneapolis.
This report presents the themes of the workshop, summarizes the
results of the discussions held, and suggests some topics for future
research.

Introduction
Software architecture plays an important role in managing the
complex interactions and dependencies between stakeholders and
serves as a reference artifact that can be used by stakeholders to
share knowledge about the design of a system. Architecture also
facilitates early analysis of the system, especially with respect to
quality attributes and maintainability of the system. Current
approaches of software architecting focus on components and
connectors but fail to document the design decisions that produced
the architecture – as well as the organizational, process and
business rationale underlying those design decisions. This lack of
relevant architectural knowledge and documentation can
negatively impact maintenance costs and lead to architectural
erosion and mismatch. The 2007 SHARK/ADI workshop focused
on current approaches that tackle this problem: methods,
languages, and tools that can be used to extract, represent, share,
apply, and re-use architectural knowledge.

Architectural Knowledge (AK) is defined as the integrated
representation of the software architecture of a software-intensive
system or family of systems along with architectural decisions and
their rationale external influence and the development
environment.

Working Group Discussions
The two-day workshop accepted 12 research and position papers1
for inclusion. The authors of accepted papers were invited to
present their ideas to the workshop. The presentations2 of the
accepted papers provided the basis for further dialogue among the
workshop participants in several working group sessions. The
topics selected for further discussion were:

• Documentation of architectural decisions: what is optional
and what is essential?

• Codification versus personalization strategies: what works
and what does not work?

• Adopting an AK-centric approach in an organization: what is
the added value for different stakeholders?

1 Papers accepted for the 2007 SHARK/ADI workshop are
available at the ACM Digital Library
2 PDF versions of the presentation slides are available at
http://www.cs.rug.nl/~paris/SHARK-ADI2007/

• Tool support for AK.
• Measurement and empirical evaluation of AK.

In addition, workshop participants discussed how to add AK to the
revision of IEEE-Std-1471-2000. The results of the discussions
are summarized in the following sections.

Documentation of architectural decisions
Based on previous work by Kruchten, Lago, van Vliet [5,6], Tyree
& Ackerman [8], Dueñas & Capilla [1], this working group
attempted to specify what architectural decision documentation
must include, and what additional information a decision
documentation can include.

Core
At a minimum, all decisions should contain at least:

• Description (what is decided)
• Issue (being solved)
• Rationale (reason this was decided)
• Discarded options

Relationships
Decisions can be related to other decisions or software
development artifacts to enhance traceability using the following
characteristics:

• Links to other decisions, with a relation type
{forbids, enables, conflicts, etc.}

• Upstream and downstream traces to requirements, design,
implementation, and tests

• Categories (such as keywords or aspects)

Management
Some systems could make use of additional information to manage
decision or sets of decisions such as:

• Name, ID, system, author, owner, etc.
• Version history (date, author, delta, etc.)
• Status (tentative, decided, challenged, rejected)
• Decision type (according to a specific taxonomy)
• Results of cost or risk analysis.

Codification versus personalization
Codification and personalization are emerging trends in the field
of software architecture and architectural knowledge [2].
Codification formalizes the activities aimed at making AK explicit
in some model or documentation and allows those models to be
interpreted and reused in a standardized way. Personalization is
the process of tailoring a knowledge system to specific people and
organizations conducting the architecting process, in sharing their
experience and knowledge in-the-field. The difference between
the two strategies is that, while codification wants to separate the

ACM SIGSOFT Software Engineering Notes Page 41 July 2007 Volume 32 Number 4

AK from its owner, personalization supports knowledge transfer
dependent on the knowledge provider or consumer.

Starting with the question “What are the dos and don'ts in
personalization and codification of architectural knowledge?” the
working group offered its ideas on a list of best-practices and
“anti-practices”. As the group was composed of both researchers
and practitioners, the working group could contribute with
experience from both academia and industry.

The group first explored the relation between codification and
personalization strategies in general terms. As illustrated in Figure
1, it is important to identify the alignment between these two types
of strategies, as they are not independent. For example,
organization-wide tools and notations for modeling AK should be
simple in order to lower the resistance by architects to learning a
new tool. However, if such tools do not produce documentation up
to company standards, they will be never successfully adopted by
the organization.

The group was able to identify a list of best practices (or dos) and
anti-practices (or don'ts) coming from the group’s collective
experience, as illustrated in Table 1. The group identified more
codification than personalization strategies, reflecting the group’s
natural bias toward basic research in decision modeling.

We also looked at these codification and personalization strategies
from the perspective of the goals a certain strategy addresses. We
identified three relevant types of goals:

• Economic – having a positive or negative impact on the
enterprise business;

• Social – solving or hindering organization processes, human
interactions or playing a positive or negative influence on
cultural aspects.

• Technological – providing a solution to an IT problem or
representing an IT challenge.

We further tried to relate all strategies to the goals, as illustrated in
Figure 2. Again, this mapping reflects the personal experience of
the working group, together with the individual assumptions and
interpretations about the most relevant goal addressed by a certain
strategy. The goal can be visualized by the position of the small
square in one of the six quarters. For example, consider strategy

C-02 (defined in Table 1). Codification support should be tailored
around the needs of the people consuming existing AK.
Unfortunately, tool developers typically focus their efforts on the
producers of AK and inadequately consider support for the
consumers of AK. This strategy primarily addresses economic
goals, because a company that invests in capitalizing its AK must
adequately adopt this strategy or else resources and knowledge
will be unused, resulting in economic losses. Moreover, there is
also a positive impact towards social goals. With a strong focus on
consuming AK, people will be provided with positive incentives
to share their experience and to learn from one another, possibly
leading to a high quality working environment.

 Figure 2 - Issues addressed by dos and don'ts

Figure 1 - Relation between codification and

personalization strategies

The visualization proposed by the working group needs further
work, especially with respect to giving a more precise meaning to
the positioning and the tendencies. Even with its shortcomings,
this graph may help illustrate the evolution of strategies over time
within an organization.

From this visualization we can further observe that most maturity
seems to happen in the social area (12 out of 14 strategies). A
possible reason for this bias could be that researchers in computer
and information sciences are traditionally much more skilled in
codification than in personalization. This reflects a natural bias
towards the technological aspects of implementing a system than
in the process and management aspects of investigating the
industrial needs and identifying IT support.

Similarly, the visualization also shows that the group could not
center any of the listed strategies with technological goals per se.
The group was convinced that technological goals were important,
but it is possible that they simply consider technology as a means
to solve a goal, and not as a goal itself.

In one way or another, the working group gained more insight
about codification strategies than the role of socialization in
architecting. Even though the identified strategies come from
industrial practice, a convincing analysis of their economic impact
is needed for companies to adopt architectural knowledge
management strategies. More quantitative research in
collaboration with industry is required to perform this analysis.

ACM SIGSOFT Software Engineering Notes Page 42 July 2007 Volume 32 Number 4

Adopting an AK-centric approach in an organization
An AK-centric approach to software or systems engineering is one
which emphasizes the importance of explicit documentation and
reuse of Architectural Knowledge. As illustrated above, there are
many social, economic, and technical factors in the acceptance of
an AK-centric approach. An organization investigating the
adoption of an AK-centric approach needs first to consider the
people involved and how AK can help them in achieving their
goals. A working group on process adoption within the
organization was formed to discuss these issues.

The discussion started by asking, in the terms of IEEE 1471, “who
are the stakeholders with AK-related concerns?” The group
considered 8 different types of stakeholders as most significant:
Architects, Maintainers, Customers, Managers, Process engineers,
Knowledge engineers, Tool developers and the rest of the
development team. The stakeholder category encompassing other
members of the development team, such as the requirements
engineers, or the testers, certainly have an interest in AK, but only
a peripheral role in producing and consuming AK. The inclusion
of a process engineer may be surprising, but during the discussion,
managing AK within the process was identified as especially
important. The group then discussed two of the stakeholders in
more depth: the architects and the maintainers.

The architects are the main producers of AK, as they make most of
the important decisions while architecting. The degree that
architects produce explicit AK depends highly on how they view
their own work, and this perspective varies widely from
organization to organization. From our experience with industrial

projects, architects tend to have a short-term, forward engineering
view when architecting. Specifically, they are not particularly
willing to invest time to produce AK that can be used later in the
system’s life cycle if they do not see a direct personal benefit.
Architects often leave a project after the initial architecture design
phase and have no further stakes in the project. Sometimes they
are not the “owners” of design decisions and consequently are not
responsible for them. This is true not just for the designated
architects, but especially for consultants and subcontractors.
Architects may plan for evolution but they do not evolve the
system themselves; evolution is usually the job of the maintainers.

Codification Personalization
DOs

C+01 Simple. Tools and notations should be simple, in
order to create incentives and lower the learning
curve.

P+01 Travel. The traveling architect carries AK across
borders and enables sharing.

C+02 Transparent. Tools should be easily usable during
the process (and not after its completion) to enable
seamless integration.

P+02 Consensus. Practices aimed at team building (e.g.
peer work) ease AK cross-fertilizations and create
incentives.

C+03 Adaptable. Tools (templates) should be flexibly
customizable, to accommodate a different practice.

P+03 Peer. (Best) practices come from peers (top-down
imposition of compliance rules should be avoided).

C+04 Self-reuse. Codification must be useful for yourself,
not for others (to create incentives, remove the old
idea of creating a knowledge base that will 'replace
people', and support training of new employees).

P+04 Assistance. Use techniques to assist people in their
work, like history-based automation (e.g. automated
tailoring like Amazon's previous history; feedback
about something done previously).

C+05 Filled. Start a strategy with a filled knowledge base
(a 'starting set' of useful AK).

P+05 Reflection. Time for after-the-fact reflection should be
allocated explicitly in project management.

C+06 Descriptive. Tools should support the user in the
decision making process (descriptive) rather than
impose a solution (prescriptive).

DON’Ts
C-01 No-misuse. A codification approach should clearly

support positive goals and NOT be misused to
penalize people.

P-01 PH (Pigeon hole). Skills and responsibilities are
grouped in clearly separated compartments
(pigeonholes). People covering them run the risk to
remain 'blocked' with a role.

C-02 Cons-oriented. Effectiveness in the consuming
activities is as important as in the producing ones.

On the link between codification and personalization
DOs

CP+01 Tools supporting codification should support incremental community building.
CP+02 Alignment between codified models and organization documentation standards is mandatory.
CP+03 Organization culture must keep aligned codification and personalization.

Table 1 – AK Dos and Don'ts

The maintainers (in the broad sense of the term) are the main
consumers of AK that need to understand past design decisions
and make new ones. The principle motivation for adopting an AK-
centric approach comes from the need to understand the system
during evolution. Therefore, maintainers have a critical need for
AK, as they spend most of their time discovering knowledge about
the design “after-the-fact”. In this respect the research community
must survey the real needs of maintainers in consuming AK.

One type of AK that is of particular importance to maintainers is
the consideration of alternative or failed solutions that were
considered or explored but rejected. Maintainers need to learn
from past mistakes, understand the associated rationale and avoid
repeating similar mistakes. Unfortunately alternative solutions
from past decisions are not usually documented, even if exploring
the rejected solution consumed time and resources. In practice,
architects do not always explicitly reason about alternatives – i.e.,
they unconsciously reduce the solution space.

ACM SIGSOFT Software Engineering Notes Page 43 July 2007 Volume 32 Number 4

If an organization aims to adopt an AK-centric approach, it needs
to define its own use cases for AK and incorporate them into its
own processes. However, in practice, even when processes
explicitly make provisions for documenting AK, there never
seems to be enough time to document AK with enough rigor to be
useful. AK, even if well documented in the first place, will
eventually become out of date if not maintained. A major problem
is that documenting AK is traditionally considered an activity
additional or supplementary to architecting. Typically, a scribe
documents what the architect has decided after-the-fact. The
architecting processes need to be enhanced with lightweight yet
effective ways of AK documentation. Documentation of design
decisions should be a by-product of architecting, so that the
creation of explicit design models and design decisions are an
inexpensive benefit of the use of an architecture design technique.

Tooling can support different uses of AK, and the working group
was primarily interested in searching mechanisms, both in
informal, unstructured data and codified AK (e.g., in a knowledge
base). There is currently much AK-relevant information hidden in
documentation, but it is difficult and expensive to codify it.
Stakeholders waste time and resources trying to locate the
appropriate information using naïve free text searches, and
valuable AK is not reused because it cannot be identified. If AK
can be formally or semi-formally encoded, more precise queries
can be used, and knowledge bases from different organizations
can be combined. The challenge in this case is to derive
appropriate ontologies to formalize AK, and to translate domain-
and organization-specific ontologies across projects and
organizations.

Another important type of tooling is the one that supports the
capture of AK. The group envisioned a tool that can be
customized to the architecting process and asks questions at the
right times. For example when an architect commits a new
decision, the tool could interact with the architect in order to
capture the rationale. A system such as this should be descriptive
and not prescriptive. Architects do not want to have structures and
decisions imposed on them but rather make the decisions
themselves and have the tool perform routine automation and
provide relevant views on supporting information. It should also
aim at reusing as much application-generic AK [7] as possible,
both from the problem space (e.g., reusable constraints) and from
the solution space (e.g., patterns, styles, and tactics.)

In an organization, the AK may be shared by different
stakeholders, depending on communication issues and political
processes. It is important to emphasize that adopting an AK-
centric in an organization does not mean all design knowledge
becomes public and is shared indiscriminately. Some AK needs to
be kept secret to preserve confidentiality; for legal and business
reasons; and because of social, cultural and political aspects.

In summary, the working group identified certain steps an
organization can take in order to adopt an AK-centric approach.
First, producing and consuming AK should not be considered an
extra, resource-consuming activity but it should be made
“invisible” – part of the organizational process. Second, people
need to be convinced of the long-term benefits of such an
approach in order to establish the corresponding culture. The role
of the customer must be emphasized here. The customer needs to

be convinced that investment in documenting AK is worth the
extra budget. Third, the management of organizations should
impose the necessary processes from top to bottom - especially in
big organizations, people will follow rules. Finally, the working
group emphatically declared the need for more empirical
evaluation of AK-centric approaches in organizations. Success
stories with verifiable claims can help encourage organizations to
adopt AK-centric approaches, and negative studies can help guide
research in evolving AK practices to better meet the needs of
organizations designing and evolving complex software-intensive
systems.

Tool support for AK
The working group on tool support focused on the issues involved
with capturing, using, locating and maintaining AK. The attendees
talked about their experiences in developing tool support and
attempted to identify areas for improvement in the current state of
the practice with respect to tool support for AK.

The most important attributes of an AK tool are what knowledge
is explicitly modeled in the tool and how the tool is intended to be
used in the context of a development process. The design of most
AK tools can be classified as derived from data modeling or
derived from process analysis. In tools derived from data
modeling, there is a tendency to capture everything that is
available at some time on the assumption that it is cheaper to
capture data during design than to attempt to reconstruct it later.
However, if there is not a clear idea of how data will eventually be
consumed, the effort of modeling and capturing it is wasted.
Process analysis is important in designing tool support, but it is
always the case that a tool itself introduces changes to the process.
Care must also be taken that a process-derived tool can be
personalized sufficiently to make it useful across many projects
and organizations.

The general consensus is that the primary capacity of tools should
be to provide support to software architects. The information
captured within a tool should be available to a human architect in
such a way that it facilitates decision-making, but that the tool
itself should not be prescriptive, or even advisory, in its capacity
to support the architecting process.

AK tool support should integrate with existing process and
tooling. Workshop participants reported success with tools based
on Web interfaces, integration with UML-based modeling
environments, and even standard word processor and spreadsheet
applications using macros. Integrating with existing tools and
processes makes the tool simpler and more intuitive to use.

The current state of research has been focusing on capturing data
using AK tools, but issues in locating and consuming data within
AK tools is still a very open issue. Two approaches to formulating
queries into AK data are free text searches and first-order
predicates. Unfortunately, free text searches are unstructured and
difficult to identify relevance. First-order knowledge does not
scale well over large data sets. It is increasingly difficult to
identify what is present in AK databases and how it can be
consumed. There has been little empirical analysis on how AK is
used by consumers, what query patterns are most useful, and how
to identify relevance of query results.

ACM SIGSOFT Software Engineering Notes Page 44 July 2007 Volume 32 Number 4

When it comes to maintaining evolving AK, the most important
factor is traceability. Associations between AK are lost over time,
and as the data set increases, managing those associations and
dependencies becomes more difficult. Some tools already have
basic decision dependency and traceability support [4].

Measurement and Evaluation of AK
The working group on measurement and evaluation identified two
major themes:

• Where in the organization to conduct measurement and
evaluation, and

• How to carry out the measurement and evaluation study.

The generally obvious places were during initial architecture
derivation and architecture evolution. . In addition, one of the
more interesting suggestions was to measure and evaluate how AK
is used in mentoring, specifically, to understand what in an
architect’s experience in terms of AK needs to be passed on to
those being mentored. Another situation where the applicability
and relevance of AK should be studied is where a product-line
architecture is being created out of individual architectures.

The discussion on empirical measurement design resolved into
two subtopics: what should be measured and how to conduct the
study. Some of the suggestions on what to measure include such
basic quantitative measure as costs and resource utilization, and
also qualitative properties such as ease and gracefulness of
changes, patterns and strategies used, and utilization of knowledge
reuse.

The discussion of study constructs and techniques included a
number of interesting suggestions. One is the use of self-reports –
keeping a log of what and how AK is used. Another is to look at
what the consumers of AK need and use – that is, observation or
ethnographic studies. Other approaches include case studies that
include observation, interviews, and participation – all providing
different viewpoints and different kinds of data. Controlled studies
are important, but require significant resources in terms of time
and people. The group recognized the need to non-intrusively
study AK in the field.

Some of the problems encountered in terms of evaluation of costs
are the usual ones: costs are paid up front and benefits are enjoyed
later. Given the lifetime of a software architecture and its system,
this imbalance poses significant challenges. However, it was noted
that often managers may receive an immediate benefit from cost
analysis studies. An important issue in interviews is the fact that
seldom are the full data made available; it is usually only the
distilled results that are available. This poses problems for
reproducibility and meta-analysis (where we combine the results
of several studies). Independence of replications is also a critical
issue that is seldom dealt with.

Architectural decisions and rationale in IEEE 1471
Rich Hilliard invited SHARK/ADI workshop participants to
provide input for the revision of the standard IEEE-Std-1471-2000
“Recommended Practice for Architectural Description of
Software-Intensive Systems” (now also ISO/IEC 42010) [3].

The discussion focused mostly on how to expand the conceptual
model of 1471 (Figure 1 of [3]), to define additional concepts, and
to elaborate how these concepts are used in practice.

• A Decision is a choice of an element, property, or process that
addresses one or more concerns, and affects directly or
indirectly the architecture.

• A Rationale is an explanation – a justification associated with
a Decision – which explains the reasoning (pros and cons,
trade-offs, etc.) and points to the sources of knowledge.

A decision may address more than one concern. A decision may
affect the architecture in several ways. A decision may:

• Specify existence of a architectural element,
• Constrain the property of some architectural element,
• Provide a trace between architectural elements and concerns,

or
• Raise additional concerns.

Decisions are interrelated, and there are many different types of
dependencies between decisions. These dependencies include
constrains, enables, subsumes, conflicts, and others. A more
complete list can be found in [6].

A design decision in particular is a ternary relationship
associating: {concern, model, rationale}. We noted that there are
architectural decisions related to the problem space, and not solely
on the solution space. For example, prioritization of concerns is an
architectural decision – though not strictly speaking a design
decision.

In effect, the rationale for the architecture is made of the collection
of all the rationale (instances) for all the decisions (instances), but
for the same reason the conceptual model in the standard does not
decompose a model into its constituent elements. Rationale is
associated to model (or architecture) only indirectly through the
decision.

Issues, options, decisions and rationale could be packaged by
views and viewpoints, but workshop participants found numerous
cases of concerns, issues, options, decisions and rationale that are
not limited to one view and therefore these concepts should not be
tied to views, which does not preclude an application of the
standard to do so.

From a more detailed process perspective, a decision should
address a clearly defined Issue, which is in turn associated with
one or more concerns. An issue is a kind of concern that must be
addressed by a decision. It provides the question, the problem
statement. Figure 3 represents a complete view of the conceptual
model.

ACM SIGSOFT Software Engineering Notes Page 45 July 2007 Volume 32 Number 4

Decision
Architecture

or
Model

Rationale

affects
0..n 0..n

justifies0..n

0..n

0..n

0..n

Depends on

Concern

Issue

0..1

0..1

0..n

0.n

Arises from

0..n
raises

Option

0..1

0..n

Figure 3 - Conceptual Model of a Design Decision

More work is required to better define what concerns and issues
really are with respect to IEEE 1471.

Acknowledgments
This workshop is part of the dissemination activities of the Dutch
Joint Academic and Commercial Quality Research &
Development (Jacquard) program on Software Engineering
Research via contract 638.001.406 GRIFFIN: a GRId For
inFormatIoN about architectural knowledge.

We extend our thanks to all those who have participated in the
organization of this workshop, particularly to the program
committee, which was comprised of:

• Martin Becker, Fraunhofer IESE, Germany
• Jan Bosch, Intuit, USA
• Janet Burge, Miami University, USA
• Jeff Conklin, CogNexus Institute
• Rafael Capilla, Universidad Rey Juan Carlos, Spain
• Torgeir Dingsoyr, Sintef, Trondheim, Norway
• Muhammad Ali Babar, National ICT Australia
• Mike Evangelist, The University of Texas at Austin
• Paul S Grisham, The University of Texas at Austin
• Jim Herbsleb, Carnegie Mellon University
• Ralph Johnson, University of Illinois at Urbana-Champaign,

USA

• Axel van Lamsweerde, Universite Catholique de Louvain
• Nenad Medvidovic, University of Southern California
• Dewayne E. Perry, The University of Texas at Austin
• Antony Tang, Swinburne University of Technology, Australia
• Jeff Tyree, CapitalOne, Canada
• Hans van Vliet, VU University Amsterdam, Netherlands
• Uwe Zdun, Technical University of Vienna, Austria

References
[1] J. C. Dueñas and R. Capilla, The Decision View of Software
Architecture. In Proc. of the 2nd European Workshop on Software
Architecture (EWSA), Pisa, Italy, 2005.

[2] R. Farenhorst, P. Lago, H. van Vliet. Prerequisites for
Successful Architectural Knowledge Sharing. In Proc. of the 18th
Australian Conference on Software Engineering (ASWEC),
Melbourne, Australia, 2007, pp. 27-38.

[3] IEEE Std 1471:2000 – Recommended practice for
architectural description of software intensive systems. Los
Alamitos, CA: IEEE, 2000.

[4] A. Jansen, J. van der Ven, P. Avgeriou and D.K. Hammer,
Tool Support for Using Architectural Decisions, In Proc. of the
6th Working IEEE/IFIP Conference on Software Architecture
(WICSA), Mumbai, India, Jan. 2007.

[5] P. Kruchten, An Ontology of Architectural Design
Decisions, presented at 2nd Groningen Workshop on Software
Variability Management, Groningen, NL, Rijksuniversiteit
Groningen, 2004.

[6] P. Kruchten, P. Lago, and H. van Vliet. Building up and
reasoning about architectural knowledge. In Proceedings of the
Second International Conference on the Quality if Software
Architectures (QoSA 2006), June 2006.

[7] P. Lago and P. Avgeriou, First ACM Workshop on SHAring
and Reusing architectural Knowledge (SHARK). Final workshop
report. SIGSOFT Software Engineering Notes, Vol. 31(5), Sept.
2006, pp. 32-36.

[8] J. Tyree and A. Akerman, Architecture Decisions:
Demystifying Architecture, IEEE Software, Vol. 22, 2005, pp.
19-27.

ACM SIGSOFT Software Engineering Notes Page 46 July 2007 Volume 32 Number 4

