
Architectural Knowledge: Getting to the Core

Remco C. de Boer1, Rik Farenhorst1, Patricia Lago1, Hans van Vliet1,
Viktor Clerc1, and Anton Jansen2

1 VU University Amsterdam, the Netherlands
{remco, rik, patricia, hans, viktor}@cs.vu.nl

2 University of Groningen, the Netherlands
anton@cs.rug.nl

Abstract. Different organizations or organizational units are likely to store and
maintain different types of information about their software architectures. This in-
hibits effective management of architectural knowledge. We experimented with a
model of architectural knowledge to characterize the use of architectural knowl-
edge in four different organizations. Based on this experimentation we identified
four perspectives on architectural knowledge management, and additionally ad-
justed the model to better align theory with practice. The refined model defines a
minimal set of concepts with supposedly complete coverage of the architectural
knowledge domain. Because of the minimalistic aspect of the model, we refer
to it as a ‘core model’ of architectural knowledge. Supporting evidence for the
validity of our model, i.e. the supposed complete coverage, has been obtained
by an attempt to falsify this claim through a comparison with selected literature.
Application of the core model to characterize the use of architectural knowledge
indicates possible areas of improvement for architectural knowledge management
in the four organizations.

1 Introduction

The notion of software architecture is one of the key technical advances in the field of
software engineering over the last decades. The advantages of using an explicit soft-
ware architecture include early interaction with stakeholders, its basis for a work break-
down structure, and the early assessment of quality attributes [1]. Although considerable
progress has been made in this area, we still lack techniques for capturing, representing
and maintaining knowledge about software architectures.

Various authors (e.g. [2,3,4]) address the notion of ‘architectural knowledge’ and
provide a model of what this notion entails. Key elements in all models are design deci-
sions and their rationale. However, different authors use different words for what might
be the same. For example, some models consider design decisions, others architectural
decisions, but it is hard to determine whether these actually denote the same concept.

Having different notions of what architectural knowledge entails can hamper effec-
tive management of that knowledge. If, for instance, different organizations – or even
departments within a single organization – use different concepts to communicate archi-
tectural knowledge, terminological misunderstandings may arise. Sharing architectural
knowledge between these parties then becomes very hard, if not impossible. We need a

S. Overhage et al. (Eds.): QoSA 2007, LNCS 4880, pp. 197–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

198 R.C. de Boer et al.

model of architectural knowledge that acts as a common frame of reference and enables
architectural knowledge sharing.

The question we address in this paper is what this model should entail. As an an-
swer, we propose a model of architectural knowledge that has maximal expressivity in
the architectural knowledge domain and functions as a reference model for sharing ar-
chitectural knowledge. Real-life models of what architectural knowledge entails can be
expressed in the form of extensions to this model. These extensions are domain-specific,
organization-specific, or both.

2 Related Work

In an overview of the maturation of the software architecture field [5], Shaw and Cle-
ments conclude with an outlook on future work in software architecture research. Pro-
mising topics mentioned include a focus on architectural design decisions and their link
to quality attributes, and the organization of architectural knowledge to create reference
materials. Our work serves both these goals.

The research field already shows increasing focus on the management of architec-
tural knowledge (i.e. knowledge pertaining to a particular software architecture), such
as architectural design decisions and their rationale [3,6,7,8]. A growing number of re-
searchers acknowledges that a software architecture can – or should – be viewed as the
collection of architectural design decisions [9], or as the design decisions plus the re-
sulting design [4]. Others target tracing architectural decisions to concerns [10], or link
business goals to the software architecture [1].

Hofmeister et al. define architecting as an iterative process in which the architecture
‘grows’ over time as architects perform architectural activities, such as analysis, syn-
thesis, and evaluation [11]. In our research we build further on this view, by considering
the iterative nature of architecting as a ‘decision loop’. We focus not only on the design
decisions themselves, but also on the result of this iterative process – the architectural
design – which is reflected in various design artifacts such as architectural descriptions.

In recent years, several other models or frameworks have been proposed to capture
architectural knowledge. Akerman and Tyree propose an ontology that focuses on ar-
chitectural assets, architectural decisions, stakeholder concerns and an architecture im-
plementation road map [12]. A framework for capturing and using architecture design
knowledge is proposed by Ali Babar et al. in [2].

All methods and frameworks described above share a common understanding of
what ‘architectural knowledge’ is, or should entail. Then again, each of the methods
and frameworks has a different focal point and may use terminology differently from
others. In an attempt to aggregate the common understanding, while allowing for dif-
ferent specializations of the central concepts, we have constructed a reference model of
architectural knowledge that is described in Section 5.

3 Research Methodology and Structure of This Paper

The structure of this paper, schematically depicted in Fig. 1, is tightly coupled to the
research approach we followed. In the remainder of this section we outline the research

Architectural Knowledge: Getting to the Core 199

Alternative

Decision

to propose

to choose

to rank

Rankingbased on

based on

for

Concern

to perform

in

Architectural
Design

Decision Topic

Architectural
Design Decision

to enforce

upon

Language using

1

Role

Artifact

Activity

to
 u

se

to
 p

ro
d

uc
e

in

Stakeholder

to
 r

ef
le

ct

in

*

1

1

1

1

1

1

1

1
1

*

*

* *

*

*

1..*

1..*

1..*

1..*

1..*

to assume
influence

on
1

1

1
1..*

Alternative

Decision

to execute

to propose

to choose

to rank

Ranking

becomes

based on

based on

for

Concern

R ole

ArtifactActivityto perform

in

to usein

to producein

Stakeholder

(is responsible for)

Architectural
Des ign

to store

based on

Viewpoint

View

to address

Decision topic

External Event

Force
to assume
influence

Architectural
driver

in

to enforce upon

onbecomes

Architectural
Design Decision

Architectural
Model

to describe

in

conforming to

part of

in

1..*

*

1..*
*

1
*

1
*

Initial Model Core Model Literature

Section 4: Experimental use and modification Section 5: Core Model

Section 6:
Characterization of
arch. knowledge use Section 7: Validation

Industry

Fig. 1. Structure of this Paper

methodology we employed, the steps we followed, and in which sections the respective
results are elaborated upon.

The research methodology that we followed can best be described as an instantia-
tion of action research. Action research is an iterative research approach in which the
researcher actively participates in the studies he performs. The researcher wants ‘to try
out a theory with practitioners in real situations, gain feedback from this experience,
modify the theory as a result of this feedback, and try again’ [13].

Our research commenced with a ‘theory’ of architectural knowledge that stemmed
from our earlier work [14]. This initial model of architectural knowledge was an ab-
stract conceptualization of the architectural knowledge domain. We experimented with
the model, and tried to characterize the use of architectural knowledge by (and together
with) four industrial partners. Experience from those characterization attempts taught
us that there were a number of mismatches between our theory and industrial practice.
Reflection on the apparent mismatches led us to conclude that our model should exhibit
a number of properties in order to overcome those mismatches. This reflection process
is elaborated further in Section 4. In order to accommodate for the desired properties
identified, we refined the initial model and arrived at a new ‘version’ of our theory of ar-
chitectural knowledge: a core model of architectural knowledge presented in Section 5.

With the mismatches between theory and practice removed, we could successfully
employ our core model of architectural knowledge to characterize the use of archi-
tectural knowledge by the four partners. This characterization, which is the subject of
Section 6, led to a number of hypotheses regarding the probable cause of problems with
architectural knowledge management in the collaborating organizations. We plan to al-
leviate the identified problems by removing the probable causes in the near future. This
illustrates the iterative nature of action research, where the result of the action research
cycle we performed is input for the next cycle.

Since we want our model to be useful as a reference model to align different archi-
tectural vocabularies, we believe our model can be regarded as ‘valid’ when concepts
from different architectural approaches can be expressed using terms from the model.

200 R.C. de Boer et al.

Unfortunately, it is impossible to prove that our model is valid in this sense. However,
we can make the validity of our model plausible by trying to falsify our model by
comparing the model with (accepted) literature. This falsification attempt, which falls
outside the scope of the action research cycle itself, is discussed in Section 7.

4 A Theory of Architectural Knowledge: Experimental Use and
Modification

The goal of our research was to characterize the use of architectural knowledge in four
different organizations. The four organizations that participated in our research can be
described as follows:

– RFA is a large software development organization, responsible for development
and maintenance of systems for among others the public sector.

– VCL is a large, multi-site consumer electronics organization where embedded soft-
ware is developed in a distributed setting.

– RDB performs independent software product audits for third parties.
– PAV is a large scientific organization that has to deal with software development

projects spanning a long time frame (up to a period of more than ten years).

The theory that we used to characterize the organizations’ architectural knowledge
use was a model of architectural knowledge that is presented in detail in [14]. This
model had been constructed to structure software architectural knowledge in such a
way that it is clear what can exist and what can happen during the architecting phase
of a software development project. We aimed to use this model as an abstract view
of the architectural knowledge domain, to allow for clean reasoning about the use of
architectural knowledge in the four organizations.

Experience with the model from [14] in the four industrial organizations taught us
that the model did not entirely fit all organizations. The original model highly con-
formed to the IEEE-1471 standard for architectural description [15]. IEEE-1471 pre-
scribes the use of so-called ‘Viewpoints’ to describe the architecture from the perspec-
tive of different stakeholders. The resulting ‘Views’ (partial descriptions of the archi-
tecture) are aggregated in a single architecture description. Although stakeholders and
their concerns play a key role in any software architecting process, the tight coupling
of the model to IEEE-1471’s Views and Viewpoints turned out to be a mismatch with
most organizations’ practice. In hindsight this need not come as a big surprise, since
organizations can (and do) use other approaches for documenting their architectures,
which need not coincide with the IEEE-1471 way.

Although the model from [14] did not entirely fit all organizations, diagnosis of the
use of architectural knowledge in those organizations at least showed that each of the or-
ganizations has its own perspective on architectural knowledge management, resulting
in different issues at each of the organizations. The central issue within RFA was how
to share architectural knowledge between stakeholders of a project. The main question
within VCL was how compliance to architectural rules can be enforced in this multi-site
environment. RDB was mainly concerned with how auditors can discover the architec-
tural knowledge they need to do a proper audit. The main challenge for PAV was how to

Architectural Knowledge: Getting to the Core 201

improve traceability of its architectural knowledge. While the mismatches between the-
ory and practice still prevented us from pinpointing the exact areas of improvement, at
least we had an idea where to search for those areas in a next research iteration. How-
ever, this required that we removed the identified mismatches to further align theory
with practice.

From a closer inspection of the mismatching concepts we learned that those concepts
could either be expressed in terms of other concepts already present in the model, or
as more generic concepts that are used by the organizations. This led us to believe that
we should strive to construct a model of architectural knowledge that is both minimal-
istic and complete. We believe the model can be regarded as ‘complete’ if there are no
concepts from other approaches that have no counterpart in the model. If there turns
out to be such a missing concept, our model should be extended. With ‘minimalistic’
we signify the feature that it should not be possible to express some concepts from the
model in any other concepts from the model.

Based on these insights we modified the initial model from [14] to obtain such a
model that is both complete and minimalistic. Especially because of this latter feature,
we refer to our model as a core model of architectural knowledge; elements that can be
modeled in terms of core elements do not belong to the core.

5 A Core Model of Architectural Knowledge

Our core model of architectural knowledge is depicted in Figure 2. As a result of the
minimalistic aspect of this model introduced in Section 4, the core model leaves room
for the use of different architecture description methods, including IEEE-1471. This
contrasts with the model from [14] in which the use of IEEE-1471 was assumed and
which therefore did not match those organizations that use other architecture description
methods.

In our core model of architectural knowledge, the concepts of Stakeholder and Con-
cern coincide with the, widely accepted, definitions of these terms in IEEE-1471: a
stakeholder is “an individual, team, or organization (or classes thereof) with interests
in, or concerns relative to, a system” [15]. Both IEEE-1471 concepts of Architectural
Model and View are subsumed in our notion of Artifact, i.e. an inanimate information
bearer such as a document, source code, or a chapter in a book. Storing or describing the
Architectural Design in either of these artifacts can be abstracted to a single action ‘to
reflect’. The Architectural Design can be reflected using different Languages, including
models, figures, programming languages, and plain English.

Constructing an architectural design is essentially a decision making process. In our
core model, decision making is viewed as proposing and ranking Alternatives, and se-
lecting the alternative that has the highest rank, i.e. the alternative that, after careful
consideration based on multiple criteria (i.e. Concerns), is deemed to be the best option
available with respect to the other alternatives proposed. It is especially this process of
proposing, ranking, and selecting which is hard to articulate and distinguishes the good
architects from the weaker. The chosen alternative becomes the Decision. The alterna-
tives that are proposed must address the Decision Topic, and can be ranked according to
how well they satisfy this and other concerns. We view Decision Topic as a special type

202 R.C. de Boer et al.

Alternative

Decision

to propose

to choose

to rank

Rankingbased on

based on

for

Concern

to perform

in

Architectural
Design

Decision Topic

Architectural
Design Decision

to enforce

upon

Language using

1

Role

Artifact

Activity

to
 u

se

to
 p

ro
du

ce

in

Stakeholder

to
 r

ef
le

ct

in

*

1

1

1

1

1

1

1

1
1

*

*

* *

*

*

1..*

1..*

1..*

1..*

1..*

to assume
influence

on
1

1

1
1..*

1..*

action

element

instantiation

participation

attribute

subclass

cardinality

legend

Fig. 2. Core Model of Architectural Knowledge

of Concern, namely a Concern for which a Decision must be taken. Example concerns
for which no further decisions need to be taken – and which hence are no decision topics
but do need to be taken into account when evaluating (ranking) proposed alternatives –
are constraints, such as budget constraints, technological limitations, et cetera.

Architectural Design Decisions are defined as those Decisions that are assumed to
influence the Architectural Design and can be enforced upon this Architectural Design,
possibly leading to new Concerns that result in a need for taking subsequent decisions.
This ‘decision loop’ captures the relations between subsequent Architectural Design
Decisions. This loop also corresponds to the ‘divide and conquer’ technique of de-
cision making, in which broadly scoped decisions are taken which may result in finer
grained concerns related to the broader concern. Furthermore, it enables in theory trace-
ability from concerns through decisions to artifacts, although this very much depends
on whether those traces have been captured in the reflection of the architectural de-
sign. Note that architectural design decisions need not necessarily be ‘invented’ by the

Architectural Knowledge: Getting to the Core 203

architect himself; architectural patterns, styles, and tactics are examples of architectural
design decisions (or, more precisely, alternatives) that are readily available from other
sources. The ‘decision loop’ described above also captures the rationale of an archi-
tectural design; the answer to the question why an architectural design is the way it is.
Rationale is in our opinion extremely interwoven with all elements in this loop, and is
therefore not represented as a distinct element in our model.

The Architectural Design (often called ‘architecture’ for short) is the result of all
architectural design decisions. Note that reflection of (part of the) Architectural Design
is not limited to a single Artifact: a single Architectural Design Decision might for
instance be represented in the architecture description as well as impact the source code.
Artifacts themselves can again be composed of various (sub)Artifacts, e.g. chapters in
a document, or methods in a class. The concepts Role and Activity are borrowed from
SPEM, which defines the software development process as “a collaboration between
abstract active entities called process roles that perform operations called activities on
concrete, tangible entities called work products” [16]. The ‘work product’ from SPEM
resembles our notion of Artifact. The latter is in our opinion a better known and widely
accepted concept in Software Engineering.

6 Core Model Application: Characterization of Architectural
Knowledge Use in Four Industrial Settings

We initially started our research with the goal to characterize the use of architectural
knowledge in four industrial organizations. Although we were able to discover four
different perspectives on architectural knowledge within those organizations (see Sec-
tion 4), the mismatches of our initial model of architectural knowledge with the ob-
served practice in those organizations hampered a further diagnosis of the problems
those organizations encounter. Since those mismatches have been removed in our core
model of architectural knowledge, it is interesting to see how the organization-specific
‘models’ of architectural knowledge of all four organizations can be expressed in terms
of the core model. From a superficial look, each of the organizations appears to use ar-
chitectural knowledge very differently. Alignment of the organization-specific models
to the core model, however, allows for a more fundamental characterization of how the
organizations perceive and use architectural knowledge.

The use of architectural knowledge in RFA and VCL is mainly located in the upper
‘description’ part of Figure 2, i.e. the reflection of architectural design decisions in
artifacts. The use of architectural knowledge within RDB and PAV is positioned more
in the lower ‘decision’ part, i.e. the decision making process reflected in the decision
loop. We hypothesize that the problems that the organizations experience in managing
architectural knowledge are partially due to their focus on only a part of the theory of
architectural knowledge as expressed by our core model.

An overview of the result of the four characterizations is provided in Table 1. In
this table we list for each of the organizations their prevalent perspective on the use of
architectural knowledge, the main architectural knowledge concepts encountered (both
organization-specific and at a core level), the hypothesized cause for the diagnosed

204 R.C. de Boer et al.

Table 1. Diagnosis of Industrial Problems with Architectural Knowledge Management

RFA VCL RDB PAV
Perspective Sharing Compliance Discovery Traceability
Main org.
concepts

Design choices,
Principles, Starting
Points, Prerequisites

Architectural rules Quality criteria,
Quality in use

Knowledge entities

Mainly used
core concepts

Arch. design decisions Arch. design decisions,
to enforce

Arch. design decision,
Concern, Arch. design,
to reflect

Concern, Decision topic
Alternative, Arch. design
decision

Problem Ambiguous terminology No sense of urgency
regarding compliance
with architectural rules

Implicit relation between
architecture and “quality”

Lack of traceability
between knowledge
entities

Hypothesized
cause

Decision making process
not captured

Tacit decision making
process

‘Quality’ and related arch.
knowledge not confined to
a single artifact

Implicit relations
between artifacts

Possible
solution

Explicit focus on
relations between
decisions through
iterative "decision loop"

Explicit focus on
rationale of decisions
through ‘decision loop’
elements

Uncover architectural
design decisions, their
cause, and their effect on
the software product

Annotate architecture
documents with specific
knowledge entities

problems, and a possible solution to this problem. In the following subsections, we
further elaborate on these aspects for each organization in turn.

6.1 RFA: Development Organization

RFA is a large development organization that develops and maintains software systems
for among others the public sector. These systems are typically critical for the public,
large in size and complexity, and long lasting. Because of the size of the organiza-
tion and the projects, this organization focuses on how to effectively share architectural
knowledge. To this end, RFA developed its own methodology and tooling to aid the
software architects in creating and documenting architectural knowledge by means of
architectural descriptions.

Architectural descriptions within RFA basically consist of a number of views based
on predefined viewpoints, and a set of specific architectural models such as an object
model, a functional data-model, etc. These models reflect a number of architectural
choices, which are based on decisions that relate to business objectives. The choices
take into account the design principles, starting points, and prerequisites to which the
architect needs to adhere to when designing the software architecture, as well as the
stakeholder concerns.

An example of a business objective documented in one particular architectural de-
scription is: “The data of the subsystems needs to be easily accessible”. A stated design
principle based on this objective is “The system needs to be accessible using web ser-
vices as well as the Enterprise Service Bus” and the final architectural choice made
based on this principle is “The system information exchange uses InfoMessaging and
MS.NET Web Services”.

We interviewed architects and managers from RFA, who in these interviews ac-
knowledged that they are currently struggling with the different concepts, their relations
and their more effective usage. This impairs effective sharing of architectural knowl-
edge, since architects are unsure which concepts to use to describe their architectural

Architectural Knowledge: Getting to the Core 205

design. As a result, readers are unsure where in the architecture description they can
find the information they are looking for.

If we express the organization-specific terminology in terms of core concepts, an
interesting pattern emerges. The ‘different’ notions of business objectives, design prin-
ciples, and architectural choices all are in fact Architectural Design Decisions, which
are somehow related to each other. However, the organization’s methodology does not
define very concrete guidelines to distinguish between those decisions. RFA’s struggle
with terminology might partially be blamed on the use of different terms for the same
architectural knowledge concept without a good definition of the discriminative features
for these terms.

The explicit use of architectural knowledge within this organization can be primarily
found in the ‘description’ area of the core model: reflecting architectural decisions in an
architectural description. The decision making process – reflected in the decision loop
in the model – is left implicit by the organization’s methodology.

Our core model captures relations between different architectural design decisions in
the decision loop, where a certain architectural design decisions leads to a new concerns
that in turn leads to new decisions. A more explicit focus on this loop would help defeat
the ambiguity in terminology within RFA. A design principle could then for instance be
defined as a decision taken because of new concerns introduced by a business objective.
In the example above, the concern introduced by the business objective would be the
need for accessibility. Architectural choices are related to design principles analogously.

6.2 VCL: Consumer Electronics

VCL is a large organization within the consumer electronics domain. This organization
has arranged software development along subsystems. A release of the software for
a consumer electronic product consists of integrating the relevant subsystems. Each
subsystem is developed by a small, dedicated development team. The teams are located
at multiple, geographically spread development sites.

This arrangement of the software and the software development activities demands
guidelines to maintain the subsystem-based software architecture. To this end, a central
architecture team issues architectural rules: a set of principles and statements on the
software architecture that must be complied with throughout the organization.

Architectural rules originate from various issues that influence VCL’s software devel-
opment, such as defects identified in subsystem releases, change requests, or additional
requirements. These issues need to be addressed in the software architecture. Solutions
to these issues – which affect all subsystems – are captured in text-based documents.
These documents are sent to all development teams as architectural rules that need to
be adhered to.

The creation of architectural rules can be expressed in terms of the core model. The
issues identified by the various stakeholders correspond to Concerns of Stakeholders.
The architectural rules, i.e. the chosen solutions for these issues, are Architectural De-
sign Decisions that are enforced upon the Architectural Design through dissemination
of the Artifacts in which they are reflected.

Although VCL is similar to RFA in that the focus of architectural knowledge use is
on the ‘description’ area of the core model, development in teams at distinct locations

206 R.C. de Boer et al.

should put a particular emphasis on enforcement of architectural design decisions. How-
ever, once the architectural rules have been disseminated to the individual development
teams, adherence to the rules on the subsystem architectures is the responsibility of the
teams themselves. In practice, some of the rules are disregarded by the teams. Our core
model suggests that one of the reasons for this might be the fact that only the architec-
tural design decisions themselves are being communicated, while the decision making
process itself remains tacit. This lack of insight into the reason of the architectural de-
sign decisions taken make that the development teams do not feel a sense of urgency
regarding compliance with these decisions. We believe that more information about the
rationale of the architectural rules, including the concerns that led up to the decisions,
increases this sense of urgency with the developers.

6.3 RDB: Quality Audits

RDB is a company that performs independent software product audits for third par-
ties. A software product audit consists of comparison of quality criteria with the actual
software product. Most quality criteria assess the effects of architectural decisions as
reflected in the software product artifacts. A quality criterion might for instance be “All
access to data in a relational database should take place through dedicated data access
objects. No direct communication of business objects with the database is allowed”.

The customer that acquires a software product expects this product to have a certain
‘quality in use’ [17]. Given the concern ‘quality in use’, there are various quality char-
acteristics for which quality criteria must be selected. For instance, the criterion that all
data access must take place through data access objects favors the maintainability of the
software product over its efficiency. Selection of quality criteria therefore depends on
the relative importance of each of the quality characteristics indicated by the customer.
The example criterion will only be selected if maintainability of the software product is
indeed more important to the customer than efficiency.

The problem an auditor faces when performing a software product audit is that archi-
tectural design decisions and the resulting architectural design are usually not reflected
in a single artifact. Even if there is a document called ‘the architecture description’,
architectural decisions impact other product artifacts (e.g. documentation and source
code) as well. There is no guarantee that the information in an architecture description
is complete, or even up-to-date.

The reflection of the effects of architectural decisions in different software product
artifacts can be readily identified in our core model. The Language used to reflect Archi-
tectural Design in Artifacts can be a natural language (e.g. English in software product
documentation), but also a programming language (source code) or graphics (e.g. dia-
grams and figures in a software architecture description). A more interesting and less
apparent mapping is the mapping of ‘quality’ to the core model.

In terms of our core model, quality in use is a Concern of the customer, who is a
Stakeholder. The quality characteristics and subcharacteristics are Decision Topics for
which quality criteria are proposed and selected. The proposed criteria are the Alter-
natives. Selection of quality criteria is based on their impact on the quality in use – the
Concern– in terms of prioritized (sub)characteristics, as indicated above. In this way,
trade-off analyses are being made regarding conflicting criteria. The chosen quality

Architectural Knowledge: Getting to the Core 207

criteria describe the architecture in terms of how it ought to be. In other words, quality
criteria are a special type of Architectural Design Decisions: decisions that are expected
to have influenced (rather than enforced upon) the Architectural Design.

In RDB the relation between architecture and quality is not obvious at first sight.
The core model helps us to describe quality in terms of architectural decisions and their
effect on the software product, and shows us that quality criteria that apply to the ar-
chitectural design are themselves architectural decisions. Using the core model, we can
express a software product audit as a comparison of two types of architectural knowl-
edge: architectural knowledge that is present in the software product, reflected in the
Artifacts that make up the product, and architectural knowledge that is expected by the
customer, reflected in quality criteria. This makes it more apparent which architectural
knowledge is most important for a software product audit: the architectural design de-
cisions as well as their cause (e.g. stakeholder concerns and trade-offs) and effect (e.g.
constraints on subsequent decisions) should be discovered from multiple artifacts for
an effective assessment of a software product’s quality.

6.4 PAV: Scientific Research

PAV is a scientific organization that is involved in the development of large software-
intensive systems, used for scientific research. One of their projects is the development
of a highly distributed system that collects scientific data from around 15.000 sources,
distributed over 77 different stations, each source generating around 2 Gbps of raw data.
The challenge for this system is to communicate and process the resulting 30Tbps data
stream in real-time for interested scientists.

In this project, architectural decisions need to be shared and used over a time span
of more than 25 years. This is due to the long development time (more than 10 years),
and a required operational lifetime of at least 15 years. The organization is judged by
external reviewers on the quality of the architecture and the outcome of these reviews
influences the funding, and consequently the continuation, of their projects. Therefore,
it is of paramount importance to keep the system architecture at a high quality. In order
to achieve this purpose, PAV needs to evaluate at all times the design maturity, the
completeness, the correctness and the consistency of the architecture.

The evaluation of the architecture is to be performed at the level of knowledge enti-
ties, which are units of architectural knowledge shared and communicated among the
project stakeholders. There are four different types of knowledge entities: problems that
state how specific functional requirements or quality attributes must be satisfied; con-
cerns that comprise any interest to the systems development, its operation or any other
aspect that is critical or otherwise important to one or more stakeholders; alternatives
that solve the described problem, potentially in different ways and with different con-
sequences; decisions that denote the selection of one among multiple alternatives.

During the architecting process, the architect takes a number of architectural de-
cisions that are gradually being refined into more low-level, technical decisions. The
lowest level of an architectural decision is called a specification, and the architecting
process finishes when all architectural decisions have been refined into specifications.

Knowledge entities can be expressed in artifacts that are documents in electronic or
printed format. The organization also considers artifacts of smaller granularity, called

208 R.C. de Boer et al.

artifact fragments, such as individual sections, paragraphs or pictures in a document,
in order to be able to trace fine-grained knowledge entities within a single document.
Finally, it is of high importance for the organization to keep trace of how the require-
ments, described in the requirements specification document are satisfied in the software
architecture document. Some requirements have associated risks.

We can express PAV’s organization-specific terminology in terms of our core model.
A problem is being solved by the alternatives, which coincides with the core model con-
cept of a Decision Topic. The knowledge entity on the other hand is a generalization of
four core model concepts, namely Concern, Alternative, Decision Topic and Decision.
A specification is a special, refined case of a Decision. An artifact fragment is an Arti-
fact contained in other Artifacts. Requirements and risks are special types of Concerns
that need to be taken care of in the decision making process.

During our research in PAV we found that – although many of the core concepts
are present – most relations between artifacts remain implicit, potentially leading to
traceability issues. The mapping between the core model and the concepts specific to
this organization brings to the architect’s attention that four of the fundamental core
model concepts, namely Concerns, Decision Topics, Alternatives and Decisions are
in fact special cases of knowledge entities. With this in mind architects can annotate
architecture documents with higher level of detail by taking into account the different
types of knowledge entities. A more explicit focus on the core model’s ‘decision loop’,
and in particular the individual elements that make up this loop, is likely to result in
better traceability.

7 Core Model Validation: Attempted Falsification through
Literature

The industrial experiences described in Section 6 showed a practical application of our
core model of architectural knowledge. In this section we determine the core model’s
theoretical significance by comparing its concepts to architectural knowledge concepts
used in accepted software architecture literature.

As defined in Section 4 our core model is minimal in the sense that it is not possible to
express some concepts in any other concepts, and complete in the sense that there are no
concepts from other approaches that have no counterpart in the model. Unfortunately, it
is impossible to ‘prove’ that our model exhibits the desired features of being complete
and minimal. The best we can do is to search for counterexamples that prove our model
does not exhibit those features, thereby demonstrating that our model is not valid. If we
don’t succeed in this falsification attempt, we accept that as supporting evidence for the
validity of our model.

To properly apply the falsification approach on our core model, we have mapped on
our model the complete set of concepts from three different terminological frameworks
for architectural knowledge well-known from literature. Each of these frameworks has
a slightly different perspective on architectural knowledge: IEEE-1471 [15] targets ar-
chitectural descriptions, Kruchten’s ontology [18] focuses on architectural design deci-
sions per se, while Tyree and Akerman [6] provide a template to capture architectural

Architectural Knowledge: Getting to the Core 209

Table 2. Falsification Attempts on Core Model using Software Architecture Literature

Core concept IEEE-1471 [15] Kruchten’s ontology [18] Tyree’s Decision Template [6]
Stakeholder Stakeholder
Concern Concern, Environment,

Mission
Requirement, Defect,
Risk, Plan

Assumption, Constraint,
Requirement

Decision Topic scope Issue, Group
Alternative Idea, Tentative Position
Ranking Argument
Arch. Design Dec. Decision Assumption, Decision, Principle
“decision loop” Rationale relationships Related decisions / requirements

/ principles
Arch. Design Architecture
Language (Library) viewpoint
to reflect (Library) viewpoint trace from/to related artifacts
Artifact System, View, Model,

Arch. description
Technical artifact Artifact

design decisions – thereby relating architectural decisions to architectural descriptions.
Together, these perspectives cover all ‘corners’ of our core model.

Our falsification attempts are summarized in Table 2, which shows the mapping be-
tween core model concepts and the concepts of the three terminological frameworks for
architectural knowledge. We failed to find any concepts that do not fit our core model;
we accept this result as support to the claim of validity of our core model. In the follow-
ing subsections the relationships between core model concepts and concepts of each of
the literature frameworks are elaborated upon.

7.1 Architectural Descriptions: IEEE-1471

IEEE-1471 prescribes the use of so-called views to describe an architecture. Views are
reflections of part of the architectural design according to a particular perspective, or
viewpoint. A viewpoint defines “the language, modeling techniques, or analytical meth-
ods to be used in constructing a view based upon the viewpoint” [15]. In other words, a
viewpoint defines the Languages to use as well as how to reflect the architectural design
in a view. The IEEE-1471 terms model and view are both subsumed in the core model
concept Artifact.

A library viewpoint is a viewpoint that is defined elsewhere, i.e. a specialized in-
stance of a normal viewpoint. The core model captures the rationale of an architectural
design decision in the trajectory from Concern and Decision Topic through ranking of
Alternatives to the eventual choice of the Decision.

In IEEE-1471 terms, a system has an architecture, reflected in the core model as an
Architectural Design that is reflected in a set of Artifacts, which together correspond
to the IEEE system. The architectural description is a particular Artifact that conforms
to the IEEE prescription of how the Architectural Design should be reflected, i.e. using
a viewpoint as Language. The environment in which a system operates determines the
setting and circumstances of developmental, operational, political, and other influences
upon that system. These influences are represented by Concerns in the core, as described
in Section 5.

210 R.C. de Boer et al.

Finally, a mission is defined as ‘a use or operation for which a system is intended
by one or more stakeholders to meet some set of objectives’. This is a special case of
a Concern, i.e. ‘an interest which pertains to the system’s development, its operation or
any other aspects that are critical or otherwise important to one or more stakeholders’.

7.2 Ontology of Architectural Design Decisions

In [18], Kruchten defines an ontology of architectural design decisions. Kruchten ar-
gues that ‘design decisions deserve to be first class entities in the process of developing
complex software-intensive systems’ and proposes a model to do so. Due to space re-
strictions, this section only highlights some of the concepts from the ontology to capture
the spirit of this model and its relation to the core model. For a more elaborate discus-
sion, please refer to [19].

Kruchten defines a number of attributes of architectural design decisions, all of which
can be mapped to concepts in our core model. The scope of a decision, for example, can
be mapped on the Decision Topic concept. In our core model, Concerns consist of one
or more Decision Topics for which a Decision must be taken. These Decision Topics
are concrete subjects for which a solution is proposed. A single Decision Topic limits
the scope of a Decision to the concrete subject it represents.

The evolution of design decisions is captured in the state attribute. In the early de-
cision making phase, for instance, Ideas and Tentative decisions (i.e. decisions with a
state ‘idea’ or ‘tentative’) correspond to the core concept of an Alternative. Both are not
yet decisions, and might never become one. Tentative decisions can be used in running
‘what if’ scenarios, i.e. a ranking of different ideas.

The ontology further defines a number of relations between decisions. All these rela-
tionships are manifested in the ‘decision loop’ in the core model, described in Section 5.
For example, the relation ‘decision A constrains decision B’ implies that B is tied to
A and must be in the same state as A. For instance, ‘Must use J2EE’ constrains ‘use
JBoss as Application Server’. In terms of the core model, the Decision ‘Must use J2EE’
introduces a new Decision Topic ‘which application server to use?’. The Alternative
‘JBoss’ could not have been chosen without the decision to use J2EE.

Besides relations between decisions, Kruchten names several relations with ‘external
artifacts’. Design decisions trace from technical artifacts upstream: requirements and
defects (i.e. Concerns in the core model), and trace to technical artifacts downstream:
design and implementation artifacts (i.e. Artifacts in the core model). They are also
traceable to management artifacts, such as risks and plans (again Concerns). Finally,
Kruchten notes that it may be useful to track which portions of the system are not com-
pliant with some design decisions. In the core model, this non-compliance corresponds
to a reflection in Artifacts of an Architectural Design upon which some Architectural
Design Decisions have not yet been enforced.

7.3 Documenting Design Decisions

In [6], Tyree and Akerman consider important decisions as the major forces that drive
architecture. They present a template that can be used to document design decisions.
According to this template, assumptions and constraints limit the alternatives that can

Architectural Knowledge: Getting to the Core 211

be selected. Assumptions are Decisions that are assumed to have been taken and to
influence the Architectural Design, often resulting in new Concerns for Stakeholders.
Constraints are posed by decisions already taken, reflected in new Concerns. These new
Concerns are to be taken into account when ranking Alternatives for a Decision Topic.

During the architecting process, an architect comes up with positions for a certain
issue. Ultimately, one of the positions is chosen based on some argument. This position
becomes the decision. This sequence of steps is also visible in our core model, as the
proposal of a set of Alternatives, out of which one Alternative is chosen as Decision.

A group can be used to organize a set of decisions based on their topic (e.g. integra-
tion, presentation, etc.). In our core model, Decision Topics (i.e. concrete subjects for
which a solution is proposed) correspond to the group concept from [6]. The example
template in [6] lists the positions (i.e. Alternatives) ‘Rearchitect existing batch logic in
System A’, ‘Extend System B to handle a new product type’, and ‘Develop a replace-
ment for System A’ for the issue ‘Current IT infrastructure doesn’t support interactive
approval functionality for most financial products’, with a grouping labeled ‘System
structuring’. The example template clearly shows the proposed positions all target the
group (i.e. Decision Topic) ‘System structuring’.

According to [6], a decision states the architecture’s direction. This corresponds to
our notion of an Architectural Design Decision that is enforced upon the Architectural
Design. The template has room for the documentation of related decisions, related re-
quirements, related artifacts, and related principles. The way in which Decisions (that
include principles), Artifacts, and Concerns (i.e. requirements) can be related has been
extensively described in Section 7.2.

8 A Vision on Architectural Knowledge Sharing

We can look at the core model from two perspectives, namely data integration and
service integration. For data integration the core model becomes a reference model
for sharing architectural knowledge. For service integration, it provides the means to
integrate the services that a grid infrastructure may provide.

Having a core model of architectural knowledge has a number of advantages. First of
all, from a data integration perspective, the core model defines a vocabulary for architec-
tural knowledge: the minimal set of common notions that is needed when architectural
knowledge has to be made explicit. Terminology, processes, and concerns particular to
a specific organization or domain can be expressed in terms of core model concepts.
Metaphorically speaking, the organization-specific terminology lies like a shell around
the core model. One can even envision multiple layers of shells, for instance when an
organization defines its own methodology (the outer shell) as an extension to the IEEE-
1471 standard (the inner shell). Thanks to this separation between core model and shells,
we gain in terminological stability (the core model acts as a reference model used by
all companies), extensibility (the architectural knowledge of new companies or domains
can always be added as a new shell without any increase in complexity), and reuse (by
adding new shells, the architectural knowledge vocabulary is incrementally enriched).

Moreover, with a shared core model it becomes easier to agree on a common ter-
minology. This common terminology sticks to the essence and neglects the specific

212 R.C. de Boer et al.

Architectural
Design Decision

Quality
Criterion

maps-on

RDB

service

RFA

Design Principle
maps-on

search
service

Organization X

service

Fig. 3. Sharing Architectural Knowledge in a grid-setting

concepts delegated to the shells. These benefits are reaped whenever multiple depart-
ments in the same organization, or even different partner organizations, have to collab-
orate in the same software project: terminological misunderstandings are avoided.

Furthermore, from a service integration perspective the core model can be the means
to integrate the services that a grid infrastructure may provide. These services may
‘speak the same language’ by exchanging data expressed in concepts from the core
model. A direct benefit of this language uniformity is that the core model, being shared
among multiple sites, realizes a more generic architectural style aimed at integration
via an enterprise data model [20]: the enterprise data model (i.e. our core model) is the
target format for all messages between the grid members, which transform their specific
formats to the target format. Such transformations are defined as shells.

We envision architectural knowledge sharing in a grid-setting, an instantiation of the
knowledge grid discussed in [21]. The basic idea is sketched in Figure 3. The model
depicted in the center is the core model of what concerns architectural knowledge.
Organization-specific models provide a specialization hereof. In the figure, design prin-
ciples (a kind of Architectural Design Decision) are made available by RFA, while
quality criteria (another kind of Architectural Design Decision) are made available by
RDB (see also Section 6). Both organizations may offer visualization services (e.g. tab-
ular versus graph-based) to visualize Architectural Design Decisions. Suppose a third
organization, X, is looking for Architectural Design Decisions that are shared on the
grid. Because of the specializations of the notion of an Architectural Design Decision
at RFA and RDB, this query translates into a search for design principles at RFA, and
quality criteria at RDB. Both results will be returned, even using the local visualization
services of RFA and RDB.

We have started to use our core model to realize our envisioned grid-like setting to
share architectural knowledge. We have built some simple services to process specific
architectural knowledge: a word processor plug-in to annotate the rationale in architec-
tural documents, and a service to visualize architectural design decisions using cluster-
based browsing [4]. Future work includes construction of the grid service infrastructure
based on the core model and specific shells, as well as new services to be shared among
organizations participating in the grid.

Architectural Knowledge: Getting to the Core 213

9 Conclusions

In this paper we have presented a core model of architectural knowledge. This core
model is the result of the execution of an action research cycle. Experimentation with
an earlier version of the model identified mismatches between the model and industrial
practice. Those mismatches have been overcome by ensuring the new version of our
model of architectural knowledge is both complete and minimalistic. It is this latter fea-
ture that led us to adopt the term ‘core model’. The validity of the claim of completeness
of our core model is made plausible by an attempt to falsify this validity using various
sources from literature.

During experimentation with the earlier version of the model, we identified four
perspectives on architectural knowledge management in four different industrial orga-
nizations: sharing, compliance, discovery, and traceability. Subsequent application of
the core model allowed us to identify probable causes and remedies for problems with
architectural knowledge management encountered in those organizations: implicit rela-
tions between architectural decisions is the likely cause for the problems with sharing
architectural knowledge a particular software development organization encounters; the
compliance issues in a multi-site development organization are probably due to a deci-
sion making process that remains invisible to the affected parties; an organization that
performs software product audits has to deal with the fact that, since the result of ar-
chitectural decisions is not confined to a single product artifact, the relation between
‘quality’ and ‘architecture’ is often not obvious at first sight; long-term development
projects in a scientific organization benefit from improved traceability if a better dis-
tinction is made between different concepts that play a role in the decision making
process. We aim to alleviate those problems in a next iteration of our research with
tools, methods, and techniques that address the probable causes of these problems with
architectural knowledge management.

Acknowledgment

The authors would like to thank Rich Hilliard for constructive feedback on an earlier
version of this paper. This research has been partially sponsored by the Dutch Joint
Academic and Commercial Quality Research & Development (Jacquard) program on
Software Engineering Research via contract 638.001.406 GRIFFIN: a GRId For inFor-
matIoN about architectural knowledge.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. SEI Series
in Software Engineering. Addison-Wesley Pearson Education, Boston (2003)

2. Ali Babar, M., Gorton, I., Jeffery, R.: Capturing and Using Software Architecture Knowledge
for Architecture-Based Software Development. In: 5th International Conference on Quality
Software (QSIC), Melbourne, Australia, pp. 169–176 (2005)

3. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B., Morrison, R.
(eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

214 R.C. de Boer et al.

4. Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning about Architectural Knowl-
edge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp.
39–47. Springer, Heidelberg (2006)

5. Shaw, M., Clements, P.: The Golden Age of Software Architecture. IEEE Software 23(2),
31–39 (2006)

6. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

7. van der Ven, J.S., Jansen, A., Nijhuis, J., Bosch, J.: Design decisions: The Bridge between
Rationale and Architecture. In: Dutoit, A. (ed.) Rationale Management in Software Engi-
neering, pp. 329–346. Springer, Heidelberg (2006)

8. Tang, A., Ali Babar, M., Gorton, I., Han, J.: A Survey of the Use and Documentation of
Architecture Design Rationale. In: 5th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), Pittsburgh, USA, pp. 89–98 (2005)

9. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
5th Working IEEE/IFIP Conference on Software Architecture (WICSA), Pittsburgh, USA,
pp. 109–120 (2005)

10. Wang, Z., Sherdil, K., Madhavji, N.H.: ACCA: An Architecture-centric Concern Analysis
Method. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA), Pitts-
burgh, USA, pp. 99–108 (2005)

11. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: Generalizing
a Model of Software Architecture Design from Five Industrial Approaches. In: 5th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA), Pittsburgh, USA, pp. 77–86
(2005)

12. Akerman, A., Tyree, J.: Position on Ontology-Based Architecture. In: 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA), Pittsburgh, USA, pp. 289–290
(2005)

13. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action Research. Communications of the
ACM 42(1), 94–97 (1999)

14. de Boer, R.C., Farenhorst, R., van der Ven, J.S., Clerc, V., Deckers, R., Lago, P., van Vliet,
H.: Structuring Software Architecture Project Memories. In: 8th International Workshop on
Learning Software Organizations (LSO), Rio de Janeiro, Brazil, pp. 39–47 (2006)

15. IEEE: IEEE Recommended Practice for Architectural Description of Software-Intensive Sys-
tems. Standard 1471-2000, IEEE (2000)

16. Object Management Group: Software Process Engineering Metamodel Specification. Tech-
nical Report formal/05-01-06, Object Management Group (2005)

17. ISO/IEC: Software engineering - Product quality - Part 1: Quality model. Technical Report
ISO/IEC 9126-1, ISO/IEC (2001)

18. Kruchten, P.: An Ontology of Architectural Design Decisions in Software-Intensive Systems.
In: 2nd Groningen Workshop on Software Variability Management, Groningen, The Nether-
lands (2004)

19. Farenhorst, R., de Boer, R.C.: Core Concepts of an Ontology of Architectural Design Deci-
sions. Technical Report IR-IMSE-002, Vrije Universiteit Amsterdam (2006)

20. Gorton, I.: Essential Software Architecture. Springer, Heidelberg (2006)
21. Zhuge, H.: The Knowledge Grid. World Scientific Publishing Co., Singapore (2004)

	Architectural Knowledge: Getting to the Core
	Introduction
	Related Work
	Research Methodology and Structure of This Paper
	A Theory of Architectural Knowledge: Experimental Use and Modification
	A Core Model of Architectural Knowledge
	Core Model Application: Characterization of Architectural Knowledge Use in Four Industrial Settings
	RFA: Development Organization
	VCL: Consumer Electronics
	RDB: Quality Audits
	PAV: Scientific Research

	Core Model Validation: Attempted Falsification through Literature
	Architectural Descriptions: IEEE-1471
	Ontology of Architectural Design Decisions
	Documenting Design Decisions

	A Vision on Architectural Knowledge Sharing
	Conclusions

