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Abstract—Risk assessment is an essential part in managing software development. Performing risk assessment during the early

development phases enhances resource allocation decisions. In order to improve the software development process and the quality of

software products, we need to be able to build risk analysis models based on data that can be collected early in the development

process. These models will help identify the high-risk components and connectors of the product architecture, so that remedial actions

may be taken in order to control and optimize the development process and improve the quality of the product. In this paper, we

present a risk assessment methodology which can be used in the early phases of the software life cycle. We use the Unified Modeling

Language (UML) and commercial modeling environment Rational Rose Real Time (RoseRT) to obtain UML model statistics. First, for

each component and connector in software architecture, a dynamic heuristic risk factor is obtained and severity is assessed based on

hazard analysis. Then, a Markov model is constructed to obtain scenarios risk factors. The risk factors of use cases and the overall

system risk factor are estimated using the scenarios risk factors. Within our methodology, we also identify critical components and

connectors that would require careful analysis, design, implementation, and more testing effort. The risk assessment methodology is

applied on a pacemaker case study.

Index Terms—Risk assessment, UML specification, software architecture, dynamic complexity, dynamic coupling, severity of failure,

Markov model.
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1 INTRODUCTION

RISK assessment provides useful means for identifying
potentially troublesome software components that

require careful development and allocation of more testing
effort. According to the NASA-STD-8719.13A standard [27],
risk is a function of the anticipated frequency of occurrence
of an undesired event, the potential severity of resulting
consequences, and the uncertainties associated with the
frequency and severity. This standard defines several types
of risk such as, for example, availability risk, acceptance
risk, performance risk, cost risk, schedule risk, etc. In this
study, we are concerned with reliability-based risk, which
takes into account the probability that the software product
will fail in the operational environment and the adversity of
that failure.

We define risk as a combination of two factors [24]:
probability of malfunctioning (failure) and the consequence
of malfunctioning (severity). Probability of failure depends
on the probability of occurrence of a fault combined with
the likelihood of exercising that fault in a scenario in which

a failure will be triggered. During the early phases of
software life cycle, it is difficult to find exact estimates for

the probability of failure of individual components and
connectors in the system. Therefore, in this study, we use
quantitative factors, such as complexity and coupling, that
are proven to have a major impact on the fault proneness
[9]. Moreover, to account for the probability of a fault
manifesting itself into a failure, we use dynamic metrics.
Dynamic metrics are used to measure the dynamic behavior
of a system in a given scenario based on the premise that
active components and connectors are sources of failures
[32]. To determine the consequence of a failure (i.e.,
severity), we apply the MIL_STD 1629A Failure Mode and
Effect Analysis as discussed later.

Risk assessment can be performed at various phases
throughout the development process. Architecture models,
abstract design, and implementation details describe
systems using compositions of components and connectors.
A component can be as simple as an object, a class, or a
procedure, and as elaborate as a package of classes or
procedures. Connectors can be as simple as procedure calls;
they can also be as elaborate as client-server protocols, links
between distributed databases, or middleware. Of course,
risk assessment at the architectural level is more beneficial
than assessment at later development phases for several
reasons. Thus, the architecture of a software product is
critical to all development phases. Also, early detection and
correction of problems is significantly less costly than
detection and correction at the code level.

In this paper, we develop a risk assessment methodology
at the architectural level. Our methodology uses dynamic
complexity and dynamic coupling metrics that we obtain
from the UML specifications. Severity analysis is performed
using the Failure Mode and Effect Analysis (FMEA)
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technique. We combine severity and complexity (coupling)
metrics to obtain heuristic risk factors for the components
(connectors). Then, we develop a Markov model to estimate
scenarios risk factors from the risk factors of components
and connectors. Further, use cases and overall system risk
factors are estimated using the scenarios risk factors.

1.1 Motivation and Objectives

The work presented in this paper is primarily motivated by
the need to develop a risk assessment methodology based
on quantitative metrics that can be systematically evaluated
with little or no involvement of subjective measures from
domain experts. Quantitative risk assessment metrics are
integrated into risk assessment models, risk management
plans, and mitigation strategies. This work comes as a
continuation of our previous work presented in [1], [31].

This work is also motivated by the need to compute risk
factors during the early phases of the software life cycle
based on UML specifications such as use cases and
scenarios. The approach we pursue in this paper will enable
software analysts and developers to:

. compute the scenarios risk factors,

. compute the use cases risk factors,

. compute the overall system risk factor based on use
cases and scenarios risk factors,

. determine the distribution of the scenarios/use
cases/system risk factors over severity classes,

. generate a list of components/connectors ranked by
their relative risk factor, and

. generate a list of use cases and a list of scenarios (in
each use case) ranked by their risk factors.

1.2 Contributions

The contributions of this paper are summarized as follows:

1. We present a lightweight methodology to perform
analytical risk assessment at the architectural level
based on the analysis of behavioral UML specifica-
tions, mainly use cases and sequence diagrams. This
risk assessment approach is entirely analytical, in
contrast with our previous work [1], [31], which was
based on simulations of execution profiles.

2. We introduce the notions of scenario/use case risk
factors that enable an analyst to focus on high-risk

scenarios and/or use cases. This is particularly

important for the high-risk scenarios and/or use

cases, which are exercised rarely. Although these

scenarios and/or use cases will not contribute

significantly to the overall system risk factor as

computed in [31], their risk analysis is extremely

important due to the fact that they usually provide
exception handling of rare but critical conditions.

3. We develop a Markov model to determine scenarios
risk factors using components and connector risk
factors. This model provides exact closed form
solutions for the scenarios risk factors, while the
algorithm for traversal of the component depen-
dency graphs used in [31] provides an approximate
solution. An additional advantage of the derived
closed form solutions for the scenarios risk factors is
a more effective way for conducting sensitivity

analysis. Thus, we simply plug different values of
the parameters in the closed form solutions, while, in
[31], the algorithmic solution is reapplied for each set
of different parameters. Using scenarios risk factors,
we also derive the risk factor of each use case and
the overall system risk factor.

4. The Markov model used for estimating the scenarios
risk factors generalizes the existing architecture-
based software reliability models in two ways. Thus,
while the software reliability model presented in [5]
considers only component failures, in the scenarios
risk models, we account for both components and
connectors failures, that is, we consider both
components and connectors risk factors. Further,
instead of a single failure state considered in all
existing architecture-based software reliability mod-
els [12], we consider multiple failure states that
represent failure modes with different severities.
This approach allows us to derive the distribution of
scenarios/use cases/system risk factors over differ-
ent severity classes, which provide additional in-
sights that are important for risk analysis. Thus,
scenarios and use cases that have risk factors
distributed among more severe classes will be more
critical and deserve more attention than other
scenarios and use cases.

5. Since the approach proposed in this paper is
entirely analytical, development of a tool for
automatic risk assessment is straightforward. Using
Rational Rose Real Time [25] as a front end, we have
already developed a prototype of a tool for risk
assessment [30] based on the methodology pre-
sented in this paper.

The paper is organized as follows: Section 2 describes the
well-known cardiac pacemaker system and presents its
UML specification based on the use case diagrams and
sequence diagrams. Section 3 presents the proposed
methodology and its application to the pacemaker example.
Section 4 summarizes the related work. Finally, in Section 5,
we conclude the paper and discuss directions for future
research.

2 A MOTIVATING EXAMPLE

We have selected a case study of a cardiac pacemaker
device [8] to illustrate how the proposed methodology
works. A cardiac pacemaker is an implanted device that
assists cardiac functions when the underlying pathologies
make the intrinsic heartbeats low. A failure in the software
operation of the device can cause loss of a patient’s life. This
is an example of a critical real-time application. We use the
UML real-time notion to model the pacemaker.

Fig. 1 shows the components and connectors of the
pacemaker in a capsule diagram. It also shows the input/
output port to the Heart as an external component, as well
as the two input ports to the Reed Switch and the Coil Driver
components. A pacemaker can be programmed to operate
in one of the five operational modes depending on which
part of the heart is to be sensed and which part is to be
paced. Next, we briefly describe the components of the
pacemaker system.
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. Reed_Switch (RS): A magnetically activated switch

that must be closed before programming the device.

The switch is used to avoid accidental programming
by electric noise.

. Coil_Driver (CD): Receives/sends pulses from/to the
programmer. These pulses are counted and then
interpreted as a bit of value zero or one. The bits are
then grouped into bytes and sent to the Commu-
nication_Gnome. Positive and negative acknowledg-
ments, as well as programming bits, are sent back to
the programmer to confirm whether the device has
been correctly programmed and the commands are
validated.

. Communication_Gnome (CG): Receives bytes from the
Coil_Driver, verifies these bytes as commands, and
sends the commands to the Ventricular and Atrial
models. It sends the positive and negative acknowl-
edgments to the Coil_Driver to verify command
processing.

. Ventricular_Model (VT) and Atrial_Model (AR): These
two components are similar in operation. They both
could pace the heart and/or sense the heartbeats.
Once the pacemaker is programmed, the magnet is
removed from the RS. The AR and VT communicate
together without further intervention. Only battery
decay or some medical maintenance reasons may
force reprogramming.

2.1 The Use Case Model

The pacemaker runs in either a programming mode or in

one of five operational modes. During programming, the

programmer specifies the operation mode in which the

device will work. The operation mode depends on whether

the atrial, ventricular, or both are being monitored or paced.

The programmer also specifies whether the pacing is

inhibited, triggered, or dual. The use case diagram of the

pacemaker application is given in Fig. 2. It presents the six

use cases and the two actors: doctor programmer and patient’s
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heart. Each use case in Fig. 2 is realized by at least one
sequence diagram (i.e., scenario).

Domain experts determine probabilities of occurrence of
use cases and the scenarios within each use case. This can
be done in a similar fashion as the estimation of the
operational profile in the field of software reliability [21].
For the pacemaker example, according to [8], the inhibit
modes are more frequently used than the triggered mode.
Also, the programming mode is executed significantly less
frequently than the regular usage of the pacemaker in any
of its operational modes. Hence, we assume the probabil-
ities for programming use case and five operational use
cases (AVI, AAI, AAT, VVI, and VVT) as given in Table 1.

Fig. 3 shows a sequence diagram of a scenario from the
AVI use case in which the VT senses the heart and the
AR paces the heart when a heart beat is not sensed. As in all
scenarios, a refractory period is then in effect after every
pace. For the pacemaker example described here, only one
scenario is available for each use case. However, the
methodology presented in the next section is more general
and supports multiple scenarios defined for each use case.

3 RISK ANALYSIS METHODOLOGY

In this section, we introduce our risk assessment methodol-
ogy. We start by describing the proposed risk analysis
process. Then, we describe the techniques for determining
the risk factors of components and connectors in a given
scenario and present a Markov model for determining
scenario risk factor. Next, we present the methods used to
estimate use cases and overall system risk factors and
conduct sensitivity analysis.

3.1 The Proposed Risk Analysis Process

The use cases and scenarios of a UML specification drive
the risk analysis process that we propose, as shown in Fig. 4.
We assume that the UML logical architectural model
consists of a use case diagram defining several independent
use cases as shown in Fig. 2 and that each use case is
realized with one or more independent scenarios modeled
using sequence diagrams as shown in Fig. 3. Sequence
diagrams depict how a group of components interact in a
use case. Each sequence diagram shows a number of
components and messages exchanged between them [26].

The proposed risk analysis process iterates on the use
cases and the scenarios that realize each use case and
determines the component/connector risk factors for each
scenario, as well as the scenarios and use cases risk factors.
For each scenario, the component (connector) risk factors
are estimated as a product of the dynamic complexity
(coupling) of the component (connector) behavioral speci-
fication measured from the UML sequence diagrams and
the severity level assigned by the domain expert using
hazard analysis and Failure Mode and Effect Analysis

(Section 3.2). Then, a Markov model is constructed for each
scenario based on the sequence diagram and a scenario risk
factor is determined as described in Section 3.3. Further, the
use cases and overall system risk factors are estimated
(Section 3.4). The outcome of the above process is a list of
critical scenarios in each use case, a list of critical use cases,
and a list of critical components/connectors for each
scenario and each use case.

3.2 Assessment of the Component/Connector Risk
Factors

For each scenario Sx, we calculate heuristic risk factors for
each component and connector participating in the scenario
based on the dynamic complexity, dynamic coupling, and
severity level. Note that, in general, these values will be
different for different scenarios.

The risk factor rfxi of a component i in scenario Sx is
defined as

rfxi ¼ DOCx
i � svtxi ; ð1Þ

where DOCx
i ð0 � DICx

i � 1Þ is the normalized complex-
ity and svtxi ð0 � svtxi < 1Þ is the severity level of the
ith component in the scenario Sx.

The risk factor rfxij of a connector between components i
and j in the scenario Sx is

rfx
ij ¼ EOCx

ij � svt
x
ij; ð2Þ

where EOCx
ij ð0 � EOCx

ij � 1Þ is the normalized coupling
and svtxij ð0 � svtxij < 1Þ is the severity level for the
connector between the ith and the jth components in the
scenario Sx.

Next, we describe the process of estimating the normal-
ized component complexity DOCx

i , normalized connector
coupling EOCx

ij, and severity levels for the components svtxi
and connectors svtxij.

3.2.1 Dynamic Specifications Metrics Using UML

To develop risk mitigation strategies and improve software

quality, we should be able to estimate the fault proneness of

software components and connectors in the early design

phase of the software life cycle. It is well-known that there is

a correlation between the number of faults found in a

software component and its complexity [23]. In this study,

we compute the dynamic complexity of state charts as a

dynamic metric for components [14]. Coupling between

components provides important information for identifying

possible sources of exporting errors, identifying tightly

coupled components, and testing interactions between

components. Therefore, we compute dynamic coupling

between components as a dynamic metric related to the

fault proneness for connectors [14].
Normalized dynamic complexity of a component. In

1976, McCabe introduced cyclomatic complexity as a
measure of program complexity [22]. It is obtained from
the control flow graph and defined as CC ¼ eÿ nþ 2,
where e is number of edges and n is number of nodes. We
use a measure of component complexity similar to
McCabe’s cyclomatic complexity. However, in contrast to
McCabe’s cyclomatic complexity which is based on the
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control flow graph of the source code, our metric for

component’s dynamic complexity is based on the UML

state charts that are available during early stages of the

software life cycle. The state chart of each component i has a

number of states and transition between these states that

describe the dynamic behavior of the component. For each

scenario Sx, a subset of all states of component i is visited

and a subset of all transitions is traversed. Let Cx
i denote the

subset of states for a component i visited in the scenario Sx

and T x
i denote the subset of transitions traversed in the state

chart of component i in the scenario Sx. The subset of states

Cx
i and the corresponding transitions T x

i are mapped into a

control flow graph. The number of nodes in this graph is

cxi ¼ Cx
i

�

�

�

�, which is the cardinality of Cx
i . Similarly, the

number of edges in this graph is txi ¼ Tx
i

�

�

�

�, which is the

cardinality of T x
i . By analogy with McCabe’s cyclomatic
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Fig. 3. Sequence diagram of the AVI scenario.



complexity, we define the dynamic complexity docxi of

component i in scenario Sx as

docxi ¼ txi ÿ cxi þ 2: ð3Þ

The normalized dynamic complexity DOCx
i of a compo-

nent i in scenario Sx is obtained by normalizing the

dynamic complexity docxi with respect to the sum of

complexities for all active components in scenario Sx

DOCx
i ¼

docxi
P

k2Sx
docxk

: ð4Þ

As an illustration, the state chart of the CD component

in the programming scenario is presented in Fig. 5. The

dynamic complexity of this graph is evaluated using (3)

and normalized with respect to the sum of complexities of

all active components in this scenario (RS, CD, and CG)

using (4). Tables 2 and 3 show the normalized dynamic

complexity for the components that are active in the
programming scenario and AVI scenario, respectively.

Normalized dynamic coupling of a connector. We use
the matrix representation for coupling where rows and
columns are indexed by components and the off-diagonal
matrix cells represent coupling between the two compo-
nents of the corresponding row and column [14]. The row
index indicates the sending component, while the column
index indicates the receiving component. For example, the
cell with row=RS and column=CD is the export coupling
value from RS to CD. On the other side, the cell with
row=CD and column=RS is the export coupling value from
CD to RS. Dynamic coupling metrics are calculated for
active connectors during execution of a specific scenario. We
compute these metrics directly from the UML sequence
diagrams by applying the same set of formulas given in [32].

Let MT x
ij denote the set of messages sent from compo-

nent i to component j during the execution of scenario Sx
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and MT x denote the set of all messages exchanged between
all components active during the execution of scenario Sx.
Then, we define the export coupling EOCx

ij from compo-
nent i to component j in scenario Sx as a ratio of the number
of messages sent from i to j over the total number of
messages exchanged in the scenario Sx

EOCx
ij ¼

MT x
ij

�

�

�

�

�

�

i;j2Sx;i 6¼j

MT xj j
: ð5Þ

The values of dynamic coupling of the connectors estimated
using (5) for the sequence diagrams of the programming
scenario and AVI scenario are given in Tables 4 and 5,
respectively. Note that the DOC and EOC measures linearly
depend on the number of states visited by a component,
and the number of messages sent over a connector in a
given scenario, respectively.

3.2.2 Severity Analysis

In addition to the estimates of the fault proneness of each
component and connector based on the dynamic complex-
ity and dynamic coupling, for the assessment of compo-
nents and connectors risk factors we need to consider the
severity of the consequences of potential failures. For
example, a component may have low complexity, but its
failure may lead to catastrophic consequences. Therefore,
our methodology takes into consideration the severity
associated with each component and connector based on
how their failures affect the system operation. Domain
experts play a major role in ranking the severity levels.
Experts estimate the severity of the components and
connectors based on their experience with other systems
in the same field. Domain experts can rank severity in more
than one way and for more than one purpose [3]. According
to MIL_STD_1629A, severity considers the worst-case
consequence of a failure determined by the degree of
injury, property damage, system damage, and mission loss

that could ultimately occur. Based on the hazard analysis
[28], we identify the following severity classes:

. Catastrophic: A failure may cause death or total
system loss.

. Critical: A failure may cause severe injury, major
property damage, or major system damage.

. Marginal: A failure may cause minor injury, minor
property damage, minor system damage or delay, or
minor loss of production.

. Minor: A failure is not serious enough to cause
injury, property damage, or system damage, but will
result in unscheduled maintenance or repair.

We assign severity indices of 0.25, 0.50, 0.75, and 0.95 to
minor, marginal, critical, and catastrophic severity classes,
respectively. The selection of values for the severity classes
on a linear scale is based on the study conducted by
Ammar et al. [33]. However, other values could be
assigned to severity classes, such as for example using
the logarithmic scale. Tables 6 and 7 present results from
assessing the severity of components and connectors for
the AVI scenario.

3.3 Scenarios Risk Factors

We use an analytical modeling approach to derive the risk

factor of each scenario. For this purpose, we generalize the

state-based modeling approach previously used for archi-

tecture-based software reliability estimation [12]. Thus, the

software reliability model first published in [5] considers

only component failures. In the scenario risk model, we

account for both component and connector failures, that is,

we consider both component and connector risk factors. In

addition, instead of a single failure state considered in all

existing architecture-based software reliability models [12],

for each scenario, we consider multiple failure states that

represent failure modes with different severity. This

approach allows us to derive not only the overall scenario
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in the Programming Scenario

TABLE 3
Normalized Dynamic Complexity of All Components

in the AVI Scenario

TABLE 4
Dynamic Coupling of Connectors in the Programming Scenario

TABLE 5
Dynamic Coupling of Connectors in the AVI Scenario



risk factor, but also its distribution over different severity

classes, which provides additional insights important for risk

analysis. Thus, scenarios with risk factors distributed among

more severe failure classes (e.g., critical and catastrophic)

deserve more attention than the other scenarios.
The scenario risk model is developed in two steps. First,

a control flow graph that describes software execution
behavior with respect to the manner in which different
components interact is constructed using the UML se-
quence diagrams. It is assumed that a control flow graph
has a single entry (S) and a single exit node (T ) representing
the beginning and the termination of the execution,
respectively. Note that this is not a fundamental require-
ment; the model can easily be extended to cover multientry,
multiexit graphs.

The states in the control flow graph represent active
components, while the arcs represent the transfer of control
between components (i.e., connectors). It is further assumed

that the transfer of control between components has a

Markov property which means that, given the knowledge of

the component in control at any given time, the future

behavior of the system is conditionally independent of the

past behavior. This assumption allows us to model software

execution behavior for scenario Sx with an absorbing

discrete time Markov chain (DTMC) with a transition

probability matrix P x ¼ ½pxij�, where pxij is interpreted as

the conditional probability that the program will next

execute component j, given that it has just completed the

execution of the component i. The transition probability

from component i to component j in scenario Sx is

estimated as pxij ¼ nx
ij=n

x
i , where nx

ij is the number of times

messages are transmitted from component i to component

j, and nx
i ¼

P

j n
x
ij is the total number of messages from

component i to all other components that are active in the

sequence diagram of the scenario Sx.
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Analyzing the sequence diagram of the AVI scenario
given in Fig. 3, we construct the DTMC that represents the
software execution behavior as shown in Fig. 6. Transition
probability matrix for this DTMC is given by:

P x ¼

1

C

C

C

C

A

0

B

B

B

B

@

S CG AR V T T

S 0 1 0 0 0

CG 0 0 0:5 0:5 0

AR 0 0 0 1 0

V T 0 0 0:5 0 0:5
T 0 0 0 0 1

:

The second step in building the scenario risk model is to

consider the risk factors of the components and connectors.

Failure can happen during the execution period of any

component or during the control transfer between two

components. It is assumed that the components and

connectors fail independently. Note that this assumption

can be relaxed by considering higher order Markov chain

[12]. In the existing architecture-based software reliability

models [5], [12], a single state F is added representing the

occurrence of a failure. Because the severity of failures plays

an important role in the risk analysis, in this work we addm

failure states that represent failure modes with different

severity. In particular, since for the pacemaker case study

we consider four severity classes for each failure, we add

four failure states to the DTMC: Fminor, Fmarginal, Fcritical, and

Fcatastrophic. The transformed Markov chain, which repre-

sents the risk model of a given scenario has ðnþ 1Þ transient

states (n components and a starting state S) and ðmþ 1Þ

absorbing states (m failure states for each severity class and

a terminating state T ).
Next, we modify the transition probability matrix P x to

P x as follows: The original transition probability pxij
between components i and j is modified into ð1ÿ rfxi Þ � p

x
ij �

ð1ÿ rfx
ijÞ, which represents the case when the component i

does not fail, the control is transferred to component j, and
the connector between components i and j does not fail. The
failure of component i is considered by creating an arc to
the failure state associated with a given severity with
transition probability rfxi . Similarly, the failure of a
connector between the components i and j is considered

by creating an arc to failure state associated with a given

severity with transition probability ð1ÿ rfxi Þ � p
x
ij � r

x
ij. The

transition probability matrix of the transformed DTMC, P x,

is then partitioned so that

P x ¼
Qx Cx

0 I

� �

; ð6Þ

where Qx is an ðnþ 1Þ by ðnþ 1Þ substochastic matrix

describing the probabilities of transitions only among

transient states, I is an ðmþ 1Þ by ðmþ 1Þ identity matrix,

and Cx is an ðnþ 1Þ by ðmþ 1Þ matrix describing the

probabilities of transitions from transient to absorbing

states. We define the matrix Ax ¼ ½axij� so that axij denotes

the probability that the DTMC starting with a transient state

i eventually gets absorbed in an absorbing state k. Then, it

can be shown that [29]

Ax ¼ ðI ÿQxÞÿ1Cx; ð7Þ

where I is an ðnþ 1Þ by ðnþ 1Þ identity matrix.
Since, in our case, we assume a single starting state S,

the first row of matrix Ax gives us the probabilities that

DTMC is absorbed in absorbing states T , Fminor, Fmarginal,

Fcritical, and Fcatastrophic. In particular, ax11 is equal to ð1ÿ rfxÞ,

where rfx is the scenario risk factor, while ax12, a
x
13, a

x
14, and

ax15 give us the distribution of the scenario risk factor

among minor, marginal, critical, and catastrophic severity

classes, respectively.
Next, we illustrate the construction of the scenario risk

model and its solution on the AVI scenario. DTMC of the

software execution behavior given in Fig. 6 is transformed

to the DTMC presented in Fig. 7, which represents the risk

model of the AVI scenario. The transition probability matrix

of the transformed DTMC is given in Fig. 8.
It is clear that:

QAV I ¼

1

C

C

A

0

B

B

@

S CG AR V T

S 0 1 0 0

CG 0 0 0:4998 0:4998
AR 0 0 0 0:3619
V T 0 0 0:0472 0

;

CAV I ¼

1

C

C

C

C

A

0

B

B

B

B

@

T Fminor Fmarginal Fcritical Fcatastrophic

S 0 0 0 0 0

CG 0 0 0:0004 0 0

AR 0 0 0 0 0:6381

V T 0:3258 0 0 0 0:6270

:

The matrix AAV I is computed as:

AAV I ¼ ðI ÿQAV IÞÿ1CAV I ¼

1

C

C

C

C

A

0

B

B

B

B

@

T Fminor Fmarginal Fcritical Fcatastrophic

S 0:2256 0 0:0004 0 0:7740

CG 0:2256 0 0:0004 0 0:7740

AR 0:1200 0 0 0 0:8800

V T 0:3315 0 0 0 0:6685

:
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Fig. 6. DTMC of the software execution behavior for the AVI scenario.



Thus, the risk factor of the AVI scenario is equal to
1ÿ 0:2256 ¼ 0:7744. This risk factor is distributed among
marginal and catastrophic severity classes (0:0004 and 0:7740,
respectively).

We developed scenario risk models for all scenarios of
the pacemaker example (programming, AVI, AAI, VVI,
AAT, and VVT). Table 8 shows how the risk factor of each
scenario is distributed among the severity classes, as well as
the overall scenario risk factors. Fig. 9 presents graphically
the information given in Table 8. The bar’s shade represents
the severity class and the z-axis represents the value of the
risk factor for a given severity class.

Several observations are made from Table 8 and Fig. 9.

First, all scenarios from the operational mode have higher

risk factors than the programming scenario which is just

used to set the mode of the pacemaker. Next, it is obvious

that the knowledge of the distribution of scenarios risk

factors among severity classes provides valuable informa-

tion for the risk analysts in addition to the overall scenario

risk factor. Thus, the AVI scenario has the smallest scenario

risk factor (0.7744) among the operational scenarios (AVI,

AAI, VVI, AAT, and VVT). However, most of the AVI

scenario risk factor belongs to the catastrophic severity class

(0.7740). The risk factors of the other operational scenarios

are distributed almost equally among the marginal and

catastrophic severity classes with the values in the

catastrophic class significantly smaller than for the AVI

scenario. The programming scenario has the smallest

overall scenario risk factor (0.4951) distributed only among

minor and marginal severity classes, which means that this

is the less critical scenario in the pacemaker case study.

3.4 Use Cases and Overall System Risk Factors

The risk factor rfk of each use case Uk is obtained by
averaging the risk factors of all scenarios Sx that are defined
for that use case

rfk ¼
X

8Sx 2 Uk

rfx � pxk ; ð8Þ

where rfx and pxk are the risk factor and the probability of
occurrence of scenario Sx in the use case Uk, respectively.
Since, in the pacemaker example, we considered one
scenario per use case, the use case risk factors are identical
to the scenario’s risk factors.

Similarly, the overall system risk factor is obtained by
averaging the use case risk factors

rf ¼
X

8Uk

rfk � pk; ð9Þ

where rfk and pk are the risk factor and probability of
occurrence of the use case Uk, respectively.

It is obvious from (8) and (9) that the use cases and

overall system risk factors depend on the probabilities of
scenarios occurrence pxk in the use case Uk and the
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Fig. 7. Risk model of the AVI scenario.
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probability of use case occurrence pk. Hence, scenarios (use
cases) with high risk factors but very low probability of
occurrence will not contribute significantly to the overall
system risk factor.

Using (8) and (9) and the use case probabilities shown in
Table 1, we estimate the overall risk factor of the pacemaker
to be 0.9118. The distribution of the overall system risk
factor among severity classes is presented in Table 9 and
Fig. 10. We see that the system risk factor is mostly
distributed among marginal and catastrophic severity class.
Even more, the catastrophic severity class is the dominant
class for this system.

3.5 Sensitivity Analysis

In the proposed methodology, we use an analytical
approach and derive closed form solutions. One of the
advantages of this approach is that sensitivity analysis can
be performed simply by plugging different values of the
parameters in the closed form solutions, which is faster and
more effective than reapplying the algorithmic solutions for
each set of different parameters as in [31]. Next, we
illustrate the sensitivity of the scenarios and overall system
risk factors to components/connectors risk factors.

Fig. 11 illustrates the variation of the risk factor of the
AVI scenario as a function of changes in risk factors of the
active components in that scenario. The variation of the risk
factor of the VT component introduces the biggest variation
of the AVI scenario risk factor (from 0.65 to 1). This is the
case because the VT component is the most active
component in this scenario. On the other side, the variations
of the risk factor of the AR and CG components have
smaller effect on the variation the AVI scenario risk factor.
However, the AR component is also critical because it

results in the smaller value of the scenario’s risk factor.
Fig. 12 shows the sensitivity of the risk factor of the
programming scenario to the risk factors of the active
components in that scenario. In this case, the variation of
the risk factor of the CG component introduces the biggest
variation of the programming scenario risk factor (from
0.175 to 0.979).

The variation of the overall system risk factor as a
function of components risk factors is presented in Fig. 13. It
is clear that the risk factors of components CG, VT, and AR
are most likely to affect the overall system risk. This is due
to the fact that these components are active in scenarios that
have high execution probabilities. In addition, the variation
of the risk factors of components that are active only in the
programming scenario (i.e., RS and CD) has almost no
influence on the variation of the overall system risk factor
because the execution probability of the programming
scenario is one order of magnitude lower that the execution
probabilities of other scenarios.

Figs. 14 and 15 show the variation of the AVI scenario
risk factor and the overall system risk factor as a function of
connectors’ risk factors. It is obvious that both the AVI
scenario risk factor and the overall system risk factor are the
most sensitive to the risk factor of the CG-VT connector.

3.6 Identifying Critical Components

Identifying the critical components in the system under

assessment is very helpful in the development process of

that system; the set of most risky components in the system

should undergo more rigorous development and should be

allocated more testing effort. A beneficial outcome of our

risk assessment methodology is the ability to identify the set

of the most critical components. Fig. 16 presents risk factors

of all components for different scenarios of the pacemaker

case study. In this figure, the different severity levels are

presented by different shades. It is obvious that VT and AR

are the most critical components in the pacemaker case

study because they have high risk factors with catastrophic

severity in multiple scenarios. A similar approach can be

used to identify the set of most critical connectors.

4 RELATED WORK

In this paper, we present a methodology for risk assessment
that is based on the UML behavior specifications. In the
sequel, we summarize research work related to our work.

A large number of object-oriented measures have been
proposed in the literature [2], [4], [6], [7], [16]. Particular
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Fig. 9. Distribution of the scenarios risk factors among severity classes.

TABLE 8
Distribution of the Scenarios Risk Factors among Severity Classes



emphasis has been given to the measurement of design
artifacts in order to help quality assessment early in the
development process.

Recent evidence suggests that most faults are found in
only a few of a system’s components [11]. If these
components can be identified early, then mitigating actions
can be taken, such as, for example, focusing the testing on
high-risk components by optimally allocating testing
resources [13], or redesigning components that are likely
to cause failures or to be costly to maintain.

Predictive models exist that incorporate a relationship
between program error measures and software complexity
metrics [17]. Software complexity measures were also used
for developing and executing test suites [15]. Therefore,
static complexity is used to assess the quality of a software
product. The level of exposure of a component is a function
of its execution environment. Hence, dynamic complexity
[18] evolved as a measure of complexity of the subset of
code that is actually executed. Dynamic complexity used for
reliability assessment purposes was discussed in [23]. Early
identification of faulty components is commonly achieved
through a binary quality model that classifies components
into either a faulty or nonfaulty category [9], [10], [20]. Also,

studies exist that predict a number of faults in individual
components [19]. These estimates can be used for ranking
the components.

Ammar et al. extended dynamic complexity definitions

to incorporate concurrency complexity [1]. In addition, they
used Coloured Petri Nets models to measure dynamic

complexity of software systems using simulation reports.
Yacoub et al. define dynamic metrics that include dynamic
complexity and dynamic coupling to measure the quality of

software architectures [32]. Their approach was based on
dynamic execution of UML state chart specification of a

component and the proposed metrics were based on
simulation reports. Yacoub and Ammar [31] combine
severity and complexity factors to develop heuristic risk

factors for the components and connectors. Based on
scenarios, they developed component dependency graph

that represents components, connectors, and probabilities of
component interactions. The overall system risk factor as a
function of the risk factors of its constituting components

and connectors is obtained using the aggregation algorithm.
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TABLE 9
Distribution of the Overall System Risk Factor over Severity Classes

Fig. 10. Distribution of the overall system risk factor over severity

classes.

Fig. 11. Sensitivity of the AVI scenario risk factor to the risk factors of the

components.

Fig. 13. Sensitivity of the overall system risk factor to the risk factors of

the components.

Fig. 12. Sensitivity of the programming scenario risk factor to the risk

factors of the components.



5 CONCLUSION AND FUTURE WORK

In this paper, we propose a methodology for risk assess-
ment based on the UML specifications such as use cases and
sequence diagrams that can be used in the early phases of
the software life cycle. Building on the previous research
work on risk assessment and architecture-based software
reliability, we developed a new and comprehensive

methodology that provides 1) accurate and more efficient
methods to estimate risk factors on different levels and 2)
additional information useful for risk analysis.

Thus, the risk assessment in this paper is entirely based
on the analytical methods. First, we estimate components
and connectors dynamic risk factors analytically based on
the information from UML sequence diagrams. Then, we

construct a Markov model for estimation of each scenario
risk factor and derive closed form exact solutions for the
scenarios, use cases, and overall system risk factors. The fact
that the risk assessment is entirely based on the analytical
methods enables more effective risk assessment and
sensitivity analysis, as well as a straightforward develop-

ment of a tool for automatic risk assessment.
Some of the useful insights that we can obtain from the

proposed methodology include the following: In addition to

overall risk factor, we estimate scenarios and use cases risk
factors, which enable us to focus on the high-risk scenarios
and uses cases even though they may be rarely used and,
therefore, not contributing significantly to the overall
system risk factor. Next, we estimate the distribution of
the scenarios/use cases/system risk factors over different
severity classes, which allow us to make a list of critical
scenarios in each use case, as well as a list of critical use
cases in the system. Finally, we identify a list of critical
components and connectors that has high-risk values in
high severity classes.

Our future work is focused on the generalization of the
methodology presented in this paper. Thus, we are
considering different kinds of dependencies that might be
present in the UML use case diagrams and the way to
derive their risk factors. Another direction of our future
research is the development of performance-based risk
assessment methodology.
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