
Architectural Refactoring: A Task-Centric View on Software Evolution.
Pragmatic Architect Column in IEEE Software 32(2): 26-29 (2015)

Architectural Refactoring – a Task-Centric View on Software
Evolution

Author: Olaf Zimmermann, ozimmerm@hsr.ch

This is the Author’s Copy of DOI: http://doi.ieeecomputersociety.org/10.1109/MS.2015.37

1. Introduction

Software-intensive systems often have to be reengineered, e.g. due to unpredictable
business context changes and technology innovations. Many reengineering activities affect
the software architecture of these systems. Given the success of the agile practice of code
refactoring, it is rather surprising that architectural refactoring has not taken off yet – a first
patterns-based catalog of architectural refactorings was presented in 2007 [1]. In this article I
look at architectural refactoring from another angle. I first position architectural refactoring as
an evolution technique that revisits architectural decisions made. I then present an example,
deduce a task-centric architectural refactoring template, and outline a catalog of common
architectural refactorings. I conclude with a discussion of potential impact and tool support.

2. Introducing Architectural Refactoring

The goal of a refactoring is to improve a certain quality while preserving others. For instance,
code refactoring is a technique for restructuring code to make it more maintainable without
changing its observable behavior [2]. Code refactorings work on machine-readable entities
such as packages, classes and methods; hence, they can leverage data structures from
compiler construction such as abstract syntax trees. Architectural refactorings deal with
architecture documentation and the manifestation of the architecture in the code and runtime
artefacts. Hence, a single architectural syntax tree does not exist – architectural refactorings
pertain to:

• components and connectors (modelled, sketched, or represented implicitly in code)
• design decision logs (which come as structured or unstructured text)
• planning artefacts such as work items in project management tools.

An architectural smell is a suspicion (or indicator) that something in the architecture is no
longer adequate under the current requirements and constraints, which may differ from the
originally specified ones. An Architectural Refactoring (AR) then is a coordinated set of
deliberate architectural activities that removes a particular architectural smell and improves
at least one quality attribute without changing the scope and functionality of the system. An
AR can possibly have a negative influence on other quality attributes, due to conflicting
requirements and trade-offs.

1
© Olaf Zimmermann, 2014.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7057560&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D7057560
mailto:ozimmerm@hsr.ch
http://doi.ieeecomputersociety.org/10.1109/MS.2015.37

Architectural Refactoring: A Task-Centric View on Software Evolution.
Pragmatic Architect Column in IEEE Software 32(2): 26-29 (2015)

Figure 1 – The Anatomy of an Architectural Refactoring

In my view, an architectural refactoring revisits certain architectural decisions [3] and selects
alternate solutions to a given set of design problems. Decision execution leads to related
engineering tasks; hence, the revision of a group of architectural decisions causes
reengineering tasks. These tasks can be grouped in categories:

• tasks to realize structural changes in a design; such changes have a larger scope
than code refactorings and deal with components, subsystems and systems of
systems (and their interfaces),

• implementation and configuration tasks in development and operations (depending
on the viewpoint the architectural refactoring pertains to),

• documentation and communication tasks, e.g. modelling activity, technical writing
assignment, or design workshop preparation and facilitation.

My view on ARs complements Michael Stal’s one. He used a pattern format to document his
ARs, which include Breaking Dependency Cycles and Splitting Subsystems, addressing
architectural smells such as Unclear Roles of Entities and Dependency Cycles [4].

3. Full Example and Task-Centric Template

In their technology blog, the chief technicians at Doodle explain why they switched from
MySQL to MongoDB after several years of production use of their collaborative online
calendar scheduling service [5].

The architectural smell in this example was that it took too long to migrate large production
databases after an SQL schema change (such as the adding a column to a table). The
affected quality attributes were productivity of the development and operations teams, as well
as performance and scalability of database and data access layer. The root cause for the
symptoms indicated by the smell was that relational database management systems are not
designed for this usage scenario – they can handle it, but not optimally. The solution was to
revisit the architectural decisions regarding database paradigm, query APIs and database
provider. A decision was made to use the document-oriented paradigm, one flavour of
schemaless NoSQL, and MongoDB as document database provider. Migration management

2
© Olaf Zimmermann, 2014.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7057560&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D7057560

Architectural Refactoring: A Task-Centric View on Software Evolution.
Pragmatic Architect Column in IEEE Software 32(2): 26-29 (2015)

was improved at the expense of administration and coding effort – new solutions for data
access, transaction and backup management were required.

The Doodle example clearly qualifies as an AR: it revisits certain architectural decisions to
improve a quality attribute, but is not a code refactoring. The following structured AR
representation makes it easy to comprehend (and apply in a similar project context):

Architectural Refactoring Name
How can the AR be recognized and
referenced easily?

De-SQL

Context
Where (and under which
circumstances) is this AR eligible?

Logical viewpoint and deployment viewpoint,
both conceptual level (database paradigm) and
asset level (MySQL vs. MongoDB) of abstraction

Stakeholder concerns (including quality
attributes and design forces)
Which non-functional requirements and
constraints are impacted by this AR?

Flexibility (w.r.t. data model changes), data
integrity, migration time

Architectural smell
When and why should this AR be
considered?

It takes rather long to migrate existing database
content when data model (database schema) is
updated

Architectural decision(s) to be revisited
Which design problems pertain to this
AR, and which design options are
currently chosen to resolve them?

• Choice of data modeling paradigm
(current decision is: relational)

• Choice of metamodel and query language
(current decision is SQL)

• Choice of database management system
(current decision is MySQL)

Evolution outline (solution sketch)
Which design options should be
chosen now? How does the target
solution look like?

• Use document-oriented database such as
MongoDB instead of relational database such
as MySQL

• Redesign transaction management and
database administration

Affected architectural elements
Which design model elements have to
be changed, e. g., components and
connectors (if modelled explicitly)?

Database tier (e.g. server process, backup and
restore facilities); data access layer (e.g. patterns
for commands and queries, connection pools)

Execution tasks
How can the AR be applied and
validated?

• Design document layout (i.e., the pendant to
the machine-readable SQL DDL)

• Write new data access layer, implement
SQLish query capabilities within application

• Decide on transaction boundaries (if any)
• Document database administration changes

(e.g., command-line queries and update
scripts, backup procedures)

• Compare old and new solution according to
success criteria (e.g. migration time,
performance of data access layer)

This example also proposes an AR documentation template. Each row in the above table
contributes one template entry. The resulting template structure is illustrated in Figure1.

The AR name should be expressive, e.g. metaphor. Unlike pattern names (which typically
are nouns), AR names should be verbs (just like names of code refactorings). The context
section may include information about the abstraction level in a software engineering method
or an enterprise architecture management framework. Since the AR describes a design
change, two solution sketches may be provided, one illustrating the design before the AR is

3
© Olaf Zimmermann, 2014.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7057560&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D7057560

Architectural Refactoring: A Task-Centric View on Software Evolution.
Pragmatic Architect Column in IEEE Software 32(2): 26-29 (2015)

applied, and one the design resulting from the application of the AR. Architectural elements
form a link to the structural design, which might be modelled explicitly, sketched informally or
represented implicitly in code. Some of the execution tasks can possibly be automated (just
like the execution of many code refactorings), but not all of them (as ARs operate on a higher
level of abstraction and a larger scale). The task description may refer to work item types in
agile planning tools or to activities in software engineering methods.

4. An Architectural Refactoring Catalog

Let’s now go broad and cover additional ARs in four viewpoints. The table shows basic ARs
in two dimensions, architectural viewpoints and type of change:

Viewpoint Elaboration ARs Adjustment ARs Simplification ARs
Logical
Viewpoint (VP)

Split Component
Responsibility

Expose Internal Feature
as Component
Responsibility

Merge Component
Responsibilities

Shift Responsibility
to New Component

Shift Responsibility to
Existing Component

Merge Components

Split Layer (a.k.a.
Move Components
to New Layer)

Replace Layer Join Adjacent Layers
(a.k.a. Collapse Layers)

Process VP Distribute Processing
(Introduce
Concurrency)

Change Distribution
Algorithm (e.g. from
Round Robin to Priority-
Driven)

Consolidate Processing
(Remove Concurency)

Introduce Cache

Change Cache Entry
Lookup Key (Calculation)

Remove Cache

Prepopulate Cache
(Load More Eagerly)

Change Cache Cleanup
Strategy

Start with Empty Cache
(Load Lazier)

Deployment
VP

Assign Logical
Component to New
Deployment Unit

Change Scaling Strategy
(e.g. from vertical scale
up to horizontal scale
out)

Merge Deployment
Units

Split Deployment
Unit

Move Deployment Unit
(from one server node to
another)

Consolidate Nodes

Physical VP
(Operational
Model)

Factor Out Node into
New Tier

Split Tier Collapse Tiers

Introduce Clustering

Change Load Balancing
and Failover Policy

Remove Clustering

All of these ARs can be represented as instances of the task-centric template from above;
e.g. the tasks for Introduce Cache include deciding on a lookup key and invalidation strategy,
cache distribution, etc.

5. Final Thoughts

While code refactoring is a mainstream practice today, architectural refactoring has not been
studied much yet. In this article, I took a task-centric view here and introduced an
architectural refactoring template by example; it collects the architectural decisions to be
revisited and the design, development, and documentation tasks to be conducted when an
architectural refactoring is applied. I also outlined a catalog of general-purpose architectural
refactorings.

4
© Olaf Zimmermann, 2014.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7057560&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D7057560

Architectural Refactoring: A Task-Centric View on Software Evolution.
Pragmatic Architect Column in IEEE Software 32(2): 26-29 (2015)

In the future, domain- and style-specific AR catalogs might appear, e.g. for financial services
software, game development, or cloud computing. Three candidate ARs for a prospective
architectural refactoring catalog for enterprise application modernization are:

• Move session state management (e.g, from client or mid-tier server to database to
improve horizontal scaling and to better leverage cloud elasticity).

• Replace scalar parameters with data transfer object in service interface contract (to
reduce number of remote calls).

• Streamline Web client (to reduce client workload and processing capabilities).

ARs provide an opportunity for cross-community collaboration, for instance between:

• Architecture and development: AR execution may involve one or more code
refactorings, which have to be stitched together,

• Architecture and project management: AR descriptions that are organized according
to the architectural refactoring template can be used as planning tasks, and the need
for architectural refactoring is an expression of technical debt.

• Architecture and operations (“ArchOps”): ARs in the deployment viewpoint can serve
as a communication means here.

It remains to be seen how ARs can be shared and executed most efficiently – are templates
and catalogs good enough as knowledge carriers? Or are modelling and collaboration tools
more appropriate? A Web-based delivery of knowledge has a natural appeal (as e.g.
Wikipedia shows). Code refactoring started with a book and formal groundwork; refactoring
tools e.g. in Eclipse were developed much later after content and theory had been
established and experience had been gained. Any AR tool support would need to tie in with
modelling tools supporting UML or architecture description languages. Such tool support yet
has to emerge.

References
[1] M. Stal, Architecture Refactoring blog post, OOP and OOPSLA tutorials,
http://stal.blogspot.ch/2007/01/architecture-refactoring.html
[2] M. Fowler, http://martinfowler.com/bliki/DefinitionOfRefactoring.html
[3] O. Zimmermann, Architectural Decisions as Reusable Design Assets. IEEE Software, vol.
28, no. 1, pp. 64-69, Jan./Feb. 2011, doi:10.1109/MS.2011.3
[4] M. Stal, Refactoring Software Architectures, in: A. Babar, A: W: Brown, I. Mistrik (Eds.),
Agile Software Architecture, Morgan Kaufman, 2014.
[5] Doodle Blog, Doodle’s Technology Landscape,
http://en.blog.doodle.com/2011/04/14/doodles-technology-landscape/ and
http://en.blog.doodle.com/2013/11/18/doodles-technology-landscape-2

5
© Olaf Zimmermann, 2014.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7057560&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D7057560
http://stal.blogspot.ch/2007/01/architecture-refactoring.html
http://martinfowler.com/bliki/DefinitionOfRefactoring.html
http://en.blog.doodle.com/2011/04/14/doodles-technology-landscape/
http://en.blog.doodle.com/2013/11/18/doodles-technology-landscape-2/

	Architectural Refactoring – a Task-Centric View on Software Evolution
	Author: Olaf Zimmermann, ozimmerm@hsr.ch
	This is the Author’s Copy of DOI: http://doi.ieeecomputersociety.org/10.1109/MS.2015.37
	1. Introduction
	2. Introducing Architectural Refactoring
	3. Full Example and Task-Centric Template
	4. An Architectural Refactoring Catalog
	5. Final Thoughts
	References

