
 ARCHITECTURAL REQUIREMENTS FOR THE EFFECTIVE
SUPPORT OF ADAPTIVE MOBILE APPLICATIONS

Christos Efstratiou, Keith Cheverst, Nigel Davies and Adrian Friday

Distributed Multimedia Research Group,
Department of Computing,

Lancaster University,
Bail rigg,

Lancaster,
LA1 4YR

U.K.

telephone: +44 (0)1524 594462
e-mail: most@comp.lancs.ac.uk

ABSTRACT

Mobile applications are required to operate in environments that change. Specifically, the
availability of resources and services may change significantly during typical system operation.
As a consequence, mobile applications need to be capable of adapting to these changes to
ensure they offer the best possible level of service to the user. Our experiences of developing
adaptive applications have led us to believe that existing middleware fails to provide the
necessary support for such applications. Moreover, we believe that current research in this area
is also faili ng to address the core requirements of adaptive mobile systems. In this paper we
present a set of requirements for future mobile middleware which have been derived by
considering the shortcomings of existing approaches and the needs of application developers.
Key among these requirements is the need to support coordinated action between application
and system components and the resolution of conflicts caused by the need to adapt to multiple
contextual triggers. The paper concludes with the presentation of an architectural framework
within which middleware researchers can deploy solutions to the problems identified.

Full paper submission

 1

ARCHITECTURAL REQUIREMENTS FOR THE EFFECTIVE
SUPPORT OF ADAPTIVE MOBILE APPLICATIONS

ABSTRACT

Mobile applications are required to operate in environments that change. Specifically, the
availability of resources and services may change significantly during typical system operation.
As a consequence, mobile applications need to be capable of adapting to these changes to
ensure they offer the best possible level of service to the user. Our experiences of developing
adaptive applications have led us to believe that existing middleware fails to provide the
necessary support for such applications. Moreover, we believe that current research in this area
is also faili ng to address the core requirements of adaptive mobile systems. In this paper we
present a set of requirements for future mobile middleware which have been derived by
considering the shortcomings of existing approaches and the needs of application developers.
Key among these requirements is the need to support coordinated action between application
and system components and the resolution of conflicts caused by the need to adapt to multiple
contextual triggers. The paper concludes with the presentation of an architectural framework
within which middleware researchers can deploy solutions to the problems identified.

1. INTRODUCTION

Mobile applications are required to operate in environments that change. Specifically, the
availability of resources and services may change significantly and frequently during typical
system operation [10, 12]. As a consequence, mobile applications need to be capable of
adapting to these changes to ensure they offer the best possible level of service to the user [12].
For example, many mobile web browser applications use a range of techniques to adjust their
network requirements to meet available levels of service. While early research focused on
applications which adapted to changes in network characteristics, there is now increasing
interest in applications that adapt to general environmental and contextual triggers such as
changes in a system’s physical location, e.g. the GUIDE system [5] which supplies users with
information tailored to their current location.

Current adaptive mobile applications are buil t using one of two approaches: either the
adaptation is performed by the system which underpins the application (in an attempt to make
transparent the effects of mobil ity) or, the application itself monitors and adapts to change. In
some cases these approaches are combined as, for example, in the MOST system [10] where
the middleware platform adapts the operation of the network protocol in the face of changes in
QoS and, additionally, reports these changes to the application to enable application level
adaptation. In the general case, it has been demonstrated that maintaining transparency in the
face of mobili ty is not practical and that it is diff icult for a system to adapt without support
from the application.

Careful examination of current approaches to supporting adaptation reveals two important
facts. Firstly, support for adaptation is often fragmented with a range of mechanisms being

 2

used to notify applications of changes in different environmental and contextual attributes [6].
Secondly, in all cases, there is a clear, yet incomplete, set of directed information flows within
the system. More specifically, applications typically notify the system of their requirements and
invoke internal (to the application) mechanisms to achieve their objectives. Correspondingly,
the system is usually able to notify the application of changes in attributes that are of relevance
to the application. However, the authors believe that these information flows are not sufficient.
An additional flow is required, that of control messages from the system to the applications. In
this document, we explore the requirements for a unified architecture which supports multiple
contextual attributes coupled with a control flow mechanism. The benefits of such an approach
are clearly il lustrated using numerous real-world examples.

Section 2 illustrates the shortcomings of existing mobile middleware by using a number of
example scenarios. The shortcomings identified in these scenarios are then generalised in
section 3 to produce a set of requirements for future mobile middleware. These generalised
requirements are further refined into a set of architectural requirements in section 4. A
framework for developing components which address these requirements is presented in section
5 and section 6 contains our concluding remarks.

2. DRAWBACKS OF CURRENT APPROACHES

Mobile systems need to be capable of adapting to a wide range of attributes such as network
bandwidth, location, power etc. In general, current middleware platforms provide support for
adaptive applications by notifying applications when certain ‘ interesting’ changes in attributes
occur, e.g. bandwidth falls below some specified minimum level. It is then the responsibili ty of
the application to adapt to these notifications in an appropriate way, e.g. by reducing its
bandwidth requirements. However, this approach can be shown to lead to ineff icient solutions
because of the lack of support for enabling coordination between the adaptation policies of
multiple applications. In addition, there is insuff icient control over the implications of having
multiple, and possibly conflicting, attributes triggering adaptation.

In the following scenarios we illustrate a range of problems which can occur when the above
approach is adopted.

2.1 Scenarios

Coordinated Application Adaptation for Power Management

This scenario il lustrates the need for coordination in order to achieve eff icient power
management on a mobile system. One existing approach for handling power management, i.e.
the ACPI [1] model, is to enable the operating system to switch hardware resources into low
power mode when not in use. For example, the hard-disk can be requested to spin down. This
approach requires that applications leave hardware resources in an idle state for suff icient
periods of time to make the transition between idle and active states worthwhile.

Although this approach is suitable when only one application is running on a mobile device, the
approach can prove ineff icient when multiple applications or system services are sharing
hardware resources. In more detail , the lack of coordinated access to hardware resources can
result in poor utilisation of the shared resource and therefore sub-optimum power management.
For example, consider the case of multiple applications which implement an auto-save feature.
In the absence of any coordination between applications each application wil l choose to
checkpoint its state to the disk at an arbitrary time, without considering the state of the disk
(i.e. spinning or sleeping). In contrast, if applications are able to coordinate their access to the
hard-disk then access to the disk can be clustered, allowing longer periods of inactivity. This
latter approach is clearly more power eff icient than the situation in which usage of the hard-
disk is completely arbitrary and uncoordinated.

 3

Conflicting Adaptation

In this scenario we illustrate the potential problems that can occur in a system that util ises
separate adaptation mechanisms for different attributes. In more detail, we consider a
hypothetical mobile system which hosts two independent adaptation mechanisms, i.e. one for
managing power and the other for managing network bandwidth. However, the two
mechanisms can conflict with one another as the following example illustrates. If the system
needs to reduce power consumption, the power management mechanism will request those
applications that are util ising network bandwidth to postpone their usage of the network device
in order to place the network device in sleep mode. As a consequence of applications
postponing their use of the network, the available network bandwidth increases. However, the
network adaptation mechanism will detect this unused bandwidth and notify applications to
util ise the spare bandwidth. In this way the request to utilise available bandwidth is in direct
conflict with the request to postpone network usage.

This example highlights the problem of relying on independent and uncoordinated adaptation
mechanisms. Coordination or harmonisation is clearly required between adaptation
mechanisms and in the example presented this could have prevented the conflict from
occurring. More specifically, the instruction to applications to utilise more bandwidth could be
withheld if, for example, conserving power was the system’s primary goal.

Using Remote Scenarios

In this scenario we consider a client-proxy-server example (e.g. web browsing) in which the
proxy object is required to adapt its behaviour based on the context of the client (see figure 1).
In this example the client communicates with the proxy using a wireless link but
communication between the proxy and the server is via wired networks.

Figure 1: Use of a proxy to reduce bandwidth requirements over a wireless link.

Where the bandwidth between the client and the proxy is limited, a common solution is to
compress the data at the proxy and then perform decompression at the client. However, the
limited processing power on the mobile device constraints the extent to which processor-
intensive decompression can occur on the client and therefore the potential for reducing the
bandwidth of the transmitted stream. Furthermore, this implies that the processing demands of
other applications on the mobile host has a direct impact on the potential for reducing
bandwidth requirements. Consequently, if reducing the requirement for bandwidth over the
wireless link is a high priority then this could be achieved by maximising the available
processing power for decompression on the client, possibly by reducing the allocation of
processing time to other processes. In addition, the level of compression performed on the
proxy should correspond to the decompression capability and priorities of the client. For
example, in figure 2 the client has an upper bound on both the bandwidth available for
transmission and the processing power which may be allocated to the decompression process.
The graph illustrates that this provides a range of possible compression rates which can be
negotiated with the proxy. In particular, there is little point in the proxy compressing beyond
the capabili ties of the client or in compressing insuff iciently to enable timely transmission over
the network.

Server
Proxy

compress
Client

decompress

Wireless l ink Wired link

 4

Figure 2: Finding the best compression rate according to the processing load of the cl ient.

An additional complication to this scenario is the fact that the client will not necessarily have
suff icient information to determine whether or not the use of a proxy object is the appropriate
solution for dealing with the problem, i.e. a perceived lack of network bandwidth. Indeed, the
actual cause behind the perceived low network bandwidth could be due to a problem at the
server or on the wired network. In these cases, the introduction of a proxy object would be
entirely the wrong solution and would in fact add further delay into the system. This example
highlights the desirability of adopting an end-to-end approach, which, in turn, requires the
monitoring of all components involved in the interaction.

 Sharing Demand for Network Bandwidth: Web Browsing and Viewing a Video Stream

This scenario considers the problem of supporting two applications on a single mobile host
which both make conflicting demands on network bandwidth, e.g. an adaptive web browser
application and an application for viewing a video stream. In this case, we consider how the
two adaptive applications might adapt to changes in the quality of the underlying network. In
particular, following a drop in available bandwidth the two applications could react in a variety
of ways, such as:

i. The web browser could stop downloading in order to dedicate its portion of bandwidth to
the other application. This reaction would be appropriate if maintaining the presentation
of the video stream had a high priority and if a minimum level of throughput was
required in order to view the stream at the required frame rate.

ii. Both applications could adapt and share the available bandwidth equally. This strategy
could be used where no prioritisation has been specified between the two applications.

iii. The video stream viewing application could adapt by reducing its bandwidth requirement,
e.g. by reducing its frame rate, in order to enable the web browser to util ise a greater
share of the available bandwidth. This approach could be taken if, for example, the web
browser needed to perform an important download.

The reaction that would be most appropriate depends on both the user’s requirements and the
context of other attributes, such as total network bandwidth. In order for the two browsers to
adapt in a coordinated manner there is a basic requirement for system-wide adaptation
policies. Without such policies, coordinated adaptation between applications is difficult
because each application will only be capable of independent adaptation, i.e. adaptation that
does not take into account the implications of its adaptation on other system resources and,
consequently, other applications.

Bandwidth of
compressed

stream

Processing
dedicated to

decompression
Maximum available
processing power on

mobile host

Maximum available
bandwidth on
wireless link

Relationship between bandwidth
and decompression power

Range of possible
compression ratios

 5

3. ANALYSIS

The previous scenarios ill ustrated a number of potential problems with current approaches to
developing adaptive mobile systems. In this section, we generalise on these findings to present a
critique of existing mobile middleware and its role in supporting adaptive applications.

3.1 Architectural Model

In order to provide a framework for analysing the architectural model of existing mobile
systems we consider the flows of information and control between the application and the
underlying middleware (figure 3). The framework comprises two layers, the upper application
layer and the lower layer representing system/middleware support. Between these two layers
we can identify four distinct flows of control and information.

Figure 3: Directed flows between application and middleware.

Flow A: Represents the requirements set by the application concerning the resources or
attributes supported by the underlying infrastructure. For example, in the case of
network adaptation this flow could represent the application’s network QoS
requirements.

Flow B: Represents the abili ty of the application to control the functionali ty of the underlying
infrastructure. In the case of reflective middleware this could represent, for example,
the control of the middleware using an appropriate meta-protocol.

Flow C: Represents an information flow from the platform to the application. This could be
used, for example, as a notification mechanism to inform the application when certain
requirements cannot be met. Such notification could then trigger the application to
adapt.

Flow D: Represents the abili ty of the underlying platform to actually control the operation of
the application. More specifically, this flow represents an explicit request from the
middleware layer for the application to perform a specific adaptive behaviour. For
example, the application might be requested to reduce its demand for network
bandwidth or disk usage.

It is important to emphasise the difference between flows C and D. In more detail , flow C is a
flow of information and therefore could become a trigger for adaptive behaviour. However,
unlike flow D, it does not explicitly require the application to adapt. In contrast, flow D
expects the application to react and then return the results of this reaction, e.g. the affect on
other attributes such as power, network bandwidth etc.

Consideration of this framework enables a classification of current systems according to the
types of flows supported. For example, network based middleware systems such as BAYOU
[22], Odyssey [18], MOST [10] and Rover [11] support flows B and C. In this case the
application specifies QoS requirements for the network channel and the underlying platform
tries to achieve these requirements. However, if this is not possible then applications are
notified in order to enable adaptation to take place.

Application

Middleware

A B C D

A: Requirements
B: Control of middleware
C: Notification
D: Control of application

 6

Reflective middleware platforms such as Adapt [8] tend to support flow A in addition to flows
B and C. The application is thus able to alter the functionality of the platform according to its
needs via the middleware’s meta-level interface. Application adaptation can be performed with
the use of notifications from the underlying infrastructure.

Context-aware applications like GUIDE [5], Stick-e Notes [19] and Cyberguide [15] are based
only on flow C. The underlying platform or device provides the contextual information to the
application and the application is responsible for adapting to the change of the context.

According to our knowledge the only middleware platform that provides a flow of control from
the platform to the application, i.e. flow D, is ISIS-META [17] though it should be noted that
only a small amount of research has been undertaken into making ISIS operate in a mobile
environment [4]. In ISIS-META the platform is able to explicitly request a specific behaviour
from the application through the use of call-back functions called actuators. Flows A and C
still exist in the system where the application specifies requirements to the platform and
receives information about the state of the underlying network.

3.2 Multiple Attributes

Future mobile systems wil l need to be capable of adapting to a large and heterogeneous set of
attributes. To facili tate this process, future middleware platforms will need to provide support
for these attributes within a common framework. More specifically, while current mobile
middleware platforms tend to rely heavily on integrating QoS feedback and adaptation with
network bindings, future systems wil l need to integrate these parameters with attributes such as
location.

The situation is complicated still further by the fact that the adaptive behaviour triggered by
one attribute can cause side-effects on other attributes. These side-effects could, in-turn, trigger
adaptation requests to other applications that result in conflicting actions (as illustrated in the
conflicting adaptation scenario in section 2.1). Moreover, current research [6, 7, 9, 13, 14] has
identified the need to provide adaptation solutions based on the combination of different
attributes.

Current systems simply do not provide support for programmers that enables them to construct
applications which adapt to multiple attributes and to identify and cope with conflicts in
adaptation strategies.

4. ARCHITECTURAL REQUIREMENTS

The previous sections have demonstrated the limitations of current approaches for supporting
adaptive mobile applications. In particular, these approaches lack appropriate support for
enabling applications to adapt to numerous different attributes in an efficient and coordinated
way. A new approach is therefore required which provides a common space for the
coordinated, system-wide interaction between adaptive applications and the complete set of
attributes that could be used to trigger adaptation.

This section considers a set of requirements that could be used to develop an appropriate
architecture for supporting adaptive mobile applications.

Supporting a Common Space for an Extensible Set of Attributes

The first key requirement of the architecture is to provide a common space for handling the
adaptation attributes used by the system. It is important that new attributes can be introduced
into the system as and when they become important, e.g. the cost of specific services for mobile
users or information about human physiology for wearable computers. The fact that new
contextual attributes for triggering adaptation can arise implies that:

 7

1. The set of attributes that can trigger adaptation needs to be extensible.

2. The characteristics of all these attributes vary.

The first of these implications places a specific requirement on the architecture to allow the
incorporation of future attributes that can become important for mobile systems. In order to
support this, a common interface could be used for communication between devices (that
monitor attributes) and the architecture. In this way, new attributes could be incorporated
providing there is a device driver that exports the predefined interface.

Although this approach appears feasible, the second implication limits the extent to which a
common interface for all devices can be used. In particular, the attributes that are monitored
differ in a wide range of characteristics (different sets of values, different types of values, etc.).
A feasible approach is to group the attributes into sets with common characteristics. Future
attributes could match the characteristics of a predefined group and use the predefined interface
for that group. Moreover, new groups of attributes can be introduced when the predefined ones
are unsatisfactory. An even more flexible approach is to provide a meta-layer that will allow
the device module to specify the functionality of the interface itself using, for example, a
language such as XML.

Application Control and Coordination

A second requirement is the need to be able to control adaptation behaviour across all
components involved in the interaction. As described earlier, one of the main limitations of
current approaches is the fact that the applications themselves are responsible for triggering an
adaptive mechanism when the underling infrastructure notifies them about any changes. In
order to support flexible and coordinated adaptation there is a requirement for triggering
adaptation on a system-wide level. Given this approach, the decision about when and how an
application should adapt is pushed into an external entity, with cross-application knowledge,
while the adaptive behaviour is stil l a part of the application’s characteristics.

Specifying a flexible interface between the platform and the application is necessary because
the trivial approach of defining a generic interface for adaptation triggering does not provide
the level of control required. More specifically, the fact that every application can provide
different types of adaptive modes (e.g. different states of operation) with different
characteristics makes the specification of a generic interface impractical. A more better
approach is to define a mechanism whereby the applications themselves can register the set of
adaptive modes that they support. The registration process would need to include the intended
effects of each mode of operation in order to allow the external entity to choose which one to
invoke.

Invoking an adaptive mode on an application requires a decision-making mechanism. The
system may specify an aim according to the current situation (e.g. reduce the network
bandwidth requirements). However, making a decision about which application and which
adaptive mechanism should be triggered requires a method of predicting the results of each
action. One possible approach is to request applications to provide information on the potential
affects that a certain adaptation might have on the resources of the system. This approach
cannot be based on discrete values because the actual affects are influenced by several factors
that may be diff icult to predict. An alternative approach could be based on monitoring the
resources of the system. In this case, the platform can attempt various alternative combinations
of adaptation and find the one closest to the desired result.

The most eff icient solution could be an integration of the two aforementioned approaches.
More specifically, the first approach could be used for the initial, course-grained, decision on
the most eff icient combination of adaptation triggering. Following this, the monitoring
approach could be used for making minor adjustments in order to achieve the most eff icient
result. Another factor that can affect the decision-making mechanism is the fact that an
adaptive mechanism could have side effects on other attributes of the system. One solution
would be to have a system where all modules have profiles that specify their effects on all the

 8

attributes of the system. Although this is possible with the use of profili ng tools, it is not
feasible to require application developers to provide such detailed information.

Support for System Wide Adaptation Policies

A further requirement is to support the notion of system-wide adaptation policies. More
specifically, such policies should enable a mobile system to operate differently given the
current context and the requirements of the user.

The specification of adaptation policies should be goal-oriented. Two kinds of goals can be
identified:

1. Effects on resources. The policy specifies a specific aim for the use a specific resource.
Example policies include reducing the required network bandwidth, keeping the cost at a
specific level and maximising the duration of operation of the system.

2. Effects on applications. The policy specifies the mode of operation for specific
applications. Example policies include defining priorities on applications which determine
the order in which they are allocated resources and maximising the duration of operation of
the system while having a specific application operating with full functionality.

Suitable methods for specifying adaptation policies need to be investigated.

Distributed Operation

A final requirement arises from the fact that most mobile applications operate in a distributed
environment including, e.g. a host application on the mobile system, possibly one or more
proxies and a server. The adaptation mechanism in such systems usually requires adaptive
behaviour and co-ordination of the distributed parts of the system. For this reason, the
adaptation mechanisms need to have coordination across all the components involved in the
interaction.

5. ARCHITECTURAL FRAMEWORK

Existing mobile systems which use middleware platforms typically have an architecture similar
to that shown in figure 4. The key points to note from this figure are as follows. Firstly,
mechansisms and policies for adapatation are tightly coupled and encapsulated in both
applications and supporting middleware. This is a natural consequence of the trend towards
applications being responsible for adapting to changes in context but leads to the problems
discussed in sections 2 and 3. Secondly, as discussed earlier, there is no flow of control from
the middleware to the applications, making coordinated responses to change impossible.

Figure 4: Typical middleware architecture.

Application

Middleware

Device monitor Device monitor

Adaptation policy

Adaptation mechanism

Information flows

 9

We propose that future systems should adopt an architecture in which mechanisms and polices
are decoupled and, furthermore, mechanisms are exposed in order to enable control by
independent entities. This separation of mechanisms and policies is, of course, a well
established principle of distributed systems but one which has not yet been adopted by the
developers of adaptive mobile systems. One possible interpretation of such an architecture is
shown in figure 5.

Figure 5: The proposed architectural framework.

The main components of our architecture are as follows:

Context Space: Central to our architecture is the context space. This acts as a repository and
distribution bus for information relating to QoS and context within the system. In
particular, it is responsible for storing information from the device monitors,
applications and middleware for use in determining the correct adaptation strategy in a
given situation. The space must enable information from remote sources to be made
available.

Device Monitors: Device monitors are typically simple daemon processes which monitor the
state of devices and software components and report this information to the context
space. Examples might include network device drivers and power management
systems.

Applications and Mechanisms: Applications that include mechanisms for adaptation can
register with the context space for information and control. It is the responsibil ity of
the application developers to make the interfaces for adaptation mechanisms available.

Middleware and Mechanisms: In common with applications, middleware platforms can
register with the context space for information and control. This enables the system to
control and coordinate the actions of the middleware and the applications to avoid
duplication of effort or conflicting actions.

Adaptation Control and Policies: The key aspect of our architecture is the adaptation control
module. This is responsible for coordinating system responses to changes in the
environment and resolving potential conflicts when multiple attributes change. The
module is driven by a series of policies, which we envisage as being self-contained
units that specify how a system should respond in a given situation.

Context
Space

Application

Middleware

Adaptation
Control

Device monitor

Device monitor

Adaptation policy

Adaptation mechanism

Information flows

Control f lows

 10

In this paper we do not propose specific technologies for implementing the above components.
However, there are clearly lots of existing research results which have been used in similar
frameworks and which could be used in this architecture. For example, the context space could
be based on an eventing platform and associated event repository such as [20], a tuple space as
proposed by Davies et. al. in [6] or a persistent object store provided by a middleware platform
such as CORBA or DCOM. Similarly, mechanisms and policies for middleware adaptation
have already been under development for a number of years and these can be integrated to
provide a foundation for adaptive applications.

The most novel aspect of our architecture is that we are hypothesising that policies can be
constructed to support system wide adaptation to multiple triggers in an independent manner.
Moreover, it will be necessary for such policies to be applicable in a wide range of system and
application configurations and for the system to be able to understand and monitor the results
of the policies’ actions. A number of policy specification techniques have been developed
including rule-based scripts [2], finite state machines [3] and encapsulated policy objects [16].
How this diverse range of approaches can be integrated into the architecture, or how a single
approach can be applied is an open research issue.

6. CONCLUSIONS

In this paper we have explored the requirements for future mobile middleware and suggested an
abstract framework within which new and existing research activities can be applied. These
requirements have been validated using a number of real-world scenarios which, in addition,
have il lustrated the shortcomings of existing approaches. Furthermore, we have mapped the
abstract requirements derived from these scenarios into a set of concrete architectural
requirements. These architectural requirements have then been used to develop a high-level
architectural framework for supporting adaptive mobile systems. We hope that these
requirements and the associated architectural framework will provide input into existing and
future research efforts in the field of adaptive mobile systems. In particular, we hope that
future middleware will provide better support for developers of applications which need to
adapt to multiple contextual triggers in a cooperative environment.

Our future work wil l be to evaluate the feasibility of our approach by developing an
implementation of the core components of our architecture. We will then compare the
performance of a number of adaptive applications operating in conventional environments with
those operating in our environment as their context changes.

References

1. Advanced Configuration and Power Interface Specification, Revision 1.0,
Intel/Microsoft/Toshiba, February 1999.

2. Li, B., K. Nahrstedt, “A Control-based Middleware Framework for Quali ty of Service
Adaptations” . To appear in IEEE Journal of Selected Areas in Communications, Special
Issue on Service Enabling Platforms, 1999.

3. Blair, L. “The Role of Temporal Logic and Timed Automata in Distributed Multimedia
Systems”. In Proceedings of Modal and Temporal Logic Based Planning for Open
Networked Multimedia Systems (PONMS '99), 1999.

4. Cho, K. and K. Birman. “A Group Communication Approach for Mobile Computing” , In
Proceedings of IEEE Workshop on Mobile Computing Systems and Applications, 1994.

 11

5. Davies N., K. Cheverst, K. Mitchell and A. Friday. “Caches in the Air: Disseminating
Information in the Guide System”. Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA ’99), 1999.

6. Davies N., A. Friday, S. Wade and G. Blair. “L2imbo: A Distributed Systems Platform for
Mobile Computing” . ACM Mobile Networks and Applications (MONET), Special Issue
on Protocols and Software Paradigms of Mobile Networks, 3(2), pp 143-156, 1998.

7. Elis C. “The Case for Higher-Level Power Management”. Proceedings of HotOS, 1999.

8. Fitzpatrick T., G. Blair, G. Coulson, N. Davies and P. Robin. “Software Architecture for
Adaptive Distributed Multimedia Applications”. In Proceedings of IEE Software, 145(5),
pp 163-171, 1998.

9. Flinn J. and M. Satyanarayanan. “PowerScope: A Tool for Profiling the Energy Usage of
Mobile Applications”. In Proceedings of the Second IEEE Workshop on Mobile
Computing Systems and Applications, 1999.

10. Friday A., N. Davies, G. Blair and K. Cheverst. “Developing Adaptive Applications: The
MOST Experience” . Journal of Integrated Computer-Aided Engineering, 6(2), pp 143-
157.

11. Joseph A., J. Tauber and F. Kaashoek. “Mobile Computing with the Rover Toolkit” . IEEE
Transactions on Computers: Special issue on Mobile Computing, 43(3), 1997.

12. Katz R. “Adaptation and Mobility in Wirless Information Systems”, IEEE Personal
Communications, 1(1), pp. 6-17, 1994.

13. Kravets R. and P. Krishnan. “Application-Driven Power Management for Mobile
Communication” , In Fourth ACM International Conference on Mobile Computing and
Networking (MOBICOM ’98), 1998.

14. Kunz T. and J. Black. “An Architecture for Adaptive Mobile Applications” . In
Proceedings of the 11th International Conference on Wireless Communications (Wireless
’99), 1999.

15. Long, S., R. Kooper, G.D. Abowd and C.G. Atkeson. “Rapid Prototyping of Mobile
Context-Aware Applications: The Cyberguide Case Study” . In Proceedings of the 2nd
ACM International Conference on Mobile Computing (MOBICOM), 1996.

16. Lupu E. and M. Sloman. “A Policy Based Role Object Model”. In Proceedings of the
First International Distributed Object Computing Workshop (EDOC’97), 1997.

17. Marzullo K., R. Cooper, M. Wood and K. Birman. “Tools for Distributed Application
Management”. IEEE Computer, 24(8), pp 42-51, 1991.

18. Noble B., M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn and K. Walker. “Agile
Application-Aware Adaptation for Mobil ity” , In Proceedings of the 16th ACM
Symposium on Operating System Principles, 1997.

19. Pascoe J. “The Stick-e Note Architecture: Extending the Interface Beyond the User” , In
Proceedings of the International Conference on Intell igent User Interfaces, 1997.

20. Spiteri M. and J. Bates. “An Architecture to Support Storage and Retrieval of Events” . In
Proceedings of Middleware ’98, 1998.

21. Stem M. and R. Katz. “Reducing power consumption of network interfaces in hand-held
devices” . In Third International Workshop on Mobile Multimedia Communications
(MoMuc-3), 1996.

22. Terry D. B., M. Theimer, K. Petersen and A. J. Demers. “Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System”. In Proceedings of the 15th
ACM Symposium on Operating System Principles, 1995.

