Architectural Rule Checking for High-level Synthesis

Jie Gong, Chih-Tung Chen and Kayhan Kugukgakar

Unified Design System Laboratory
Motorola, Inc. MD EL714
2100 E. Elliot Road, Tempe, AZ 85284

Abstract quickly.
Verifying an implementation produced from hlgh—level2 Models and Rules

synthesis is a challenging problem due to many complex”) L N
design tasks involved in the design process. In this paper, we 1€ infrastructure of the rule checking is shown in Fig-
present an architectural rule checking approach for high-Uré 1. Design is captured in a global database through
level design verification. This technique detects and locateternal models. Control/data flow graph (CDFG) is used
various design errors and verifies both the consistency anip represent the_c_lata_ and (_:or_ltrol dependengles residing in a
correctness of an implementation. Besides describing differ?€havioral specification. Timing graph (TG) is used to rep-
ent rule suites, we also report a working environment for thd€Sent the execution sequence imposed by the scheduling

architectural rule checking. Finally, we highlight the value of O the operations in the CDFG. Structure graph (SG) is
the proposed approach with a real-life design. used to represent the datapath of the design. Library Com-

ponent Model (LCM) is used to characterize the compo-
1. Introduction nents used in the datapath. Design can be modified by a set
Design verification, which is to find out whether the qf editors. The rule suites are used to verify design proper-

design produced is the one specified, is indispensable fdieS: Due to space limitation, we will just give an example
both interactive and automatic high-level design. It is easy t§u€ for each rule suite to show what kind of checking each

accept that the interactive approach needs design verificatidH!€ Suite performs. For details on rules and models, please

since the interactivity opens a pathway for introducing errord€fer t [2].
Binding Library
Rule Suitg itgh Rule Suitg

into the design while enabling the utilization of designel

expertise during the design process. It is not obvious wh
by construction. However, in reality, there is no such guari Global
tee unless the tools can be forme_llly validated. To_vahdat CDFG TG Design SG
large software system such as a high-level synthesis syste Database
! T 1

Schedulin
Rule Suitg

design synthesized automatically needs to be verified si
one may argue that the tools should produce correct des
still impractical, if not impossible.

Although comprehensive design verification is indisper v v v
able for both interactive and automatic high-level synthes Hierarchy| Behaviorl[Structurd [Timing | [Library| | Design
little work has been done in this area. The only work relat | gqitor || Editor || Editor | | Editor || Editor | | Utilities
to error detection is reported in the interactive synthesis ¢
tem RLEXT [1], in which some design properties are used Figure 1. Infrastructure of the rule checking
detect design violations after designer modifies the structure
by adding or deleting components and interconnect. Ou?-1 Behavioral Rule Suite
work differs from RLEXT in that RLEXT mainly focuses on The behavioral rule suite is to check the consistency of
detecting and fixing errors during resynthesis while our worka behavioral specification. A sample rule would A#:
extensively detects errors for various design aspects in theariables used in the behavior must be defined before their

high-level synthesis process such as library componentjse
behavioral specification, scheduling, datapath structure, bindz- 2 Scheduling Rule Suite

ing, resource conflict and value-life time. The key contribu- -) . .
9 y Scheduling is a task which assigns time steps to each

i f hi | rule checki h is that i AR . A .
tion of our architectural rule checking approach s that Itoperat|on in the CDFG. A schedule is correct if its TG is

provides a step-wise design verification capability which can _ . i
detect errors early and identify the locations of errorscOnSIStent with its CDFG. A sample rule would bt

dependencies specified in the CDFG are not violated by Figure 2 shows an example of the rule checking where
the schedule in the TG. the error or warning messages are displayed in a checking
2.3 Library Rule Suite result window. The designer can then select a message and

X N . the corresponding design objects will be displayed in
The library rule suite is to check the consistency of each

) related editors. For example, in Figure 2, a resource con-
library component. A sample rule would li#ata, control gt error is detected. After the designer selects the
and clock pins have no intersection

resource conflict error message, the behavioral editor will
2.4 Structural Rule Suite highlight the related operations which have the resource

The rules in the structural rule suite are used to checkeonflict and the structural editor will highlight the resource
the consistency of the structure (i.e. datapath) of theto Which those operations are mapped and the timing editor
design. A sample rule would b&or each input pin of Will highlight their schedules. With this graphic display of

module. there is no more than one driver. where the error is, designers can correct design errors
o) quickly. After any change to the design, designers can
2.5 Binding Rule Suite either run the rule checking again or continue displaying

Binding is a task which maps behavior to the structure other reported errors and incrementally repairing them.
and there are three types of bindings. Operation binding is

to map operations in CDFG to the functional units in SG. 4. Results
Value binding is to map variables in CDFG to storage mod- The value of our architectural rule checking was mani-
ules in SG. Path binding is to map value transfers in CDFGfested by the redesign of the Motorola 68HC11 microcon-
to paths in SG. troller. It is very difficult, if not impossible, for designers to
A consistent binding is one in which all three types of find out some of the errors detected by the rule checking.
bindings are consistent. A correct binding is a consistent™or €xample, in 68HC11 design, it took about 11 million
binding in which there is no resource conflict and all valuesPath comparisons to find out some of the path conflicts in
are alive when they are needed. A sample rule would bethe design. Without the rule checking capability, a designer
Value life times of variables bound to same storage moduld'as to rely on the simulation to find out these errors, which

should not overlap. is a difficult task. The rule checking also has the benefit of
.] pinpointing the location of an error, and not just its exist-
3. A Working Environment ence. With the behavioral, timing and structural editor win-

The proposed architectural rule checking approach isdows open, the rule checking highlights the behavioral
implemented in an interactive behavioral synthesis systemokens, statements or structural resources that cause the
called Matisse[3]. At any stage of the design process, theproblem. This allows errors to be corrected quickly.

designer can invoke the rule checking tool to check the cur- .
rent design. 5. Conclusions

We have demonstrated an architectural rule-checking
approach for high-level synthesis. It consists of a set of rule
suites for statically checking problems existing in the
behavior, schedule, structure, library components and
bindings. The rule-checking mechanism is formal since it
is built on well-defined design models. It is also extendable
since additional rules can be added to the rule suites. The

miatisss
Architerirs] Fuls Owek - Fesmilks
| 1 F rewcerce conflect betesan T aed CEonssculs Ralil]
2. Path ressrce coeflict bebemen "x" ad 'y’ oo moew of the highlighied o=
I, Path reseroe coefliol betessn "o md "y i e oF Uhe hoghl labiied oo
i, Nk “BOFF_OF_S5° did rek g

=] actual use of the rule checking capability provided up to an
' order of magnitude reduction in the design debugging
always ti
beai ime.
gin
E 6. References
al [1] D.W. Knapp. Manual Rescheduling and Incremental Repair
ul of Register-Level Datapathiternational Conference on Com-
SUt puter-Aided Design1989.
andaelle = [2] J. Gong, C. T. Chen and K. Kuclkc¢akar. Multi-dimensional

Rule Checking for High-level Design VerificatiodiEEE Interna-
tional High Level Design Validation and Test Workshigo7.

[3] K. Kiglkgakar, C. T. Chen, J. Gong, W. Phillipsen and T. E.
Tkacik. An Architectural Design Tool and Methodology for
Commodity IC Design. To appear IEEE Design and Test of
Computers

Figure 2. Display of Rule Checking Result

