
Architectural Rule Checking for High-level Synthesis

Abstract
Verifying an implementation produced from high-leve

synthesis is a challenging problem due to many comp
design tasks involved in the design process. In this paper,
present an architectural rule checking approach for high
level design verification. This technique detects and loca
various design errors and verifies both the consistency a
correctness of an implementation. Besides describing diff
ent rule suites, we also report a working environment for t
architectural rule checking. Finally, we highlight the value o
the proposed approach with a real-life design.

 

e

 

g-
gh

ed
 in a
p-
ling
 is
om-
o-
 set
er-
le
ch
ase

 of

eir

ach
is

Jie Gong, Chih-Tung Chen and Kayhan Küçükçakar

Unified Design System Laboratory
Motorola, Inc. MD EL714

2100 E. Elliot Road, Tempe, AZ 85284
1. Introduction
Design verification, which is to find out whether th

design produced is the one specified, is indispensable
both interactive and automatic high-level design. It is easy
accept that the interactive approach needs design verifica
since the interactivity opens a pathway for introducing erro
into the design while enabling the utilization of designer
expertise during the design process. It is not obvious wh
design synthesized automatically needs to be verified si
one may argue that the tools should produce correct des
by construction. However, in reality, there is no such guara
tee unless the tools can be formally validated. To validat
large software system such as a high-level synthesis syste
still impractical, if not impossible.

Although comprehensive design verification is indispen
able for both interactive and automatic high-level synthes
little work has been done in this area. The only work relat
to error detection is reported in the interactive synthesis s
tem RLEXT [1], in which some design properties are used
detect design violations after designer modifies the struct
by adding or deleting components and interconnect. O
work differs from RLEXT in that RLEXT mainly focuses on
detecting and fixing errors during resynthesis while our wo
extensively detects errors for various design aspects in 
high-level synthesis process such as library compone
behavioral specification, scheduling, datapath structure, bi
ing, resource conflict and value-life time. The key contrib
tion of our architectural rule checking approach is that
provides a step-wise design verification capability which c
detect errors early and identify the locations of erro
l
lex
 we
-

tes
nd
er-
he
f

e
for
 to
tion
rs
s’
y a
nce
igns
n-
 a

m is

s-
is,
ed
ys-
 to
ure
ur

rk
the
nt,

nd-
u-
it

an
rs

quickly.

2. Models and Rules
The infrastructure of the rule checking is shown in Fi

ure 1. Design is captured in a global database throu
internal models. Control/data flow graph (CDFG) is us
to represent the data and control dependencies residing
behavioral specification. Timing graph (TG) is used to re
resent the execution sequence imposed by the schedu
on the operations in the CDFG. Structure graph (SG)
used to represent the datapath of the design. Library C
ponent Model (LCM) is used to characterize the comp
nents used in the datapath. Design can be modified by a
of editors. The rule suites are used to verify design prop
ties. Due to space limitation, we will just give an examp
rule for each rule suite to show what kind of checking ea
rule suite performs. For details on rules and models, ple
refer to [2].

2.1 Behavioral Rule Suite
The behavioral rule suite is to check the consistency

a behavioral specification. A sample rule would be:All
variables used in the behavior must be defined before th
use.

2.2 Scheduling Rule Suite
Scheduling is a task which assigns time steps to e

operation in the CDFG. A schedule is correct if its TG 
consistent with its CDFG. A sample rule would be:All

Global

Hierarchy
Editor

Structure
Editor

Behavior
Editor

Library
EditorEditor

Timing

Scheduling
Rule Suite

Behavioral
Rule Suite

Structural
Rule Suite

Binding
Rule Suite

Library
Rule Suite

Design
Utilities

CDFG LCMDesign
Database

TG SG

Figure 1. Infrastructure of the rule checking



re
ing

 and
in
on-
he
ill

rce
e
itor
f
ors
an
ng

ni-
n-

o
ng.
n
 in
er

ich
 of
t-
n-
ral
 the

ing
ule
e
nd
 it

ble
The
 an
ng

air

al

E.
r

dependencies specified in the CDFG are not violated by
the schedule in the TG.

2.3 Library Rule Suite
The library rule suite is to check the consistency of each

library component. A sample rule would be:Data, control
and clock pins have no intersection.

2.4 Structural Rule Suite
The rules in the structural rule suite are used to check

the consistency of the structure (i.e. datapath) of the
design. A sample rule would be:For each input pin of
module, there is no more than one driver.

2.5 Binding Rule Suite
Binding is a task which maps behavior to the structure

and there are three types of bindings. Operation binding is
to map operations in CDFG to the functional units in SG.
Value binding is to map variables in CDFG to storage mod-
ules in SG. Path binding is to map value transfers in CDFG
to paths in SG.

A consistent binding is one in which all three types of
bindings are consistent. A correct binding is a consistent
binding in which there is no resource conflict and all values
are alive when they are needed. A sample rule would be:
Value life times of variables bound to same storage module
should not overlap.

3. A Working Environment
The proposed architectural rule checking approach is

implemented in an interactive behavioral synthesis system
called Matisse[3]. At any stage of the design process, the
designer can invoke the rule checking tool to check the cur-
rent design.

Figure 2 shows an example of the rule checking whe
the error or warning messages are displayed in a check
result window. The designer can then select a message
the corresponding design objects will be displayed 
related editors. For example, in Figure 2, a resource c
flict error is detected. After the designer selects t
resource conflict error message, the behavioral editor w
highlight the related operations which have the resou
conflict and the structural editor will highlight the resourc
to which those operations are mapped and the timing ed
will highlight their schedules. With this graphic display o
where the error is, designers can correct design err
quickly. After any change to the design, designers c
either run the rule checking again or continue displayi
other reported errors and incrementally repairing them.

4. Results
The value of our architectural rule checking was ma

fested by the redesign of the Motorola 68HC11 microco
troller. It is very difficult, if not impossible, for designers t
find out some of the errors detected by the rule checki
For example, in 68HC11 design, it took about 11 millio
path comparisons to find out some of the path conflicts
the design. Without the rule checking capability, a design
has to rely on the simulation to find out these errors, wh
is a difficult task. The rule checking also has the benefit
pinpointing the location of an error, and not just its exis
ence. With the behavioral, timing and structural editor wi
dows open, the rule checking highlights the behavio
tokens, statements or structural resources that cause
problem. This allows errors to be corrected quickly.

5. Conclusions
We have demonstrated an architectural rule-check

approach for high-level synthesis. It consists of a set of r
suites for statically checking problems existing in th
behavior, schedule, structure, library components a
bindings. The rule-checking mechanism is formal since
is built on well-defined design models. It is also extenda
since additional rules can be added to the rule suites. 
actual use of the rule checking capability provided up to
order of magnitude reduction in the design debuggi
time.

6. References
[1] D.W. Knapp. Manual Rescheduling and Incremental Rep
of Register-Level Datapaths.International Conference on Com-
puter-Aided Design, 1989.
[2] J. Gong, C. T. Chen and K. Küçükçakar. Multi-dimension
Rule Checking for High-level Design Verification. IEEE Interna-
tional High Level Design Validation and Test Workshop, 1997.
[3] K. Küçükçakar, C. T. Chen, J. Gong, W. Phillipsen and T. 
Tkacik. An Architectural Design Tool and Methodology fo
Commodity IC Design. To appear inIEEE Design and Test of
Computers.

Figure 2. Display of Rule Checking Result


