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Abstract

One of the main obstacles in applying data mining techniques to large, reai-world databases is the lack of
efficient data management. In this paper, we present the design and implementation of an effective two-level
architecture for a data mining environment. It consists of a mining tool and a parallel DBMS server. The
mining tool organizes and controls the search process, while the DBMS provides optimal response times for
the few query types being used by the tool. Key elements of our architecture are its use of fast and simple
database operations, its re-use of results obtained by previous queries, its maximal use of main-memory to
keep the database hot-set resident, and its parallel computation of queries.

Apart from a clear separation of responsibilities, we show that this architecture leads to competitive perfor-
mance on large data sets. Moreover, this architecture provides a flexible experimentation platform for further
studies in optimization of repetitive database queries and quality driven rule discovery schemes.

CR Subject Classification (1991): Data storage representations (E.2), Database systems
(H.2.4) parallel systems, query processing, Information search and retrieval (H.3.3), Learning
.(1.2.6) induction, knowledge acquisition

1. INTRODUCTION

Recent years have shown an increased interest in data mining techniques, especially in their
application to real-world databases. These databases tend to be very large (> 100K objects)
and contain objects with many attributes. These vast amounts of data hide many interesting
relationships, but their discovery is obstructed by two problems.

First of all, the number of potential relationships in a database is very large. Efficient search
algorithms (e.g. Quinlan’s ID3 algorithm [10]) are needed to discover the most interesting ones.
However, simply applying these algorithms to large databases causes another optimization
problem, because candidate relationships have to be validated against the database. For many
techniques, this results in a repetitive, expensive scan of the entire database.

A straight-forward solution would be to reduce the amount of data by taking a sample from
the database. In such a sample, small differences among sets of objects in the database will
become less clear, and interesting relationships can easily be overlooked. So one would prefer
to mine on the entire database, or at least on a very large sample.

In this paper, we outline a two-level architecture that enables mining on large databases.
The front-end consists of a data mining tool that provides a graphical user interface to for-
mulate and direct the mining activities. All data handling is performed by the back-end, the
Monet database server, a parallel DBMS developed within our group to support a variety of
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advanced applications [13]. The focal point of this paper is on the gross architecture and its
performance. Details on the data mining algorithms and the internals of the DBMS are given
elsewhere. '

Although the idea of using a DBMS is not new, e.g. systems such as SKICAT use a relational
DBMS [4], our system offers some novel optimization features like the parallel computation
of column oriented operations, the reyse of results of previous queries and fast data access by
keeping only a limited hot-set of data in main memory. This hot-set is changed dynamically
during the search process to reflect the information requirements of the datamine tool.

.These optimizations are equally applicable to a range of datamine systems. Moreover,
other modern extendible DBMSs (e.g. Postgress [12], Starburst [9], EXODUS [3]) support
the inclusion of specialized routines, and can thus be used as a back-end.

The paper is organized as follows. Section 2 gives an introduction to the classification
problem. Section 3 illustrates a general search strategy for this problem. Section 4 contains
a brief introduction to the Monet DBMS and derives the interface requirements. Section 5
gives the performance figures and their analysis for this architecture. We conclude with a
_short indication of future and related research issues addressed within our group.

2. MINING FOR CLASSIFICATION RULES

The input to our data mining system consists of a relational table. This table is both broad
and large, i.e. many attributes and several hundred thousand objects. In particular, we are
currently mining on a real-life table of 180 K objects with 90 attributes obtained from an
insurance company.

In this database, the system has to discover rules that define whether an object belongs
to a particular subset, called a class. This class is defined by the user, hence this form of
learning is known as supervised learning [2].

In practice, the user partitions the database into two sets, a set P containing the positive
examples of the class, and a set N containing the negative examples. The system searches
for classification rules, i.e. rules that predict whether a particular object will be in P or N,
based on values of its attributes.

The rules considered are of the form (D) — (C), where C is the class, and D is a condition
formed of a conjunction of attribute-value conditions. These attribute-value conditions are
either equality conditions, e.g. ‘city = Denver’ when the domain of the attribute contains
categorical values, or inequalities, such as ‘age < 27’, in case of a numerical attribute. For
example, the rule

R: (city = Denver A age < 27) — (dangerous driver)

states that persons living in Denver and under 27 are dangerous drivers.

The condition D is in fact a database selection, which returns all satisfying objects when
applied directly. The partitioning of the database into P and N implies that each condition
D correspond to two database selections op(P) and op(N): the sets of all positive and all
negative examples, covered by the condition.

A rule is correct with respect to the database when its condition covers all positive and
none of the negative examples, that is, op(P) = P and op(N) = 0. In general only few
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correct rules will be found in a database, because class membership is often determined by
information not represented in the database. For example, whether a person is a dangerous
driver is not uniquely determined by age and home-town. Hence, it makes sense to search
for probabilistic rules. With each rule R, we associate a quality or strength Q(R) to indicate
how well it performs against the database. The quality is the ratio of the number of positive
examples, covered by the rule, to the number of positive and negative examples, covered by
the rule, i.e.

_ on(P)
UR) = Go® + oo (M)

Hence a correct rule has quality 1, while quality equals 0 implies that the negation holds.

3. SEARCH STRATEGY
To discover probabilistic rules of a high quality?, the system uses an iterative search strategy
controlled by the quality metric. The initial rule Ry is the rule with an empty condition

Ry : (true) — (C)

assigning all objects in the database to class C. The quality of this rule is simply the
number of positive objects, divided by the size of the database, i.e. the probability that an
arbitrary object in the database belongs to class P. During data mining, this rule is extended
with an attribute-value condition to obtain a new rule, e.g.

Ry : (Age < 27) — (O)

" and this new rule, called an eztension of Ry, is further extended with conjunctions. The
heuristic to reach a satisfactory classification is to choose rule extensions with a perceived
high quality. This algorithm is generally applicable and basically underlies many machine
learning systems [5]. Hence, we expect that a wide variety of data mine systems may benefit
from the optimizations that we discuss in the following section.

To select the extensions with the highest quality, we compute the quality of all possible rule
extensions. The combinatorial explosion of candidate rules is controlled using a beam search
algorithm where the best w (the beam width) extensions are selected for further exploration.
Of these new rules, all possible extensions are computed, and again, the best w are selected.
This process continues until no further improvement is possible, or until the length of the
rules exceeds a user defined threshold (the search depth d).

To compute the quality of all extensions of a rule R;, we only need to look at the cover of
R; and not at the entire database. This is caused by the ‘zooming’ behavior of our algorithm:
the cover of an extension of R; is always a subset of the cover of R;. Hence, at every stage
we compute the cover, and use it for the computation of the quality of the newly generated
rules. This algorithm is described in pseudo-code as

!Actually, rules of a very low quality can be of interest as well, because these are rules for the opposite
class, e.g. safe drivers. Our tool searches for these rules as well, but for reasons of simplicity, we ignore low
quality rules in this paper.
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Beamset := {initial rule Ry},
while improvement and depth < d
All _extensions := 0,
For each R; in Beamset do
C; := cover(R;),
Extensions := extend(R;),
compute_quality(Extensions, C;),
All_extensions := All_extensions U Extensions,
Beamset := best(All_extensions, w)

EXAMPLE 1 Consider a car insurance database storing information about clients, such as
age, gender, home-town, and information about their cars, such as price and whether it is a
lease car or not. The user defines a class ‘dangerous driver’ and assigns any client who has
had a car accident to this class. The other clients serve as counter examples.

gender =m carprice <= 19999
[1001/0.607 ] [322/0.655]
age <= 21 town = detroit carprice <= 29999
[1743/0.552] [171/0.591] [84/0.679]
town = washington carprice >= 79995
[192/0.5683] [12/0.667]
gender = f
No condition [11620/0.463]
[ 25000/ 0.500] gender=m age <= 22
[13380/0.532] [1349/0.608 ]
town = new york
[2432/0.479]
category = lease
age >= 62 town = miami [33/0.242)
[1617/0.478 ] [160/0.406] age <= 63
: [101/0.347]

Figure 1: A 5 x 3 search tree.

A search tree, constructed using a 5 x 3 beam search is shown in Figure 1. In each node,
the condition is stated together with the size of the cover and the rule quality. The initial
condition covers 25K objects, half of which belongs to the class. For example, the rule
with condition (age <= 21) A (gender = m) covers 1001 objects and 60.7% belongs to class
‘dangerous driver’. |

The main problem to be tackled is to compute efficiently the quality of all possible exten-
sions. A straight-forward technique is to compute the quality of each extension separately.
This involves issuing two database queries, one to compute the number of objects in the
database selection op(P) and another to compute the size of op(N). Although intuitively
appealing, this technique is far too expensive. In Example 1, the quality of 1000 extensions
have been computed.

A more sophisticated technique, proposed by Agrawal et al. [1], is to incrementally compute
the quality of a set of rules in a single pass over the database by updating counters for each
extension. To avoid excessive memory consumption the rule-set under consideration is pruned
along the way. This approach works under the assumption that the database scan sequence
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does not influence the pruning of the classification rules.

We propose an alternative architecture, where the quality of all possible extensions of a
rule is computed using only a few simple database operations. Moreover, our architecture
heavily uses the zooming characteristic of the mining algorithm to reduce database activity.
In particular, the answers to both op(P) and op(N) are cached and reused wherever possible.

4. DATABASE SUPPORT FOR THE SEARCH ALGORITHM

The DBMS used for our data mining tool is the Monet database server developed at CWI as
an experimentation vehicle to support advanced applications (see [6, 13]). It is geared towards
exploitation of large main-memories and shared store multi-processors. Amongst its novelties
are a fully decomposed storage scheme and adaptive indexing to speed-up query processing.
The system runs in parallel on a Silicon Graphics shared-memory multi-processor.

The data mining application sketched above requires database support in the following
areas: efficient data storage and access, statistics gathering, computation of selections, and
handling intermediate results. The support provided by Monet in each of these areas is shortly
indicated.

4.1 Data storage and access

As argued in [13], it generally pays to decompose complex objects and relational tables into
binary associations tables. Although such a storage scheme leads to a poor performance in
record-oriented applications using disk-based databases, it is far more effective in situations
where the database hot-set can be kept memory resident or where only a small fraction of the
objects are returned to the application. This design feature has proved crucial in the efficient
support of our data mining tool.

The database table is broken down into multiple Binary Association Tables (or BAT'), where

each database attribute is stored in a separate table?. The first column, the head, of each

BAT contains a unique object identifier (oid), the second column, tail, contains the attribute
values.

To illustrate, assume that the table has attributes {A, B,C,...}, and is partitioned into
two sets P and N. In Monet, each object is assigned a unique oid. The table is represented
as a set of BATs {4, B,C, ...}, where each BAT stores the object’s oid and its value for this
attribute. The class information is represented in two BATs Py and Ny, whose heads contain
the oid’s of objects in P and N respectively. This storage scheme improves database access
for our data mining tool, because access is largely column oriented. In particular, the hot
attributes, i.e. those under consideration for extending the classification rules, are easily kept
in main-memory.

Although this scheme would seem to double the disk space requirement, prudent implemen-
tation of the underlying software leads to an overhead per object which compares favorably
with other modern DBMSs (e.g. Starburst). Likewise, the additional cpu overhead incurred
in object reconstruction is marginal, because the system automatically creates and maintains
search accelerators to speed-up its operations.

A similar vertical partitioning of the database is used by the Explora system [8], where

2In the following, we will identify an attribute with its associated BAT table, and use the same symbol for
both. The meaning will be clear from the context.
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only attributes that are relevant for the current mining task are loaded into main memory.
The main difference is that in our architecture, the front-end need not make a distinction
between active and passive attributes. Hence, active attributes need not be defined a-priori
by the user, because data management (i.e. dynamically loading and removing data from
main memory) is performed by the DBMS.

4.2 Statistics gathering
The quality of all extensions of a rule is computed using histograms. A histogram H for BAT
A is a BAT containing (value, frequency) pairs

H(A) = {(1)1, f1>’ <”2’f2)v ceey (vn’ fn)}

where frequency f; denotes the number of occurrences of value v; in A. Although histograms
can be easily constructed with a SQL aggregate query, we have used the hooks for extending
the DBMS with new functionality. In particular, it was sufficient to implement a half-page
C program to produce efficiently the histogram for any BAT. Its performance is linear in the
size of the underlying table.

The quality of all extensions with a condition on attribute A of the empty rule Ry : (true) —
(C) is computed by first computing the subsets A,, and A,,. The BAT A, contains the
values for A for objects in Py and is the semi-join of A and Py. By looking at the frequencies
in the histograms H(Ap,) and H(A,,) for a particular value v, we can compute the quality
of the rule Ry : (A = v) — (C). This quality is given by p/(p + n), where (v,p) € H(Ap,)
and (v,n) € H(An,), that is, p is the frequency of v in the set of positive examples P, and n
is the frequency of v in N.

Computing the quality for conditions on numerical attributes is slightly more complicated.
We use the same technique as in C4.5 (an extension of the ID3 system, see [11]), where the
quality of a rule (A < m) — (C) is computed by summing the frequencies for all values,
smaller than m, in both histograms H(A,,) and H(A,,). The same holds for rules of the
form (A > m) — (C), where all values greater than m are summed. This may seem rather
expensive, but the quality of all possible extensions can be computed in one pass over the
histograms.

For the initial rule, the data mining tool requests histograms for all attributes®. They are
used to compute the quality of all extensions, and the w best are selected. As described in
Section 3, the search process is iterative, so each newly generated rule has to be extended as
well. Now, the histograms have to be computed over the cover of condition D of rule Ry. So
we have to compute selections over the BAT tables Py and Np.

4.8 Computing selections

To determine the set of objects covered by rule Rj, i.e. all objects where (4 = v), two tables
P, and N; are constructed that contain the oid’s of all covered objects in respectively P and
N. First, the selection A = v is computed from table A, which is a fast, column oriented
operation. The head of the resulting table T' contains the oid’s of all objects where A = v.
To compute P; and Nj, the semijoin of Py (respectively Np) and T is computed.

3This initial statistics gathering can be integrated with the database loading phase, because its results are
also relevant for the query optimizer.
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Now assume that rule R; is again extended to rule Ry : {(4 = v) A (B = w)) — (C).
Instead of computing the complex selection (A = v) A (B = w) from the database, we reuse
the tables P, and N; and compute the selection (B = w) using these tables. This is again a
column oriented operation, thus using the advantages of Monet’s storage structures.

Note that to compute the quality of extensions of R;, it is not necessary to compute
the histogram for table A, since it will only contain the value v. This is what we intend
with the zooming behavior: the number of columns that are of interest decreases during the
search process (vertical zooming), just as the number of objects, covered by a rule (horizontal
zooming). Due to this zooming behavior, a smaller and smaller portion of the database is
relevant for exploration. This means that the main-memory buffer requirements for retaining
intermediate results stabilizes after a few iterations.

4.4 Temporary management

The database operations sketched above lead to an abundance of intermediate results. Al-
though the Monet server automatically flushes the least recently used temporaries to disk, our
data mining algorithm can determine precisely the subset of interest for the remainder of the
session. Therefore, after each phase it releases temporaries by re-use of their external name
or using explicit destroy operations. Attributes that are no longer used are automatically
flushed to disk.

4.5 Parallelism

The data mining architecture offers opportunities for parallelization. The BATs {Ay,, An;, Bp;,
B,,,...} and their histograms can be computed in parallel. Furthermore, the beam search
algorithm being employed calls for a parallel computation of its branches, i.e. the selections
and histograms for each of the w rules can be computed in parallel.

5. PERFORMANCE EXPERIMENTS

In this section we summarize the performance results of our two-level architecture against a
hypothetical database. In Section 5.1 we show the result of loading the database from an
ascii data file. Section 5.2 and 5.3 illustrate the performance for sequential and parallel
execution of our algorithm, respectively.

5.1 Database loading

Since most of our data mining activities are focused on databases provided by clients, it is
necessary to quickly load them into Monet. Therefore, the Monet loading utility takes an
ascii representation of a table produced by an Oracle or Ingres database and constructs the
binary association tables. Loading includes compression of the binary tables using Lempel-
Ziv coding to trade disk space against a marginal cpu overhead. Figure 1 illustrates the linear
behavior of loading tables to build an experimentation environment. The loading speed is
about 1 Mb/s.

5.2 Sequential database mining

The performance of our architecture was analysed against the dummy insurance database
introduced in Section 3. A screen dump of the user interface is included in Appendix A.
Amongst others it illustrates the controllable parameters, such as beam width and tree depth,
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ascii size | # of objects | cpu sys
230 K 5K | 160 | 130
460 K 10K | 320 | 160
1.1 M 25K | 910 380
2.3M 50 K | 1850 | 960
46 M 100 K | 3830 | 1290

Table 1: Loading ascii tables into Monet, times are in ms.

and options such as parallelism and simulated annealing (the latter is not discussed in this
paper).

Table 2 shows the performance results for 5 x 5 and 7 x 7 beam searches. The database size
ranges from 5K to 100K records, which covered a spectrum hardly reported in the literature.
In these experiments, the code produced by the mining tool was executed in sequential mode
by Monet. The experimentation platform was a 6-node SGI machine of 150Mhz processors
and 256 Mbytes of main memory. The experiments were run in competition with other users
on the system.

The table is read as follows. The column marked miner contains the time involved in the
mining algorithm and management of the graphical user interface. The column # ext. shows
the number of tested extensions. The columns marked Monet cpu and Monet sys describe
the processing times as measured by the database back-end. All times are in milliseconds (!).
The results indicate the constant processing cost within the user interface of about 12 and
24 seconds, respectively. The processing time in the DBMS back-end is largely linear in the
database size and the number of tested extensions.

w x d | size | # ext. | miner | Monet cpu | Monet sys
5x5 5K 1549 | 12970 1400 1920
5x 5| 10K 1552 | 12380 2200 2075
5 x5 25K 1559 | 13020 4350 2450
5x 5| 50K 1617 | 13000 7500 2500
5x5| 75K 1668 | 13810 11100 3040
5 x5 | 100K 1639 | 11970 13640 3320
7Tx7 5K 2320 | 22750 2470 4980
7x 7| 10K 2408 | 24790 4010 5402
7x7 25K 2671 | 25900 7350 5300
7x 7] 50K 2795 | 24230 11330 6000
7x 71 75K 2756 | 27480 17460 8430
7 x 7| 100K 2668 | 24610 21930 9890

Table 2: Performance results (in ms.) for different databases and beam search sizes.

As far as we have come across performance data in the literature, we can conclude that
the set-up and the implementation of the DBMS is highly competitive. The mining tool
itself has been designed with emphasis on simplicity and extensibility, so we expect that
reasonable speed-up can be achieved by partly switching from Prolog to C, and optimization
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of its algorithms.

5.8 Parallel database mining

As indicated in Section 4.5, our search strategy includes a processing phase that can be
easily parallelized. The next experiments were set up to 1) test the implementation of the
parallelization features in the database back-end and 2) assess the speed-up factor. The
algorithms were modified to generate parallel code upon request by the user.

For this experiment we repeated the 5 x 5 case for a 25K database by turning on the
parallelization switch. We varied the number of threads from 1 to 4 to determine their global
contribution. The processing time in the user interface remained the same, because it is
independent of the parallelization within Monet. The results of these experiments are shown

in Table 3.

threads | Monet cpu | Monet sys
1 4350 2450
2 2630 2310
3 1730 1400
4 1465 1260

Table 3: Results in parallel mode.

We may conclude that considerable speed-up is achieved when multiple threads are used,
This is caused by the locking and synchronisation
mechanisms in Monet, and by the fact that not all code can be run in parallel. In particular,
the communication with the data mining tool is still serial. Figure 2 depicts the number of

although this speed-up is not linear.

extensions per seconds as a function of the number of threads.
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6. CONCLUSIONS

The two-level architecture of our data mining tool provides a performance-effective solution to
data mining against real-life databases. The storage and access mechanism of the underlying
general purpose DBMS architecture leads to a solution, where classification of large databases
can be handled within seconds on a state-of-the-art multiprocessor.

We are currently investigating refinements of the quality control primitives to explore rule
enhancements. Other points of interest at the CWI are 1) the use of domain knowledge to
speed up the search process and distinguish interesting rules from trivial or already known
knowledge; 2) the determination of sample sizes; and 3) alternative search strategies, such as
simulated annealing or genetic algorithms.

The repetitive nature and overlap of successive queries call for automated support for
browsing sessions in the database server [7], thereby further offioading parts of the mining
activity to the DBMS kernel. Moreover, the policy to retain most information in main memory
during a transaction leads to a high demand on the available store. A more prudent memory
management scheme may be required to avoid clashes with other users and to scale beyond
10M objects easily.
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