
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1992

Architectural Support for Designing Fault-Tolerant Open Architectural Support for Designing Fault-Tolerant Open

Distributed Systems Distributed Systems

Salim Hariri
Syracuse University

Alok Choudhary
Syracuse University

Behcet Sarikaya
Bilkent University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation

Hariri, Salim; Choudhary, Alok; and Sarikaya, Behcet, "Architectural Support for Designing Fault-Tolerant

Open Distributed Systems" (1992). Electrical Engineering and Computer Science. 83.

https://surface.syr.edu/eecs/83

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Feecs%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/83?utm_source=surface.syr.edu%2Feecs%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Architectural Support for
Designing Fault-Tolerant
Open Distributed Systems

Salim Hariri and Alok Choudhary, Syracuse University

Behcet Sarikaya, Bilkent University

A distributed voting
algorithm and a two-

level hierarchy for
permanent memory are

key elements in this
scheme for supporting
fault tolerance in open

distributed systems.

distributed system consists of autonomous computing modules that inter-
act with each other using messages. Designing distributed systems is more

difficult than designing centralized systems for several reasons. Physical
separation and the use of heterogeneous computers complicate interprocessor

communication, management of resources, synchronization of cooperating activ-
ities, and maintenance of consistency among multiple copies of information. The

main advantages of distributed systems include increased fault-tolerance capabil-
ities through the inherent redundancy of resources, improved performance by

concurrently executing a single task on several computing modules, resource
sharing, and the ability to adapt to a changing environment (extensibility).’

Distributed systems cover a wide range of applications. Recent advances in

VLSI devices and network technology will further increase the use of distributed
systems. As the complexity of these systems increases, so does the probability of
component failure, which can adversely affect the performance and usefulness of

such systems. Thus, reliability, availability, and fault tolerance become important
design issues in distributed systems. Fault tolerance is the system’s ability to
continue executing despite the occurrence of failures. Increasing the reliability and

fault tolerance of a system involves a trade-off between the cost of failure (for
example, costs incurred by incomplete or incorrect computations) and the cost of

incorporating redundancy and recovery mechanisms.
Because of their inherent redundancy, distributed systems provide a cost-

effective way to apply fault-tolerance techniques. Open distributed systems pro-
vide universal connectivities among their components because their designs are
based on the standard protocols adopted by the International Standards Organi-
zation (ISO). In this computing environment, interacting processes communicate

through messages that traverse a stack of software layers. Consequently, applying
fault-tolerance techniques to execute critical tasks can be costly in terms of

execution time.
In this article, we first provide an overview of the main techniques for designing

50 0018-9162/92/0600-0050$03.00 0 1992 IEEE COMPUTER

fault-tolerant software and hard-

ware systems. We identify the
important features of the build-

ing blocks (computers, memo-

ries, buses, etc.) that can sup-
port an efficient implementation

of fault-tolerant open distribut-

ed systems (FTODS). Taking
into account the features of these
building blocks, we propose an

organization for FTODS. In

FTODS, the algorithms needed
for transferring files and syn-
chronizing the concurrent activ-

ities of the computing modules

- and for recovery - are IS0

standard protocols. We propose
the use of low-level voting and
recovery algorithms that can run

as a layer of software above the
operating system to make the
open distributed system an at-

tractive environment for apply-
ing fault-tolerant techniques.

Design
considerations for
fault tolerance

Glossary of acronyms

AAT - Atomic action tree
ACSE - Association control service etement
ASE - Applk&ion ~rviee element
CCR - Commitment, concurrency, and recovery
DVA - Dtstrtbuted vating algorithm
FTAY - Ftle transfer and nrana~ent
PTMP - Fault-&Want muitipnxessor
P’TODS - Fault-toterant open distributed systems
HPM - HterarchW permanent memory
JTM -Job transfer and manipulation
MPM - Magnet& permanent memory
WTF - Mean time to failure
ODP - Open distributed processing
ODS - Open distributed systems
OSI - Open Systems tnterconnection
RDA - Remote database access
StFT - &&ware-imptemented fault tolerance
WU - Semiconductor permanent memory
TP - Traffsactk3n processing
Wt - Transaction reliabikty
VTP - Virtual terminai protocol

the design to concurrently mask faults

and prevent their propagation to other

modules. The most common example of
static redundancy is the triple modular

redundant system. Another approach

Fault tolerance, a system’s ability to for providing fault tolerance is dynamic

continue executing its tasks despite the redundancy, which uses spare compo-

occurrence of failures, can be achieved nents to replace faulty modules once

by fault masking. Masking (also called they are detected. Still another approach

static redundancy) is incorporated into - a combination of these two, called

Strategies for designing fault-tolerant computers

Many techniques have been used to build fault-tolerant
computers. They include

Fault masking: Concurrent masking and correction of gen-
erated errors.

Fault defe@o#: Use of hardware and software mechanisms
to determine the Qccurrence of a failure. Fault detection
mechanisms include concurrent fault detection, stepwise com-
parison, and periodic testing to determine whether computers
or communication links are operating correctly.

Fault containment: Prevents propagatlun of errQneQus or
damaged information In the system after a fault occurs and
before it is detected.

F&t diagnosis: t&cates and identifies the faulty module re-
sponsible for a detected error.

Repair/recontisuration: Eliminates or replaces the faulty
module, or provides means to bypass it.

Fault recovery Corrects the system to a state acceptable
for continued operation.

Most of these techniques have been used to build such
computers as the Tandem 16 NonStop system, the Stratus

hybrid redundancy - applies
static and dynamic redundancy

to achieve fault tolerance. In
general, the design of a fault-
tolerant computer involves one
or more of the following strate-

gies: fault masking, fault detec-
tion, fault containment, fault
diagnosis, repairlreconfigura-

tion, and fault recovery2 (see

the sidebar “Strategies for de-
signing fault-tolerant comput-

ers”).
Designing a fault-tolerant dis-

tributed system is more involved
than designing a fault-tolerant

centralized system. Two main

problems must be addressed
during design:

(1) Concurrency control,
which involves scheduling con-
current execution of tasks on

different nodes such that their
results are identical to a serial

execution of the tasks (serializ-
ability requirement).

(2) Kedundancy management, which

involves preserving consistency among

replicated resources and maintaining
the state information with backup mod-
ules to support recovery.

Transactions are an important pro-

gramming paradigm for simplifying the
design of reliable distributed applica-

computer system, the VAXft 3000, the Teradata and Sequoia
systems, the fault-tolerant multiprocessor (FTMP), the soft-
ware-impfemented fault-toterance (SIFT) system, and AT&T’s
Electronic Switch System (ESS).ls The effectiveness of fault-
tolerance techniques can be measured by the “coverage,” de-
fined as the conditional probability of recwering from a fautt
once it occurs.3 It Is difficult to measure this param&X be-
cause it involves evaluating the probability that fauft detec-
tion, fault diagnosis, repairlrrrconfiguration, and recovery al-
gorithms are aperating correctly.

References

1. D.P. Siewiorek and R.S. Swarz, The Theory and Practice of&IL
able System Ckwign Digital Press, Bedford, Mass., 1982.

2. D.P. Siewiorek, “Fault Tabrance in Commercial Computers;”
Computer, Vol. 23, No. 7, July lQQ0, pp. 28-37.

3. J.B. Dugan and KS. Trivedi, ‘Coverage Modeling of Fault-Toter-
ant Systems,” IEEE Tmns. Computers, Vol. C-38, No. 6, June
1989, pp. 775-787.

June 1992 51

trol can be centralized or decentralized,

Transactions depending on whether the voting is done
at one site or multiple sites.’ In addition
to maintaining consistency of replicat-

A transaction can be defined as a collection of operations having the following

three properties’:
ed resources, redundancy management

is responsible for system recovery in the

Failure atomicify: Either all operations are performed successfully or their re-

suits are undone when a failure occurs.

presence of node crashes and communi-

cation link failures.

Permanence: The results of committed transactions will not be lost.

Serializability: The results of executing transactions concurrently are the same

as if they were executed serially.

Use of the transaction concept to model distributed computations provides a

convenient means to solve the concurrency control and redundancy management

problems.’ The concurrency control problem consists of three tasks: assigning an

order to all transactions, identifying conflicting transactions, and synchronizing

transactions to resolve the identified conflicts. Basically, there are three ap-

proaches to concurrency control: time-stamp-based schemes, locking protocols,

and optimistic techniques.2

References

1, Distributed Systems, S. Mullender, ed., Addison-Wesley, Reading, Mass., 1989.

2. P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, Reading, Mass., 1987.

tions (see the “Transactions” sidebar).

Techniques for managing redundancy
and maintaining consistency of repli-

cated objects are broadly character-

ized as centralized- and decentralized-

control algorithms. The centralized-
control approach supports strong con-
sistency, requirements and prevents

deadlocks, but it is susceptible to single
points of failure. The decentralized-con-
trol approach supports weak
consistency requirements

(when it is permissible to
have the state of some rep-
lica out of date for a short

period of time), and there-

fore it can potentially in-

crease a system’s through-
put. The primary-copy

algorithm’ applies the cen-

tralized-control strategy to

ensure the consistency of
replicated resources. In this

scheme. one node is desig-
nated as the primary node

and made responsible for
serializing updates. When

the update values have been

computed, the primary node

broadcasts them to all oth-
er nodes in the system. The
primary node then waits to

receive acknowledgments

Voting algorithms have also been used

to ensure consistency of replicated re-
sources. In this scheme, managers of

replicated resources use a common set

of rules to determine whether an up-
date can be made. The algorithm’s con-

layered architecture.’ IS0 committees

are working on an architecture in line

with the reference model for open dis-
tributed processing (ODP). This effort
aims to combine the OS1 model with a

database model to arrive at a global
framework for designing distributed

systems. In such an environment, any

computer would be open for communi-

cation and could be integrated easily
with the existing distributed systems to
perform certain tasks. Implementation

of the communication protocols as lay-

ered software tends to be very slow and
consequently limits the scope of appli-

cations for open distrr%ut-
ed systems.

Figure 1. The structure of an application layer.

The application layer is

implemented as several ap-
plication service elements

(ASEs), with one ASE

serving them all. This ele-

ment is called the associa-
tion control service element

(ACSE). and it provides

association (connection) es-

tablishment/disconnection
service to other ASEs. In

open distributed systems,

distributedapplicationsare
implemented by the servic-
es that the ASEs provide.

The application layer ser-

vices can be in the form of

file transfers using the
FTAM (file transfer and

management) protocol, re-
mote database access using

52 COMPUTER

from all nodes before processing the

next transaction. The main problem with
this scheme is that it permits no paral-

lelism among transaction executions.

Open distributed
systems

In this article, we investigate tech-

niques for providing architectural sup-

port to improve the execution of dis-
tributed applications that use the Open

Systems Interconnection standards. The

main goal of the OS1 reference model is
to provide universal connectivity among

heterogeneous computers. The refer-

ence model is designed to structure com-
munication hardware and software in a

the RDA protocol, job transfers using

the JTM (job transfer and manipula-

tion) protocol, a virtual terminal using

the VT protocol, and transaction pro-
cessing using the TP protocol.

To achieve reliable and fault-tolerant

computing in open distributed systems,
the ASEs use the commitment, concur-
rency, and recovery (CCR) services pro-

vided by a special ASE called the CCR

protocol.4 CCR is a standard two-phase
commit protocol that provides the ser-
vices needed to achieve concurrency

control and recovery during execution

of application layer tasks such as FTAM,
TP, VTP, etc. Figure 1 shows the OS1

communication model and the interac-
tions among the ASEs of the applica-

tion layer.

Architectural support
for FTODS

In this section we identify features
that should be supported by the com-
puting modules of open distributed sys-

tems to facilitate an efficient implemen-
tation of fault-tolerant algorithms. On

the basis of this criteria, we propose an

organization for fault-tolerant open dis-

FTODS computing module capabilities

tributed systems, the architecture of its

building blocks, and the required algo-
rithms and protocols. The architecture

of the computing modules should sup-

port reliable broadcasting, self-repair/
recovery, selective fault tolerance, and

permanent memory (see the sidebar
“FTODS computing module capabili-

ties”).

Organization of the FTODS. An
FTODS comprises a set of computing
modules we refer to as nodes. Nodes

communicate and interact with each
other by broadcasting their messages

on a redundant broadcast medium. A

The architecture of the computing modules should faciltate erations in a Sault-tolerant mode and tile rest in a normal
the efficient implementation of fault-tolerant dgorithms. This mode. This will lead to a signfficant imprcwement in peIfOf-
architectural support can be provid%d by the following capa- mance without compromising the fault-tdtrrance fequife-

bilities: ments. Conseguentiy, the arGh&otur% Of the computing mod-

Reliabk brcmdmksttng. Reliable broac&asting provides
ules should support ~~~~,r~gu~~~n such that the

means for a set of procasses to communicate in spite of fail-
processors Mthin a nod% can be canfigured for use as a

ures and is used frequently as a priiitive operation to fmple-
masking redundancy during eMGal operations and as a muiti-

ment reliable distributed appliGation8.l it has been shown that
processor system during noftG&Gal operations. This capabifi-

reliable broadcasting provides an efficient soft&ion to many
ty has been supported by the G.vmp, which contairis three

problems - for example, distributed consensus, distributed
processor-memory pairs that can operate independently and

synchronization, replicated update; and transaction manage-
can also providot fault-&&rant 0p%rations.4

ment in database systems.* Furthermore, theee r&able pfo- HhmmhW pmnaqemt nxmwy aystesn. Most fecrrvsry
tocols will run efficiently on the underlying architecture if its
communication n%twGrk has a broadcast capab&ty.

aigofithms needed to a~M?v% @Moferant computing rety on
permanent storage.’ St&&e st%f&ge is usad to stofe the

S%if-~6pai~ke~ov%~. Recovery in distributed systems with
chsckpoints of a system stat%: these ch%ekpoints will b% used

replicated resourcss, GOmputatlons, and database systems is
to restore the system to the previous faoft-free checkpoint

a nontrivial task. Moreover, the ov&!%ad of recovery can de-
state when a failure oc~ufs duthtg normal operation. Stable

grade system performanc% significantiy.2 Hardware recovery
storage is normally COnStrUCted using dual magnetic disks.

blocks have been proposed to reduce overtmad during the
Performance of fautt-tolerant algorithms Gan be improved sig-

save operations of system state &nd to speed up recovery
nificantly if stab& morage is implemented in a twa-tevel hier-

when faults are de&&d in a mu&iproG%ssor sy&%m.3 The tit-
arGhy in which sem&8nd&tGtor plsrnranen memory is used in

erature is rich with techniqt#s that can be used ttj support
the first level and magnrttic permanent memory is us%d in the

self-repair and reG0vef-y. For exampie, the us% of static re-
second. The SPM acts ae a buffef b%twe%n the professor

dundancy.to achieve fault masking has been used in’the
and the t&PM.

c.vmp (computer-voted multiprocessor) computer.* Atso, Kuhl
and Reddy” have addressed fauft,diagnosis at the system ft%fer%nG%s
level and the conditions under which nodes cefl diagnose the
failure of other nodes to achieve s&f-test. 1. u&ributed Sy&ms, 8. MutMUer, ed., Add&on-Wesley, Read-

The architecture of the computrng modules should support tng, Mass., 1989.

a hierarchical approach for r%cOv%ry such that mbst of the 2.
time-consuming tasks are ex%Gut%d at a lower level of this hi-

J. Chang and f&F. MsxemBwk, uRs&bts 6roatlcast Protocols,
ACM Tams. Com@#er @@ems, VG~. 2, No. 3, Aug. 1984, pp.

erarchy. The use of staticz (masking) redundancy and diag-
nostic routines simpl@iis the tasks involved in fault detection,
self-reconfiguration and repair, and recovery. Providing the
computing modules with these features cot&d sign$fkant#y re-

251-273.

3. Y.-H. Ies and KG. Shfn, Qestgn and Evaluation of a Fault-Toler-
ant ~~ Using ~s~~~ EfJocks,” MZE
Tram Computers, V#. G33,No. 2, Feb. lm, pp. t13-124.

duce the complexity of recovery at the application Isvel. With
the proliferation of VLBI chips, I/O processors, eontiolters,
and memory, it is now reasonable to use redundant compo-
nents in designing th8 computing modules.

Sekstive fault tobrane. Since not all task operations re-

4. D.P. Siswiorek and R.S. Swsrz, The Theow and Pracrice of Reli-
ebbs system Lwgn, @gital Press, Seuford, Maas., 1982.

5. J.G. Kuhl and SM. F&d&y, %sutt4.Xsgnosis in Fully Distrsbutetd
Systems,” Pm@. 1 l@ Iti‘i SJM~P. Fs&-Toisrsnt Gompuffi@ IEEE
CS Press, Los A&m&s, C&if., Order No. 350 (microfiche only),

quite fault tolerance, it is desirabIe to run on[y the critical op- June 1981, pp. lOO-f05.

June 1992 53

r---‘ -----------‘ -‘ --~------------.----------......----------.---..------..-----------.----,

Cluster 1

.I +
Intercluster bus

I __---------------...-------------.-------------.---,

Cluster n

Figure 2. Organization of the fault-tolerant open distributed system.

Figure 3. Node architecture.

54

set ot nodes torms a cluster. A cluster

(C,) communicates with another cluster

(C,) through the gateway associated with
each cluster (see Figure 2).

Node architecture. Each node hassev-
era1 processing elements which can be

configured dynamical ly to form either a

redundant computing module or a

shared-bus multiprocessor system. The
processing elements communicate with

each other via a redundant node bus.

Components of a node (as shown in
Figure 3) include a general-purpose
microprocessor, an input/output system,

and bus controller subsystems. The num-

ber of processing elements needed at
each node depends on the reliability

and fault-tolerance requirements. A

node has two operational modes: fault

tolerant and multiprocessing. For non-
critical tasks, a node’s processors can be

configured as a shared-bus multipro-

cessor system. For critical tasks, the
node’s processors execute the same task
synchronously and use a voting proce-

dure to mask out the effect of faulty
processors. The coordinator processor

(P,), which is chosen from the set of
fault-free processors according to apre-

defined selection procedure, supervises

the voting algorithm and communica-
tion with other nodes.

Hierarchicalpermanentmemory. Per-

manent memory provides secure data
storage for the state of a node and any

other information relevant to the exe-
cution of a transaction. Consequently,

it is possible to commit the transaction
atomically or undo all its actions should

that transaction be aborted. Permanent

memory can be implemented using mag-

netic or semiconductor technology. Fig-
ure 4 shows the organization of the hier-

archical permanent memory (HPM),
which uses a semiconductor permanent

memory (SPM) at the first level and
magnetic permanent memory (MPM)
at the second level. The SPM contains

two battery-backup RAM units, a com-
parator unit, and several bus interface
units. The MPM consists of dual mag-

netic disks and a comparator.

In the proposed HPM, the SPM acts

as a buffer between the coordinator pro-
cessor of a node and the MPM; as a

result, the HPM unit’ s effective access
time is reduced. The coordinator pro-
cessor of a node updates the SPM atom-

ically according to the following proce-
dure:

COMPUTER

(1) After obtaining a majority con-
sensus on the data to be committed, the

coordinator processor places the data

on the node bus with a write signal.

(2) The values from the bus are writ-
ten into the two semiconductor memo-
ries simultaneously.

(3) The comparator module immedi-

ately reads back and compares the up-
dated locations.

(4) If the values differ, an abort sig-
nal is sent to the coordinator processor

via the node bus indicating that the
values need to be rewritten. This pro-
cess can be repeated up to a predefined

number of times before an error signal

is generated. If the comparison opera-
tion produces a match, then the updat-

ed values are committed and an appro-

priate signal is sent to the coordinator
processor.

Figure 5 is a flowchart describing an

atomic write operation. Error detection
and correction codes can also be used to
increase the reliability and simplify the

diagnosis of the memory system. How-

ever, coding techniques alone cannot
provide fault tolerance against crashes
of memory devices. A similar proce-

dure is used for a read operation. In

addition to the fault-tolerance capabil-
ity hierarchical permanent memory pro-

vides, its use also improves the perfor-

mance of recovery protocols.

Cluster coordinator and gateway. For

each set of nodes forming a cluster (C,),
there is a node designated as the cluster

coordinator (C,). The nodes of a cluster
are ordered in a predetermined priority
list so that any fault-free node knows

the procedure for selecting the C, node.
The C, node periodically receives status

messages from the nodes in its cluster.

Also, the C, supervises the recovery

procedure when one of its nodes is in a
crashed state. A cluster’s gateway for-
wards all messages routed to nonlocal

nodes through the gateways connected

to the intercluster communication link.
The remote gateways pick up the mes-

sages addressed to one of their nodes.

Selective fault-tolerance capability.
Redundancy and fault-tolerant algo-
rithms are used to ensure atomic execu-

tion of critical tasks and system recov-

ery when faults occur. For example,
updating a bank account is a critical
task, and its execution should be con-
trolled by a commit protocol. In this

June 1992

Node bus

Figure 4. Hierarchical permanent memo] rY*

case, the critical operations are those

that update the bank accounts. Howev-

er, there are other operations that do
not affect the system consistency re-

quirements (reading a set of records,

searching the database, etc.), so they do
not need a commit protocol to control

their execution.
Since critical operations constitute

only a small part of all the operations,
redundancy in the architecture can be
exploited to improve performance

through parallel processing. However,

for a node to operate in two modes -
redundant mode and multiprocessing

mode-the system should provide tech-

niques for reconfiguration.
Support for two processing modes is

provided by monitors. A monitor is a

layer of software embedded above the

operating system. The tasks are repre-
sented using a graph whose nodes rep-
resent computational structures and

whose arcs represent the dependency
constraints between the computations.
Critical tasks are distinguished from

noncritical tasks using system primitives
and semantics of the computation. The

monitor maintains a queue of ready tasks
that can be executed concurrently as

soon as a processor is available. The
monitor schedules the tasks in a first-in,
first-out manner. However, scheduling

Abort

Same

Commit

Figure 5. An atomic write operation.

must incorporate execution of critical

tasks, since they require all the proces-

sors on a node.

Two scheduling schemes can be used
for scheduling critical tasks. The first
uses preemptive scheduling in which a

critical task to be scheduled preempts
all other tasks. When the monitor rec-

55

ognizes that the next task is critical, it

preempts the tasks on other processors.
In the second scheme, the monitor waits

for all current tasks to complete before

scheduling a critical task, and it does
not schedule any noncritical tasks dur-
ing that period, even if processors are

available. The first scheme has the ad-

vantage that critical tasks are complet-
ed as soon as possible. But the overhead
of preempting tasks can be significant
because the state of all the current pro-

cesses must be saved. The second scheme
does not require saving the states of the
current processes, but the processors

may remain idle for a long period, re-

ducing utilization and throughput.

Distributed voting algorithm. In our

analysis, we assume that a faulty pro-

cessor either stops producing data (fail-

stop model) or produces corrupted data

that the voting algorithm can recognize
and use as a symptom of a faulty proces-

sor. Processor faults can be caused by a

malfunction of its hardware and/or soft-
ware. A processor can assume only two
states: faulty or fault free. During the

fault-tolerance mode of operation, a
node’s processors are configured to ex-
ecute the same task (static redundancy)
and the system memory is reconfigured

as a hierarchical permanent memory. A
coordinator processor (PC) is associated
with each node. The PC supervises the

distributed voting algorithm and com-

mits the tasks’ execution. Selection of

the P, follows a predefined procedure.
For example, if each processor is identi-

fied by a number (ID), then PC can be

selected as the fault-free processor with

the maximum ID value.

Figure 6 describes the voting algo-

rithm and related procedures for distrib-
uted voting in the FTODS environment.

Each processor P, computes a result (or

a set of results) that must be voted on
before it can be committed. The func-
tions used to compute these results de-

pend on the application transactions. In

phase 1, these results are computed and
each Pi participating in the distributed
computation broadcasts its results on

the node bus using the broadcast primi-

tive. Phase 2 involves voting on the re-
sult and determines whether the result

can be committed. Each Pi receives the

values from all other Pi’s and indepen-
dently determines the confidence in the

values by comparing them.

Each Pi in a node does the f&owing, (15 i 5 n)

1. vote = function (“parameters”) /*computation de-pends on the appiication*/

2. broadcast (“node”, vote, P-name) /*broadcast “vote” to all proc&sors (P-name) in “node”*/

te, P-name) 1 I j I n, j f i /*rec. vote from all processors*/
/*Each Pi does the foliowinf

vote01 = recv,msg (Pi, vo
If (vote[i] = voteb]) Ff, 1 i i, j r; PI

begin
result = vote[i]; &es&# contains vote to be committed*/
vote-commit (“all”); /*vote commit with param *all”*/

end;
else if (voteM = votetn) for at least k votes s.t. k r [n/21

begin
result = v?te of maj@y; I*resuit contains value of the majority*/
if ((Pi = PC) -and. (votefil f result)) /*if current coordinator not in majority*/

select-coordinator @$ e majority); /*select new coorditiator*l
vote-commit (“rmajority”); /*commit the majority value*/
if (P, = P,)

local-recovery (for all P, not in majority); /*start recovery of processors not in majority*/
end,

else I*no majority *I

b&
Pi (status) = lacal_ctiegnostic (Pi), 1 S i s n /*start local diagnostics*/
if (Pi (status) = “okay”)

begin
select-coordinator (“node”); /*select new coordinator from “okay” processors*/
if (Pi = PC) /*new coordinator does the following*/

vote,tzmMt (new-majority); /*commit new majority*/
end;

else if (P< (status) _ _ -If , .,,- - _-.-. --‘r _---------_.-- - ----
print (“comp&~ node failure, external recov&-y requi&d”);

end.

Figure 6. The distributed voting algorithm.

56 COMPUTER

There can be three possible outcomes

of this comparison. First, all values match
with each other - a complete consen-
sus. In this case, the coordinator proces-

sor P, broadcasts the result to all P,‘s.
Each P, acknowledges by sending a

broadcast acknowledge message, and
the result is written in the permanent
memory.

In the second outcome, only a major-
ity is obtained on the result and the

values of some P,‘s do not agree with
that of the majority. In this case, there
are two groups of processors, those be-
longing to the majority and those that

don’t. Since a majority is sufficient to
commit a new value, the distributed
voting algorithm (DVA) is executed such

that it uses the majority result as the

correct one. If the current coordinator
is part of the majority, it coordinates the
current DVA and initiates a recovery
procedure for the P,‘s in the minority. If

the current coordinator is not in the

majority, then the P,‘s belonging to the
majority select a new coordinator using

the “select-coord()” procedure. This
new coordinator now coordinates com-

mit and recovery for the minority pro-
cessors.

In the third outcome, a majority is not
obtained. This triggers the “self-diag-
nostic()” procedure associated with each
P,. The self-diagnostic procedure returns

the status of each processor as either
“okay” or “failed” (actually, obtaining

anything other than “okay” implies
“failed”). If none of the processors re-
turn a status “okay,” the node (all II

processors in the node) is considered
“failed.” This requires external recov-
ery, which the cluster coordinator will

perform as part of the distributed node

recovery algorithm. If some P,‘s are okay
after the self-diagnostic procedure, they
broadcast their status and then select a
new coordinator from this new set. Vot-

ing is repeated for the new set, and the

recovery procedure is initiated for oth-
er Pi’s.

Distributed node recovery algorithm.

One node is designated as the cluster
coordinator (C,) for each cluster. Selec-

tion of the C, follows a predefined pro-

cedure similar to that used in selecting

the P, of a node.
Figure 7 describes the distributed node

recovery algorithm. Each PC of a node

periodically broadcasts a status mes-

sage on the local broadcast medium.
The current C, checks the status of all

node coordinators. If any node is crashed
and does not send a status message to
the C,, the C, copies the state of that
node as well as the node’s task-queue.

It then assigns these tasks to other nodes

in the cluster, choosing nodes with the

minimum load. If a node that crashed
earlier has recovered and sends an
“okay” message to the C,, the C, up-
dates its own record to reflect this

Each PC, (node coordinator) in a cluster does the following, (15 i I m)

Forever do /*periodically*/
broadcast (LLcluster”, ststus, PC) /*broadcast “status” to all node coordinators in the cluster*/

I&The cluster coordinator is one of the node coordinators*/

recv,msg (PC,, status, P-name) 1 5 j I rn, j # i /*rec. status from all node coordinators*/

If (PC, = C,) /*if I am the cluster coordinator*/
begin

For (i = 1 tom) do /*check status of all nodes*/
If (status (PC,) f “okay”) /*any failed node?*/

begin
state = Read (PC,, state-block) /*read the state of Pci from its I-IPM*/
task-queue = Read (PC,, task-queue) /*Obtain the tasks of PC,*/

Pq = select (m&load, cluster) /*choose a node with minimum load currently*/
Send (PC+, state) /*copy state of crashed node to the chosen node*/
Send (PC, task-queue) /*assign tasks to the new node*/
ret,status (PcJ = failed /*record this with C,*/
recover (PC,) /*recover the crashed node by copying updated information*/

/*this recovery may not always be possible if the failed node’s hardware needs to be replaced (i.e., if catastrophic
failure oecurred)*I

end;
else if ((status (PC,) = okay) -and. (ret-status (PC,) = failed)) /*PC, was repaired but record was not*/

ret-status (Pci) = okay /*update C, record*/
end,

else if (PC, f C,> /*if I am not the cluster coordinator*/
if (status (C,) f “okay”) /*the cluster coordinator failed*/

select-ciuster-coordinatoro; /*select new cluster coordinator*/
end.

Figure 7. The distributed node recovery algorithm.

June 1992 57

Procedure vote-commit (parameter: set-processor);

/*set-processor: a list of processors that are fault-free, e.g. all, majority etc.*/

if (Pi = PC) /*if E am the coordinator*/
begin

broadcast (“set-processor”, result, P-name); /*reliable broadcast result to processors in “set-processor”*/
k = II set,processot II; I*cardinality of set-processor*/
forj=ltok

tecv,msg (Pr E setsrocessor, beast-ack, P-name); /*rev. acknowledgment from processor in
set-processor*/

exit;
end,

else if ((Pi r PJ -and. (Pi Q set-processor)) /*other than coordinator processor*/
begin

recv-msg (PC, result, P-name); /*rec. result from coordinator*/
beast-a& (PC, P-same); /*acknowledge to the coordinator*/

end;
return;

end vote-commit.

Procedure select,mrdinator (parameter: set-processor);
if (my-node (status) = “okay”)

begin
broadcast (set-processor, status, P-name); /*broadcast status*/
recv-msg (set-processor, status, P-name); /*rec. status from other processor*/

if (my-node = max (set-processor)) /*e.g. largest node-id */
mynode = P,; /*I am new coordinator*/

end;
return;

end select-coordinator

Figure 8. Some procedures used in the distributed voting algorithm.

change. If other node coordinators do
not receive a status message from the

C,, that is, if the C, itself failed, then

node coordinators select a new C, fol-
lowing a procedure similar to that for
selecting a node coordinator (see Fig-

ure 8). Once a new C, is selected, it

repeats the above procedure to check
for node failures.

Implementation issues. The architec-
tural support provided by the comput-
ing modules of fault-tolerant open dis-
tributed systems supports the trend

toward open distributed systems. In

FTODS, each computing module of a
node has its own operating system and a
runtime system that includes the dis-

tributed voting algorithm, the distribut-

ed node recovery algorithm, and the
monitor (to schedule tasks and switch

them between the two modes of opera-

tion, and to do other housekeeping
tasks). The fault-tolerance, concurren-
cy control, and redundancy management

algorithms use standard protocols and
are implemented at the application lay-

er as application service elements. In

this environment, development of reli-
able applications is significantly easier

because they are not concerned with
implementing the fault-tolerance, con-

currency, and recovery techniques; these
techniques are provided to the applica-

tions as services by an ASE such as the
CCR protocol.

We can better understand this archi-
tectural support by studying the main

steps incurred during execution of a
standard two-phase commit protocol

(such as the CCR protocol). For exam-

ple, to execute a transaction atomically,
the master node running this transac-

tion broadcasts a message (C-Begin) to
all nodes involved in the transaction
execution, indicating the beginning of

an atomic execution. Since the underly-
ing communication structure of FTODS
supports broadcasting, we expect the
transfer of the C-Begin message to be

efficient. Once the C-Begin message is
received at each slave node, the moni-

tor switches to the fault-tolerant mode

of operation, stores the system state in
the hierarchical permanent memory, and
checks the possibility of running the

actions associated with the transaction.

If an action can run successfully, the
slave node sends an “okay” message
(C-Prepare); otherwise, it sends a “fail-

ure” status message (C-Refuse).
Redundant execution of actions in

the fault-tolerant mode, use of the dis-

tributed voting algorithm with provi-

sion to recover by itself, and use of two-
level permanent memory will all

contribute to improved performance,

reliability, and fault tolerance. In the
second phase, if the master node re-
ceives a C-Prepare message from all
the slave nodes, it commits the transac-

tion by broadcasting the C-Commit mes-

sage; otherwise, it broadcasts the C-
Rollback message. Also, tasks in this
phase will complete quickly because the

58 COMPUTER

proposed architecture supports the
broadcast capability and the rollback

procedure.
We believe that providing architec-

tural support at the node level and using
standard protocols will significantly sim-

plify the development of reliable dis-

tributed applications, thereby making
open distributed systems an attractive
computing environment.

either case 1 or case 2, that is, f 5 N,, - 1.
The expression for node reliability is

obtained by computing the probability
that at least one processor is operating

successfully and is given by

N,-1

R, (N,) = C x Rbus c rNn-f (1 - r)’
f=O

(1)

Reliability analysis of
FTODS

Node reliability. Assume that r rep-
resents the reliability of each processor

for a given period of time T. This reli-

ability measure should take into account
the failures caused by hardware as well

as by software. Detailed Markovian

methods can be used to predict the com-
bined reliability measure that takes into
consideration hardware faults and soft-
ware errors - for example, design er-

rors related to system overloads, over-

flow/underflow of queues, etc. Assume
also that a processor failure is exponen-
tially distributed with a failure rate h.

Let the number of processors in a node
be N,, and f denote the number of faulty
processors at a given time t. Depending

on the number of faults, the distributed

voting algorithm uses different proce-

dures, as follows:

Case 1: Number of faultsf 5 rN,/21. In

this case, a majority vote is attainable

and the results obtained by the faulty
processors can be masked out concur-

rently by the coordinator processor with-

out any extra delay.
Case 2: Number of faults rN,,/2i If I

N, - 1. In this case, the majority of

processors are faulty. However, there is

at least one fault-free processor that

can be identified by the diagnostic rou-
tines. This processor ensures reliable

execution of the tasks assigned to its
node, but with a time penalty that re-

sults from invoking the local diagnostic
procedures.

Cuse3: Number of faults f = N,. In this

case, all processors of a node are faulty;
consequently, the node is in a failed
state. The cluster coordinator invokes
the distributed node recovery proce-

dure to start a higher level recovery
procedure, as previously described.

Node reliability can thus be defined

as the probability of the node’s being in

is the binomial factor and is given by

N,,!

(Nn-f)!f!

In the above expression, the term

rNn -1 denotes the probability of having
N,, - f fault-free processors, while (1 - ry
denotes the probability of having f faulty

processors. The

NH (1 f

denotes the number of combinations in
which there are f faulty processors cho-
sen from N,, in a node. If the coverage

factor is equal to one, the node can be

viewed as a parallel redundant system

with a redundancy level of N,, Node
reliability can be evaluated as (1 -

(1 - r)Nn).

Node reliability can be expressed with
respect to time, if we assume that the
processors fail according to an expo-
nential distribution function with a fail-

ure rate h. Consequently, node reliabil-

ity at a given time t is given by

(exp-‘)Nn-f(l-exp-h’)f

(2)

Coverage C is an important parameter,

and system reliability is extremely sen-

sitive to its value. The coverage factor
reflects the system’s ability to recover

automatically from a fault once it oc-
curs during normal operation. It de-

pends on the techniques used to detect,
mask, locate, and repair faults, and to
reconfigure and recover from the ef-
fects of a failure. The methods used to

predict coverage are therefore based on

assumptions about the expected behav-
ior of faults and how they are handled

once they occur. Dugan and Trivedi5

presented several methods for predict-
ing the coverage factor for different

types of error behavior assumptions. In
FTODS, a distributed voting algorithm

is used to detect faulty processors and
to mask their errors dynamically. There-

fore, no recovery is needed as long as a
majority vote can be obtained (case 1).
Also, this algorithm uses a redundant
system bus for comparing the results

obtained by the processors. Since there
is no single point of failure in the FTODS
architecture and in the fault-tolerant

algorithms, the coverage C is expected
to be high; in this analysis it is assumed

to be 1.
A node’s mean time to failure can

also be evaluated from the above ex-

pression (Equation 2) by integrating
the node reliability expression:

MT-IF = j’,Y;Rn

To measure the reliability improvement

as a result of introducing redundancy,

we define a measure called the reliabil-
ity improvement factor (RIF). This
measure describes the relative increase

in reliability for using N,, redundant pro-

cessors to the maximal possible increase
in reliability. Let’s assume that R,,(l)

denotes the simplex reliability of a node.

The maximal increase in reliability is
obtained when R,(l) is increased to 1.
The RIF for a given redundancy level

(N,,) is computed as

RIF = R,(NJ-R,(l)

l-R,(l)

Figure 9 shows the RIF obtained for
three different levels of redundancy (3,

4, and 5). In this analysis, the reliability

of a simplex bus is assumed to be a
constant and equal to 0.95, because we
are interested in studying the effect of
redundancy level on node reliability. It

is clear that more than 95 percent of
the possible reliability improvement can

be achieved when four processors are

used. However, a triple modular re-
dundancy configuration (level 3) could

June 1992 59

Figure 9. The effect of redundancy level on node reliability.

be sufficient for situations in which

the processor’s initial reliability is high.

The same analysis can be used to mea-
sure the improvement in the MTTF

when different redundancy levels are

used.

Reliability analysis of an atomic trans-

action. Let T denote a transaction with
a collection of iz actions, that is, T = a,,

a2,..., a,, where a, represents an action
to run on a node.

The set of nodes that run the actions

of a given transaction (T) and the set of
links connecting them form a tree re-
ferred to in CCR protocol as an atomic

action tree. An AAT is assumed opera-
tional when all its components (nodes
and links) are operational.

Figure 10 shows a transaction consist-

ing of three actions a,, a2, and a, in which
each action can run redundantly on two

nodes of a cluster. In this example, ac-

60

tion a, can run on node x, or xZr a, can

run on node xj or x.,, and a3 can run on x5
or x6, Because of this redundancy, eight

possible trees can be used to run this
transaction:

AAT,=x 4 x x x x x 9 b, 4 gl gz x xxx 1 3 5 g3

AAT, =xb,Xb2Xb~Xb4Xg,Xg2Xg~X1X3X6

AAT,=x 4 x x x b4 x x b, b, 81 gz x xxx 1 4 5 gi

AAT4=xqXb~Xb,Xb~~g,~gZXg,X1x4X6

AAT,=x 4 x x x b4 x x bz 4 81 gz x xxx 2 3 5 a

~~~6=xqxb~Xb~Xba,Xg,XgzXg~X2X3X6 

AAT,=x 4 x x x x x 9 b3 b4 g, gz x xxx 2 4 5 a 

AAT,=x x x x x x x xxx 
k b, b, b4 gi gz 83 2 4 6 

Transaction reliability (TR) can be 
defined as the conditional probability 

that at least one of these trees is opera- 
tional. The literature is rich with algo- 
rithms to evaluate this probability, and 

if we apply the Syrel algorithm,6 TR can 

be given as 

+ rlr4r5q3 + rlr4r6w5 + r2r3r59, 

+ rzr3r6wh + r2r4r5w3 + r2r4r69d3951 

where qi denotes the unreliability of 

node i and is equal to (1 - r,). 

A transaction’s reliability can be in- 

creased by introducing redundancy so 
that its actions can be executed on sev- 

eral processors. Redundant execution 
of actions can be performed on proces- 
sors located at remote nodes, all at one 

node, or a combination of these two 
cases. For the network shown in Figure 

10, the transaction reliability is ana- 
lyzed for the following three cases: 

Case I: Execution of redundant ac- 
tions at remote nodes. In this case, each 
node has only one processor and the 

actions are executed on remote nodes. 

Concurrency control and redundancy 
management are complicated because 
of the remote distribution of the redun- 

dant computations. 

Case 2: Execution of redundant ac- 
tions at local nodes. In this case, each 

node has four redundant processors that 

can concurrently execute an action of T. 
Since all of the redundant computa- 
tions run on the processors of the same 

node, concurrency control and redun- 

dancy management are simplified sig- 
nificantly. 

Case 3: Execution of redundant ac- 

tions on remote redundant nodes. This 

is a combination of the first two cases. 

Figure 11 shows the transaction reli- 
ability for these three cases. Note that 

the transaction reliability for the sec- 
ond case is better than that of case 1. 
However, case 2 has twice as many re- 

dundant processors as case 1. Further- 
more, there is no significant improve- 
ment in reliability for case 3 over case 2 

in spite of the fact that case 3 uses twice 

the redundancy of case 2. Moreover, 
the algorithms needed to achieve con- 

currency control and redundancy man- 
agement in case 3 are more complicated 

than those of case 2 because the redun- 
dant actions run on both local and re- 
mote nodes. 

From this analysis, we can conclude 

that replicating the computations local- 
ly represents a cost-effective solution 
that maximizes reliability and also sim- 

COMPUTER 



plifies the algorithms required to achieve 
recovery and consistency control. In 

FTODS, the computing modules are 
designed to provide architectural sup- 
port to run transactions in a configura- 
tion similar to that described in case 2. 

T 
he computing modules of the 

proposed FTODS support an 
efficient implementation of 

fault-tolerant algorithms. The use of 
static redundancy within each node guar- 

antees fault tolerance and reliable exe- 
cution of critical tasks. Furthermore, 

the use of local diagnostic routines to 
identify faulty components reduces the 
complexity of recovery algorithms sig- 
nificantly. alongwith trafficon the com- 

munications network, since these func- 
tions are executed using the processors 

available at a node. In transaction-pro- 

cessing-based distributed systems, per- 
manent memory is required for achiev- 
ing atomic transactions. In FTODS, the 

permanent memory is designed as a two- 

level hierarchy with semiconductor tech- 
nology used in the first level and mag- 

netic technology in the second. Providing 

semiconductor permanent memory im- 
proves performance significantly be- 
cause transactions can be committed 

much faster than by accessing magnetic 

disks. H 

References 

1. J.A. Stankovic, “A Perspective on Dis- 
tributed Computer Systems,” IEEE 
Trans. Computers, Vol. C-33,No. 12, Dec. 
1984, pp. 1,102-1,115. 

2. V.P. Nelson, “Fault-Tolerant Comput- 
ing: Fundamental Concepts,” Computer, 
Vol. 23, No. 7, July 1990, pp. 19-25. 

3. Distributed Systems, S. Mullender, ed., 
Addison-Wesley, Reading, Mass., 1989. 

4. AS. Tanenbaum, Computer Networks, 
Prentice Hall, Englewood Cliffs, N.J., 
1988. 

5. J.B. Dugan and KS. Trivedi, “Coverage 
Modeling of Fault-Tolerant Systems,” 
IEEE Trans. Computers, Vol. C-38, No. 
6, June 1989, pp. 775-787. 

6. S. Hariri and C.S. Raghavendra, “SYR- 
EL: A Symbolic Reliability Algorithm 
Based on Path and Cutset Methods,” 
IEEE Trans. Computers, Vol. C-36, No. 
10, Oct. 1987, pp. 1,224-1,232. 

Figure 10. An example of a transaction execution. 

0.80 

0.75 

0.70 

f 
0.65 

$f 0.60 

.j Q-55 

f 0.50 
I2 
I- 0.45 

0.40 

0.35 

0.30 

. .--- 
andre 

4 

Rdwdancy level 4 
drag; action. 

t Redundancy level 4 
ct no redundant action. - - 

t 

bl 
GaeeZ * 

I I I I I I 1 I 
I 

I I -, 

0.8 0.82 0.84 0.86 0.88 0.90 0.@2 0.94 0.96 0.96 1.0 

* 
/ 4 No redundancy 

but duplicate mtion. A--_ a 

Processor rekbilii 

June 1992 Figure 11. The effect of redundancy level on transaction reliability. 



Salim Hariri is an assistant professor in the 
Electrical and Computer Engineering De- 
partment at Syracuse University, Syracuse, 
New York, and has worked and consulted at 
AT&T Bell Labs. His research focuses on 
computer architecture, distributed systems, 
fault-tolerant computing, and reliability and 
performance analysis of parallel and distrib- 
uted systems. He is the program chair for the 
First International Symposium on High-Per- 
formance Distributed Computing (HPDC 
l), scheduled for September 9-10. 

Hariri received a BSEE, with distinction, 
from Damascus University, Damascus, Syr- 
ia, in 1977; an MSc from Ohio State Univer- 
sity, Columbus, Ohio, in 1982; and a PhD in 
computer engineering from the University 
of Southern California. He is a member of 
the IEEE, the IEEE Computer Society, and 
the ACM. 

Alok Choudhary has been on the faculty of 
the Department of Electrical and Computer 
Engineering at Syracuse University since 
1989. His research interests include parallel 
computer architectures, software develop- 
ment environments for parallel computers, 
and computer vision. He was a guest editor 
for the February 1992 issue of Computer on 
parallel processing for computer vision and 
image understanding. 

Choudhary received his BE in electrical 
and electronics engineering from the Birla 
Institute of Technology and Science, Pilani, 
India. He obtained an MS from the Univer- 
sity of Massachusetts, Amherst, and a PhD 
from the University of Illinois, Urbana-Cham- 
paign, both in electrical and computer engi- 
neering. He is a member of the IEEE Com- 
puter Society and the ACM. 

Behcet Sarikaya is on the faculty of Bilkent 
University, Ankara, Turkev. and was orevi- 

-iI 1 

ously with the Department of Computer Sci- 
ence and Operations Research at the Uni- 
versity of Montreal. His research interests 
include all aspects of conformance testing 
and high-speed networks. He has authored 
numerous published papers on communica- 
tion protocols and served on the program 
committees of three protocol conferences. 

Sarikaya received a BSEE, with honors, 
and an MSc in computer science from the 
Middle East Technical University, Ankara, 
Turkey, in 1973 and 1976, respectively, and a 
PhD in computer science from McGill Uni- 
versity, Montreal, in 1984. He is a senior 
member of the IEEE, and a member of the 
IEEE Computer Society and the ACM. 

Hariri and Choudhary can be contacted at Syracuse University, Department of Electrical and Computer Engineering, Syracuse, NY 13244. 
4100; e-mail hariri@cat.syr.edu or choudhar@cat.syr.edu. Sarikaya’s address is Bilkent University, Department of Computer Engineering 
and Information Sciences, Bilkent, Ankara 06533, Turkey; e-mail sarikaya%trbilun.bitnet@cunyvm.cuny.edu. 

THIRD INTERNATIONAL WORKSHOP ON 
NETWORK AND OPERATING SYSTEM SUPPORT 

FOR DIGITAL AUDIO AND VIDEO 

November 12-13, 1992, San Diego, California 

@ 

Sponsored by IEEE Communications and Computer Societies 

In cooperation with ACM SIGCOMM, SIGOIS, and SIGOPS 
4b 

. 

CALL FOR PAPERS 

Technological advances are revolutionizing computers and networks so as to support digital continuous video and 

audio, leading to new design spaces in computer systems and applications. 

Program Committee: P. Venkat Rangan (Program Chair), Sid Ahuja, Gordon Blair, Rita Brennan, S. 

Christodoulakis, Flaviu Cristian, Domenico Ferrari, Riccardo Gusella, Ralf Herrtwich, Andy Hopper, Jim 

Kurose, Desai Narasimhalu, Duane Northcutt, Craig Partridge, Jon Rosenberg, Jean-Bernard Stefani, David 

Sincoskie, Daniel Swinehart, Stephen Casner, David Tennenhouse, and R. Popescu-Zeletin. 

Relevant Areas: Multimedia Communication, Collaboration Management, Multimedia Storage Architectures, 

Media Synchronization, Multimedia Programming, Operating System Extensions for Multimedia, Admission 

Control and Real-Time Support, Multimedia Environments 

Instructions for Submitting Papers: Authors are requested to submit a 500-2000 word position paper or 

extended abstract of a full paper (in raw, unformatted text) by electronic mail to av-workshop@cs.ucsd.edu. 

Attendance will be limited to about 60 active researchers. For further information, contact the Program Chair at 

(619) 534-5419 or by e-mail to venkat@cs.ucsd.edu. 

Proceedings will be published by Springer-Verlag, and best papers forwarded to selected journals for publication. 

IMPORTANT DATES: Abstracts due: August 15, 1992, Acceptance notification: September 15, 1992, 

Final paper due: October 15, 1992 


	Architectural Support for Designing Fault-Tolerant Open Distributed Systems
	Recommended Citation

	tmp.1286291883.pdf.2c15f

