
Architectural Support for Fair Reader-Writer Locking

Enrique Vallejo∗, Ramón Beivide∗, Adrián Cristal†‡, Tim Harris§, Fernando Vallejo∗, Osman Unsal†, Mateo Valero†¶

∗University of Cantabria, Spain †Barcelona Supercomputing Center, Spain §Microsoft Research Cambridge, UK
‡IIIA - Artificial Intelligence Research Institute, CSIC, Spain ¶Universitat Politècnica de Catalunya, Spain

Abstract—Many shared-memory parallel systems use lock-
based synchronization mechanisms to provide mutual exclusion
or reader-writer access to memory locations. Software locks are
inefficient either in memory usage, lock transfer time, or both.
Proposed hardware locking mechanisms are either too specific
(for example, requiring static assignment of threads to cores
and vice-versa), support a limited number of concurrent locks,
require tag values to be associated with every memory location,
rely on the low latencies of single-chip multicore designs or are
slow in adversarial cases such as suspended threads in a lock
queue. Additionally, few proposals cover reader-writer locks
and their associated fairness issues.

In this paper we introduce the Lock Control Unit (LCU)
which is an acceleration mechanism collocated with each core
to explicitly handle fast reader-writer locking. By associating a
unique thread-id to each lock request we decouple the hardware
lock from the requestor core. This provides correct and efficient
execution in the presence of thread migration. By making the
LCU logic autonomous from the core, it seamlessly handles
thread preemption. Our design offers richer semantics than
previous proposals, such as trylock support while providing
direct core-to-core transfers.

We evaluate our proposal with microbenchmarks, a fine-
grain Software Transactional Memory system and programs
from the Parsec and Splash parallel benchmark suites. The
lock transfer time decreases in up to 30% when compared to
previous hardware proposals. Transactional Memory systems
limited by reader-locking congestion boost up to 3× while still
preserving graceful fairness and starvation freedom properties.
Finally, commonly used applications achieve speedups up to a
7% when compared to software models.

Keywords-reader-writer locks; fairness; Lock Control Unit;

I. INTRODUCTION

Critical sections protected with locks limit the performance

of parallel programs when their execution has to be serial-

ized. They can be divided in three phases: Lock transfer,

load/compute and lock release. The second phase is innate

to the parallel algorithm, while the first and third phases are

dependent on the implementation of locks and only required

for correct execution. The same access pattern applies to data

structures protected by read-write locks, which allow for a

single writer or multiple concurrent readers. To provide the

maximum performance, a parallel system should provide a

low-overhead implementation of locks.

Basic single-cache-line locks such as test-and-set (TAS) or

test-and-test-and-set (TATAS) generate coherence contention

among threads when accessing the shared resource, which

degrades performance. Queue-based locks [27] are based on

local spinning (which reduces contention) and provide FIFO

order (which guarantees fairness) but have a more complex

transfer mechanism and incur a high memory usage. While

fairness is a desirable property, strict FIFO order leads to

starvation if the recipient thread is not active when receiving

the lock grant. He et al. propose [15] queue-based locks

with timestamps so that preempted threads are detected

and removed from the queue. Also, biased locks [8], [31],

accelerate the execution when taken repeatedly by a single

thread.

Other interesting requirements for current workloads are

reader-writer (RW) locks and trylock support. Reader-writer

locks allow for a single lock owner in write mode or

multiple concurrent readers. This imposes additional fairness

requirements, since some policies (such as readers or writers

preference) can generate starvation [28]. Trylocks allow the

requestor to abort waiting and perform a different action

if it takes too long. For example, many current Software

Transactional Memory (STM, [14]) systems use trylocks,

and as argued by Dice and Shavit [9] they would benefit

from an efficient implementation of RW locking.

Different hardware mechanisms have been proposed to

support and/or accelerate lock handling. They will be an-

alyzed in detail in Section II. However, they all incur

excessive requirements or suffer from limitations that restrict

their use as a generic fine-grain locking mechanism or as the

basis to build STM systems.

In this paper, we present a flexible hardware mechanism

for multiprocessor systems which is able to support word-

level fine-grain reader-writer locks with fairness and fast

transfer time. Our mechanism is distributed and completely

decoupled from the core or L1, allowing for a modular

design. The main contributions of this paper are:

• We introduce the Lock Control Unit (LCU), a hardware

mechanism to accelerate reader-writer locking with fairness

guarantees. The LCU preserves correct execution in presence

of thread suspension, migration or aborted requests (trylock)

without blocking or suffering a significant performance

degradation. Altogether, these characteristics make the LCU

suitable for fine-grain RW-locking or for building current

STMs.

• We present a proposal for managing resource overflow,

providing mechanisms to guarantee forward progress inde-

pendently of the number of locks being accessed.

• We conduct a detailed evaluation running different



Figure 1. Comparison of different locking mechanisms.

benchmarks and show that our system outperforms previ-

ous implementations. We evaluate our proposal using three

workload classes: microbenchmarks, a fine-grain Software

Transactional Memory system and classical parallel bench-

marks. The lock transfer time decreases in up to 30% from

previous proposals; STM systems limited by reader-locking

congestion boost up to 3×; finally, widely used parallel

benchmarks achieve speedups up to 7% from previous

software models.

Our system relies on two new architectural blocks: The Lock

Control Unit (LCU) for exploiting locality and fast transfer

time, and the Lock Reservation Table (LRT) to manage lock

queues. Each core implements a LCU, a hardware table,

with entries dynamically reserved for the requested locks. It

is responsible for receiving the thread’s requests and building

the queues. Each memory controller provides an LRT which

is responsible for the allocation and control of new lock

queues. LCUs and LRTs communicate to each other for

requests, transfers and releases of RW-locks, while threads

only query the local LCU. To minimize transfer time, lock

transfers are direct from one LCU to the next.

Contrary to many hardware locking proposals, we asso-

ciate locks with logical threads by using a threadid identifier.

This decouples the lock from the physical cores, allowing

for thread suspension and migration with a graceful per-

formance degradation. We also handle the unavoidable case

of resource overflow: The LRT is backed by main memory,

while the LCU contains specific entries to guarantee forward

progress.

II. RELATED WORK

Multiple lock implementations, both software-only and hard-

ware accelerated, have been proposed and evaluated. Al-

though we discuss below certain details of the most relevant

ones, Figure 1 summarizes their main characteristics. The

meaning of some columns of the table follows; the label

of other columns are conventional. Local spin refers to

implementations that wait for the lock iterating on a per-

thread private location or structure; it is typical in queue-

based locks and has the benefit of not sending remote

messages while spinning. Queue eviction detection refers

to the capability of detecting evicted threads in the queue

before they receive the lock, so they can be removed to

prevent temporal starvation. Scalability refers to the system

behavior as the number of requestors increase. Single-line

locks present coherent contention and scale poorly, while

queue-based approaches remove this problem and scale very

well. Regarding hardware proposals, they can be limited to a

single-bus or single-chip, what can restrict their scalability

for larger systems. Some proposals can fail if one thread

migrates or if the number of threads exceeds the number of

cores. This happens typically because locks are assigned to

hardware cores instead of threads. Memory/area overhead

refers to the memory required for the lock, or to the

area cost in hardware implementations. Queue-based locks

require O(n) memory locations per lock for n concurrent

requestors. Some hardware proposals can have high area

requirements (for example, tagging the whole memory) or

limited structures per core. The number of Transfer messages

will limit the base transfer time latency of the system.

It can depend on the specific coherence protocol, but in

general, hardware proposals outperform software-only locks.

Finally, requiring changes to the L1 design is undesirable,

since it implies modifying a highly optimized structure, and

possibly, the coherence protocol. As shown, our proposal

satisfies all these desirable requirements. Next, we review

the details of the most relevant proposals.

Multiple software implementations of locks exist. A good

survey can be found on [16]. Mellor-Crumley and Scott

developed the MCS lock [27] that implements a queue-based

lock with FIFO access. Different reader-writer variants of the

MCS lock were developed thereafter. Mellor-Crumley and

Scott propose in [28] the first version, denoted as MRSW that

uses a reader counter, allowing concurrent readers to release



the lock in any order. Then, only the last reader to release

sees reader counter = 0 and notifies the following writer in

the queue. The reader counter becomes a coherence hotspot,

which led Krieger et al. to propose in [20] a version that does

not implement a single counter, but requires a doubly-linked

list and a more complex management of reader unlocking.

Lev et al. proposed in [24] three scalable reader-writer

implementations based on the idea of Scalable Non-Zero

Indicators (SNZI), a data structure optimized to increase

throughput and minimize memory contention. However,

their implementation requires more memory accesses and

uses a large amount of memory.

Queue-based locks entail the challenge of preventing the

lock transfer to a thread that is temporarily not spinning

(e.g. preempted), or has abandoned waiting (in a trylock).

Scott and Scherer propose in [33], [34] versions of the

MCS lock with aborting capability. He et al. present in

[15] an implementation that detects and skips preempted

waiting threads. To the best of our knowledge, no trylock

or preemption detection mechanism has been developed for

queue-based RW-locks.

Fine-grain synchronization has been supported in hard-

ware with word-level tags (such as Full/Empty bits) in

multiple machines such as HEP [17], Tera [3], the J- and

M-machines [6], [7], or the Alewife [1]. While these bits

provide a simple architectural support for synchronization,

they incur a significant area overhead, and do not support

RW-locking. The changes required to support RW-locking

would imply unaffordable area costs.

QOLB, [13], leverages synchronization bits by building

a hardware queue between requestors. QOLB allocates two

cache lines for every locked address: the valid one, and a

shadow line. One of the lines is used to maintain a pointer

to the next node in the queue, if present, and the other

one is used for local spinning on the syncbit. When the

unlock is invoked, the pointer is used to notify the remote

core, allowing for fast direct cache-to-cache transfer. As with

previous designs, QOLB does not support RW locks and

suffers a noticeable performance degradation when evicted

threads receive a lock.

The System on a Chip Lock Cache, [32] and the Lock

Table, [5] use a centralized system to control the status of

several locks. Acquired locks are recorded by leveraging a

bus-based coherence mechanism, so their scalability is lim-

ited. Moreover, overflow and thread migration are difficult

to handle.

Different hardware mechanisms provide direct support

for locking on parallel systems. The Stanford DASH [23]

leverages the directory sharing bits for this purpose. When

a lock is released, the directory propagates the coherence

update to a single lock requestor, preventing contention.

Other systems use remote atomic operations executed in the

memory controller instead of the processing core. This is the

case of the fetch-and-θ instruction of the Memory Atomic

Operations (MAO) in the MIPS-based SGI Origin [22] and

Cray T3E [35]. These systems allow for remote updates in

main memory, removing the problem of coherence lines

bouncing on lock accesses. All remote updates take the

same time, which is typically the memory access latency.

While they do not support direct cache-to-cache transfer of

locks, they do not use L1 memory at all. More elaborate

mechanisms such as strided accesses to shared data have

been proposed in Active Memory Operations (AMO, [42])

but the locking mechanisms remain the same.

The Synchronization State Buffer (SSB, [43]) avoids

whole-memory tagging by using a dedicated hardware

structure When a synchronization operation (such as

lock acquire) is invoked on a given data address, the shared-

L2 memory controller allocates an entry in the SSB to

control the locking status of such address. SSB supports fine-

grain reader/writer locks. However, these locks are unfair

and can starve writers. Same as in MAOs or AMOs, all

lock-related operations are remote (in this case, in the on-

chip L2 controller).

Finally, multiple proposals focus on accelerating critical

section execution. Two prominent examples are Speculative

Lock Elision [30], which removes unnecessary locking,

and Accelerated Critical Sections [39], which moves their

execution to the fastest core. While somewhat related, these

approaches are orthogonal to our work. Transactional Mem-

ory (TM), [14] aims to simplify the programming model

removing the need of locks. However, the implementation

of most software TM systems still makes them rely on an

efficient lock implementation.

III. FLEXIBLE HARDWARE SUPPORT FOR

READER-WRITER LOCKING

Our proposal allows for the acquisition of locks in any

memory location, by means of two new ISA synchronization

primitives: Acquire (acq) and Release (rel) 1. They require

three arguments: the address to lock (using the TLB to pro-

vide virtual- to-physical mappings), a process-local software

threadid (provided by the user or the hardware) and the read

or write mode, R/W. These instructions do not block the

core until completion; instead, they return TRUE or FALSE

depending on the lock being acquired/released or not, and

the software will have to iterate until success.

Figure 2 shows the simplest implementation of the lock,

trylock (based on a fixed number of retries) and unlock

functions, using the acq and rel primitives. Alternative

implementations can consider the use of timeouts in trylocks

or periodically yielding the processor to prevent owner

starvation as in [15].

The architecture of our proposal is presented in Figure

3. It has been conceived for distributed shared-memory

1Additionally, we could consider a third Enqueue primitive, similar to
QOLB [13], to be used as a prefetch of the lock.



Figure 3. Architectural blocks of the lock handling mechanism and allowed LCU status values.

void lock(addr, th_id, read){

while(!acq(addr, th_id, read)) {}

}

bool trylock(addr, th_id, read, retries){

for (int i=0; i<retries; i++)

if(acq(addr, th_id, read)) return true;

return false;

}

void unlock(addr, th_id, read){

while(!rel(addr, th_id, read)) {}

}

Figure 2. Lock acquisition and release functions.

systems with multiple cores and multiple chips . Each core

incorporates a Lock Control Unit (LCU) for implementing

distributed lock queues. There is one Lock Reservation Table

(LRT) per memory controller. Alternative organizations can

be considered, as long as each lock is associated with a

single LRT depending on its physical address.

The LCU is composed of a table whose entries record

the locking status of a certain memory address, and its

associated logic. The LCU is addressed with the tuple

(addr, threadid), so multiple threads on the same core can

request the same lock. LCU entries are allocated on requests

from the core. The fields of each LCU entry are presented

in Figure 3, requiring around 20 bytes of storage using

conservative values. Valid entry status values2 are presented

Figure 3. While most of them are self-defining, we will detail

the two variants of released later. We distinguish between

contended and uncontended locks. The former are locks

required by multiple threads that concurrently try to acquire

them, and the latter are locks taken by a single thread without

further requestors. LCU entries for uncontended locks are

removed to minimize LCU occupation. Contended locks

build a queue of requestors, with LCU entries acting as

queue nodes. At a given point in time, only one node will be

the queue Head. A LCU entry gets enqueued when there is a

chain of pointers from the Head that reaches such an entry.

2The actual implementation might require additional transient status
values to prevent races, depending on the ordering properties of the network.

Once a LCU entry is enqueued, it will eventually receive

the lock “grant”, and become the Head node. Once built,

the queue of LCU entries is never broken or split.

The LRT is the unit that manages the locking status

of each memory location. LRT entries are allocated on

request, so locks can be taken on any location of the system

memory but only locked addresses account for the hardware

requirements. LRT entries record the state of the locks and

maintain pointers to the queues of waiting threads. The LRT

can assign locks to owners (threads) in two modes: the

ordinary, queue-based mode, or an “overflow” mode used

for readers without available LCU entries. Each LRT entry

contains the fields depicted in Figure 3, which serve two

main purposes:

• Queue pointers: Tuples (threadid, LCUid, R/W mode)

that identify the queue Head and Tail.

• Support for the “overflow” mode: A reader cnt field,

and a tuple (R-threadid, R-LCUid) for a reservation mecha-

nism which will be detailed in Subsection III-D.

The core communicates with its LCU with the synchroniza-

tion instructions Acquire and Release, offloading the tasks

of requesting the lock grant, forming a queue of waiting

threads and transferring the lock to the next requestor. The

ISA instructions and the hardware are related as follows:

• Acquire: If a LCU entry for this address is not present,

it is allocated and a request message is sent to the corre-

sponding LRT. If it is present with a valid Status (RCV for

writers, RCV or RD REL for readers, as explained later),

the lock is acquired, returning TRUE. Otherwise, no action

takes place.

• Release: releases the lock, transferring it to the next

requestor or releasing it (sending a message to the LRT).

The LCU entry is re-allocated if not present.

The detailed lock management is described next. We begin

showing how the LCU and the LRT interact in the sim-

plest write lock enqueue, acquisition, transfer and release

operations. Subsequent Subsections will deal with RW-

locking, thread migration, suspension, resource exhaustion

and memory paging.



(a) Lock is free, request proceeds. The
LCU entry will be removed after the
local thread acquires the lock.

(b) Lock is taken uncontended. The owner re-allocates the LCU entry
with the information sent from the LRT (steps 2 and 3) and sends a
WAIT message.

Figure 4. Write lock requests.

A. Write locking

When a thread requests a lock acquisition on a given

memory address a, the LCU allocates an ISSUED entry

for the lock and sends a lock REQUEST message to the

corresponding LRT. The LRT will grant the lock or add

the requestor to the end of the queue, depending on the

lock status. However, since the lock can be acquired in

uncontended mode, there are three possible cases, described

next. Figure 4 shows an example of the first two cases.

(a) The address is not locked, so the LRT does not contain

an entry for address a. The LRT allocates a new entry,

recording the requestor’s data in both headid and tailid
pointers and returns a GRANT message with a Head flag

set (Fig. 4a). When received, the LCU switches the status to

RCV and sets the Head flag. On the next acq over this lock,

it will be taken and the acq instruction will return TRUE

(according to the code in Fig. 2, the thread iterates until

succeeding). This lock is uncontended, taken by a single

requestor with null values in the Next field of the LCU entry.

Since no queue exists, there is no need to maintain a node for

such lock. Hence, the LCU entry is automatically removed

once the lock is acquired, leaving room for other locks taken

concurrently. The LRT still records the locking data for new

locking requests, not being aware of the LCU entry release.

(b) The address is locked in uncontended mode. The

LRT forwards the lock request, including the values in the

head tuple, to the owner LCU. With such information, the

owner LCU re-allocates the entry, which had been released

on acquisition (case (a) above). The status is set to ACQ,

recording the requestor information in the next tuple and

sending a WAIT message to the requestor.

(c) The address is locked in contended mode with an

associated queue. Similar to (b), the LRT forwards the

request to the tail LCU without having to re-allocate the

LCU entry.

Lock release is triggered by the owner thread invoking

the rel instruction. Its behavior depends on the existence

of requestors. If the lock is uncontended, the LCU entry

will not be present. However, invoking a rel implies that

Figure 5. Lock transfer.

the lock has been acquired and the appropriate RELEASE

message can be sent to the LRT; otherwise the program

would be incorrectly synchronized. To this end, the LCU

re-allocates the entry with the parameters from the rel

instruction and sends a RELEASE message to the LRT. The

LRT receives the lock release, removes its entry and sends

and acknowledge back that allows the LCU to also remove

its entry. The case of not having any free entry in the LCU

is covered in Section III-D.

By contrast, if there is a queue, the lock is transferred

to the next requestor. An example is depicted in Figure 5.

The receiver notifies this transfer to the LRT, to update the

head field. This notification is sent by the receiver LCU for

two reasons: First, it takes the remote notification message

off the critical path, minimizing the transfer time. Second, it

delays the deallocation of the releaser LCU entry until the

LRT sends the acknowledgement back. Again, this ensures

that the head in the LRT always points to a valid LCU entry,

as it is updated when the lock has been already received3.

Finally, RETRY messages are used when data races are

detected. For example, an uncontended entry could be re-

leased while a REQUEST message is being forwarded from

the LRT. In such case, upon reception of the RELEASE,

the LRT detects that the releaser is not the only node in

the queue (the new requestor has been already recorded

3We use a transfer cnt counter, not depicted in the figures, to prevent
that consecutive lock transfers have to be serialized by the LRT notification
or lead to a wrong result in case of a message race.



Figure 6. Example of concurrent read locking. Only the first node in the
queue contains the Head flag set. Thread 2 at LCU 2 has released the lock,
but being an intermediate node, the node is preserved in RD REL status.
The same thread can re-acquire the read-lock without remote requests.

as the tail) and replies with a RETRY message to the

RELEASE request. When the LCU with status REL receives

the enqueue request, it will directly forward the lock to the

requestor. This race shows how lock releases require a LCU

entry re-allocation even when the lock is uncontended.

B. Read locking

Read-locking employs the same queueing mechanism, with

multiple consecutive LCUs allowed to concurrently hold

the lock in read mode. While a single node is the queue

Head, multiple readers can receive a lock “grant”. When a

waiting reader LCU entry receives a lock grant, it switches

its status to RCV and forwards a GRANT message to any

subsequent reader in the queue. Similarly, when a read

request is forwarded to the tail, a GRANT reply is sent if

the tail has the lock taken in read mode. For write-locking,

by contrast, the Head flag and the lock grant are equivalent.

In this shared mode, all the readers can release the lock in

any order. To prevent breaking the queue or granting the lock

to a waiting writer when there are active readers, we rely on

the Head token: When the first node in the queue releases the

read-lock, the Head token is transferred to its next node and

the LRT is notified as occurs for write locks in Figure 5. By

contrast, when an intermediate node releases its read-lock, it

switches to the special RD REL status without sending any

message, waiting for the Head token. This prevents an entry

deallocation that would break the queue. The entry is finally

released when the LCU receives the Head token, which is

bypassed to the next node. An example with 4 concurrent

readers and a waiting writer is presented in Figure 6.

While a node is in RD REL status, the local thread can

re-acquire it in read mode. Although this breaks the original

FIFO order, it does not generate starvation: the advance of

the Head token along the queue of readers ensures that,

eventually, any enqueued writer receives the lock. This

behavior prevents the problems of contention on a single

memory location (note that the notification to the LRT is

out of the critical path) or complex management found on

software locks, [20], [28].

Figure 7. Example of migration. Thread t2 has migrated from LCU2 to
LCU9 while waiting. When the lock grant arrives at LCU2 (step 2) the
timeout triggers (step 3) and it is forwarded to the next node.

C. Thread Suspension, Migration and Remote Release

Thread eviction becomes an issue in two cases: (i) An

enqueued requestor thread is suspended or migrates, so it

stops spinning on its local LCU entry (the same happens

when a trylock expires), and (ii) A lock owner migrates and

the release happens in a remote LCU.

In the first case, once received the lock grant, the LCU

sets a timer that triggers a release if the lock is not taken

within a threshold: this prevents starvation if the local thread

suspends before acquiring the lock, or deadlock if a trylock

expires or the lock requestor migrates to other core. If a

migration occurs while spinning, execution will resume in

the remote node in the same while loop presented in Figure

2. The thread will issue a new enq request in the new core,

becoming the tail of the same lock queue. Then, there could

be multiple entries with the same threadid along the queue.

As only one will actually acquire the lock, the others will

simply pass it through after the threshold without causing

any issues. Figure 7 presents an example where thread t2
has migrated, while waiting, from core C2 (LCU2) to C9.

The second case (lock owner migration) is detected when

a lock is released from a remote LCU different to the one

recorded at the Head of the LRT. Since the remote LCU

contains no allocated entry, the release will be forwarded

to the LRT as if it was uncontended-locking. The LRT

will detect the migration and, if a queue exists, forward

the release to the original queue head node, which will

send the lock to the next requestor. This is the reason to

maintain always a valid queue head pointer, as described in

Subsection III-A. If the lock was in read mode, the migrated

thread that releases the lock might not be the queue head.

In such case, the message is forwarded through the queue

until it reaches the proper LCU. Once the appropriate LCU

is found, it acknowledges the remote requestor and behaves

as if a local Release had been invoked. This mechanism also

allows the case of a thread releasing a lock acquired by a

different thread by just borrowing its threadid.



D. LCU overflow and forward progress

The LCU entries are the interface with the locking mech-

anism. They are used in the local spin of the thread for

both lock acquisitions and releases. Therefore, when all

LCU entries get allocated in queues, the local thread cannot

acquire any more locks. To prevent such deadlock, we

introduce nonblocking LCU entries, which behave in the

same way as ordinary entries, but they are not allowed to

become part of a queue. When a request from a nonblocking

entry is received for a taken lock, a RETRY message is

sent back, rather than the corresponding WAIT. To this

extent, lock messages include a flag indicating if the request

originated in a nonblocking LCU entry.

Nonblocking LCU entries can acquire free locks both in

read or write mode. After acquisition, the uncontended LCU

entry is deallocated as ordinary, and can be safely reused

for a different lock. Alternatively, if a lock is already taken

in read mode, the LRT can grant the lock in “overflow”

mode to a nonblocking LCU entry. In this case, the LRT

responds with a GRANT message, while increasing its

Reader cnt value, but without modifying the queue pointers

or forwarding the request. The Reader cnt field indicates

the number of overflowed readers that have acquired the

read lock but are not part of the queue. Overflowed readers

receive the lock grant without the need to add themselves to

the queue, and remove their LCU entries. When they release

the lock, the LRT will determine that they are overflowed

readers -since they are not recorded as the queue head when

the message is received- and decrease the counter.

This mechanism still suffers from starvation with highly

contended locks. A nonblocking LCU entry might never find

the lock free (or only accessed by readers, if in read mode)

and have to wait forever. To prevent such starvation, the

LRT implements a reservation mechanism. When a request

from a nonblocking LCU entry is replied with a RETRY,

the requestor is recorded in the “reservation” tuple in the

LRT (the thread and LCU IDs). From this moment, no

further requests are served by the LRT, only those iterative

requests received from the reservation holder. When the

lock eventually becomes free, it can be acquired by the

reservation holder. A timeout prevents this reservation from

blocking the system, for example after a trylock expiration.

Although a single nonblocking entry per LCU is enough

to guarantee forward progress, we implemented in our model

three types of LCU entries with different requirements:

• Ordinary: Normal entries as considered initially; they

can contain lock entries in any status.

• Local-request: Nonblocking entries reserved for re-

quests from the local thread.

• Remote-request: Nonblocking entries reserved to serve

remote releases, i.e. a RELEASE from a migrated thread.

E. LRT Overflow

Since LRT entries control the status of taken locks, their

data can never be cleared until lock release. We use the

main memory as a backup for LRT overflow. Each LRT

is assigned a preallocated hash-table in main memory for

overflowed lines. When a request for a new entry arrives at

a full LRT, a victim entry is selected and sent to the overflow

table. The LRT contains an overflow flag indicating if there

are overflowed entries in main memory, a counter for these

entries and a pointer to the overflow table.When a request is

received with overflow = true, the LRT logic must check the

memory table if the address is not found in the LRT. When

an overflowed entry is accessed again, it will be brought back

from memory to the LRT, with the corresponding replace-

ment, if required. When all overflowed entries are brought

back, the overflow flag is cleared. Software exceptions are

used in the unlikely event of having to resize the table.

Similar offloading mechanisms have been proposed for

other hardware structures [5], [43]. Our simulations show

that a 16-way associative LRT with 512 entries did not suffer

from significant overflow problems and hash table resizing

was never required.

F. Virtual memory and paging

Our locking mechanism works with physical addresses.

Therefore, changes in the virtual memory map might lead to

erroneous behavior, in particular when a virtual page with

taken locks is paged out and relocated back in a physical

location where different locks overlap.

Paging operations with locks involved require support

from the OS. When a virtual page with locks is taken out,

the OS code that handles the TLB invalidation mechanisms

must also handle the lock queues:it is necessary for the OS to

invalidate existing lock queues for the given page, removing

all of its LCU entries. When a queue is invalidated, the Head

lock owner shifts to uncontended mode, with its entry safely

cleared. Additionally, if multiple readers share a lock along

the queue, they must be recorded as overflowed readers in

the LRT when their entries are removed. Finally, the LRT

entries should include ordinary process identifiers in order to

determine the appropriate mapping when the page is brought

back from disk.

Memory paging is a highly implementation-dependant

topic, and we leave it open. Our simulated models do not

support memory paging operations.

IV. EVALUATION

Our proposal has been implemented in GEMS [26], running

on top of the full-system simulator Simics [25]. We used a

simple in-order processor model issuing 4 instructions/cycle,

with 64KB L1 caches. We implemented the LCU in two

different 32-core machine models, labeled A and B.

Model A (in-order) implements single-core chips in-

terconnected using GEMS’s hierarchical switch topology



Parameter Model A Model B

Chips 32 4
Cores 32 (32× 1) 32 (4× 8)
L1 size (KB)(I+D per core) 64+64 64+64
L2 size (KB per chip) 1024 8 banks × 256

L1 access latency (cycles) 3 3
L2 access latency (cycles) 10 16
Local mem. latency (cycles) 186 210
Remote mem. latency (cycles) 186 315

LCU entries 8+2 16+2
LCU lat (cycles) 3 3
LRTs 32 8
per-LRT entries 512 512
LRT latency 6 6

Figure 8. Model parameters

network with a MESI coherence protocol. Although GEMS

does not implement a model for a global bus, this approxi-

mates it by guaranteeing a global order for coherence, data,

and lock requests at the higher level of the hierarchy of

switches.

Model B (m-CMP) implements a multi-CMP system

based on the Sun T5440 Enterprise Server, [37]. This system

is composed of 4 Niagara [19] T2Plus chips. Each of them

contains 8 cores with private L1 caches, a shared 8-banked

L2 cache with interleaved memory requests, 2 memory

controllers, and 4 Coherence Units (CUs) that provide a

unified view of the system memory across the multiple chips.

The four chips are interconnected via 4 coherence hubs,

one for each of the per-chip CUs, which do not provide

any global order for coherence or locking requests. In this

case, we used GEMS with the Garnet [2] network simulator.

We changed the coherence mechanism to a hierarchical

MSI-MOSI protocol, and did not implement SMT in the

processing cores.

The parameters of each model are presented in Figure 8.

The latencies in the Table are presented in absence of net-

work or coherence congestion, with each value including the

miss penalty for lower cache levels and the network round-

trip latency. Latencies for model A resemble a SunFire E25K

server, but this model can also represent the performance on

a bus-based single CMP system with private L1’s and L2’s.

Latencies for model B are derived from the 1.4 GHz version

of the T5440 server, as presented in [36].

In both systems each core implements its own LCU

containing 8 or 16 ordinary entries, plus 1 local-request and

1 remote-request entries to guarantee forward progress. Our

model implemented one LRT module per memory controller,

with 512 entries, 16-way associative.

Our evaluation benchmarks include a lock transfer time

microbenchmark, benchmarks from lock-based Transac-

tional Memory systems and applications from the Parsec

[4] and Splash-2 [41] benchmark suites. The details are

presented next.

A. Lock transfer time

Our first set of results use a synthetic benchmark based on

ones used in earlier work, [15] and [18]. Multiple threads

iteratively access the same critical section (CS), protected by

a single lock. The CS is short, it only performs a few arith-

metic operations, so the lock handling time dominates the

operation. We measure the number of cycles required to run

50 000 iterations, averaged across multiple runs, and calcu-

late the time per CS in cycles. We compare our proposal with

different software and hardware lock implementations. Our

software locks include TAS and TATAS locks, the base MCS

queue-based lock and MRSW [27] which is the reader-writer

version of MCS. We also evaluated the Synchronization

State Buffer [43] (SSB) hardware. This model accelerates

the lock handling, but does not build a requestors queue to

reduce lock transfer time, and does not provide any fairness

guarantees. When possible, we considered different rates of

readers and writers accessing the CS, with multiple readers

being able to access in parallel.

Figure 9 compares our system with the SSB model. The

thread count varies from 4 to 32. In the in-order model

(a) the performance of both systems is close to each other.

However, in the mutual exclusion case (100% write locks)

the LCU still outperforms SSB in 30.6% on average, due to

the longer transfer latency in SSB. When we consider RW-

locks, the average critical section access time decreases in

both models with the reader proportion, as multiple readers

access the CS concurrently. The SSB does not provide

fairness, so readers are allowed to take the lock when it

is in read mode. This increases the performance with the

number of threads, at the cost of starving writers.

Figure 9b shows a radically different behavior in the

multi-CMP model B. The repeated remote-retry mechanism

of the SSB saturates the bandwidth of the inter-chip links,

leading to poor performance. By contrast, the local-spin

of the LCU maintains the desired behavior, with a slight

performance drop when the number of threads exceeds the

8 cores in a chip and inter-chip links start to be used.

Figure 10 compares software locks and the LCU. The

LCU model behaves smoothly with more threads than cores,

due to the integrated starvation detection mechanism. Queue-

based locks provide an almost constant performance up to 32

threads but after that, the starvation anomaly described be-

fore dramatically increases the lock transfer time. The LCU

outperforms the software MCS proposal in more than 2× in

both models. This is because, even with the software queue,

the coherence operations involved in the lock transfer require

a remote coherence invalidation, followed by a subsequent

request. The reader-writer variant, MRSW, even in the 100%

writers case does not perform well due to the increased

number of required operations. Moreover, as the readers

rate increases, the average time per operation increases too.

This is due to coherence congestion in the reader counter



(a) Model A, in-order (b) Model B, m-CMP

Figure 9. CS execution time including lock transfer, LCU vs SSB. Labels indicate the proportion of write accesses, mutual-exclusion is 100%.

(a) Model A, in-order (b) Model B, m-CMP

Figure 10. CS execution time including lock transfer, LCU vs SW locks. Labels indicate the proportion of write accesses, mutual-exclusion is 100%.

contained in the lock, which has to be modified atomically

twice per reader (incremented and decremented). Due to

this effect, the LCU obtains an average speedup of 9.14×
for the 75% read case. Finally, contended locks (TAS and

TATAS) in the model A suffer from strong congestion as

the number of threads increases. By contrast, in the model

B, the hierarchical coherence protocol favors the unfair lock

transfer between threads in the same chip, what maintains

throughput (as observed in the figure) but starves remote

requestors.

B. Fine-grain locking: STM benchmarks

While Transactional Memory (TM, [14]) liberates the pro-

grammer from the complexity of locking, many Software

TM (STM) systems are internally based on fine-grain lock-

ing ([10], [11], [40], among others). Dice and Shavit discuss

in [9] the benefits of RW-locking in STM. They highlight its

simplified design, implicit privatization safety ([38]), support

for irrevocable transactions and strong progress properties.

However, they find an excessive performance degradation

on reader-locking, and propose a new lock to reduce it.

They propose their model for single-chip systems, since the

performance in multi-chip systems is poor. In this work, we

perform evaluations in the more adverse multi-chip scenario.

The LCU reduces the performance penalty of RW-locking

in STM, and for evaluating it we used a RW lock-based

implementation of Fraser’s OSTM [12]. We compared the

performance of this base system (labeled sw-only) against

the same model using LCU RW-locks. As a reference,

we also provide performance data of Fraser’s non-blocking

OSTM (labeled Fraser). This is a nonblocking system which

does not read-lock the read set during commit. Due to this

use of invisible readers, it fails to support the privatization

idiom. Consequently, its performance cannot be compared

directly with the lock-based variants, but it provides some

indication of the behavior of basic object-based STM sys-

tems.

We use three data-structure micro-benchmarks, frequent

in the STM community: RB-tree, skip-list and hash-table.

Multiple threads access the shared structure to perform a

transactional operation, typically a search (read-only) or

an insert/delete. We measure the average time to finish a

transaction. Ideally, this value should remain constant as

the number of threads increases. Due to the visible readers



(a) Model A, in-order (b) Model B, m-CMP

Figure 11. Scalability of the transactional system. Transaction cycle dissection of the RB-tree benchmark with 2
8 maximum nodes.

(a) Model A, in-order (b) Model B, m-CMP

Figure 12. Transaction execution time, 16 threads and 75% of read-only transactions.

implementation in the lock-based versions, RB and Skip

suffer from reader-locking coherence congestion in the root

of the data structure, while the hash-table does not present

such pathology.

The plots in Figure 11 study the scalability of the system.

They show the transaction execution time for different mod-

els in the RB-tree benchmark with 28 maximum nodes and

75% of read-only transactions, as the thread count increases.

With a single thread, the LCU improves the performance of

the base sw-only in a 10.8%. Fraser’s nonblocking model

outperforms the lock-based one, as its commit phase is much

shorter, given the lack of reader locking. As the number

of threads increases, the base sw-only model gets worse,

due to the increase of the commit phase in which locks are

acquired. This is specially true in the multi-CMP model with

more than 8 threads, due to the large inter-chip latencies. The

shared data structure suffers from reader congestion in the

root, which affects the overall performance. The LCU model

scales nicely, almost preserving the execution time. For high

thread counts, the LCU performance is similar to that of the

unsafe Fraser’s system, and outperforms the SSB model.

Figure 12 shows the performance of the previous models

with larger problems (215 or 219 maximum number of nodes)

with 16 threads. The RB and skip benchmarks behave as

presented in Figure 11, with reader congestion in the root

of the data structure. The faster implementation of reader

locking in the LCU provides speedup values from 1.53× to

3.35×. The hash-table does not have a single entry-point,

but still, the speedup is at least 1.42×.

C. Traditional parallel benchmarks

We finally evaluate the performance of the LCU with some

traditional lock-based programs that do not rely on reader-

writer locking. Figure 13 shows the execution time of the

parallel sections of Fluidanimate, Cholesky and Radiosity

from the Parsec and Splash benchmarks suites, only for

the system in model A. We selected these applications for

two reasons: they are lock intensive and present different



Figure 13. Application execution time.

behavior with respect to the locking pattern. We simulated

several runs of each application with 32 (Fluidanimate) or

16 (Cholesky, Radiosity) threads and averaged the result for

each one of three models: the original Posix mutexes in our

Solaris system, the LCU and the SSB. The plot shows the

resulting values, including the estimated error for a 95%

confidence interval. Note that these plots show the overall

application execution time, not only the lock-related code.

In Fluidanimate the LCU provides a speedup of 7.4%

over the base model. This comes from faster lock transfers

and finer-grain locking. While the original application uses a

lock per each modeled cell, our version protects each value

being updated within a cell with a dynamic lock. The direct

lock transfer also allows the LCU to slightly outperform the

SSB.

Cholesky is a matrix application which does not seem to

be almost affected by the lock model, as all the results are

within the estimated error range of the base software model.

Notwithstanding, we can still observe that the introduction

of the LCU does not harm performance.

Radiosity, by contrast, shows the opposite pattern. We

identified the problem in that most lock accesses in the

application are to the per-thread private task queues. Only

when a thread finishes its work, it accesses remote queues

to steal work to do, in a form of load balancing. In this

case, the base software version maintains the frequently

accessed lock line in the L1 cache, in a sort of implicit

biasing (in opposition to the explicit biasing mechanisms

developed for software locks [31]). By contrast, the LCU is

required to repeat remote accesses, with a negative impact

on performance. This effect could be also observed in the

single-threaded case of Figure 12b. Such implicit biasing is

inherent to coherence-based locks, such as software locks or

tagged-memory systems, including QOLB.

To deal with this case, we have envisioned an additional

hardware unit collocated with each LCU, called Free Lock

Table (FLT). The FLT is used to “save” locks frequently

accessed by a single thread, without their releases being

remotely visible as long as no other requestor exists. Prelim-

inary results, not presented in this paper, show that the FLT

improves execution in the presence of such private locks,

restoring the implicit biasing that our system lacks. Never-

theless, it can reduce the performance when ordinary, shared

locks are used. Therefore, this new hardware would require a

prediction mechanism or programmer hints to discern private

and shared locks. We leave the FLT integration, including the

predictor design, as an open area for future work. Despite the

lack of the FLT, the geometric mean of the three application

results shows an average speedup of 1.98% for the LCU

model.

V. CONCLUSION

The Lock Control Unit hardware mechanism has been

proved to efficiently handle fine-grain reader-writer locking,

improving existent software locks and previous hardware

proposals. As far as we know, our mechanism is the first

proposal that implements a fair reader-writer queue. The

LCU provides more flexibility and robustness than previous

proposals. In addition, the evaluation of the lock transfer

time outperforms previous designs in more than a 30%,

and application performance can be improved in more than

a 7% from software locking. Moreover, our model makes

emerging STM systems based on RW-locking competitive

with different, unsafe approaches, despite the traditional cost

of reader locking.

Several areas remain as future work. Mainly, a biasing

mechanism, as discussed in Section IV-C, with an appro-

priate predictor to use it. Other interesting research lines

would be the use of priorities for real-time systems, and

the implementation of hierarchical locks for a multi-CMP

system or a SMT multicore. Such locks would exploit the

locality of threads in the same chip or SMT threads in the

same core.

ACKNOWLEDGMENT

The authors would like to thank the effort of the anonymous

reviewers, who provided very valuable feedback. This work

is supported by the cooperation agreement between the

Barcelona Supercomputing Center - National Supercomputer

Facility and Microsoft Research, by the Ministry of Sci-

ence and Technology of Spain and the European Union

(FEDER funds) under contracts TIN2010-21291-C02-02 and

TIN2007-60625, by the HiPEAC European Network of

Excellence and by the European Commission FP7 project

VELOX (216852).

REFERENCES

[1] A. Agarwal et al. The MIT Alewife machine: architecture
and performance. ISCA’95: 22nd Int. Symp. on Computer
Architecture, 1995.

[2] N. Agarwal, L.S. Peh and N. Jha. GARNET: A detailed
interconnection network model inside a full-system simula-
tion framework CE-P08-001, Dept. of Electrical Engineering,
Princeton University, Feb 2008

[3] R. Alverson et al. The Tera computer system ICS ’90: 4th

Int. Conf. on Supercomputing. 1990.



[4] C. Bienia, S. Kumar, J. P. Singh and K. Li. The PARSEC
benchmark suite: characterization and architectural implica-
tions. PACT’08: 17th Int. Conf. on Parallel Architectures and
Compilation Techniques,2008.

[5] M. Chiang. Memory system design for bus based multiproces-
sors. Ph.D. dissertation. Univ. of Wisconsin-Madison, Sept.
1991.

[6] W. Dally et al. The Message-Driven processor: A multi-
computer processing node with efficient mechanisms. IEEE
Micro, IEEE Computer Society Press, 1992, 12, 23-39.

[7] S. Keckler et al. Exploiting fine-grain thread level parallelism
on the MIT multi-ALU processor ISCA’98: 25th Int. Symp.
on Computer Architecture, 1998.

[8] D. Dice, M. Moir and W. Scherer III. Quickly
reacquirable locks. Available online at
http://home.comcast.net/∼pjbishop/Dave/QRL-OpLocks-
BiasedLocking.pdf.

[9] D. Dice and N. Shavit. TLRW: Return of the read-write Lock.
TRANSACT’09: 4th Workshop on Transactional Memory,
2009.

[10] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
DISC’06: 20th Symp. on Distributed Computing, 2006.

[11] P. Felber, C. Fetzer and T. Riegel. Dynamic perfor-
mance tuning of word-based Software Transactional Memory.
PPoPP’08: 13th Symp. on Principles and Practice of Parallel
Programming.

[12] K. Fraser and T. Harris. Concurrent programming without
locks. ACM Transactions on Computer Systems, Vol. 25,
Issue 2, May 2007.

[13] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient syn-
chronization primitives for large-scale cache-coherent multi-
processors. SIGARCH Comput. Archit. News 17, 2 (Apr.
1989), 64-75.

[14] T. Harris, J. Larus and R. Rajwar. Transactional Memory.
Morgan Claypool Synthesis Series, 2nd endition. 2010.

[15] B. He, W. N. Scherer III, and M. L. Scott. Preemption
adaptivity in time-published queue-based spin locks. HPC’05:
11th Int. Conf. on High Performance Computing, 2005.

[16] M. Herlihy and N. Shavit. The art of multiprocessor pro-
gramming. Morgan Kaufmann. USA, 2008.

[17] H. F. Jordan. Performance measurements on HEP – a
pipelined MIMD computer. ISCA’83: 10th Int. Symp. on
Computer architecture, 1983.

[18] A. Kägi, D. C. Burger, and J. R. Goodman. Efficient
synchronization: let them eat QOLB. ISCA’97: 24th Int.
Symp. on Computer Architecture, 1997.

[19] P. Kongetira, K. Aingaran and K. Olukotun. Niagara: A
32-way multithreaded sparc processor IEEE Micro, IEEE
Computer Society, 2005, 25, 21-29.

[20] O. Krieger, M. Stumm, R. Unrau and J. Hanna. A fair fast
scalable reader-writer lock. ICPP’93: Intl. Conf. on Parallel
Processing, 1993.

[21] J. Kuskin et al. The Stanford FLASH multiprocessor.
ISCA’94: 21st Int. Symp. on Computer architecture, 1994.

[22] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA
highly scalable server. Comput. Archit. News. Vol 25, 2 (May.
1997), 241-251.

[23] D. Lenoski et al. The Stanford Dash multiprocessor. IEEE
Trans. on Computer. Vol 25, 2 (Mar. 1992), 63-79.

[24] Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-
writer locks. SPAA’09: 21st Symp. Parallelism in Algorithms
& Architectures, 2009.

[25] P. S. Magnusson et al. Simics: A full system simulation
platform. IEEE Computer, 35(2):50-58, Feb’02.

[26] M. M.K. Martin et al. Multifacet’s General Execution-
driven Multiprocessor Simulator (GEMS) toolset. Computer
Architecture News (CAN), Sept. 2005.

[27] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Trans. on Computer Systems 9, 1 (Feb. 1991), 21-65.

[28] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-
writer synchronization for shared-memory multiprocessors.
PPoPP’91: Symp. on Principles and Practice of Parallel
Programming, 1991.

[29] Z. Radović and E. Hagersten Hierarchical backoff locks for
nonuniform communication architectures. HPC’03: Symp. on
High-Performance Computer Architecture, 2003.

[30] R. Rajwar and J. R. Goodman. Speculative lock elision:
enabling highly concurrent multithreaded execution. MI-
CRO’01: 34th Int. Symp. on Microarchitecture, 2001.

[31] K. Russell and D. Detlefs. Eliminating synchronization-
related atomic operations with biased locking and bulk rebi-
asing. OOPSLA’06: Object-Oriented Programming, Systems,
Languages & Applications, 2006.

[32] B. Saglam and V. Mooney, III. System-on-a-chip processor
synchronization support in hardware. DATE’01: Conf. on
Design, Automation and Test in Europe (DATE’01), 2001.

[33] M. L. Scott. Non-blocking timeout in scalable queue-
based spin locks. PODC ’02: 21st Symp. on Principles of
distributed computing, 2002.

[34] M. L. Scott and W. N. Scherer III. Scalable queue-based spin
locks with timeout. PPoPP’01: 8th Symp. on Principles and
Practice of Parallel Programming, 2001.

[35] S. Scott. Synchronization and communication in the T3E
multiprocessor. ASPLOS’96: 7th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems,
1996.

[36] D. Sheahan. Memory and coherency on the
UltraSPARC T2 Plus Processor Corporate blog
entry. http://blogs.sun.com/deniss/entry /mem-
ory and coherency on the. April 2008.

[37] Sun Enterprise. Sun Sparc Enterprise T5440 Server Archi-
tecture. White Paper. July 2009

[38] M. F. Spear, V. J. Marathe, L. Dalessandro and M. L. Scott.
Privatization techniques for software transactional memory.
PODC’07: Symp. on Principles of Distributed Computing,
2007.

[39] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt.
Accelerating critical section execution with asymmetric multi-
core architectures. ASPLOS’09: 14th Int. Conf. on Archi-
tectural Support for Programming Languages and Operating
Systems, 2009.

[40] C. Wang, W. Chen, Y. Wu, B. Saha, A. Adl-Tabatabai.
Code generation and optimization for Transactional Memory
constructs in an unmanaged language. CGO’07: Int. Symp.
on Code Generation and Optimization, 2007.

[41] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations ISCA’95: 22nd Int. Symp. on Computer
Architecture, 1995.

[42] L. Zhang, Z. Fang and J. Carter. Highly efficient synchro-
nization based on Active Memory Operations. IPDPS’04: Int.
Parallel and Distributed Processing Symposium, 2004.

[43] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao. Synchroniza-
tion state buffer: supporting efficient fine-grain synchroniza-
tion on many-core architectures. ISCA’07: 34th Int. Symp.
on Computer Architecture, 2007.


