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ABSTRACT
The role of the operating system (OS) in managing shared
resources such as CPU time, memory, peripherals, and even
energy is well motivated and understood [22]. Unfortu-
nately, one key resource—lower-level shared cache in chip
multi-processors—is commonly managed purely in hardware
by rudimentary replacement policies such as least-recently-
used (LRU). The rigid nature of the hardware cache manage-
ment policy poses a serious problem since there is no single
best cache management policy across all sharing scenarios.
For example, the cache management policy for a scenario
where applications from a single organization are running
under “best effort” performance expectation is likely to be
different from the policy for a scenario where applications
from competing business entities (say, at a third party data
center) are running under a minimum service level expecta-
tion. When it comes to managing shared caches, there is an
inherent tension between flexibility and performance. On
one hand, managing the shared cache in the OS offers im-
mense policy flexibility since it may be implemented in soft-
ware. Unfortunately, it is prohibitively expensive in terms of
performance for the OS to be involved in managing tempo-
rally fine-grain events such as cache allocation. On the other
hand, sophisticated hardware-only cache management tech-
niques to achieve fair sharing or throughput maximization
have been proposed. But they offer no policy flexibility.

This paper addresses this problem by designing architec-
tural support for OS to efficiently manage shared caches with
a wide variety of policies. Our scheme consists of a hard-
ware cache quota management mechanism, an OS interface
and a set of OS level quota orchestration policies. The hard-
ware mechanism guarantees that OS-specified quotas are en-
forced in shared caches, thus eliminating the need for (and
the performance penalty of) temporally fine-grained OS in-
tervention. The OS retains policy flexibility since it can
tune the quotas during regularly scheduled OS interventions.
We demonstrate that our scheme can support a wide range
of policies including policies that provide (a) passive per-
formance differentiation, (b) reactive fairness by miss-rate
equalization and (c) reactive performance differentiation.

1. MOTIVATION AND INTRODUCTION
Operating systems deal with a large number of policy op-

tions in managing shared resources. For example, operating
systems have traditionally satisfied the wide variety of CPU
sharing requirements by deploying a number of scheduling
policies. Specifically, the priocntl() system call in Solaris
offers four different scheduling policies such as fixed priority,

real-time priority, fair-sharing and time-sharing [25]. Each
policy may be appropriate under different circumstances.

A similar situation arises in the management of shared
caches in chip multiprocessors (CMPs), which are increas-
ingly seen as the mainstream platform of choice for most
high end machines [16]. As with CPU-sharing, there is a
rich space of cache management policies for shared CMP
caches that may be appropriate under various sharing sce-
narios. LRU and other traditional replacement algorithms
may be appropriate for many domains in which there is min-
imal interference between sharers, and access patterns are
rich in temporal locality. For other domains where there is
potential for interference among applications, policies that
ensure fairness by equalizing the impact of cache sharing
and/or maximizing instruction throughput may be more
appropriate [9, 26]. Finally, for domains such as service

oriented computing [2, 17, 19, 27] wherein third party IT
providers agree to provide minimum service levels to their
customers, performance differentiation and performance as-
surance are key concerns. Even within a single organization,
performance differentiation may be needed since some ap-
plications might be more critical than others.

The above observation leads us to the following dilemma.
On one hand, involving the operating system (OS) in man-
aging shared caches offers policy flexibility since policies are
implemented in software. But caches are widely managed
in hardware because of the high overhead of OS interven-
tion for every L2 cache miss (the disadvantages of software
managed caches (SMCs) [3, 6, 8, 12] are further explained
in Section 5). On the other hand, hardware cache manage-
ment minimizes the performance impact but it does not offer
policy flexibility.

This paper resolves the above dilemma by developing ar-
chitectural support that enables efficient OS-level cache man-
agement. Our solution consists of three components: a hard-
ware cache quota enforcement mechanism, an OS interface
and a set of OS-level policies for orchestrating quotas. The
hardware mechanism enforces OS-specified, per-sharer cache
quotas in shared lower level (L2 and beyond) caches. The
OS can implement various cache management policies by
manipulating the quotas via the quota specification inter-
face. As a result, the caches are still managed in hardware,
and OS is only rarely invoked to orchestrate quotas. More-
over, our scheme offers the OS an additional tool beyond
CPU-scheduling to influence the performance of processes.
This paper demonstrates that our scheme serves as an ef-
fective and flexible platform for the OS to implement poli-
cies with various goals. In the following paragraphs, we



define the precise semantics of the cache quota guarantee
that the hardware mechanism enforces and provide a high
level overview of the proposed implementation.

Guarantee Semantics and Terminology: A mini-
mum portion of a cache or a set in the cache that is guar-
anteed to an entity is referred as its quota (denoted by
symbol q). The quota is specified by the OS in terms of
the number of cache ways (for the reasons explained in
Section 2.1). We explore two granularity options of en-
forcing quota: at the overall cache level as well as at the
set level in a set-associative cache. The two options have
their own advantages and dis-advantages which we discuss
in Section 2.1.3. The actual cache space allocation might
be more than the quota and is referred to as share. An en-
tity which is guaranteed a specific quota is referred to as a
sharer. A sharer could be a thread, a process or any group
of threads/processes that the OS wishes to treat as a single
entity as far as cache sharing is concerned. Thus multiple
threads in a sharer group share the same cache quota. Sec-
tion 2.2 describes how the OS can specify a sharer to the
hardware. The subset of sharers that actually contend for a
cache or a set in the cache are referred to as contenders.

The semantics of quota guarantee can be explained with
an example. Consider a set of n sharers S = {1, 2, 3, . . . , n}.
Each sharer i ∈ S has an explicitly specified quota: qi.
Now, if there are k contenders, it is guaranteed that each
contender ci is allocated qci/Σk

j=1(q
cj ) fraction of the space

(either at the set or cache granularity). The above defini-
tion incorporates two key desirable features: First, it en-
sures that each sharer receives some minimum guaranteed
cache space. This is because the guaranteed fraction of cache
space of a sharer i is no less than qi/Σn

j=1(q
j) when all shar-

ers are contending for the cache (or the specific set in the
cache). Second, it can be observed that cache space is allo-
cated depending on the number of contenders. When there
is no contention, the sole contender (say i) gets all of the
resources irrespective of the quota since its fraction of the
share amounts to qi/qi = 1. This is a key advantage of our
technique over some other cache partitioning schemes [4, 7,
11] since cache allocation is not limited in the absence of
contention.

We use the term mechanism to describe the hardware
architecture to enforce quotas. The term policy is used for
the OS level policy used to control cache quotas. The com-
bination of mechanism, OS interface and a set of OS level
policies is referred to as our scheme.

Implementation: We propose a new set-level quota en-
forcement mechanism. Cache-level quota enforcement mech-
anism has used before [9, 23] for different hardware-based
cache management schemes. Our results shows that set-
level quota enforcement mechanism provides stronger quota
guarantees and shows reasonable performance in all cases.
We also propose a new optimization for quota enforcement
mechanisms (both set-level and cache-level) that can be used
to tune how strongly the quota guarantees are enforced. Us-
ing this optimization, the quota enforcement mechanism can
be tuned to provide strong guarantees (for minimum service
level expectation systems), no quota guarantees (to switch
back to LRU) or some intermediate level of quota guaran-
tee (to use the cache space efficiently while still maintaining
quotas). The hardware quota enforcement mechanisms have
no timing overhead. Their area overhead is less than 10% of
the L2 tag array (for a 4MB, 16-way associative L2 cache),

and less than 1% over the whole cache. The OS interface is
also very simple and requires only 28 bits if 4 sharers have
to be supported per CMP. We demonstrate the flexibility
of our approach by developing a variety of policies including
policies for performance differentiation and fair sharing. The
timing overhead of the OS level policies depends on the com-
plexity of the policy. One of the policy that we have shown
has 0 overhead, while the other has 2% overhead. Hence
our scheme has little overhead; however, the corresponding
benefits, in terms of enabling OS-level management of cache
quotas are significant.

Related Work: There have been many recently pro-
posed reactive schemes for shared CMP cache management.
These schemes are reactive in the sense that cache space allo-
cation/deallocation decisions are driven by miss-rate and/or
performance feedback and aim to (a) equalize the miss-rate
or performance degradation [9] or (b) optimize throughput
by giving more cache space to the users who benefit the most
from it [20, 26]. Our work is orthogonal to the above work
since the hardware quota enforcement mechanisms in our
scheme are policy-agnostic and are fully compatible with the
aforementioned schemes. The only difference is that while
some of those schemes assumed a purely hardware imple-
mentation, our scheme requires that the OS must reactively
tune the quotas to achieve the desired goals (equalizing miss
rate, maximizing instruction throughput etc.). This separa-
tion of mechanism and policy is inherently a good design
practice since CMPs are required to operate in a wide range
of systems where different policies may be appropriate.

Summary: The major contributions of this paper are:
(a) We propose a new scheme for the management of shared
L2 cache in CMPs. Our scheme includes a hardware cache
quota enforcement mechanism, an OS interface and a set of
OS level quota management policies. Our scheme is flexible
in the sense that it enables OS to implement a variety of
policies including policies for fair cache sharing and achiev-
ing differentiated instruction throughput. (b) We develop a
new mechanism that enforces OS-specified, minimum cache
quota guarantees. The area overhead of the quota enforce-
ment mechanism is minimal (less than 10% over tag array
and less than 1% over whole cache). There is no delay over-
head of the mechanism since it works off the critical path.
(c) We propose a simple, yet powerful interface for the OS
to specify cache quotas. The interface, which involves a
single write to a special register allows threads running on
different CMP cores to share the same cache quota. More-
over, it allows thread migration and context switching. (d)
We demonstrate how OS-level policies can use the hard-
ware infrastructure proposed by our scheme. Simulations of
multiprogrammed scientific workloads and multi-threaded
commercial workloads confirm that the desired goals of the
policies are indeed achieved.

The rest of the paper is organized as follows. Section 2 de-
scribes the components our scheme i.e., the hardware quota
enforcement mechanisms, OS interface and how various poli-
cies may be implemented using our scheme. Section 3 ex-
plains the experimental methodology. Results of our simula-
tions are presented in Section 4. Section 5 discusses related
work and finally Section 6 concludes the paper.

2. CACHE MANAGEMENT SCHEME
Our cache management scheme consists of three essential

components: a hardware quota enforcement mechanism, an



SQVP: On a cache miss for a set S by a sharer Si:

Let Bi  be the total number of blocks in the set S currently used by Si.
Calculate the share of Si in the set (sharei).
If Bi  

�
 sharei,

    Select new replacement candidates until one is found which is owned by Si. 
   else
       Select new replacement candidates until one is found which is owned by a
       sharer (Sk) such that Bk > sharek.

 

Figure 1: Set Quota Violation Prohibition

interface between hardware and OS, and a set of OS level
policies. We first describe two hardware quota enforcement
mechanisms in Section 2.1, their advantages and limitations.
Section 2.2 describes the OS interface of our scheme and
finally Section 2.3 explains how the OS can use this interface
to implement different policies.

2.1 Hardware Quota Enforcement Mechanism
Our scheme uses a hardware mechanism that enforces quo-

tas for different sharers. In general, the quotas can be en-
forced at a set-level or the whole cache space level. Based
on this criteria, there can be two mechanisms which are ex-
plained in this section.

Both mechanisms that we describe here enforce quotas at
the time of cache block replacement. They act as “overlays”
that modify the behavior of an underlying quota-oblivious
replacement algorithm. We do not require LRU replace-
ment policy. Any replacement policy (this policy should
not be confused with the OS-level policy in our scheme)
that can generate a sequence of replacement candidates is
acceptable. In addition to the tags and status bits main-
tained by caches, the mechanisms require additional state
to be maintained. We maintain the “ownership” informa-
tion of each cache block which requires a “Tag-owner-ID”
to be stored along with each tag. We define the “owner”
of a block as the sharer that last touched the block. If
a cache block is used by multiple sharers, they will most
likely have the same SID. If they have different SIDs, then
ideally the block’s ownership (and hence its contribution to
quota utilization) must be simultaneously assigned partially
to each sharer. We avoid the complexity of determining par-
tial ownership but achieve a similar effect since the block’s
ownership is distributed among sharing threads over time
(the ownership changes hands between the sharers as they
use the cache block).

The replacement choice can be decided concurrently with
cache block fetch and is not on the critical path. The same
assumption is made by other replacement optimizations pro-
posed in the past [4, 18]. Hence the quota enforcement
mechanisms we describe here introduce no timing overhead.

2.1.1 Set-Level-Quota Enforcement Mechanism
In a shared cache, the issue of cache space management

arises if there are multiple sharers contending for the same
set. If there is no contention at a set, no sharer would inter-
fere with others and there is no need for cache space man-
agement. This argument motivates to maintain quota at a
cache set level. If quotas are enforced at a larger granularity,
the behavior at the cache set level is still arbitrary. Hence,
the first mechanism that we describe here implements quota
enforcement at the cache set level.

This mechanism is called Set Quota Violation Prohibition

CQVP: On a cache miss for a set S by a sharer Si:
Let Ti  be the total number of blocks in the whole cache currently used by Si.
If Ti   

�
qi,

Select new replacement candidates until one is found which is owned by Si. 
If no such candidate is found, select a random candidate.

       else
   Select new replacement candidates until one is found which is owned by a
   sharer (Sk) such that Tk > qk.
   If no such candidate is found, select a random candidate.

         If the replacement candidate is owned by sharer Sk  and Sk  �  Si  
Increment the bcounter of Si and decrement the bcounter of Sk

Figure 2: Cache Quota Violation Prohibition

(SQVP). It allocates a set level share to each sharer. The
share of each sharer depends on the quotas of other sharers
contending for the set. If there are k sharers using the cache
set, the sharei of a sharer Si is calculated as follows:

sharei = qi/Σk
j=1(q

j) ∗ cache associativity
share should not be confused with quota. Quota (q) is the
OS supplied value which is the minimum value of share.
share could potentially be equal to cache associativity if
there are no other sharers using the set. On a cache re-
placement, a sharer replaces its own block if it is already
using its share. If it is below its share, it replaces the block
of another sharer that is exceeding its share. Hence, this
mechanism prohibits any replacement that violates the min-
imum quota of a sharer. If a sharer Si has not exceeded its
quota of frames in the set, no other sharer may replace any
of Si’s blocks, even if the primary replacement candidate1

is owned by Si. In such a situation, subsequent replace-
ment candidates are considered and the first encountered
replacement candidate that is owned by a sharer that has
exceeded its quota is selected for replacement. SQVP mech-
anism requires that the sum of set-level quotas of all sharers
must not exceed the cache associativity; that ensures that
SQVP is guaranteed to find a replacement candidate. This
algorithm is formally described in Figure 1. In Figure 1, the
order in which the replacement candidates are selected is de-
termined by the underlying replacement policy (e.g., LRU).
Next, we describe the mechanism that enforces quotas at
the whole cache space level.

2.1.2 Cache-Level-Quota Enforcement Mechanism
Another approach for cache quota enforcement is doing it

at the cache level. Cache level quota enforcement has been
used by other researchers before [9, 23]. We call this mecha-
nism Cache Quota Violation Prohibition (CQVP). The gran-
ularity of quota allocation here is taken to be “number of
cache blocks in a cache way” (nw). The OS only specifies
the number of cache ways to be allocated to a sharer and
it is multiplied by nw to get the cache level quota of each
sharer. At the time of replacement, a sharer replaces its own
cache blocks if it is already using its assigned quota (or more
than its quota). If a sharer is using less than its quota, it re-
places the cache block of a sharer which is over its quota. If
an appropriate cache block is not found in the set, a cache
block is replaced at random. In addition to the “owner”
information, CQVP also requires counters to keep track of

1
A primary replacement candidate is the candidate that is first picked

up by a replacement policy. For example, if LRU is the replacement

policy, the least-recently-used block is the primary replacement can-

didate.
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Figure 3: Hardware Modifications for Quota En-

forcement Mechanisms

total cache blocks used by each sharer in the cache. We will
name these counters as bcounters (Block Counters). The
bcounter of a sharer is incremented whenever a new cache
block is allocated to it. Figure 2 describes this algorithm.
In Figure 2, quota q of sharers has already been multiplied
by nw so that we can directly compare it with block count
T . Again, the order of selection of replacement candidates
depends upon the underlying replacement policy.

2.1.3 Comparison of Set and Cache Level Quotas
We describe here the major trade-offs between set- and

cache-level quotas. First, SQVP manages cache at the gran-
ularity of a cache set. Thus, it can manage the hot sets ac-
cording the quota allocation of sharers. CQVP, on the other
hand, enforces cache level quotas. At a hot set, its behavior
depends on the cache block count of the sharers contend-
ing for the hot set, and cannot be controlled directly. This
limitation of CQVP is apparent in the results shown in Sec-
tion 4.2. Second, as SQVP have cache quotas specified at
the set level, it is guaranteed to find a replacement candi-
date, and never resorts to picking a random replacement
candidate. CQVP, on the other hand, might not find the
right replacement candidate; it picks a random candidate
for replacement in such situations. Hence SQVP provides
harder quota guarantees as shown by results in Section 4.1.
Third, SQVP enforces set level quotas irrespective of the
cache usage of the sharers in the rest of the cache. CQVP is
more powerful in this regard—if a sharer is using less space
in some parts of the cache, it will be allocated more space
in the other parts. This advantage of CQVP over SQVP is
demonstrated by the results in Section 4.2.

2.1.4 Optimizing Quota Enforcement Mechanisms
SQVP and CQVP both suffer from one potential weak-

ness. If a block owner with fewer cache blocks than its quota
discontinues (or greatly reduces the frequency of) using its
blocks, other sharers are not able to reclaim the rarely used
cache frames. This problem is also present in the other
cache partitioning schemes [4, 9, 11, 24]. To address this
shortcoming, we modify the quota allocation mechanisms,
incorporating reluctance rather than the outright prohibi-

tion on replacements that violate quotas. This optimization
works as follows: each time a primary replacement candi-
date in a particular set is spared from replacement because
its owner is consuming less than its share, a per-set counter
is incremented. We name this counter as rtcounter (Reluc-
tance Threshold counter). When rtcounter of a set exceeds
a reluctance threshold, the primary replacement candidate is
replaced even if the replacement violates quotas. The flavors
of SQVP and CQVP that include this optimization are re-
ferred to as SQVR and CQVR respectively. Figure 3 shows a

SQVR\CQVR: On a cache miss for a set S by a sharer Si:
If rtcounter-for-set-S = threshold, 
   Select the primary replacement candidate.
   Reset the rtcounter for set S.
else

       Use SQVP\CQVP to select a replacement candidate. 
       If the primary replacement candidate is selected, 

Reset the rtcounter for set S
       else

Increment the rtcounter for set S

Figure 4: Quota Violation Reluctance Optimization

tag array with the new structures needed for a 4-way cache,
supporting n sharers. Note that in addition to the struc-
tures needed for SQVR, CQVR also requires a per sharer
cache block counter (bcounter) to keep track of total cache
blocks used by each sharer in the cache. Also notice that the
rtcounter is per set only and not per cache block. Figure 4
describes SQVR and CQVR mechanisms.

In general, SQVRrep,n (or CQVRrep,n) describes a con-
crete mechanism with rep as the underlying replacement
policy and n as the reluctance threshold. In the rest of
this paper, we will assume LRU to be the common under-
lying replacement strategy and vary the reluctance thresh-
old (i.e., SQVRlru,n or CQVRlru,n). Note, SQVRlru,0 and
CQVRlru,0 simplify to LRU because there is no reluctance to
deviate from the LRU policy. SQVRlru,inf and CQVRlru,inf

are equivalent to SQVPlru and CQVPlru respectively which
can never reclaim cache space from a sharer due their ex-
treme reluctance to violate quotas.

Area overhead: The area overhead for the implementa-
tion of the quota enforcement mechanisms is minimal. Con-
sider a CMP which supports 4 sharers, and has a 4-MB,
16-way L2 cache with 64 byte blocks. The additional “tag-
owner-id” field requires 2 (=lg2(4)) bits per tag or a total of
32 bits per set. The size of the rtcounter depends on the
maximum threshold allowed. Even an extreme threshold of
15 would require only 4 bits. If 4 bits are used for threshold,
a threshold of 16 can be treated as a special case to repre-
sent infinite threshold. Thus, the total overhead is 36 bits
per cache set. Assuming a physically tagged L2 with 32-bit
physical addresses and 4 bits of miscellaneous book-keeping
state, the overhead of SQVR is almost 10% over tag stor-
age alone but it is less than 1% when considering the cache
as a whole. CQVR requires additional cache block counters
(bcounters) for each sharer. Each of these bcounters need
to be 16 bits (to count all the cache blocks in 4MB cache).
Thus CQVR has additional storage overhead of 64 bits over
the whole cache.

In the rest of this section, we describe the interface of
hardware quota enforcement mechanism to the OS and how
OS can use this interface to implement different cache man-
agement policies.

2.2 The OS Interface
Our scheme enables the OS to decide if a sharer is a

thread, a process, a user or any other well-defined group.
If the sharer is not an individual thread, all threads of the
group (e.g., process or user) share the same quota.

The hardware quota enforcing mechanisms require the
sharer’s identity to be associated with each access. To achieve
this, we associate a sharer identifier (sid) register with each
processor to identify the sharer currently using that proces-
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Figure 5: Interface Exposed to OS

sor. Whenever a processor makes a request, its associated
sid accompanies the request and is used to lookup a sharer

quota table (SQT) which stores the quota of each sharer. In
addition to these structures, the optimization mentioned in
Section 2.1.4 requires the OS to specify a reluctance thresh-
old. These structures are shown in Figure 5. It is the operat-
ing system’s responsibility to update the sid in the register
on each context switch. Solaris already places pointer to
the thread data structure in global register %g7, which is
updated on context switch [5]. Thus sid can be stored in
the thread data structure and can be updated when %g7
is updated. This scheme allows the threads of a sharer to
move from one core to another core. Moreover, if a sharer
is a process or any other group of threads, its threads can
run on multiple cores of the CMP at a given time and still
share the same quota.

Number of sids: An important design consideration
is the choice of number of unique sids. One option is to
use as many unique sids as there are processors in CMPs.
In this case, sids will be reused by sharers upon context
switches. When a sharer’s sid is reused by another sharer,
the new sharer may replace the cache blocks of the old sharer
over time. This design choice implies that a sharer has no
guarantee that its quota will be respected when it is not
actively running. But this behavior is no worse than any
other replacement policy like LRU.

Our scheme can be easily extended in scope by increas-
ing the number of sharers beyond the number of processors,
thus providing quota enforcement across context switches.
The area overhead will correspondingly increase due to in-
creases in per-cache-line owner-id storage (Section 2.1) and
an increase in the number of SQT entries. Another advantage
of increasing the number of sids is that it enables the use of
our scheme in the context of single-core processors to ensure
that quotas are respected across context switches. This may
facilitate affinity scheduling techniques as well. We leave the
detailed analysis of these benefits for future work and use
the option of “sids equal to the number of cores on CMP”
for this study.

Area overhead: The area overhead of the OS interface
is minimal too. Let us consider a 4-processor CMP which
supports 4 sharers and has 16-way L2 cache. We need 8 (2
sid bits ∗4) bits for sid registers. The area overhead of SQT
in terms of bits is 16 (4 quota bits ∗4) bits. The reluctance
threshold requires 4 bits. Thus the total overhead of OS
interface would be 28 bits.

Given the above architecture, the OS is required to specify
(a) the quotas for each sharer in the SQT (b) the sid of the
sharer using a processor core and (c) the reluctance thresh-
old for the SQVR and CQVR mechanisms. Since the 28-bits
can be captured in a special 32-bit register, any modifica-
tions to the quotas, sids and/or the reluctance threshold
can be achieved with a single register write/copy. Similar
interfaces to read and write special-purpose hardware per-

formance counters already exist. The modifications to this
new register would have to be in privileged mode since ap-
plications cannot be allowed un-moderated control of their
own quotas.

Next we discuss different OS level policies.

2.3 OS Level Policies
The mechanisms and OS interface described above provide

the basic architectural support for the specification and en-
forcement of cache quotas. This architectural support can
be used by OS to implement a variety of cache management
policies. As a proof-of-concept, we implemented three con-
crete OS level policies that are described below.

First, we describe a passive policy (Section 2.3.1) in which
cache quotas are fixed for the duration of the run. Next, we
examine reactive policies that use performance feedback to
tune the cache quotas. The feedback can be gathered from
hardware performance counters that are present in most
modern processors. We evaluate two reactive policies. The
first reactive policy (Section 2.3.2) is an implementation of
a hardware fairness policy proposed by Kim et.al. [9]. This
policy attempts to equalize the miss rates of all sharers by
controlling each sharer’s cache quota. The second reactive
policy (Section 2.3.3) attempts to equalize the sharers’ in-
struction throughput ratio to their OS-specified service-level
priority ratio by manipulating their cache quotas. Next, we
present details of each of these policies.

2.3.1 Passive Performance Differentiation
In this policy, the cache quotas are kept static by OS, i.e.,

the OS specifies cache quotas and does not change them. We
demonstrate this policy for two purposes. First, we use this
policy for comparison of the quota enforcement mechanisms
as it is simple and does not include secondary effects like the
reactive policies. Second, we use it to enforce unequal cache
quotas for performance differentiation. Unequal cache quo-
tas provide the performance differentiation since each sharer
gets an unequal share in the cache. Performance differentia-
tion can be used to prioritize critical sharers and to improve
the profits for an IT infrastructure provider by prioritizing
high-paying customers. Our results in Section 4.2 indicate
that this passive policy successfully provides performance
differentiation.

2.3.2 Reactive Miss Rate Equalization
We demonstrate the flexibility of our scheme by imple-

menting the algorithm suggested by Kim et.al. [9] for their
fairness scheme. We will briefly describe the algorithm here.
For details, we refer the reader to [9]. The algorithm tries
to minimize a metric across all sharers in an attempt to
improve fairness. Kim et.al. studied five different metrics.
In this paper, we will present results for only one metric,
namely the difference of miss rate referred to as M4 in [9].
Thus the algorithm will try to minimize the difference of
miss rates (or equalize the miss rates) for all the sharers.
We refer to this policy in our scheme as MM4 (Minimizing
M4).

The algorithm starts out by dividing the cache space equally
(so we set the quota for each sharer to be equal). Then the
following two steps are executed at regular intervals/epochs:
repartitioning and rollback. In the repartitioning step, M4

for each thread in the last epoch is calculated. Then, we con-
sider the two threads with the largest and smallest value of



M4; the quota of the thread with the larger value of M4

is increased and the quota of the thread with the smaller
value of M4 is decreased. This process is repeated until all
the threads have been considered. In the rollback step, we
look at all the repartitionings done in the last invocation of
the algorithm. If, as a result of repartitioning, the metric M4

was improved by a rollback-threshold, we keep the reparti-
tioning; otherwise we undo/rollback the repartitioning. The
rollback step is actually performed before the repartitioning,
and any threads involved in rollback are not considered for
repartitioning.

We used a rollback-threshold of 20% (suggested to be best
by Kim et.al.). We test the effectiveness of this fairness
policy by introducing a program that acts as a cache hog.
A cache hog is designed to be an enthusiastic user of cache
space. It creates a big matrix equal to the size of L2 cache,
and tries to keep all the elements of the matrix in the cache
by accessing them frequently. It not only touches a lot of
cache blocks, but goes back and accesses them again, so
that its blocks are not evicted by demand based replacement
policies like LRU. The code for the hog program is presented
in Appendix A. Our results in Section 4.3 show that this
policy significantly improves performance, as it gets rid of
the malicious effect of hog.

2.3.3 Reactive Performance Differentiation
The goal of this policy is to provide reactive performance

differentiation. In this policy, the algorithm used is similar
to the one used for Miss Rate Equalization (MM 4) described
in Section 2.3.2, with some modifications. The first modi-
fication is a new metric Mpd (Metric for Performance Dif-
ferentiation). The Mpd metric aims to achieve performance
(IPC) ratios proportional to OS-specified service-level pri-

orities (say p). The desired IPC ratio and Mpd metric are
calculated as follows:
priorityratio = pi/Σj(pj), IPCratio = IPCi/Σj (IPCj),
Mpd = IPCratio − priorityratio

In minimizing this metric, we are trying to make the IPCratio

as close as possible to the priorityratio. The second modifi-
cation is that this algorithm does not have a rollback step.
This policy can be used for performance differentiation only
under certain conditions: (a) IPC of each sharer is similar.
(b) Performance of sharers is sensitive to their cache space
allocation.

We refer to this policy in our scheme as MMpd (Minimiz-
ing Mpd). It starts with equal quota allocation and tweaks
(increases or decreases) the quota allocation until the metric
Mpd is minimized. It can be used to increase profits of the
third party IT infrastructure providers, as they can use to
it assign higher priority to more valuable (read high paying)
customers. Similar policies can also be used to prioritize
more critical applications.

Timing overhead: The overhead for the execution of
policy enforcement algorithm in OS depends on the com-
plexity of the policy. We envision the OS to provide a range
of policies from simpler to complex ones. For the passive
policy described above, there is no OS level overhead as
quotas are kept constant. For the two reactive policies, we
used an epoch length of 2 million cycles. That translates to
1ms for the processor frequency used in this study (2GHz).
Thus this algorithm can be executed by system clock han-
dler which is executed every 10ms by default but can be set
to execute 1ms (system clock handler already performs sig-

Workload Benchmarks Fourth

Mix1 ammp, mcf, lucas parser
Mix2 vpr, facerec, gcc twolf
Mix3 twolf, parser, applu art
Mix4 parser, art, gcc twolf

Table 1: Multiprogrammed workloads

Benchmarks SPECjbb Apache

Trans. (Insts.) Trans. (Insts)
System Warm-up 100,000 20,000
Cache Warm-up 40,000 500

Simulation 4000 (≈100million) 100 (≈100million)

Table 2: Commercial Multi-threaded Benchmarks

nificant amount of processing [15]). This algorithm should
work well with epoch time of 10ms as well; we set it to 1ms
so that there are enough epochs during our simulation run.
The algorithm is around 50 lines of C++ code including all
the book-keeping. We found the algorithm execution time
to be around 20 micro-seconds, on average (measured us-
ing gettimeofday system call). As the algorithm is invoked
once every 1ms, that amounts to a 2% timing overhead. We
did not make any attempt to optimize the algorithm run-
ning time. If the algorithm is optimized and/or the epoch
time is increased to 10ms, the overhead can be reduced to
much less than 2%.

For all the OS-level policies that we mentioned here, the
reluctance-threshold is kept constant. In practice, the OS
can tweak the reluctance-threshold to change how strongly
the quota guarantees are enforced. To show the effect of
different reluctance-thresholds, we present all results with
three different values of reluctance thresholds.

3. SIMULATION METHODOLOGY
In this section, we describe the workloads and simulation

platform we use to evaluate our scheme.

3.1 Benchmarks
We consider two distinct workload types: multiprogrammed

scientific and engineering workloads, and multi-threaded com-
mercial workloads. Our multiprogrammed workload mixes
represent applications from SPEC2000 which have a large
L2 cache usage and a high miss rate [28]. We made this
choice because cache space management is not an issue if
there is no resource contention. Table 1 lists all the multi-
programmed workload mixes we used for our experiments.
For multiprogrammed workloads, caches are warmed up for
2 billion instructions and 100 million instructions are simu-
lated in detail.

The commercial workloads used in the study are listed in
Table 2 with the number of transactions (and correspond-
ing number of instructions) used for different phases of the
simulation. We run SPECjbb with 16 warehouses, with
one client per warehouse. Apache was configured to use
prefork multi-processing module. Surge is used as apache’s
client to generate web requests [1]. It simulates 300 (75 * 4)
users. As Surge itself takes significant processor resources,
we run it on a separate simulator and the results reported



Processor parameters

• Number of chips: 1 • Processors per chip: 4
• Feature size: 65nm • Cycle time: 0.5ns
• Pipeline width: 4way • Instruction window: 64
• Return address stack: 64 • ROB size: 128
• Branch Predictor: 1KB YAGS

Memory hierarchy parameters

L1 I/D cache 128KB, 4-way, 2 cycles
L2 cache 4MB, 16-way shared,

4-way banked, 8 cycles
L2 miss latency 400cycles

DRAM size 1GB
Disk Latency Fixed 10ms

Table 3: Simulation Parameters

here refer to the server-side statistics only.
We simulate the OS’s interactions with our scheme by

simulation without modifying the OS. The code for OS level
policy is executed in the simulator and directly modifies SQT.
We statically assign a sid to each process/thread. Our sim-
ulation environment does not provide a straightforward way
of identifying a process/thread running on a processor. To
overcome this limitation, we bind all threads with the same
sid to a particular processor using the pbind command in
Solaris. This binding of threads to processors prohibits the
migration of threads between cores but does not qualita-
tively change the results of our experiments. This setup al-
lows us to associate a static sid with a each processor; thus
each processor is exclusively serving one sharer, with a quota
specified by SQT. As the CMP we simulate has 4 cores, there
are 4 sharers in system (they will be numbered 0, 1, 2 and 3).
For multi-programmed workloads, we bind one benchmark
to each processor. For commercial workloads, we bind the
same number of threads to each processor. Each group of
threads bound to one processor constitutes one sharer and
all threads in the group share the same quota. SPECjbb uses
a single thread to simulate a client and a server. As we sim-
ulate 16 clients in total for SPECjbb, each processor will have
4 such threads bound to it. For Apache, a server thread is
used exclusively to serve one client/user. Thus each proces-
sor has 75 threads bound to it as there are a total of 300 (75
* 4) clients.

We also perform experiments with hog (Section 2.3.2) to
demonstrate that our mechanism can be used to provide
fairness. For those experiments, one of the processors runs
only a hog. For multi-programmed workloads, the hog re-
places the fourth benchmark (listed as “Fourth” is Table 1)
in the mixes. We do not perform experiments with hog for
commercial workloads.

3.2 Simulation Platform
We use the Simics [13]-based GEMS [14] full system sim-

ulation platform. Our simulated system runs an unmodified
Solaris operating system version 5.9 and simulates a 4-core
CMP. Each core is modeled by OPAL module in GEMS.
OPAL simulates an OoO processor model, implements par-
tial SPARC v9 ISA, and is modeled after MIPS R10000.
For our memory subsystem simulation, we use the RUBY
module of GEMS which is configured to simulate an MSI
directory-based cache coherence protocol. We use an aggres-

sive 4-way 128KB L1 cache conservatively (using a smaller
cache would only make our results look better). Our L2
cache is 4-way banked, with a point-to-point interconnect
between the L2 banks and L1. We used CACTI-3.0 [21]
to model the latency of our caches. Table 3 lists the key
parameters of the simulated machine.

4. RESULTS
The primary conclusions from our results are fourfold:

(a) Enforcing set-level quotas is broadly comparable to en-
forcing cache-level quotas. But set-level quota enforcement
mechanism can provide harder quota guarantees than cache-
level quota enforcement mechanism. Moreover, cache-level
quota enforcement mechanism shows poor performance at
high reluctance-thresholds in some cases. (b) The passive
policy is effective in providing performance differentiation
(c) MM 4 shows a significant improvement in performance
by avoiding the malicious effect of the hog, and (d) MMpd

successfully achieves performance differentiation; however,
the policy requires further study to achieve stable perfor-
mance. We expand on each of the above results in the rest
of this section.

4.1 Cache-level vs Set-level Quotas
In this section, we compare the efficacy of the quota en-

forcement mechanisms (SQVRlru,n and CQVRlru,n) in terms
of how well they maintain the quotas that they aim to
achieve, for different reluctance thresholds. For this pur-
pose, we collect set-level and cache-level quota deviation
metrics. The set-level quota deviation metric aggregates
the deficit (i.e., quota minus held blocks) for the owner of
the replaced block if it is/becomes under (set-level) quota
after a replacement. The cache-level quota deviation metric
counts the instances when the owner of the replaced block
is/becomes under (cache-level) quota after a replacement.
For the sake of comparison, we also present the set-level
deviation of CQVRlru,n and the cache-level deviation of
SQVRlru,n.

Figure 6 (a) and (b) show the results for set-level quota
deviation and cache-level quota deviation for all the bench-
marks. A smaller value of deviation shows that the mecha-
nism closely follows the quota allocation. All the numbers
are normalized to their value for LRU. Figure 6 (a) confirms
that as the reluctance threshold is increased from 3 to in-
finity, SQVRlru,n improves (decreases) the deviation from
the quota. SQVRlru,inf ’s deviation is zero for all workloads
as expected. Hence, a high value of threshold ensures that
quota guarantees are preserved. Figure 6 (a) also shows
that the impact of reluctance threshold on set-level quota
deviation varies from workload to workload. Mix1 and Mix3

shows little deviation at smaller reluctance thresholds, while
the rest of the workloads show comparatively larger devia-
tion. The rate at which the deviation decreases with in-
creasing reluctance threshold is also different for different
workloads. The value of deviation at different reluctance
thresholds depends on the access pattern of the workloads
and is hard to predict. We recommend high value of thresh-
olds if guaranteeing cache quotas is important. CQVRlru,n

also shows a small value of set-level quota deviation for the
multiprogrammed workloads, but for commercial workloads,
its set-level quota deviation is high and unpredictable (as
for SPECjbb, the quota deviation increases with increasing
threshold). Figure 6 (b) shows similar trends - the cache-
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Figure 6: Passive Performance Differentiation

level quota deviation decreases as the reluctance threshold
is increased. But as opposed to SQVRlru,inf which has zero
set-level quota deviation, CQVRlru,inf has some non-zero
value of cache-level quota deviance (visible at least for com-
mercial workloads). The reason is that CQVRlru,inf has to
let a sharer store at least one block in a cache set, even if
it exceeds its quota overall. In such situations, the replace-
ment candidate is picked at random. Thus CQVRlru,n does
not provide hard quota guarantees as such (as mentioned
in second point in comparison of SQVP and CQVP Sec-
tion 2.1.3). Figure 6 (b) also shows that SQVRlru,n exhibits
little cache-level quota deviation on average (though signif-
icant deviation is observed for commercial benchmarks).

Next, we will show the results for different OS level poli-
cies. The results of each policy are presented using both
SQVRlru,n and CQVRlru,n to show how these mechanisms
effect the function of different policies. We show only perfor-
mance (IPC) results for the different policies; the miss rates
correspond with performance trends and are not presented
here.

4.2 Passive Performance Differentiation
We mentioned in Section 2.3.1 that a passive policy of

fixed, but different quotas can be used to provide differen-
tiated service. For that purpose, we set the quotas of the
four sharers to be < 6, 4, 4, 2 >. The sum of quotas does
not exceed the cache-associativity for the reasons explained
in Section 2.1.1.

We determine the success of the passive policy by how
well it differentiates the performance. For comparison, we
use column caching [4] with equal way division, i.e., each
sharer is allocated equal number of cache ways (even if they
do not use it). Hence, we normalize the IPC of each sharer
to its IPC in column caching. We do not use the IPC in
LRU for normalization because LRU is demand-based and
might allocate different cache space to each sharer; hence,
its not a good choice for normalization. Figure 6 (c) plots
the instruction throughput (IPC) of each sharer averaged
for all the workloads (individual misses and performance
numbers for each workload are shown in Figure 9 and Fig-
ure 10 respectively, in Appendix B). The results are shown
for SQVRlru,n and CQVRlru,n for different thresholds. The
performance of each sharer is also shown for the demand-
based LRU mechanism for comparison. Note here that the
performance of each sharer in LRU depends on its cache
access pattern; a sharer with more frequent cache accesses

would secure more cache space and might show better per-
formance than others. Thus, the efficacy of the passive per-
formance differentiation policy should not be judged by its
comparison to LRU, but by the difference in performance
between sharers with high and low quotas. As sharer 0
and 3 are assigned quotas of 6 and 2 respectively, sharer 0
should benefit the most, while sharer 3 should suffer, de-
pending on their sensitivity to the cache space allocated
to them. This trend is visible for smaller thresholds and
become more prominent at larger thresholds as expected
(larger thresholds mean stronger quota enforcement). In
general, it is possible that a sharer is able to grab more cache
space in LRU than the quota allocated to it in SQVRlru,n or
CQVRlru,n. That happens in a few workloads for sharer 0
(numbers not shown here); that is why sharer 0 shows a good
performance for LRU too. It can be noticed that CQVRlru,3

and CQVRlru,10 appear to be more effective than SQVRlru,3

and SQVRlru,10, respectively (sharer 0 shows slightly better
performance for CQVRlru,3 and CQVRlru,10). The reason
is that for CQVRlru,n, if sharer 0 is not using some part of
the cache, it can have greater share in the rest (the third
point mentioned while comparing SQVP and CQVP in Sec-
tion 2.1.3). One can also observe that for CQVRlru,inf ,
sharer 0, 1 and 2 show a significant drop in performance.
The reason is that CQVRlru,inf does not provide any quota
guarantees at the set-level, and a benchmark might be pe-
nalized in hot sets if it is consuming its quota in the rest
of the cache (first point mentioned in comparison of SQVP

and CQVP in Section 2.1.3). Hence, we do not recommend
using CQVRlru,n with high value of reluctance-thresholds.
The overall instruction throughput (combined for all shar-
ers) is slightly better than LRU for all mechanisms but
CQVRlru,inf (not apparent from the numbers presented).
We also notice that this overall throughput decreases slightly
with increasing reluctance-threshold. The reason is that at
high reluctance-thresholds, cache blocks are kept longer in
cache even if they are not reused. Hence, if performance
differentiation is not the primary concern, we recommend
using smaller thresholds.

4.3 Reactive Miss Rate Equalization
The reactive policy MM 4 that aims to equalize miss rates

to improve fairness is used is this study to prevent the ma-
licious effect of the hog. We present the results with the
hog for multiprogrammed workloads only. Figure 7 presents
the performance of this policy with different quota enforce-
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Figure 7: Performance of Reactive Fairness policy

with hog

ment mechanisms (the corresponding normalized misses per
instruction are shown in Figure 11 in Appendix B). The
performance of each sharer is normalized to its performance
in the LRU case and is shown by a box in the stack. As
expected, this policy improves the performance significantly
over the demand based LRU mechanism, by minimizing the
effect of the hog. Mix2, Mix3 and Mix4 all experience a
big improvement in performance over LRU (Mix4’s perfor-
mance improves by 3.9 times for SQVRlru,inf ), as their miss
rates (not shown) were significantly reduced. Mix2 and Mix4

achieve particularly good performance because of gcc’s sud-
den and drastic reduction in miss-rate (gcc is very sensitive
to its cache space allocation). Mix1 does not show a sig-
nificant improvement over LRU, because the benchmarks
in Mix1 use the cache aggressively and are not significantly
effected by the hog. It can also be observed that, as the
reluctance-threshold is increased, the performance improves.
This is as expected because with lower thresholds, the hog

still takes away cache blocks from other sharers.

4.4 Reactive Performance Differentiation
In this section, we show the results obtained by reac-

tive performance differentiation policy MMpd outlined in
Section 2.3.3. For these experiments, the service-level pri-
orities for sharers are < 50, 50, 5, 5 >. As mentioned in

Section 2.3.3, the algorithm starts with equal cache quotas,
and tries to make the ipcratio as close as possible to the
priorityratio. We also mentioned in Section 2.3.3 that this
policy works only if IPC of each sharer is similar. Thus, in-
stead of using multiprogrammed workload mixes mentioned
in Table 1, we create 9 new workloads with the same bench-
mark running on all 4 processors (4ammp, 4mcf, 4parser,

4vpr, 4facerec, 4gcc, 4twolf, 4applu, 4art). Commer-
cial workloads mentioned in Table 2 are still used as they
have threads with similar IPC. Figure 8(a) plots IPC for
different replacement mechanisms for all the 4 sharers, av-
eraged over all the workloads. Each sharer’s performance is
normalized to its performance for column caching with equal
way division (for the reasons mentioned in Section 4.2).
Individual normalized IPC and misses per instruction are
shown in Figure 13 and Figure 12 respectively, in Appendix B.
As sharer 0 and 1 have high service-level priority, they are
expected to show better performance than the other two
sharers. This trend is clearly visible, but it does not become
significantly more prominent as the reluctance-threshold is
increased. This is because our feedback-driven policy further
increases the quotas of high priority sharers if IPC does not
change significantly at smaller thresholds. Thus even though
higher reluctance thresholds enforce quotas strongly (sharer
2 and 3 lose performance), they offer little or no performance
improvements to sharer 0 and 1 as compared to smaller
reluctance-thresholds. The overall instruction throughput
of SQVRlru,3 and CQVRlru,3 is slightly better than LRU
on average (again not apparent from the graphs presented).
SQVRlru,10 and SQVRlru,inf show degradation in overall
throughput by 2% and 7% respectively; while CQVRlru,10

and CQVRlru,inf show degradation in overall throughput
by 3% and 8% respectively.

To further analyze the operation of this reactive policy,
Figs 8(b) and 8(c) plot IPC (not normalized) for every epoch
of 2 million cycles (i.e. the interval at which our algorithm is
invoked). These results are presented only for two workloads
and one mechanism (SQVRlru,inf ); the rest of the results
show the similar trend and are shown in Figure 14, Figure 15
and Figure 16 (in Appendix B) for SQVRlru,3, SQVRlru,10

and SQVRlru,inf respectively. Figs 8(b) and 8(c) show that
sharers in the two workloads presented achieve the expected
performance differentiation and maintain the difference with
moderate stability. More robust control methods to tune
quotas and reluctance-threshold are left for future work.

Throughout this section, we observe that using a higher
reluctance threshold provides better results, as it enforces



quotas strongly and benefits the less aggressive users of
cache space. The disadvantage of using higher reluctance
thresholds is that the cache blocks stay in the cache longer
even if they are not reused. Thus, the overall throughput
(combined for all sharers) is higher at smaller thresholds in
some cases. Note, however that OS policies are not always
designed purely to maximize global throughput. A policy
that enforces quotas strictly with a high reluctance thresh-
old might be necessary if the OS has to guarantee minimum
service levels to sharers.

5. RELATED WORK
We are not aware of any other work which studies flexible

OS level policies for the management of shared CMP caches.
Yeh et.al. [26] proposed a scheme which assumes equal pri-
orities in hardware and attempts to optimize throughput in
the shared cache while providing fairness guarantees. They
use a “scratch pad array” to predict cache miss rate, which
has a 10% overhead over the overall cache area. Settle
et.al. [20] propose two different kinds of cache management
schemes. They assumed per-cache-line re-use counters, thus
their scheme has significant hardware overhead too. Though
they mentioned the possibility of assigning high priority to
one of the threads, they did not propose/evaluate a scheme
for doing it. Kim et.al. [9] studied a hardware scheme for
implementing fairness in cache. They propose 5 different
metrics that can be used for fairness, and propose an al-
gorithm which tries to equalize those metrics. We show in
Section 4 how their fairness algorithm can be mapped to our
scheme by an OS level policy. Suh et.al. [23] studied par-
titioning the cache among sharers by modifying the LRU
replacement policy. They use per cache block counters that
indicate the marginal gain as cache allocation of a sharer
is increased. Their scheme can be used to minimize overall
miss rate. Chiou et.al. [4] proposed column-caching that al-
lows software to restrict data to certain portions of cache.
If column-caching is used to enforce quotas, space will be
reserved for a sharer even if it is not using it (i.e., quota will
not only be a minimum guarantee, but a maximum limit
too). We notice an increase in miss-rate of upto 14% over
SQVRlru,inf if column-caching is used. Hence, the mecha-
nisms studied in this paper are strictly better than column-
caching. Liu et.al. [11] also suggested a way of splitting L2
cache. Though their scheme allows the OS to manage the
cache space allocated to a sharer, they statically split the
cache using profiling information. Moreover, their splitting
mechanism has the same problem as column-caching i.e.,
cache space is allocated to a sharer even if it does not use
it.

Our scheme is differentiated from the above-listed work
in two key ways. First, our SQVR mechanism differs from
previous cache partitioning mechanisms in that it offers fine-
grain, opportunistic quota enforcement that guarantees min-
imum cache allocation without unnecessarily limiting the
maximum. Second, our work exploits the mechanism-policy
decoupling to enable significant policy flexibility as opposed
to single policy goals such as fairness, maximizing through-
put or differentiated service.

Iyer et.al. [7] proposed a scheme for QoS support in shared
CMP caches. They suggested that there could be many
different approaches for cache priority classification, cache
priority assignment, and cache priority enforcement. But
they only studied cache priority enforcement in detail. One

of their cache priority enforcement technique (they called
it dynamic set partitioning) is similar to SQVP. But their
technique supports only two priority levels and does not
allow the low priority sharer to occupy all cache lines in a
set, even if they are not used by the high priority sharer.

Some researchers have proposed to manage the lower level
cache entirely in software [3, 6, 8, 12]. The involvement of
software for handling L2 misses is costly/infeasible for the
following two reasons. First, the software handling of L2
misses is expensive and it is really the reduction in miss
rate (due to full associativity enabled by software manage-
ment) that compensates for the overhead. While true for
low-associativity L2 caches, this benefit is decreasing due to
trend of increasing associativity (e.g, pentium D is 8-way
and niagara is 12-way set-associative [10]). The benefit
for 16-way associative caches used in our evaluation would
be negligible because there is very little further reduction
in miss-rate going from 16-way to fully associative caches.
(Hallnor et.al. [6] Figure 3.) Second, the above mentioned
proposals argue that the overhead of software miss handling
could be overlapped with DRAM access. This argument is
true if we consider only the critical path latency of a sin-
gle thread. However, it ignores the execution bandwidth
and the CPU power consumed by the instruction overhead
of context switch and software miss handler. Our scheme
solves this problem by reducing the frequency of OS inter-
vention to once in a milli-second (instead of once for each
L2 miss).

6. CONCLUSION AND FUTURE WORK
While operating systems have the ability to ration each

process’ CPU time, they are unable to exercise control over
its cache space allocation. Existing cache management schemes
are predominantly hardware based and offer little or no pol-
icy flexibility. The major contribution of this paper is the
design of a flexible, low-overhead scheme for OS-level man-
agement of shared CMP caches. The scheme consists of
three components: a hardware quota enforcement mecha-
nism, an OS interface and a set of OS level quota man-
agement policies. The hardware mechanism enforces OS-
specified quotas for each sharer and the OS can vary the
policy by tuning the quotas. We propose a hardware quota
enforcement mechanism with little area overhead (less than
10% tag area overhead and less than 1% cache area over-
head for 4MB, 16-way L2 cache with 64 Byte blocks) and no
timing overhead. The key advantage of our quota enforcing
mechanism is that it enforces the minimum quota guarantees
in the presence of contention without unnecessarily holding
back the cache space in the absence of contention. The OS
interface we propose is powerful and has area overhead of
only 28 bits if 4 sharers are supported. Our scheme is ver-
satile and provides support for a wide range of policies at
the OS level including (a) passive performance differentia-
tion, (b) reactive fair cache sharing policies and (c) reactive
performance differentiation policies. The overhead of OS
policies depends on their complexity. The policies we have
implemented have timing overhead ranging from 0 to 2%.
Our results indicate that our scheme successfully provides
fairness and differentiated service. Extending this work to
include (a) application-negotiated cache allocations and (b)
application adaptation to allocated cache quotas is part of
ongoing research.
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APPENDIX

A. CODE FOR HOG
The code for hog is compiled with gcc version 3.4.4 using optimization flag -O3. The listing of the exact code used is

provided here.

/***

This code is designed to be a cache hog. i.e. it creates a lot of

cache misses by accessing the elements of an array. The size of the

array is set to be equal to the cache size. It also goes back and

re-accesses the elements again so that they are not evicted from

cache.

Autors: Nauman Rafique and Won-Taek Lim

(nrafique,wlim@purdue.edu)

***/

#include <sys/types.h>

#include <sys/mman.h>

#include <stdlib.h>

#include <stdio.h>

#define MEGABYTE ((size_t)(1024 * 1024))

#define FOUR_MEGABYTE ((size_t)4 * MEGABYTE)

/* Cache parameters */

#define CACHE_LSIZE 64

#define CACHE_ASSOC 16

#define CACHE_SETS 4096

/* Calculated parameters */

//Total number of cache lines

#define CACHE_LINES (CACHE_SETS * CACHE_ASSOC)

//Size of the array equal to the cache size

#define NUM_ARRAYS (CACHE_SETS * (CACHE_LSIZE / 8) * ( CACHE_ASSOC ))

//Arbitrary large number for total iterations

#define NUM_ITER 400000000

int making_miss(double *array0) {

register int burst_base_index,

way_index,

set_index,

redo_index,

iter_index;

// Number of array elements to skip to get to the next cache line

register int NEXT_LINE = (CACHE_LSIZE / 8);

// Number of array elements to skip to get past 20 cache lines

register int BURST_SIZE = (NEXT_LINE * 20);

// Number lines to skip to get to the next cache way in the same set

register int NEXT_WAY = (CACHE_SETS * NEXT_LINE);

double sum;

// Perform the sequence of accesses again and again

for(iter_index = 0; iter_index < NUM_ITER; iter_index++) {

sum = 0;

/*

The sequence of accesses is as follows: We first touch lines

only in one of the ways before going to the next way. In one

iteration of the innermost loop, we touch 20 conescutive cache

sets. The number 20 is chosen arbitrarily and is used to

amortize the loop overhead (loop unrolling). Each way is

touched twice before going to the next way, to keep the cache

lines from being evicted.

*/



// Loop over all the ways

for (way_index=0; way_index < NUM_ARRAYS; way_index+=NEXT_WAY) {

// Touch the same way twice before going to next

for(redo_index = 0; redo_index < 2; redo_index++) {

// Access all sets in the way in burst of 20

for(burst_base_index=way_index,set_index=0;

set_index < CACHE_SETS;

burst_base_index+=BURST_SIZE,set_index+=20) {

sum +=

array0[burst_base_index+(0*NEXT_LINE)]+

array0[burst_base_index+(1*NEXT_LINE)]+

array0[burst_base_index+(2*NEXT_LINE)]+

array0[burst_base_index+(3*NEXT_LINE)]+

array0[burst_base_index+(4*NEXT_LINE)]+

array0[burst_base_index+(5*NEXT_LINE)]+

array0[burst_base_index+(6*NEXT_LINE)]+

array0[burst_base_index+(7*NEXT_LINE)]+

array0[burst_base_index+(8*NEXT_LINE)]+

array0[burst_base_index+(9*NEXT_LINE)]+

array0[burst_base_index+(10*NEXT_LINE)]+

array0[burst_base_index+(11*NEXT_LINE)]+

array0[burst_base_index+(12*NEXT_LINE)]+

array0[burst_base_index+(13*NEXT_LINE)]+

array0[burst_base_index+(14*NEXT_LINE)]+

array0[burst_base_index+(15*NEXT_LINE)]+

array0[burst_base_index+(16*NEXT_LINE)]+

array0[burst_base_index+(17*NEXT_LINE)]+

array0[burst_base_index+(18*NEXT_LINE)]+

array0[burst_base_index+(19*NEXT_LINE)];

}// Burst

}// Redo

}// Ways

}// Iterate

return sum;

}

/*

The main function just allocates space for the array and calls the

array access function.

*/

int main(int argc, char *argv[])

{

struct memcntl_mha mha;

double *src0,sum;

printf("Hog parameters: ");

printf("Cache lines = %d, Line size = %d, Assoc = %d\n",

CACHE_LINES,CACHE_LSIZE,CACHE_ASSOC);

printf("Cache size = %d KB, Array size= %dKB\n",

(CACHE_LINES*CACHE_LSIZE/1024),NUM_ARRAYS*8/1024);

/* Set pagesize to 4MB for heap */

mha.mha_cmd = MHA_MAPSIZE_BSSBRK;

mha.mha_flags = 0;

mha.mha_pagesize = FOUR_MEGABYTE;

memcntl(NULL, 0, MC_HAT_ADVISE, (char *)&mha, 0, 0);

/* Allocate memory for the array*/

src0 = (double *)memalign(FOUR_MEGABYTE,sizeof(double)*NUM_ARRAYS);

/* Call the function which makes misses*/



sum = making_miss(src0);

printf("array access kernel was successfully done with sum = %.cf !\n",sum);

}

B. DETAILED RESULTS
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Figure 9: Passive Performance Differentiation: Misses per instn. normalized to column-caching
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Figure 10: Passive Performance Differentiation: IPC normalized to column-caching
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Figure 11: Misses per instn. of Reactive Fairness policy with hog
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Figure 12: Reactive Performance Differentiation: Misses per instn. normalized to column-caching
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Figure 13: Reactive Performance Differentiation: IPC normalized to column-caching
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Figure 14: Reactive Performance Differentiation: Epoch IPC with SQVRlru,3
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Figure 15: Reactive Performance Differentiation: Epoch IPC with SQVRlru,10
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Figure 16: Reactive Performance Differentiation: Epoch IPC with SQVRlru,inf
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