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ABSTRACT

Microfluidic biochips are replacing the conventional biochemical
analyzers and are able to integrate the necessary functions for bio-
chemical analysis on-chip. In this paper we are interested in flow-
based biochips, in which the flow of liquid is manipulated using
integrated microvalves. By combining several microvalves, more
complex units, such as micropumps, switches, mixers, and multi-
plexers, can be built. The manufacturing technology, soft lithog-
raphy, used for the flow-based biochips is advancing faster than
Moore’s law, resulting in increased architectural complexity. How-
ever, the designers are still using full-custom and bottom-up, man-
ual techniques in order to design and implement these chips. As
the chips become larger and the applications become more com-
plex, the manual methodologies will not scale, becoming highly
inadequate. Therefore, for the first time to our knowledge, we pro-
pose a top-down architectural synthesis methodology for the flow-
based biochips. Starting from a given biochemical application and
a microfluidic component library, we are interested in synthesiz-
ing a biochip architecture, i.e., performing component allocation
from the library based on the biochemical application, generating
the biochip schematic (netlist) and then performing physical syn-
thesis (deciding the placement of the microfluidic components on
the chip and performing routing of the microfluidic channels), such
that the application completion time is minimized. We evaluate our
proposed approach by synthesizing architectures for real-life appli-
cations as well as synthetic benchmarks.
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1. INTRODUCTION
Microfluidics-based biochips (also referred to as lab-on-a-chip)

integrate different biochemical analysis functionalities (e.g., mix-
ers, filters, detectors) on-chip, miniaturizing the macroscopic bio-
chemical processes to a sub-millimetre scale [12]. These microsys-
tems offer several advantages over the conventional biochemical
analyzers, e.g., reduced sample and reagent volumes, faster bio-
chemical reactions, ultra-sensitive detection and higher system thro-
ughput, with several assays being integrated on the same chip [15].
Microfluidics-based biochips have become an actively researched

area in recent years. These chips can readily facilitate clinical
diagnostics, especially immediate point-of-care disease diagnosis.
In addition, they also offer exciting application opportunities in
the realm of massively parallel DNA analysis, enzymatic and pro-
teomic analysis, cancer and stem cell research, and automated drug
discovery [12, 15]. Utilizing these biochips to perform food control
testing, environmental (e.g., air and water samples) monitoring and
biological weapons detection are also interesting possibilities.
There are several types of biochip platforms, each having its own

advantages and limitations [11]. In this paper, we focus on the flow-
based biochips in which the microfluidic channel circuitry on the
chip is equipped with chip-integrated microvalves that are used to
manipulate the on-chip fluid flow [12]. By combining several mi-
crovalves, more complex units such as mixers, micropumps, mul-
tiplexers can be built, with hundreds of units being accommodated
on a single chip [11]. Analogous to its microelectronics counter-
part, this approach is called microfluidic Large Scale Integration
(mLSI) [12].

1.1 Related Work
During the last decade, a significant amount of work has been

carried out on the individual microfluidic components as well as
the microfluidic platforms [10, 11]. The manufacturing technology,
soft lithography, used for the flow-based biochips has advanced
faster than Moore’s law [9]. Although biochips are becoming more
complex everyday, Computer-Aided Design (CAD) tools for these
chips are still in their infancy. Most CAD research has been fo-
cussed on device-level physical modeling of components [17].
Designers are using full-custom and bottom-up methodologies to

implement these chips. Microfluidic components are designed and
connected together to match the steps of the desired biochemical
application using technical drawing tools such as AutoCAD [1]. In
order to design a chip, the designer needs to have a complete un-
derstanding of the application requirements and at the same time,
have the knowledge and skills of chip fabrication. The placement
and routing is also done manually [2] and then the chip is fabri-
cated using soft lithography techniques. Recent work has proposed
automation techniques for the placement, routing and optimization
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(a) Microfluidic Valve (b) Biochip: Schematic View (c) Biochip: Functional View

Figure 1: Flow-Based Biochip Architecture Model

for the channels that are used to control the microvalves [4]. How-
ever, this work is limited to the control part of the chip. In order
to execute the application, designers manually map the operations
to the valves of the chip using a customized interface (analogous to
exposing the gate-level details).
As the chips growmore complex (commercial biochips are avail-

able which use more than 25,000 valves and about a million fea-
tures to run 9,216 polymerase chain reactions in parallel [15]) and
the need of having multiple and concurrent assays on the chip be-
comes more significant, the manual methodologies will not scale
and will become highly inadequate. Therefore, new top-downmeth-
odologies and design tools are needed, in order to provide the same
level of CAD support to the biochip designer as the one currently
taken for granted in the semiconductor industry. Such an approach
would also decouple the biochip architecture design from fabrica-
tion details, allowing users to focus on applications without requir-
ing knowledge and skills of chip fabrication [12].
Significant work on top-down synthesis methodologies for dropl-

et-based biochips has been proposed [6]. However, the architecture
of the droplet-based chips differs significantly from the flow-based
chips. In the flow-based biochips, components of different types
(e.g., mixers, heaters) are physically designed on the chip and con-
nected to each other using microfluidic channels. Once fabricated,
the number and type of the components, their placement scheme
on the chip and the routing interconnections cannot be modified.
Droplet-based biochips (also referred to as digital biochips), how-
ever, use the idea of virtual components and are reconfigurable.
A digital biochip consists of a two-dimensional array of identical
electrodes on which the fluid is manipulated as discrete droplets.
Adjacent set of electrodes can be combined together to form a vir-
tual component, e.g., a mixer can be created by grouping adjacent
electrodes and moving the droplet around on these electrodes to
achieve mixing. Any set of electrodes can be used for this pur-
pose and thus the chip is termed reconfigurable. The same elec-
trodes can later be used for performing other operations as well,
e.g., fluid transport, storage. Because of the architectural differ-
ences, the models and techniques proposed for the digital chips are
not applicable to their flow-based counterparts.

1.2 Contribution
We propose a top-down architectural synthesis methodology for

the flow-based microfluidic biochips. Given a biochemical appli-
cation modeled as a sequencing graph, a microfluidic component
library and the chip area, the architectural synthesis consists of the

following three steps: (i) allocation of components from a given
library, (ii) performing the schematic design and generating the
netlist, and the biochip (iii) physical synthesis, i.e., deciding the
placement of the microfluidic components on the chip and perform-
ing routing of the microfluidic channels on the available routing
layers creating component interconnections.
The synthesis problem is NP-complete. We use an approach

similar to High-Level Synthesis [8] for performing allocation and
netlist generation. The component placement is done using Sim-
ulated Annealing and we tailor the Hadlock’s algorithm [16] from
the Very Large-Scale Integrated (VLSI) circuits domain for per-
forming the microfluidic channel routing. Synthesis is done in such
a way that the application completion time is minimized and the
imposed constraints (e.g., resource, dependency) are satisfied.
We build on our previous work in [14], where we consider that

the architecture is given, and propose an approach for mapping a
biochemical application onto the given architecture such that the
application completion time is minimized. However, this paper is
the first to present an approach for the automatic synthesis of a
biochip architecture. The main contributions of this paper are the
formulation of the architectural synthesis problem and the proposed
synthesis framework, which show how the well-known algorithms
from the High-Level Synthesis of VLSI circuits can be tailored to
tackle the flow-based biochips.
The paper is organized in seven sections. The biochip architec-

ture model and the biochemical application model are presented in
Section 2. The problem is formulated in Section 3 and the synthesis
steps are presented in Section 4. The proposed synthesis framework
is discussed in Section 5 and is further evaluated in Section 6. We
present our conclusions in Section 7.

2. SYSTEMMODEL

2.1 Biochip Architecture
Fig. 1b shows the schematic view of a flow-based biochip with

4 input ports and 3 output ports, 1 mixer, 1 filter and 1 detec-
tor. Fig. 1c shows the functional view of the same chip. The
biochip is manufactured using multilayer soft lithography [12]. A
cheap, rubber-like elastomer (polydimethylsiloxane, PDMS) with
good biocompatibility and optical transparency is used as the fab-
rication substrate. Physically, the biochip can have multiple layers,

but the layers are logically divided into two types: flow layer (de-
picted in blue) and the control layer (depicted in red). The liquid
in the flow layer is manipulated using the control layer [12].
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(a) Schematic View, Ip1 (b) Conceptual View (c) Operational Phases

Figure 2: Microfluidic Mixer

The basic building block of such a biochip is a valve (see Fig. 1a),
which is used to manipulate the fluid in the flow layer as the valves
restrict/ permit the fluid flow. The control layer (red) is connected
to an external air pressure source z1. The flow layer (blue) is con-
nected to a fluid reservoir through a pump that generates the fluid
flow. When the pressure source is not active, the fluid is permitted
to flow freely (open valve). When the pressure source is activated,
high pressure causes the elastic control layer to pinch the underly-
ing flow layer (point a in Fig. 1a) blocking the fluid flow (closed
valve). Because of their small size (100×100 µm2), a biochip can
accommodate thousands of valves. By combining these valves,
more complex units, such as switches, multiplexers, micropumps,
mixers, can be built [12]. For example, the valves can be combined
to represent a switch. As shown in Fig. 3, a switch may consist
of one valve (restricting/ allowing flow in a channel) or may con-
sist of more than one valve. Multiple valve switches are present at
the channel junctions and are used to control the path of the flu-
ids entering the switch from different sides. The fluid flow can be
generated using off-chip or on-chip pumps. The control layer can
be placed both above and/ or below the flow layer, creating “push-
down” or “push-up” valves, respectively. Connections to the exter-
nal ports (fluidic ports and pressure sources) are made by punching
holes in the chip (gaining access to the flow and control layer) and
placing external tubings (connected to the external fluidic reser-
voirs through pumps or pressure sources) into the punch holes [12].
All input ports are connected to off-chip pumps.
All fluid samples inside the chip occupy a fixed unit length (or

a multiple of it) on the flow channel, i.e., the fluid samples have
discretized volumes. Unit length samples are obtained by a process
called metering, carried out by transporting the sample between
two valves that are a fixed length apart [19]. In general, the chip is
filled with a filler fluid (e.g., immiscible oil) and the fluid samples
are emulsified in the filler fluid. As emulsions, the samples do not
touch the channel walls directly (preventing cross-contamination)
and can be moved over long channel lengths of any shape while
retaining their content [19].
In order to make a fluid sample flow on the chip (e.g., Filter to

the Mixer in Fig. 1b), (i) the point of fluid sample origin (Filter)
needs to be connected to a pump (on-chip or off-chip) for gener-
ating the flow. As shown in Fig. 1b, the closest pump from the
Filter is the off-chip pump connected to the input port In1. We
term the flow starting point as the source (In1 in this case). (ii)
The fluid sample destination point (Mixer) needs to be connected
to a fluidic output port (sink, e.g., Out1). Next, (iii) a path for the
fluid flow needs to be established from the source to the sink us-
ing the microfluidic valves and then (iv) the desired flow (Filter to
Mixer) can be achieved by activating the pump. For the Filter to
Mixer flow in Fig. 1b, the path is established by closing the valve

Figure 3: Switch Configurations

set v1, v3, v6 and v7, while the valve set v2, v4, v5 and v8 is kept
open (the path is shown in black in Fig. 1b). The entire path al-
ready contains the filler fluid and the sample emulsified in the filler
fluid is now present inside the Filter. A pumping action at the
source (In1) then creates a filler fluid flow towards the sink (Out1).
The emulsified sample flows with the filler fluid from the Filter
towards the Mixer. The pumping action is stopped once the fluid
sample reaches its destination (the green path in Fig. 1b shows the
flow of the sample). While the sample flows from the Filter to the
Mixer, the established path (including the source, sink points) is
reserved and cannot be used for any other flows.

2.1.1 Component Model

We use our dual-layer component modeling framework proposed
in [14] consisting of a flow layer model and a control layer model.
The flow layer model (P ,C,H ) of each component M is charac-
terized by a set of operational phases P , execution time C and the
component geometrical dimensions H . The control layer model
captures the valve actuation details required for the on-chip exe-
cution of all operational phases of a component. Table 1 shows
the flow layer model library L = M(P , C,H ) of eight commonly
utilized microfluidic components [10, 19].

Table 1: Component Library (L): Flow Layer Model
Exec.

Component Phases (P) Time (C)

Mixer Ip1/ Ip2/Mix/ Op1/ Op2 0.5 s

Filter Ip/ Filter/ Op1/ Op2 20 s

Detector Ip/ Detect/ op 5 s

Separator Ip1/ Ip2/ Separate/ Op1/ Op2 140 s

Heater Ip/ Heat/ Op 20◦C/s

Metering Ip/Met/ Op1/ Op2 -

Multiplexer Ip or Op -

Storage Ip or Op -
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(a) Application Graph (b) Biochip Architecture (c) Placement and Routing

Figure 4: Biochip Application and Architecture Example

Table 2: Mixer: Control Layer Model

Phase v1 v2 v3 v4 v5 v6 v7 v8 v9
1. Ip1 0 0 1 0 0 0 0 0 1

2. Ip2 0 1 0 0 0 0 1 0 0

3. Mix 1 0 0 Mix Mix Mix 0 1 0

4. Op1 0 0 1 0 0 0 0 0 1

5. Op2 0 1 0 0 0 0 1 0 0

Consider the pneumatic mixer [7] in Fig. 2a which is imple-
mented using nine microfluidic valves, v1 to v9. Fig. 2b shows the
conceptual view of the same mixer. The valve set {v4, v5, v6} acts
as an on-chip pump. The valve set {v1, v2, v3} is termed as switch
S1 and the valve set {v7, v8, v9} as switch S2. The two switches
facilitate the inputs and outputs, and the pump is used to perform
the mixing. The mixer output can either be sent to the waste or to
the other components in the chip using the switch S3 (Fig. 2a).
The mixer has five operational phases. The first two phases rep-

resent the input of two fluid samples that need to be mixed, fol-
lowed by the mixing phase. The mixed sample is then transported
out of the mixer in the last two phases. For the first fluidic input
(phase Ip1, depicted in Fig. 2a), valves v1, v2, v7 and v8 are opened
(together with v4, v5, v6), the pump at the Input is activated and the
liquid fills in the upper half of the mixer.
In the next phase Ip2, the second fluid sample fills the lower half

of the mixer (Fig. 2c-i). Once both halves are filled, the mixer input
and output valves (v1 and v8) are closed while valves v2, v3, v7, v9
are opened and the mixing operation is initiated (Fig. 2c-ii). Valve
set {v4, v5, v6} acts as a peristaltic pump. Closing valve v4 inserts
some pressure on the fluid inside the mixer, closing valve v5 creates
further pressure, then as valve v6 is closed valve v4 is opened again.
This forces the liquid to rotate clockwise in the mixer. The valves
are closed and opened in a sequence such that the liquid rotates at a
certain speed accomplishing the mixing operation. Next, in phase
Op1 (Fig. 2c-iii), half of the mixed sample is pushed out of the
mixer towards the rest of the chip and in Op2 (Fig. 2c-iv), the other
half is transported to the waste.
Table 2 presents the control layer model of the pneumatic mixer

shown in Fig. 2, whose flow layer model is characterized by the first
row in Table 1. In Table 2, the valve activation for each phase is
shown, ‘0’ representing an open and ‘1’ a closed valve. The status

‘Mix’ shown for the valve set {v4, v5, v6} on row 4 of Table 2 rep-
resents the mixing step in which these valves are opened and closed
in a specific sequence to achieve mixing. The control layer model
of a component contains all the details that a biochip controller re-
quires for executing the operational phases of that component.
The different operational phases may or may not be executable

in parallel depending on how the component is implemented, e.g.,
the mixer presented here has only one input port to receive both the
input fluids, thus only one input phase can be activated at a time.

2.1.2 Architecture Model

We use our previously proposed topology graph-based model
[14] in order to capture the biochip architecture. The biochip ar-
chitecture shown in Fig. 4b is captured by A = (N , S ,D , F , K , c),
whereN is a finite set of vertices, S is a set of switches, S ⊆ N ,D
is a finite set of directed edges, F is a finite set of flow paths andK
is a finite set of routing constraints. A vertex N ∈ N has two types:
a vertex S ∈ S represents a switch (e.g., S1 in Fig. 4b), whereas
a vertex M ∈ N , /∈ S , represents a component or an input/output
node (e.g.,Mixer1 and In1, respectively, in Fig. 4b).
The set of flow paths F is the set of permissible flow routes on

the biochip. Each flow path has an associated control layer model
that contains the details required for its utilization, i.e., the switch
sequence and the pump activation details. A directed edgeDi, j ∈ D
represents a directed communication channel from the vertex Ni to
vertex N j, with Ni, N j ∈ N . For example, in Fig. 4b,DFilter1,S5 rep-
resents a directed link from vertex Filter1 to vertex S5. A flow path,
Fi ∈ F , is either a single directed edge or a subset of two or more di-
rected edges of D , Fi ⊆ D , representing a directed communication
link between any two vertices ∈ N . In Fig. 4b, F2 = (DHeater1,S11 ,
DS11,S5 , DS5,Mixer2 ) represents a directed link from vertex Heater1
to vertex Mixer2. A routing constraint, Ki ∈ K , is a set of flow
paths that are mutually exclusive with the flow path Fi ∈ F , i.e.,
none of the flow paths in the set can be activated in parallel. For
example, F2 and F7 in Fig. 4b are mutually exclusive as they share
the vertices S5 and Mixer2. The function c(y), where y is either a
directed edge D ∈ D or a flow path Fi ∈ F , represents its routing
latency (time required by a fluid sample to traverse y).

2.2 Biochemical Application Model
We model a biochemical application using a sequencing graph.

The graph G(O,E) is directed, acyclic and polar (i.e., there is a
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(a) Allocation Example for Fig. 4a (b) Schedule

Figure 5: Illustrative Example

start vertex that has no predecessors and an end vertex that has no
successors). Fig. 4a shows an example of a biochemical applica-
tion. Each vertex Oi ∈ O represents an operation that can be bound
to a component using a binding function B : O → M. Each ver-
tex has an associated weight Ci(M j), which denotes the execution
time required for the operation Oi to be completed on component
M j. The execution times provided in Table 1 are of the actual func-
tional phase (given in bold in the table, e.g., Mix). These execu-
tion times are taken as the typical execution times for the particular
component types, i.e., typical mixing time is 0.5 s but a biochem-
ical application description may specify a longer time (e.g., 5 s) if
required for a certain operation. The edge set E models the depen-
dency constraints in the assay, i.e., an edge ei, j ∈ E from Oi to O j
indicates that the output of Oi is the input of O j . An operation can
start when all its inputs have arrived.

3. PROBLEM FORMULATION
The problem addressed in this paper can be formulated as fol-

lows: Given a biochemical application modeled as a sequencing
graph G and a characterized component library L , we are inter-
ested in synthesizing a biochip architecture A and a mapping Ψ of
G onto A , such that the application completion time is minimized
and the imposed constraints are satisfied. The synthesis approach
can handle several constraints, such as overall chip area, maximum
number of components of a certain type and the external input and
output ports. The number of external ports is also limited by the
maximum number of punch holes possible on the chip under the
given design rules [2]. As mentioned, the objective of the prob-
lem is to minimize the application completion time under the given
constraints. However, other objectives can also be handled, such
as the minimization of the architecture cost under a given timing
constraint. The synthesis of the architecture A is the focus of this
paper. The mapping of the application G onto the synthesized ar-
chitecture is the focus of our previous work in [14].
Synthesizing an architecture A means deciding on (1) the allo-

cation U of components from the component library L , (2) the
configuration for interconnection of these components (netlist), (3)
placement Z f of the components onto the chip layout area and in-
terconnecting them by flow channel routing R f , and (4) placement
Zc of control valves and control ports on the chip and intercon-
necting them by control channel routing Rc. The flow path set F ,

associated latencies and the corresponding routing constraints K
also need to be extracted from the synthesized architecture. These
are given as an input to the application mapping stage.
Synthesizing a mapping Ψ = <B , X> means deciding on (5) the

binding B of the operations and edges in the application G onto
the components and flow paths in the synthesized architecture A
and (6) generating the corresponding schedule X while satisfying
all the constraints imposed by the synthesized architecture, such as
routing constraints.
Other constraints can also be catered for in the synthesis flow

(using the same set of models) by including additional optimiza-
tion steps. For example, reliability of an mLSI biochip depends
directly on the reliability of the valves (the valves can operate re-
liably only up to a few thousand actuations). Therefore, in order
to achieve enhanced reliability, an optimization step can be added
directed at balancing the load on the valves, i.e., each valve goes
through approximately the same number of valve actuations during
the application execution.

4. BIOCHIP SYNTHESIS
The following subsections explain the design tasks involved in

the biochip synthesis using Fig. 4 as an illustrative example. Sec-
tion 5 presents our proposed synthesis framework for these tasks.

4.1 Allocation and Schematic Design
In this step, the microfluidic components required for imple-

menting the given biochemical application G are allocated from
the component library L , while taking into account the imposed

Table 3: Allocated Components (U)
Allocated

Function Constraints Units Notations

Input port 5 5 In1 ... In5
Output port 5 5 Out1 ... Out5
Mixer 3 3 Mixer1 ... Mixer3
Heater 2 1 Heater1
Filter 1 1 Filter1

Metering Units 3 3 Met1 ... Met3
Storage Units 4 4 Storagex
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resource constraints. Next, based on the given application, a chip
schematic is designed and the netlist is generated. For example,
to implement the biochemical application from Fig. 4a under the
constraints given in Table 3 columns 1 and 2, we could use an al-
location U as captured by the last two columns in Table 3. The
schematic design corresponding to such an application and alloca-
tion is presented in Fig. 4b. Note that the storage units are needed

in order to save the output of a component so that it can be used
at a later stage. The flow path set is also generated in this step.
A flow path is the path starting from the point of fluid sample ori-
gin and ending at the fluid sample destination point, e.g., Heater1
to Mixer2 in Fig. 4b. Source-sink paths associated with each flow
path are also defined, e.g., for the flow path Heater1 to Mixer2 in
Fig. 4b, the source-sink path is (In4, S10, Heater1, S11, S5,Mixer2,
S6, Out2). Routing constraints are also extracted at this stage. Two
flow paths, whose corresponding source-sink paths have a com-
mon vertex are mutually exclusive and need to be listed under the
routing constraints, e.g., F7 and F2 in Fig. 4b are mutually exclu-
sive since they share common vertices (e.g., S5) in their source-sink
paths. Table 5 shows the flow path set, the source-sink set and the

routing constraints associated with the architecture in Fig. 4b. Ad-
ditional routing constraints may be imposed during the placement
and routing phases, resulting in an updated routing constraints list.

4.2 Physical Synthesis
In this step, the allocated components are placed on a chip lay-

out area and the interconnections between components are routed
as channels on the chip such that the application completion time is
minimized. The placement and routing phases are governed by de-
sign rules (see Table 4) imposed by the fabrication process carried
out in a standard microfluidic foundry [2, 4]. During placement, the
components are treated as fixed size blocks, represented by rectan-
gles, each having a fixed length and width. The placement is done
in such a way that all design rules are satisfied and no two compo-
nents overlap on the chip.
For mLSI-based biochips, the placement and routing phases can

be divided into two stages, one for each logical layer in the chip:
the flow layer and the control layer (in Fig. 1b, the flow layer is
shown in blue and the control layer in red).

4.2.1 Flow Layer

This stage involves determining the placement of microfluidic
components and the fluidic inlet/ outlet ports Z f on the chip layout
area, and then routing the interconnecting nets R f as microfluidic
flow channels. Only one layer is available for performing the flow
channel routing [12]. In VLSI chips, the intersection of nets is con-
sidered a short-circuit and is thus not permitted. However, net in-
tersection is possible in the biochip flow layer. A switch is placed at
the location of the intersection so that both nets (a net represents a
microfluidic channel) can be used, at different points in time, with-
out unintended fluid mixing. Considering that only one layer is
available for routing all flow channel nets, the possibility of net
intersection helps in achieving 100% routability. However, net in-
tersections cause routing constraints, resulting in longer application
completion times. Fig. 4c shows the placement and routing scheme
for the flow layer of the biochip architecture shown in Fig. 4b. The

entire placement and routing shown is done in one layer.

4.2.2 Control Layer

In this stage, the placement of the control valves and the control
ports Zc is decided, and then the valves are connected to the con-
trol ports through control channel routingRc. In Fig. 1b, the control
layer is shown in red, with the control valves labelled as vx and the

Table 4: Design Rules

Parameter Suggested Value

Width of flow channel 100 µm

Minimum spacing between flow channels 40 µm

Width of control channel 30 µm

Width of control valve 100 µm

Minimum spacing between control channels 40 µm

Minimum spacing between external ports 1500 µm

control ports as zy. Positions of the valves that are used inside a
microfluidic component can be obtained directly from the compo-
nent library. The positions of the valves that need to be placed on
the flow channels are inferred from the flow routing information
(e.g., valves need to be placed at all flow channel intersections). As
explained in Section 2, one logical control layer can have two phys-
ical layers that can be used for placement and routing (above and

below the flow layer) [12]. Contrary to the flow channels, control
channels are not allowed to intersect.
After the placement is complete, the next step is to connect the

valves to the ports using control channels. The control channels
can be routed over/ under any flow channel/ component without
forming a valve. The crossing of the control channel over a flow
channel forms a valve only if the control channel has a large width
(100 µm) [2]. The flow path channel lengths (used to calculate the
routing latencies) and any additional routing constraints (imposed
because of net intersections in the flow layer) can now be extracted
from the layout and captured in the biochip architecture model A .
Table 5 shows the routing constraints and the list of flow paths for
the biochip architecture in Fig. 4b together with their corresponding
routing latencies.

4.3 Application Mapping
The next step is mapping the biochemical application G onto

the synthesized architecture A such that the application completion
time is minimized and the dependency, resource and routing con-
straints are satisfied. The binding B for the operations is the same
as determined when generating the schematic. Binding of the edges
and scheduling X for both the operations and the edges is generated
in this step. Fig. 5b shows the schedule for the case when the ap-
plication in Fig. 4a is scheduled on the architecture in Fig. 4b. The
schedule is represented as a Gantt chart, where, we represent the
operations and fluid routing phases as rectangles, with their lengths
corresponding to their execution duration.

5. SYNTHESIS STRATEGY
Fig. 6 shows the block diagram of our proposed design method-

ology. In this paper, we focus on the “Architectural Synthesis”
block which synthesizes the biochip architecture which is then given
as input to the “Application Mapping” block. For the application
mapping, we use our previously proposed approach in [14]. Mi-
crofluidic platforms are equipped with a controller that manages
all on-chip control, i.e., issuing signals to on-chip components for
executing a biochemical application, performing data acquisition
and signal processing operations [10]. The mapping implementa-
tion (containing the binding and scheduling information), together
with the component and biochip architecture models, can be used
to generate the control sequence for a biochip controller (“Control
Synthesis”) in order to automatically execute the biochemical ap-
plication onto the synthesized biochip.
The biochip synthesis problem presented in Section 3 is NP-

complete (the scheduling step, even in simpler contexts is NP-com-
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Table 5: Flow Path Set (F ), Source-Sink Set and Routing Constraints (K )
Flow Path Set Source-Sink Set Routing Constraints

F0 = (Mixer3, S9, S10, Heater1), 0.7 s F ′
0 = (In3,Met3, S7, S8,Mixer3, S9, S10, Heater1, S11, K0 : (F1, F2, F3, F4, F5, F6, F7, F8,

F1 = (Mixer2, S6, S2,Mixer1), 0.4 s Out2) F9, F10, F11, F12, F13, F14
F2 = (Heater1, S11, S5, Mixer2), 0.5 s F ′

1 = (In2,Met2, S4, S5,Mixer2, S6, S2,Mixer1, S3, F15, F16, F17, F18, F19, F20,
F3 = (Mixer1, S3, S10, Heater1), 0.6 s Out1) F21, F24, F25, F26, F27, F28)
F4 = (Heater1, S11, S12, Filter1), 2.1 s F ′

2 = (In4, S10, Heater1, S11, S5,Mixer2, S6, Out2) K1: (F0, F2, F3, F4, F5, F6, F7, F8,
F5 = (Filter1, S13, S5,Mixer2), 0.8 s F ′

3 = (In1, S16,Met1. S1, S2,Mixer1, S3, S10, Heater1, F9, F10, F12, F13, F14, F15, F16,
F6 = (In1, S16,Met1, S1, S2,Mixer1), 1.3 s S11, Out2) F17, F24, F25, F26)
F7 = (In2, Met2, S4, S5,Mixer2), 1.9 s F ′

4 = (In4, S10, Heater1, S11, S12, Filter1, Out3) ...
F8 = (In3, Met3, S7, S8,Mixer3), 2.1 s F ′

5 = (In1, S16, S12, Filter1, S13, S5,Mixer2, S6, Out2) ...
F9 = (Mixer1, S3, Out1), 1.2 s F ′

6 = (In1, S16,Met1, S1, S2,Mixer1, S3, Out1) K28−x: (F0, F3, F4, F5, F6, F7, F9,
F10 = (Mixer2, S6, Out2), 0.3 s F ′

7 = (In2,Met2, S4, S5,Mixer2, S6, Out2) F11, F14, F15, F16, F17,
F11 = (Mixer3, S9, Out3), 0.6 s ... F18, F19, F20, F21, F22,
... F ′

28−x = (In1, S16, S12, Filter1, S13, S14, Storage, S15, F23, F25, F26, F27)

F28−x = (Filter1, S13, S14, Storage), 0.5 s Out5)

Figure 6: Design Methodology

plete [18]). Our synthesis strategy in this paper is to solve each de-
sign task separately, by adapting well-known heuristic algorithms
from VLSI domain. The heuristics do not guarantee obtaining the
optimal solution. Obtaining the optimal results (in terms of appli-
cation completion time) is infeasible even for small examples. The
following subsections present the chosen heuristics and describe
our strategy using Fig. 4 as an example.

5.1 Allocation and Schematic Design
This stage receives the application graphG , component libraryL

and the resource constraints as input and determines the allocation
U and generates the netlist. All components of the architecture
model A are captured here except the routing latency c.

5.1.1 Allocation

The most common approach for allocation in High-Level Syn-
thesis (HLS) [8] is to use resource-constrained List-Scheduling and
binding. We start off by topologically sorting the operations of the
biochemical application based on their dependency constraints and

then prioritizing them using an urgency criteria [8]. The urgency
of an operation is specified by the length of the longest path from
the operation to the end node in the application graph. An oper-

ation is considered ready, if all of its predecessors have finished
execution. All the operations in the application are evaluated, the
ready ones are found and are placed in a ready list RL. For example
in Fig. 4a, operations O1 to O4 have no predecessors and are thus

considered ready, whereas O6 cannot be executed until O3 and O4
are complete. For each ready operation we allocate a component
of the required type, considering the imposed constraints (see Ta-
ble 3, column 2). The operation is bound greedily to the allocated
component and scheduled.
Fig. 5a shows the allocation schedule for the application in Fig. 4a.

The schedule is divided into 8 schedule steps. The start of an op-
eration marks the start of a schedule step (O1, O3, O4 start at time
t = 0 s, thus starting schedule step 1) and an operation completion
marks the end of a schedule step (schedule step 1 ends at 4 s as
operations O1 and O3 finish, and schedule step 2 ends at 5 s when
operation O4 finishes). Unlike the control steps in HLS [8] (where
all control steps represent a fixed time duration, a clock cycle), the
schedule steps are of varying time lengths.
The binding of each operation is also shown in Fig. 5a, the com-

ponent name is placed next to the operation (e.g., O1 is bound to
Mixer3). If the number of ready operations exceeds the number of
available components, then the least urgent operations (i.e., greedy
binding based on the urgency criteria) are deferred, e.g., in Fig. 5a,
O2 is deferred to schedule step 2 as there are only three mixers
available for usage in schedule step 1.
As soon as an operation completes, it marks the end of a sched-

ule step. The operations are then re-evaluated to find the new list of
ready operations and the process is repeated. Table 3 shows the list
of allocated components. All imposed resource constraints have
been fulfilled. All components have been used in their maximum
allowed number except the heater. Only one heater has been allo-
cated considering the requirement, compared to the 2 heater units
that were allowed by the user. At this stage, the routing latencies
are not yet known. The actual values of the routing latency are gen-
erated after the placement and routing is complete. A set of input
and output ports is allocated for each component in order to serve
as the source and sink point during flow path execution. Metering
units are used to create discretized samples of unit volume. The
number of metering units allocated depends on the maximum pos-
sible external inputs that can be executed in parallel. In the current

case, a maximum of three external inputs are taken in parallel in
schedule step 1 (Fig. 5a) and thus three metering units have been
allocated.
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Figure 7: Schematic

5.1.2 Schematic Design

In the next step, we extract the schematic design from the gen-
erated binding and scheduling information (analogous to data path
generation in HLS [8]). Each schedule step (Fig. 5a) is scanned to
find the input source of the utilized components and a correspond-

ing net is placed between the component and the input source. For
example, Heater1 in schedule step 5 gets an input fromMixer1 and
gives an output to Filter1, therefore it is connected to both compo-
nents. The extracted component interconnection scheme is shown
in Fig. 7.
Next we connect input and output ports to each component to

serve as the source and sink point. Metering units are placed at
the fluidic sample input ports. Storage units are needed to store
intermediate results of operations [19]. Unlike in HLS (where reg-
isters are required at every control step [8]), biochips require stor-
age only under special conditions. Consider an operation Ox bound
to a component My that finishes execution. If another operation
gets bound to My in the next schedule step and the successor op-
eration of Ox has not been scheduled yet, then the output of Ox
will need to be moved to the storage. Each storage unit is capable
of storing multiple fluid unit samples, depending on the number
of storage channels inside the unit. Since the routing latencies are
not yet known, it is not possible to accurately assess which com-
ponents would require the storage unit usage. For now, the storage
unit is is connected to all components and the designer specifies
the maximum capacity of the unit. Unnecessary connections and
extra storage channels are removed after the application mapping
step. The final component interconnection configuration is shown
in Fig. 4b.
The flow path set F and the corresponding routing constraints

K are also generated in this step. The flow path set for the biochip
architecture in Fig. 4 is shown in Table 5. The source-sink path for
each flow path and the routing constraints are also shown.

5.2 Physical Synthesis
This stage takes the allocation U, the netlist, component library

L and the desired layout size as input and performs placement and
routing (Z f , R f , Zc, Rc), determining any additional constraints in
the set K and the routing lengths of the flow paths (that are used to
calculate the routing latencies c). We use a grid-based approach to
perform physical synthesis. The grid size is dictated by the design
rules and the component sizes on the grid are calculated accord-
ingly using their dimensions given in the component library. The
design rules imposed by the foundry and followed during the physi-
cal synthesis are summarized in Table 4. The placement and routing
phases are divided into two stages, one for each logical layer.

5.2.1 Flow Layer

According to the problem formulation from Section 3, the place-
ment and routing should be done such that the application com-

pletion time is minimized. However, this would require using the
mapping and scheduling (Section 5.3) as the cost function, which is
too time-consuming. Instead, we use the total channel length and
the number of net intersections as the cost function. Minimizing
the channel length minimizes the routing latencies, in turn mini-
mizing the application completion time. Similarly, minimizing the
number of net intersection minimizes the number of routing con-
straints, allowing more flow paths to be executed in parallel. This
will not lead to the optimal result, but will reduce the application
completion time. Furthermore, performing actual routing to com-
pare various placement solutions is impractical as routing is a time-
consuming process. Therefore, we perform placement and routing
in separate steps and use an estimation method (Semi-Perimeter
method, the most widely used approximation method [16]) to es-
timate the total channel length in order to judge the quality of the
placement solution.
The placement of components such that the total channel length

is minimized is an NP-complete problem, for which a number of
good heuristic techniques have been developed [16]. Considering
the problem at hand, we use Simulated Annealing (SA) (one of the
most used methods for cell placement in VLSI [16]) for performing
component placement on the chip. Various algorithms have been
proposed for routing over the years. We use Hadlock’s Algorithm
(HA) [16] and extend it for the flow layer routing. HA is suitable for
the current problem since it also uses a grid model approach, finds
the shortest path between two vertices (if such a path exists) and
is faster than the other algorithms in this category [16]. We extend
HA to also consider the possibility of net intersections, ensuring
a 100% routability. The quality of the solution is judged by the
number of net intersections and the total channel length. Since HA
is sensitive to the order in which the nets are routed, we iterate on
HA, providing it a re-ordered netlist for every iteration in order to
achieve a routing solution that minimizes the total channel length
and net intersections.
The routing latency corresponding to each flow path is also gen-

erated in this step. Routing latencies are calculated by using the
routing length of each flow path extracted from the architecture and
the flow rate used on the chip. We consider a flow rate of 10 mm/s
for all experiments in this paper. If the flow path length is 10 mm
and the flow rate is set at 10 mm/s, then a unit volume of liquid
(10 mm length on the channel) traverses this flow path in 2 s, i.e.,
from the time the tip of the 10 mm unit sample enters the flow path
till the time the tail leaves from it. The latency values are required
while performing application mapping. Latency values generated
for each flow path are shown in Table 5.
Physical Synthesis Algorithm. Fig. 8 shows our algorithm for
the physical synthesis of the flow layer. The algorithm takes the
allocated component set M, the generated netlist List and the com-
ponent library L as an input, and returns the placement and routing
information of the flow layer. The objective is to place all the com-
ponents on the chip and minimize the total channel length in order
to reduce the routing latencies, while satisfying the design rules.
Fig. 4c shows the flow layer placement and routing scheme that
comes out of our algorithm.
Simulated Annealing [16] (lines 1−17 in Fig. 8) is used for gen-

erating the placement scheme. SA is a metaheuristic, which, start-
ing from a random initial placement of components (line 3), itera-
tively obtains a better placement scheme by performingmoves (line
6), i.e., design transformations, (swapping, rotating or randomly
changing component location on the chip) to modify the current
solution. SA also accepts deteriorations in cost (lines 11−13) to a
limited extent in an effort to obtain global optimum, in terms of the
cost function used. The placement generated by SA Z{ is given as
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FlowPlaceAndRoute(M, List, L)

1 // Phase I: Flow Layer Placement
2 Initialize T
3 Znowf = InitialPlacement(M, L)
4 repeat
5 for i=1 to TL do
6 Z′

f = moves(Z
now
f )

7 δ = cost(Z′
f ) − cost(Z

now
f )

8 if δ < 0 then
9 Znowf = Z′

f

10 else

11 if random(0,1) < e−δ/T then

12 Znowf = Z′
f

13 end if

14 end if

15 end for

16 T = α × T

17 until <stop criterion is met>
18 // Placement returns the best solution Z f
19 // Phase II: Flow Channel Routing
20 R now

f = RouteFlowLayer(Z f , List)

21 cnow = cost(R now
f )

22 repeat
23 List = Re-order(List)
24 R ′

f = RouteFlowLayer(Z f , List)

25 c′ = cost(R ′
f )

26 if c′ < cnow then
27 cnow = c′

28 R now
f = R ′

f

29 end if

30 until <stop criterion is met>
31 return <Z f , R

now
f >

Figure 8: Physical synthesis algorithm for the flow layer

input to the Hadlock’s Algorithm [16] (lines 20−30) to iteratively
generate the routing. A re-ordered netlist is generated (line 23) in
every iteration in order to cater for HA’s sensitivity to the order in
which the nets are routed. The best solution for the placement Z f
and the routing R now

f is then returned (line 31).

5.2.2 Control Layer

Control layer placement and routing can be done using the same
algorithms as described for the flow layer. We aim to target this step
in our future research. Since the number of control valves on these
chips can be extremely high (commercial chip having more than
25,000 valves [15]) and the number of punch holes that can be made
on the chip for connecting the control ports is limited by the design
rules [2], each valve cannot be connected to a separate control port.
Different approaches aimed at sharing the control ports between
valves have been proposed [12], which can be used to reduce the
required number of control ports.

5.3 Application Mapping
Now since we have the biochip architecture A , the biochemi-

cal application G and the characterized component library L , we
use our previously proposed binding and scheduling strategy [14]
for mapping the given application onto the synthesized architec-

ture such that the application completion time is minimized and all
the imposed constraints are satisfied. Fig. 5b shows the schedule
determined by our tool when the application in Fig. 4a is sched-

uled on the architecture in Fig. 4b. We use the same binding as the
one generated during the schematic design (Fig. 5a). As shown in
Fig. 5b, the application requires only one storage reservoir. The
output of operation O5 is moved to the storage since the heater
needs to be reused for operation O8 before the successor operation
of O5 (which is operation O7) is released. The application execu-
tion is completed in 32.2 s.

6. EXPERIMENTAL EVALUATION
We evaluate our proposed approach by synthesizing biochip ar-

chitectures for three real life assays and a set of four synthetic
benchmarks. We implement these applications onto the synthe-
sized chips and determine the application completion time. The
algorithm was implemented in C#, running on a Pavilion laptop
(HP dv6-2155dx) with Core i3, Dual Processors at 2.13 GHz and 4
GB of RAM.
Table 6 shows our experimental results. Column 1 presents the

application and column 2 shows the list of allocated components, in
the following format: (Input ports, Output ports, Mixers, Heaters,

Filters, Detectors). Columns 3−6 present the desired chip area, to-
tal length of the flow channels, total number of net intersections
and the total number of valves on the chip, respectively. Chip area
represents the area given by the user as input. Chip area and to-
tal channel lengths are scaled, with a unit length being equal to
150 µm, i.e., a total length of 10 given in Table 6 corresponds to
1500 µm. The number of valves are calculated by considering 1
valve for each I/O port, 4 valves for each intersection (switch), 9
valves for each mixer, 6 valves for each metering unit and 2 valves
each for all remaining components. This valve count can be further
minimized by removing the valves which are never used. We plan
to target this in our future research. The last column presents the
completion time δG of the application, in seconds, on the synthe-
sized architecture.
Real-life assays can be converted to our application model us-

ing [5]. The first real-life assay we use is the PCR (polymerase
chain reaction) mixing stage that has 7 mixing operations and is
used in DNA amplification. The architecture details and the cor-
responding application completion time are shown in row 1 of Ta-
ble 6. Row 2 shows the architecture generated for Multiplexed IVD
(in-vitro diagnostics) that has a total of 12 operations and is used to
test different fluid samples from the human body. The third row
shows a larger real-life application, a colorimetric protein assay
(CPA, 55 operations), utilized for measuring the concentration of
a protein in a solution. It uses a chip equipped with 295 valves to
complete its execution in 72.7 s. The architectural details given in
row 4 are for the example application (EA) given in Fig. 4a.
In the second set of experiments we have evaluated our proposed

method using a set of four synthetic benchmarks. The benchmark
applications are composed of 10, 30, 40 and 50 operations. Table 7
shows the details of the synthesized architectures considered and
the respective application completion times achieved.
For each application in Table 7, two sets of architectures were

synthesized. The first row presents results for the architecture syn-

Table 6: Real-Life Applications
Allocated Chip Net Total Total

Appl. Units Area Length Inters. Valves δG

PCR ( 3, 3, 3, 0, 0, 0) 250 × 250 198 4 67 19.7 s

IVD ( 5, 5, 3, 0, 0, 3) 250 × 250 393 10 101 20 s

CPA ( 5, 5, 5, 0, 0, 3) 250 × 250 1360 51 295 72.7 s

EA ( 5, 5, 3, 1, 1, 0) 150 × 150 1917 63 311 32.2 s
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Table 7: Synthetic Benchmarks
Allocated Chip Net Total Total

|O | Units Area Length Inters. Valves δG

10 ( 2, 2, 1, 1, 1, 1) 150 × 150 1813 45 211 39.9 s
( 5, 5, 2, 1, 1, 1) 150 × 150 1926 68 324 35.7 s

30 ( 6, 6, 3, 2, 2, 1) 250 × 250 3575 122 573 64.5 s
( 15, 18, 6, 4, 3, 1) 350 × 350 5243 124 665 46.1 s

40 ( 8, 8, 4, 3, 1, 2) 350 × 350 4799 151 716 69.8 s
( 18, 20, 7, 5, 2, 3) 350 × 350 7452 171 889 59.5 s

50 ( 10, 10, 5, 2, 2, 2) 350 × 350 6522 177 839 81.25 s
( 21, 24, 10, 4, 3, 3) 400 × 400 9366 213 1109 60.1 s

thesized under designer-given constraints (maximum number of
components of a certain type is constrained), whereas, the second
row presents the results of an unconstrained architecture, i.e., no
constraints were placed on the number of components to be used.
Allocation step for the unconstrained architecture case can be con-
sidered similar to ASAP Scheduling [13]. For all applications,
the unconstrained architecture produces a completion time that is
smaller than that of the constrained architecture. All experiments
presented in this section took between 3 to 30 minutes to complete,
depending on the complexity of the application. All benchmarks
and test files can be found here [3].

7. CONCLUSIONS
In this paper we have presented a top-down architectural synthe-

sis approach for flow-based microfluidic biochips. The proposed
approach synthesizes a biochip architecture for a given biochemi-
cal application, such that the application completion time is mini-
mized. The synthesis process involves component allocation, de-
sign schematic generation, and the physical synthesis (placement
and routing) of the chip. The approach has been evaluated by syn-
thesizing biochip architectures for three real-life assays and a set
of synthetic benchmarks. To the best of our knowledge, this is the
first time an architectural synthesis framework has been proposed
for the mLSI biochips. The proposed approach is expected to facil-
itate programmability and automation in the microfluidics domain,
reducing human effort and minimizing the design cycle time.
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