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ABSTRACT 

 

 

Architecture and Biogenesis of the Human Telomerase Holoenzyme 

 

by 

 

Emily Denise Egan 

 

Doctor of Philosophy in Molecular and Cell Biology 

 

University of California, Berkeley 

 

Professor Kathleen Collins, Chair 

 

 

Telomerase adds simple sequence repeats to the ends of linear chromosomes to 

counteract the loss of end sequence inherent in conventional DNA replication. Telomerase is a 

ribonucleoprotein (RNP) whose catalytic activity arises from the cooperation of the telomerase 

reverse transcriptase protein (TERT) and the telomerase RNA (TER), which provides an 

integrated template for DNA repeat addition. TERs vary widely in sequence and structure but 

share a set of motifs required for TERT binding and catalytic activity. Species-specific TER 

motifs play essential roles in RNP biogenesis, stability, trafficking, and regulation. Human TER, 

or hTR, contains a motif shared with a large family of H/ACA RNAs that directs a pathway of 

RNP maturation.  

 I have investigated the RNA and RNP architecture of the hTR H/ACA domain and 

defined the sequence and structural elements required for RNA accumulation and RNP 

assembly. I have shown that, like other eukaryotic H/ACA RNAs, hTR recruits two sets of 

H/ACA core proteins despite a noncanonical spacing of conserved elements in its 5’ H/ACA 
hairpin (Chapter Two). I have found that an hTR-specific BIO box motif within the 3’ H/ACA 
loop stimulates H/ACA core RNP assembly in a manner required for hTR accumulation in vivo 

(Chapter Three). Finally, I have generated stable cell lines expressing tagged hTR and TERT to 

enable RNA-based and protein-based affinity purification of telomerase complexes in order to 

identify hTR-interacting factors and investigate telomerase multimerization (Chapter Four).  
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CHAPTER ONE 

 

 

Biogenesis of Telomerase Ribonucleoproteins 

 

Telomerase and telomeres 

 

The evolution of linear chromosomes in the common ancestor of eukaryotes occurred 

despite several challenges posed by this mode of genome organization. First, conventional 

primer-requiring DNA polymerases cannot copy the 3’ end of a DNA template. Removal of the 

last RNA primer during lagging strand synthesis leads to the progressive loss of end sequence 

with every round of DNA replication. Second, chromosome ends resemble double-stranded 

DNA breaks whose recognition and repair results in chromosome fusions. Third, DNA ends are 

vulnerable to the destructive action of exonucleases. The solution to these challenges was to 

form telomeres, protective cap structures composed of repetitive DNA whose length varies from 

tens to thousands of base pairs. Telomeric DNA termini typically have a 3’ overhang, which can 

invade the duplex to form a loop that sequesters the end. Single-stranded and double-stranded 

DNA-binding proteins coat the telomeric DNA to stabilize this structure, preserving genomic 

integrity (Gilson and Geli, 2007). 

Telomere maintenance in most eukaryotes depends on new repeat synthesis by the 

specialized reverse transcriptase (RT) telomerase. Telomerase is a ribonucleoprotein (RNP) 

enzyme with two evolutionarily conserved subunits: the telomerase reverse transcriptase protein 

(TERT) and the telomerase RNA (TER), which contains an internal template that is reiteratively 

copied into DNA repeats. Many telomerase enzymes are capable of maintaining interaction with 

the DNA product during synthesis across the entire template (nucleotide addition processivity, 

NAP) and during multiple rounds of template copying (repeat addition processivity, RAP) 

(Collins, 2009). While nearly universal, a few lineages have lost telomerase and instead maintain 

telomeres using recombination- or transposition-based mechanisms (Biessmann and Mason, 

1997; Pardue and DeBaryshe, 2011). 

TERTs and the evolutionarily related retrotransposon RTs share active site motifs 

(Lingner et al., 1997b; Nakamura et al., 1997). In general, TERTs contain four domains: the 

telomerase essential N-terminal (TEN) domain, the telomerase RNA-binding domain (TRBD), 

the RT domain, and the C-terminal extension (CTE) (Blackburn and Collins, 2011). The TEN 

domain contacts single-stranded telomeric DNA and also interacts with TER. The ability of the 

TEN domain to bind DNA likely promotes processive telomerase activity by maintaining 

association with the product (Jacobs et al., 2006; Robart and Collins, 2011). The TRBD confers 

the specificity of interaction between TERT and TER. The RT domain active site includes the 

critical aspartic acid residues that coordinate magnesium ions necessary for deoxynucleotide 

triphosphate activation. The RT domain may also contribute to proper alignment of DNA in the 

active site. The C-terminal extension (CTE) contributes to processive telomerase activity in some 

systems (Autexier and Lue, 2006; Wyatt et al., 2010). A crystal structure of a putative TERT 

from the flour beetle Tribolium castaneum, which lacks a TEN domain, revealed that the CTE 

contacts the TRBD, forming a ring around a synthetic RNA-DNA hybrid (Gillis et al., 2008; 

Mitchell et al., 2010). It is possible that the CTE promotes processive elongation by closing this 

ring around the primer-template hybrid. 

TERs vary greatly in their overall fold with disparate sequences and sizes ranging from 
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~150 nucleotides (nt) in ciliates to over 1,500 nt in some yeasts. However, several TER 

secondary structure elements are shared between ciliates, yeasts, and vertebrates. First is the 

single-stranded template, whose complement typically corresponds to 1-1.5 repeats of the 

telomeric DNA sequence. The 3’ region of the template aligns the DNA substrate, while the 5’ 
portion is copied. Second, a pseudoknot motif occurs adjacent to the template, with both 

enclosed within a domain formed by long-range base pairing of sequence at or near the 5’ end. 
The pseudoknot is stabilized by triple-helix formation (Shefer et al., 2007; Theimer et al., 2005; 

Ulyanov et al., 2007). Some mutations in the pseudoknot reduce TERT binding and/or 

telomerase catalytic activity. However, despite its conservation, the specific function of the 

pseudoknot in any system remains an outstanding question. Third, a stem or hairpin 5’ of the 
template serves as a template boundary element (TBE). The TBE acts as a steric block and/or 

imposes structural strain to prevent copying of non-template TER sequence into telomeric DNA. 

Finally, a distal stem terminus element (STE) comprising either a terminal hairpin, a hairpin 

within a three-way junction, or a three-way junction alone, serves to stimulate telomerase 

activity by providing an interaction site for the TERT TRBD. Some STE mutations reduce 

activity without greatly affecting TERT binding, suggesting a possible allosteric contribution 

such as the orientation of TERT domains during RNP assembly (Blackburn and Collins, 2011).  

Cellular telomerase holoenzymes are large multisubunit complexes with a mass of 500 

kiloDaltons (kDa) or more (Collins, 1999; Lingner et al., 1997a; Schnapp et al., 1998). While 

TERT and TER alone are capable of reconstituting telomerase catalytic activity on 

oligodeoxynucleotide substrates in vitro, many additional factors are required for telomere 

elongation in vivo (Autexier and Lue, 2006). In addition to conserved elements required for 

TERT binding and activity, TERs possess motifs that recruit proteins involved in RNA 

processing, stability, and localization. Several factors also regulate the assembly of TER and 

TERT and modulate telomerase catalytic activity. Finally, both telomerase- and telomere-

associated factors contribute to the recruitment of the RNP to chromosome ends (Blackburn and 

Collins, 2011). Although the identities of telomerase holoenzyme proteins and the exact 

mechanisms of their functions differ between organisms, some of their biochemical roles and 

strategies bear striking similarities across phylogenetic groups. 

In single-celled ciliates and yeasts, telomerase is essential for long-term viability, and 

accordingly, telomerase components are constitutively expressed. Telomere extension occurs 

during each cell cycle, with preferential elongation of the shortest telomeres ensuring telomere 

length homeostasis (Hug and Lingner, 2006). However, in multicellular organisms, the 

expression of some telomerase holoenzyme components and the assembly of the complex is 

highly restricted. In humans, telomerase activity is undetectable in most adult somatic cells 

except for subsets of highly proliferative hematopoietic and epithelial cells. In the absence of 

sufficient telomerase activity, telomeres shorten with each round of DNA replication, eventually 

triggering proliferative senescence or apoptosis. This process may contribute to aging 

phenotypes, but the restriction of telomerase activity likely serves a critical tumor suppression 

function. Reactivation of telomerase occurs in over 85% of human cancers, enabling the 

continued proliferation of tumor cells. Therefore, studies of telomerase biogenesis and regulation 

have potential medical applications since telomerase inhibition is an attractive therapeutic 

strategy (Shay and Wright, 2010).  

This chapter aims to describe the shared and unique features of telomerase RNPs from 

ciliates, yeasts, and vertebrates, with an emphasis on pathways of telomerase RNA biogenesis 

and RNP assembly. Telomerase physical recruitment to, elongation of, and regulation at 
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telomeres involve DNA and protein dynamics that have been reviewed extensively elsewhere 

(Linger and Price, 2009; Palm and de Lange, 2008). Most of the work described has utilized 

Tetrahymena thermophila, Saccharomyces cerevisiae, Saccharomyces pombe, or cultured human 

cells. Less intensively studied, but important additional model systems include other ciliates 

(Collins, 1999), yeasts (Teixeira and Gilson, 2005; Yu, 2011), and vertebrates (Blasco, 2005), 

and also plants (Riha and Shippen, 2003).  

 

Ciliate telomerase 

 

Ciliate telomerase RNA structure 

 Ciliate TERs are the smallest to be characterized to date. The model laboratory 

ciliate, Tetrahymena thermophila, possesses a 159-nt TER (Greider and Blackburn, 1989) 

that includes all of the conserved motifs summarized above. The 9-nt template is positioned 

between a 5’ TBE and a 3’ pseudoknot. These motifs are enclosed by long-range base pairing 

of stem I. In addition to defining the template boundary, the TBE and its flanking single-

stranded region provide the high-affinity TERT binding site (Autexier and Greider, 1995; Lai 

et al., 2002). Some mutations in the pseudoknot affect catalytic activity and telomere length 

maintenance, but contrary to early models suggesting conformational dynamics, a recent 

single-molecule fluorescence resonance energy transfer (FRET) study found that the 

pseudoknot is stably folded throughout the catalytic cycle (Cunningham and Collins, 2005; 

Gilley and Blackburn, 1999; Mihalusova et al., 2011). The STE caps terminal stem IV. Some 

nucleotides of loop IV contribute to TERT binding in a manner important for RNP stability, 

dependent on a conformational change in central stem IV (Robart et al., 2010; Stone et al., 

2007). T. thermophila TER also includes an additional motif immediately 3’ of the template 
termed the template recognition element (TRE) that contributes to efficient copying across 

the template (Cunningham and Collins, 2005; Miller and Collins, 2002). 

  

Ciliate telomerase RNP maturation and TERT-TER assembly 

T. thermophila TER is transcribed by RNA polymerase III and retains the primary 

transcript 3’ uridine-rich termination sequence (Greider and Blackburn, 1989). This 3’ tail, 
together with stems I and IV, form the binding site for the telomerase-specific protein p65 

(O'Connor and Collins, 2006; Witkin and Collins, 2004). This La-family protein is required for 

TERT and TER accumulation in vivo as an integral subunit of the telomerase holoenzyme 

catalytic core. Its interaction with TER stabilizes a kink in stem IV necessary for TERT binding 

(Stone et al., 2007). Binding of p65 also induces additional conformational changes in stem-loop 

IV and beyond that promote TERT assembly and catalytic activity (Akiyama et al., 2012; 

Berman et al., 2010; Prathapam et al., 2005; Richards et al., 2006).  

 

Bridging the ciliate RNP catalytic core to telomere substrates 

 The T. thermophila telomerase holoenzyme has been purified to homogeneity, 

enabling extensive subunit characterization. Beyond the RNP catalytic core, five associated 

proteins, designated p19, p45, p50, p75, and Teb1 are required for telomere maintenance in 

vivo (Min and Collins, 2009; Witkin and Collins, 2004). Four of these five proteins (p19, 

p45, p50, and p75) purify enzyme activity with and without high RAP. In contrast, Teb1 

preferentially enriches high RAP activity (Min and Collins, 2009). Teb1 has an 

oligonucleotide/oligosaccharide (OB) fold architecture homologous to the large subunit of 
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Replication Protein A (RPA). However, Teb1 specifically recognizes telomeric repeats and is 

telomerase-specific. Biochemical and physical assays suggest that Teb1 association with the 

RNP catalytic core requires other holoenzyme proteins, which can thus be considered a 

telomere adaptor subcomplex (TASC) (Min and Collins, 2009). The mechanism of Teb1 

stimulation of RAP may involve its ability to suppress folding of nascent product DNA and 

its protein-protein interactions with TASC that could influence the conformation of the 

catalytic core (Min and Collins, 2009, 2010).  

 

Yeast telomerase 

 

Yeast telomerase RNA structure 

 Telomerase RNAs from yeasts are relatively large (over 1000 nt) with a core 

containing the template, TBE, and pseudoknot enclosed by long-range base pairing of stem I. 

In the S. cerevisiae TER, TLC1, the high-affinity binding site for the TERT protein, Est2p, is 

within this core (Livengood et al., 2002). Most of the yeast TER length derives from three 

long stems, or “arms,” extending from the core. One of these arms occurs 5’ of the template 
and serves as a TBE (Box et al., 2008b; Seto et al., 2003; Tzfati et al., 2000). In addition, in 

Saccharomyces, but not other yeasts, the terminal stem-loop of this arm forms a binding site 

for the Ku70/80 heterodimer, which is required for TLC1 accumulation and for telomerase 

nuclear localization and telomere recruitment (Fisher et al., 2004; Gallardo et al., 2008; 

Stellwagen et al., 2003). The second arm occurs between the template and the pseudoknot 

and contains a binding site for the regulatory protein Est1p, which is involved in recruiting 

another telomerase subunit, Est3p, and in targeting the enzyme to telomeres (Osterhage et al., 

2006; Qi and Zakian, 2000; Seto et al., 2002). 

 The third TLC1 arm is the extremely long stem I, which is further extended by 

folding back of the 3’ end. The 3’ terminal hairpin contains the STE, a three-way junction 

motif that stimulates telomerase catalytic activity and may contact TERT in Kluyveromyces 

lactis and likely other yeasts (Brown et al., 2007). A single-stranded uridine-rich motif near 

the 3’ end binds to Sm proteins, which contribute to the maturation and stability of the RNA 
(Seto et al., 1999; Tang et al., 2012). Studies of TLC1 have demonstrated that the RNA arms 

can be truncated substantially and still support activity in vitro and prevent senescence in 

vivo, suggesting that the RNA functions as a flexible scaffold for protein assembly (Zappulla 

et al., 2005). However, the truncated TLC1 accumulates to levels much lower than wild-type, 

maintains short telomeres, and confers reduced fitness (Zappulla et al., 2005).  

 Studies of yeast TERs have attempted to define the function of the pseudoknot. In K. 

lactis TER, some pseudoknot mutations prevent copying of the full template (Tzfati et al., 

2003). Another study used fragments of TLC1 assembled with Est2p in rabbit reticulocyte 

lysate to determine that disruption of the pseudoknot triple helix reduces telomerase activity 

but not Est2p binding (Qiao and Cech, 2008). Crosslinking identified contacts between 

nucleotides in the triple helix and the 3’ end of a DNA primer, suggesting a possible role for 
the pseudoknot in substrate DNA positioning (Qiao and Cech, 2008). 

 

Yeast telomerase RNP maturation and TERT-TER assembly 

Studies of telomerase biogenesis in yeast have focused predominantly on S. cerevisiae 

TLC1 and S. pombe TER1. Both are independently transcribed by RNA polymerase II and 

accumulate primarily as unpolyadenylated species with a minor fraction (~5-10%) occurring in a 
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polydenylated form (Chapon et al., 1997; Leonardi et al., 2008). The unpolyadenylated form is 

bound by TERT (Bosoy et al., 2003; Leonardi et al., 2008). However, the processing pathways 

that generate mature TLC1 and TER1 differ.  

While previously suggested to be a precursor, recent data suggests that the 

polyadenylated form of TLC1 is not required for the accumulation of the unpolyadenylated 

mature form (Noel et al., 2012). The 3’ end of the functional TLC1 transcript is produced by the 

Nrd1-Nab3-Sen1 pathway, which also processes the transcripts of small nuclear (sn) and small 

nucleolar (sno) RNAs in yeast (Noel et al., 2012). In this pathway, specific patterns of RNA 

polymerase II C-terminal domain phosphorylation recruit the RNA-binding proteins Nrd1p and 

Nab3p, which recognize sequences downstream of the mature RNA 3’ end. These proteins also 
interact with Sen1p, an RNA and DNA helicase, which is thought to terminate transcription by 

unwinding the RNA-DNA hybrid in the RNA polymerase active site (Kuehner et al., 2011).  

In the case of S. pombe TER1, the polyadenylated form does appear to serve as a 

precursor that is processed by a surprising mechanism involving the uncoupling of spliceosomal 

cleavage and exon ligation (Box et al., 2008a). An intron between the mature 3’ end and the 
polyA site is recognized by the spliceosome, and cleavage occurs at the 5’ splice site to generate 
the TER1 3’ end. However, the mature RNA escapes ligation to the downstream exon, an 

outcome potentially favored by a weak 3’ splice site sequence and a long distance between this 

site and the branch point (Box et al., 2008a). The same mechanism may generate the 3’ ends of 

Candida TERs which exhibit a similar conservation of 5’ splice site and branch point sequences 
(Gunisova et al., 2009). 

TLC1 and TER1, like snRNAs, assemble with Sm proteins and acquire a 2,2,7-

trimethylguanosine (TMG) cap (Leonardi et al., 2008; Seto et al., 1999). The Sm proteins (SmB, 

SmD, SmD2, SmD3, SmE, SmF, and SmG) form a heteroheptameric ring that binds to single-

stranded uridine-rich regions in snRNAs and at the 3’ ends of TLC1 and TER1, promoting their 
accumulation (Seto et al., 1999; Tang et al., 2012). Kluyveromyces and Candida TERs conserve 

this sequence element and are likely to also bind these proteins (Gunisova et al., 2009). Sm 

protein assembly promotes cap hypermethylation via a protein-protein interaction with the cap 

hypermethyltransferase Tgs1p (Mouaikel et al., 2002; Tang et al., 2012). In S. cerevisiae, Est2p 

binds to TLC1 after Sm protein association (Seto et al., 1999). In S. pombe, the Sm ring on TER1 

is replaced by a related Lsm2-8 complex that promotes the association of the TERT protein, 

Trt1p, and protects the 3’ end from exonuclease activity (Tang et al., 2012).  

Studies of yeast TER trafficking have primarily focused on S. cerevisiae TLC1. TLC1 

cap hypermethylation occurs in the nucleolus (Mouaikel et al., 2002; Seto et al., 1999). TMG-

capped TLC1 is then exported to the cytoplasm via the Crm1 export complex and is later 

reimported via Mtr10p and/or Kap122p importins (Ferrezuelo et al., 2002; Gallardo et al., 2008). 

The findings that all three Est proteins are required for endogenous TLC1 nuclear localization 

and that overexpressed Est1p and Est2p localize to the nucleus suggests the possibility that these 

proteins bind TLC1 in the cytoplasm and facilitate its nuclear reentry as an assembled RNP 

(Gallardo et al., 2008; Teixeira et al., 2002). However, unlike in ciliates, the stability of yeast 

TERs does not require TERT. Nuclear retention of TLC1 also depends on its recruitment to 

telomeres, discussed in detail below (Gallardo et al., 2008).  

 

Bridging the yeast RNP catalytic core to telomere substrates 

S. cerevisiae Est1p and Est3p are required for telomere elongation in vivo but not for 

RNP catalytic core activity on DNA oligonucleotides in vitro (Lingner et al., 1997a). It was thus 
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proposed that these proteins play a role in telomere recruitment or facilitate Est2p activity on its 

native substrates. Est1p interacts with TLC1 and the G-strand overhang binding protein Cdc13p , 

which alternately forms a telomere-associated RPA-like complex called CST with Stn1p and 

Ten1p (Gao et al., 2007; Seto et al., 2002). Interaction between Est1p and Cdc13p suggests that 

Est1p could bridge telomerase and the chromosome end (Qi and Zakian, 2000). Consistent with 

that hypothesis, a Cdc13p-Est2p fusion protein can maintain telomeres in the absence of Est1p 

(Evans and Lundblad, 1999). Later studies complicated this simple recruitment model. First, 

Est2p is detected at telomeres by chromatin immunoprecipitation (ChIP) dependent on TLC1 

throughout the cell cycle (Taggart et al., 2002). In contrast, Est1p is not detected at the telomere 

during G1, when its levels are low due to protein degradation involving the proteasome 

(Osterhage et al., 2006; Taggart et al., 2002). These findings led to a model in which the S. 

cerevisiae telomerase RNP catalytic core is physically recruited to the telomere prior to its 

activation for telomere elongation by events including Est1p assembly. The nature of the 

activation by Est1p is unclear but could involve its recruitment of Est3p, which has been 

demonstrated in C. albicans and S. cerevisiae (Hsu et al., 2007; Osterhage et al., 2006). 

Recently, it was shown that Est3p binds to the TEN domain of Est2p in vivo, and recombinant 

Est3p stimulates telomerase catalytic activity in vitro when added to telomerase complexes 

partially purified from S. cerevisiae cells (Talley et al., 2011). Study of Est3p orthologs in other 

yeasts found that interaction with the TEN domain permitted crosslinking to telomeric DNA, 

suggesting that TEN interaction unmasks a DNA binding activity (Yen et al., 2011).  

The Ku70/80 heterodimer is best known for its role in the recognition and repair of 

double-stranded DNA breaks. Interestingly, Ku is also detected at non-fusing telomeres in S. 

cerevisiae (Gravel et al., 1998). ChIP studies have found that Ku is required for telomerase 

recruitment to telomeres during G1, and some models suggest Ku acts as a bridge by binding 

TLC1 and telomeric DNA simultaneously (Fisher et al., 2004). However, recent work has 

revealed that Ku binds DNA and RNA in a mutually exclusive manner (Pfingsten et al., 2012). 

 

Human telomerase 

 

Human telomerase RNA structure 

The 451-nucleotide human TER is referred to as hTR based on its original identification 

(Feng et al., 1995). Extensive phylogenetic comparison of vertebrate TER sequences revealed 

several conserved regions (CRs), which include the template and pseudoknot (Chen et al., 2000). 

In vertebrates, the template and pseudoknot are enclosed by the P1 stem, which also serves as a 

TBE. Interestingly, P1 is absent from rodent TERs which possess only a few nucleotides 5’ of 
the template, suggesting an alternative mechanism for template boundary definition, possibly 

involving the RNA 5’ cap (Hinkley et al., 1998). The activity-stimulating STE of hTR is formed 

by a three-way helical junction within CR4/5. The TERT TRBD recognizes a small hairpin 

termed P6.1 and adjacent nucleotides within this element, and specific P6.1 loop nucleotides 

stimulate catalytic activity (Chen et al., 2002; Robart and Collins, 2010). Separate template-

pseudoknot and CR4/5 synthetic RNAs can reconstitute activity with recombinant TERT in vitro 

(Mitchell and Collins, 2000).  

Recent work using TERT and fragments of hTR assembled in rabbit reticulocyte lysate 

has shown that when the template is removed from hTR, the enzyme can still capture and act on 

a synthetic oligonucleotide RNA-DNA hybrid supplied in trans (Qi et al., 2012). When the 

pseudoknot was also removed, a low level of activity was still observed, demonstrating that this 
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motif is not strictly required for catalysis (Qi et al., 2012). Based on studies of the pseudoknot to 

date, a unifying model for its function is the positioning of the template in the active site. 

In addition to the generally conserved activity-stimulating motifs, hTR contains many 

regions required for mature RNA biogenesis, RNP assembly, subcellular trafficking, and 

regulation. The 5’ end of hTR is single-stranded and contains several guanosine tracts that 

increase hTR accumulation. These are predicted to form G-quadruplex structures recognized by 

the helicase DHX36 (Lattmann et al., 2011; Sexton and Collins, 2011). Because this region is 

missing from the 5’-truncated rodent TERs, G quadruplex formation is not essential in these 

species, perhaps due to increased transcription of TER.  

The 3’ half of vertebrate telomerase RNAs adopts a fold shared with the H/ACA family 
of RNAs (Chen et al., 2000; Mitchell et al., 1999a). Eukaryotic H/ACA RNAs generally function 

as guides for site-specific RNA pseudouridylation and form hairpin-Hinge-hairpin-ACA 

secondary structures containing pockets in the hairpin stems that hybridize to sequences flanking 

the target uridine(s). H/ACA RNAs are divided into two groups based on their localization and 

target RNA: snoRNAs target ribosomal (r) RNA, while small Cajal body (sca) RNAs target 

snRNAs (Kiss et al., 2010). Each H/ACA RNA hairpin is assembled to contain a set of four core 

proteins in the mature RNP: the pseudouridylase dyskerin, NOP10, NHP2, and GAR1 (Collins, 

2008; Egan and Collins, 2010). As in canonical H/ACA RNAs, the H/ACA core motifs of hTR 

are required for its accumulation in vivo as a stable RNP (Fu and Collins, 2003; Mitchell et al., 

1999a; Mitchell and Collins, 2000). However, no putative target sequence complementary to 

either of the hTR pockets has been found, suggesting that hTR does not guide pseudouridylation.  

Within the 3’ H/ACA loop of hTR are two additional functional motifs: the CAB box and 

the BIO box. The CAB box is also found in H/ACA scaRNAs where it exists in two copies, one 

in each hairpin loop, and directs dynamic RNP concentration in Cajal bodies through interaction 

with TCAB1/WDR79 (Jády et al., 2004; Richard et al., 2003; Tycowski et al., 2009; Venteicher 

et al., 2009). The BIO box cooperates with other 3’ hairpin stem elements to promote mature 
hTR accumulation but is not required for the accumulation of other H/ACA RNAs (Egan and 

Collins, 2012; Fu and Collins, 2003). 

 

Human telomerase RNP maturation 

The RNA polymerase II-transcribed hTR primary transcript is a potentially non-

polyadenylated precursor, which acquires a 5’ TMG cap and is exonucleolytically processed at 

its 3’ end to the boundary of the H/ACA motif (Feng et al., 1995; Fu and Collins, 2006; Girard et 

al., 2008; Mitchell et al., 1999a). In contrast to hTR, other human H/ACA RNAs are processed 

from intron contexts by both 5’ and 3’ exonuclease action and lack the hTR 5’ extension from 
the H/ACA motif and the TMG cap (Kiss et al., 2006). The hTR 3’ end formation mechanism 
has not been defined but is likely to involve the nuclear exosome, which has been implicated in 

human U3 C/D box snoRNA precursor processing (Watkins et al., 2004) and in yeast H/ACA 

snoRNA processing (Kim et al., 2006; Steinmetz et al., 2001). Or, hTR 3’ end processing could 
follow an snRNA-like pathway involving the Integrator complex (Baillat et al., 2005). Both of 

these pathways depend on sequences downstream of the mature RNA 3’ end, and yet all of the 
processing signals for hTR appear to be present within the mature RNA sequence (Fu and 

Collins, 2003). The accumulation of hTR increases when a self-cleaving ribozyme is inserted 

immediately downstream of the mature 3’ end, suggesting 3’ end maturation may limit hTR 
accumulation (Egan and Collins, 2012).  

hTR and other H/ACA RNAs cotranscriptionally assemble with a preformed scaffold 
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composed of dyskerin, NHP2, NOP10, and the pre-RNP assembly factor NAF1 (Darzacq et al., 

2006; Richard et al., 2006; Wang and Meier, 2004). The assembly factor/chaperone SHQ1 binds 

to dyskerin but is not part of the pre-RNP (Grozdanov et al., 2009), and a study of the yeast 

ortholog suggests SHQ1 functions as an RNA-mimic to prevent nonspecific RNA binding by 

dyskerin (Walbott et al., 2011). Depletion of SHQ1, dyskerin, NHP2, NOP10, or NAF1 by RNA 

interference compromises H/ACA snoRNA and hTR levels (Fu and Collins, 2007; Grozdanov et 

al., 2009; Hoareau-Aveilla et al., 2006). RNP assembly is also aided by NUFIP, which binds 

NHP2, and by the helicases RUVBL1 and RUVBL2 (Boulon et al., 2008). These helicases have 

been shown to interact with dyskerin and TERT to facilitate telomerase RNP assembly 

(Venteicher et al., 2008). Knockdown of NUFIP, RUVBL1, or RUVBL2 reduces hTR levels 

(Boulon et al., 2008; Venteicher et al., 2008).  

Dyskerin recognizes the H box or ACA sequence, each of which is located 14 to 16 

nucleotides 3’ of the hairpin pocket apex in canonical H/ACA RNAs (Ganot et al., 1997a). Based 

on a crystal structures of single-hairpin archaeal H/ACA RNPs bound to substrate RNA, this 

conserved spacing ensures that the target uridine in positioned in the pseudouridylase active site 

(Duan et al., 2009; Liang et al., 2009). NOP10 bridges dyskerin to NHP2 which is predicted to 

bind to the upper stem of the H/ACA RNA (Li and Ye, 2006). Although hTR does not exhibit 

the conserved spacing of elements in its 5’ H/ACA hairpin, it still assembles a set of H/ACA 
core proteins on this hairpin, sharing the dimeric structure that characterizes eukaryotic H/ACA 

RNPs (Egan and Collins, 2010).  

While most pseudouridine-guide RNAs require the presence of both H/ACA-motif 

hairpins to cooperatively bind the NAF1-dyskerin-NOP10-NHP2 assembly scaffold, the hTR 3’ 
hairpin exhibits strongly enhanced RNP assembly stimulated by the BIO box motif (Egan and 

Collins, 2012). The BIO box is required for hTR accumulation but is not conserved in other 

H/ACA RNAs (Fu and Collins, 2003). BIO box mutant hTR precursor is transcribed, but it is not 

3’ end processed and does not escape the site of transcription, suggesting that H/ACA RNP 
assembly is a prerequisite for transcript release and processing (Theimer et al., 2007). The 

unique requirement for the BIO box in hTR may reflect an increased dependence of its 

independently transcribed precursor on rapid RNP assembly in order to avoid degradation. The 

intron-encoded precursors of other human H/ACA RNAs are likely more resistant to degradation 

within host mRNA transcripts or excised intron lariats and thus would not require such rapid 

assembly.  

After transcription, assembly with H/ACA core proteins, and processing, hTR is 

transported to Cajal bodies via the transport factors PHAX and Nopp140 (Boulon et al., 2004; 

Yang et al., 2000). There, the short form of hTGS1 hypermethylates the 5’ cap (Fu and Collins, 

2006; Girard et al., 2008). Cajal bodies are also sites of RNP remodeling, which includes the 

replacement of the pre-RNP assembly factor NAF1 by the mature RNP component GAR1 

(Darzacq et al., 2006). Separate from these maturation processes, the RNP also concentrates in 

Cajal bodies by indirect association with a subset of Sm proteins and direct association with 

TCAB1/WDR79 via the CAB box (Fu and Collins, 2006; Tycowski et al., 2009; Venteicher et 

al., 2009). Knockdown of TCAB1/WDR79 does not affect hTR accumulation but does reduce 

RNP association with Cajal bodies and telomeres, resulting in telomere shortening in HTC75 

cancer cells (Venteicher et al., 2009; Zhong et al., 2011). Expression of CAB box mutant hTR in 

HTC75 cells reduced the rate of telomere elongation relative to wild-type hTR, whereas the final 

extent of lengthening was similar in telomerase-deficient primary human fibroblasts 

overexpressing hTR and TERT (Fu and Collins, 2007; Venteicher et al., 2009).  
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Human TERT-TER assembly 

 The catalytic subunit TERT joins the telomerase complex after mature RNP 

biogenesis. The TERT TRBD contacts the CR4/5 region of hTR and both the TEN domain 

and TRBD also contact the template-pseudoknot (Robart and Collins, 2011). Expression of 

TERT only modestly increases hTR accumulation but is required for telomere localization 

(Tomlinson et al., 2008; Yi et al., 1999). While various nuclear subdomains have been 

proposed as the site of hTR-TERT assembly, a study of endogenous hTR and TERT has 

suggested a possible model for the trafficking of telomerase. For most of the cell cycle, hTR 

localizes to Cajal bodies and TERT to distinct nuclear foci. During S phase TERT enters 

nucleoli and hTR-containing Cajal bodies move to the nucleolar periphery. Then both hTR 

and TERT colocalize adjacent to Cajal bodies before associating with telomeres (Tomlinson 

et al., 2006).  

 TERT assembly with the telomerase RNP requires the folding chaperone HSP90. 

RNP reconstitution in rabbit reticulocyte lysate is dependent on HSP90, and treatment with 

geldanamycin, an HSP90 inhibitor, reduces telomerase activity and also leads to proteasome-

mediated degradation of TERT in vivo (Forsythe et al., 2001; Holt et al., 1999; Kim et al., 

2005). In addition, TERT interacts with the snRNP assembly factor SMN, and expression of 

a dominant negative form of SMN disrupts the localization of TERT in vivo and telomerase 

assembly in vitro, suggesting that SMN could play a role in telomerase RNP assembly 

(Bachand et al., 2002). Another potential regulator of active telomerase assembly is the 

DNA-dependent protein kinase-interacting protein KIP, whose overexpression increases 

telomerase activity and telomere length without affecting the levels of TERT mRNA or hTR 

(Lee et al., 2004).  

 

Bridging the human RNP catalytic core to telomere substrates 

 Human telomerase recruitment to telomeres requires the TIN2 and TPP1 telomere-

binding proteins (Abreu et al., 2010), which are anchored to the double-stranded region of 

the telomere via TRF1 and TRF2 (Palm and de Lange, 2008). TPP1 also indirectly binds to 

single-stranded telomeric DNA through POT1 (Palm and de Lange, 2008), but POT1 is not 

required for telomerase recruitment to telomeres assayed by ChIP and fluorescence in situ 

hybridization (Abreu et al., 2010). A POT1-TPP1 complex stimulates the processivity of the 

telomerase catalytic core in vitro by maintaining association with the product DNA and 

aiding enzyme translocation (Latrick and Cech, 2010; Wang et al., 2007). TPP1 bridges the 

TERT TEN domain to POT1 to enable this stimulation (Zaug et al., 2010). 

 

Common themes in telomerase biogenesis 

 

 Despite the great divergence in pathways of telomerase RNP maturation, catalytically 

active holoenzyme assembly, and telomere recruitment among ciliates, yeasts, and vertebrates, 

some general features are shared. TERs have evolved numerous motifs whose structures and 

binding partners are unique to each phylogenetic group, but which possess similar functions. 

TERs in all three groups interact with proteins required for RNA stability: p65 in ciliates, Sm 

proteins in yeasts, and H/ACA proteins in vertebrates. TERs also contain shared motifs, the 

template-pseudoknot and STE, to mediate their interactions with TERT. While the relative 

affinities of these interactions differ between species, the existence of two distinct binding sites 

in the RNA appears to be a conserved feature that ensures the specificity of TERT-TER 
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interaction. Mechanisms of telomere recruitment also bear striking similarities. Teb1 and TASC 

bridge the T. thermophila telomerase catalytic core to telomere substrates much like the 

telomere-associated Cdc13p or TPP1 recruits the telomerase-associated Est1p or TERT in S. 

cerevisiae and human cells, respectively. Although studies of diverse organisms have revealed a 

great deal about telomerase biogenesis and regulation, much remains to be discovered about the 

complex pathways that produce this essential enzyme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

CHAPTER TWO 

 

 

Specificity and Stoichiometry of Subunit Interactions in the Human Telomerase 

Holoenzyme Assembled In Vivo 

 

Abstract 

 

The H/ACA motif of human telomerase RNA (hTR) directs specific pathways of 

endogenous telomerase holoenzyme assembly, function, and regulation. Similarities between 

hTR and other H/ACA RNAs have been established but differences have not been explored even 

though unique features of hTR H/ACA RNP assembly give rise to telomerase deficiency in 

human disease. Here, we define hTR H/ACA RNA and RNP architecture using RNA 

accumulation, RNP affinity purification, and primer extension activity assays. First, we evaluate 

alternative folding models for the hTR H/ACA motif 5’ hairpin. Second, we demonstrate an 
unanticipated and surprisingly general asymmetry of 5’ and 3’ hairpin requirements for H/ACA 
RNA accumulation. Third, we establish that hTR assembles not one but two sets of all four of 

the H/ACA RNP core proteins dyskerin, NOP10, NHP2, and GAR1. Fourth, we address a 

difference in predicted specificities of hTR association with the holoenzyme subunit 

WDR79/TCAB1. Together, these results complete the analysis of hTR elements required for 

active RNP biogenesis and define the interaction specificities and stoichiometries of all 

functionally essential human telomerase holoenzyme subunits. This study uncovers unexpected 

similarities but also differences between telomerase and other H/ACA RNPs that allow a unique 

specificity of telomerase biogenesis and regulation.  
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Introduction 

 

 The challenge of eukaryotic chromosome end replication is met in part by telomerase-

mediated synthesis of terminal DNA repeats (Gilson and Geli, 2007). The telomerase catalytic 

core can be reconstituted from telomerase reverse transcriptase (TERT) and telomerase RNA 

(TER), which together form a specialized reverse transcriptase enzyme (Sekaran et al., 2010). 

Although the sequences and structures of TERs are highly divergent across eukaryotes, all TERs 

contain three elements important for RNP catalytic activity: an internal template for telomeric 

repeat synthesis, an adjacent pseudoknot, and a distantly positioned stem terminus element 

(Blackburn and Collins, 2010). TERs also contain motifs that mediate RNA folding, stability, 

localization, and regulation in vivo (Collins, 2009). In vertebrate cells, the TER precursor is 

transcribed by RNA polymerase (Pol) II. The 451 nucleotide (nt) mature human telomerase RNA 

(hTR) is produced by 3’ end trimming and 5’ end modification with a trimethylguanosine (TMG) 
cap (Feng et al., 1995; Fu and Collins, 2006; Jády et al., 2004; Mitchell et al., 1999a). Consistent 

with the requirement for a specific pathway of biogenesis, mature hTR accumulation is favored 

by Pol II expression contexts lacking a downstream signal for transcription-coupled mRNA or 

small nuclear (sn) RNA 3’ end formation (Fu and Collins, 2003). 

The 5’ half of hTR resembles a compact ciliate TER, with the template and pseudoknot 

constrained by a domain-closing stem, while the 3’ half adopts a fold shared by a large family of 
H/ACA motif small nucleolar (sno) and small Cajal body (sca) RNAs (Fig. 1A). H/ACA 

snoRNAs and scaRNAs function predominantly as guides for the site-specific pseudouridylation 

of ribosomal (r) RNA and snRNA, respectively (Matera et al., 2007). The canonical secondary 

structure of a eukaryotic H/ACA RNA consists of a 5’ hairpin followed by a single-stranded H 

box (ANANNA), and then a 3’ hairpin followed by a single-stranded ACA located 3 nt from the 

mature RNA 3’ end (Henras et al., 2004). Each hairpin contains an internal loop or “pocket” that 
guides the selection of a modification target. Both sides of an unpaired stem pocket base pair to 

the target RNA such that the target uridine is extruded from the hybrid at the top of the pocket 

(Duan et al., 2009; Liang et al., 2009). Putative modification guide sequences of vertebrate TERs 

are not conserved, suggesting that TERs do not direct RNA modification. Also, while hTR is an 

independent transcript trimmed at its 3’ end, other vertebrate H/ACA RNAs are both 5’ and 3’ 
end-processed from introns. Despite these differences, in vivo accumulation of hTR requires the 

same H box and ACA elements required for snoRNA accumulation (Mitchell et al., 1999a; 

Mitchell and Collins, 2000). By directing a specific pathway of primary transcript maturation 

and RNP biogenesis, the hTR H/ACA motif provides a mechanism for efficient assembly of a 

biologically stable telomerase RNP. 

Canonical H/ACA RNAs share the RNP core proteins Cbf5/NAP57/dyskerin (the 

pseudouridine synthase), NOP10, NHP2, and GAR1 (Reichow et al., 2007). The heterotrimer of 

dyskerin, NOP10, and NHP2 is deposited onto each hairpin unit of the H/ACA motif in a highly 

chaperoned biogenesis process (Matera et al., 2007). Cotranscriptional association of the 

heterotrimer is followed by an exchange of biogenesis factors for the fourth core subunit GAR1 

to produce a biologically functional RNP (Darzacq et al., 2006). All four H/ACA RNP proteins 

copurify hTR as well as other H/ACA RNAs. The three core heterotrimer proteins can be 

detected by mass spectrometry of purified human telomerase holoenzyme (Fu and Collins, 

2007), although one report has suggested that holoenzyme includes only dyskerin, hTR, and 

TERT (Cohen et al., 2007). Recent structures of reconstituted archaeal single-stem RNPs with 

Cbf5, Nop10, and the NHP2-related protein L7Ae indicate that Cbf5 contacts a large surface of 
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RNA from the 3’ ACA through the hairpin lower stem and pocket, accounting for the conserved 

and catalytically essential 14-16 nt spacing of the ACA (or H box) and the top of the hairpin 

pocket (Duan et al., 2009; Liang et al., 2009; Ye, 2007). Biochemical assays and structural 

models of the eukaryotic H/ACA proteins suggest a conserved positioning of dyskerin and the 

interacting NOP10 subunit, with the other face of NOP10 binding to NHP2 to place it in the 

vicinity of the upper stem (Reichow et al., 2007). 

The human H/ACA snoRNA and scaRNA subfamilies of modification guide RNAs differ 

in their targets (rRNAs versus snRNAs) and by the presence of a motif in the terminal loop of 

their 5’ and 3’ hairpins termed the Cajal body or CAB box (ugAG, where lower case letters 

indicate reduced sequence conservation). Many RNAs including hTR transit nuclear Cajal bodies 

during biogenesis, but some including H/ACA scaRNAs concentrate in Cajal bodies as a steady-

state distribution (Matera and Shpargel, 2006). Cajal body localization of H/ACA scaRNAs is 

dependent on the CAB boxes in each hairpin stem (Richard et al., 2003). Most vertebrate TERs 

have a CAB box located in the 3’ hairpin of the H/ACA motif (Jády et al., 2004; Xie et al., 

2008). Dependent on this single CAB box, hTR shows cell-cycle-regulated concentration in 

Cajal bodies of TERT-expressing cancer cell lines (Jády et al., 2004; Jády et al., 2006; 

Tomlinson et al., 2008; Tomlinson et al., 2006; Zhu et al., 2004). The hTR CAB box is not 

essential for telomere elongation (Fu and Collins, 2007), but it may increase the rate of telomere 

elongation or the telomere length set-point when hTR is overexpressed in cancer cells (Cristofari 

et al., 2007). WDR79/TCAB1 was identified as a direct RNA binding protein dependent on a 

CAB box for H/ACA RNP interaction (Tycowski et al., 2009) and paradoxically as an RNA-

independent interaction partner of dyskerin (Venteicher et al., 2009). Like the CAB box itself, 

WDR79/TCAB1 is not required for hTR accumulation or telomerase catalytic activity but it is 

required for hTR concentration in Cajal bodies (Venteicher et al., 2009). Long-term depletion of 

WDR79/TCAB1 in a human fibrosarcoma cell line reduced telomere length (Venteicher et al., 

2009), suggesting that hTR Cajal body concentration promotes telomere maintenance. Given that 

not all cells with active telomerase have Cajal bodies, WDR79/TCAB1 may more generally 

promote telomere maintenance by allowing hTR to escape from a default snoRNA-like 

sequestration in the nucleolus.  

Structural similarities between hTR and other H/ACA RNAs have been established by 

previous studies, but differences have not been explored. Unique features of hTR H/ACA RNP 

assembly are likely to underlie the telomerase-specific disease phenotypes resulting from 

inherited human dyskerin, NOP10, and NHP2 gene mutations (Armanios, 2009; Savage and 

Alter, 2008). A major potential point of difference involves the unresolved structure of the hTR 

H/ACA motif 5’ hairpin. Previous structure/function studies of this region to investigate 
requirements for RNA accumulation were difficult to interpret due to mutagenesis-induced stem 

pairing rearrangements (Mitchell and Collins, 2000), and phylogenetic comparison did not derive 

a unique fold for this region due to high sequence variability among vertebrate TERs (Chen et 

al., 2000). The original model of the hTR H/ACA motif 5’ hairpin (Mitchell et al., 1999a) and 

similar phylogenetic predictions (Chen et al., 2000; Podlevsky et al., 2008) all deviate from the 

conserved spacing of 14-16 nt that should separate the H box and the top of the pocket to form 

the contact surface for dyskerin. Therefore, unlike other human H/ACA snoRNAs and scaRNAs, 

hTR could assemble a set of core proteins only on the 3’ hairpin. Indeed, the hTR 3’ hairpin has 
been shown to support single-stem RNP assembly in vitro (Dragon et al., 2000) and single-stem 

RNP assembly has been shown to occur in trypanosomes in vivo (Uliel et al., 2004). On the other 

hand, mapping of an intron-expressed hTR H/ACA domain 5’ end suggested an alternative 5’ 
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boundary for the H/ACA motif (Theimer et al., 2007), which could fold a canonical 5’ hairpin 
with an insertion in the pocket known to occur in some snoRNAs (see below; Fig. 1B). Because 

the 5’ hairpin of the H/ACA motif separates two regions of hTR critical for TERT interaction 
and catalytic activity (Fig. 1A), alternative configurations of 5’ hairpin stem pairing and pocket 

structure could influence telomerase holoenzyme activity.  

Here we define the RNA and RNP architecture of the H/ACA domain of human 

telomerase using holoenzyme reconstitution in vivo. We find support for the original model of 5’ 
hairpin structure and uncover an unexpected asymmetry of significance for the 5’ versus 3’ 
hairpin pockets that is shared by hTR and canonical snoRNAs. Curiously, most elements of hTR 

5’ hairpin structure are not important for holoenzyme catalytic activity. We next elucidate the 

hTR interaction stoichiometry of H/ACA RNP core proteins using a tandem affinity purification 

strategy. Independent of all but a minimal 5’ hairpin stem and H box, two full sets of H/ACA 
RNP proteins assemble on each molecule of hTR. In contrast, WDR79/TCAB1 association 

appears single-copy, with strong dependence on the CAB box in the hTR 3’ hairpin loop. These 
studies resolve open questions of telomerase subunit stoichiometry and reveal unexpected 

additional similarities as well as differences in the composition of telomerase, snoRNPs, and 

scaRNPs in human cells.  
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Materials and Methods 

 

Cell culture, constructs, and transfection. 

293T and VA13+TERT cells were cultured in DMEM with 10% FBS and transiently 

transfected using the calcium phosphate method (Mitchell and Collins, 2000). Expression 

constructs for mature hTR and the hTR-U64 chimera have been previously described (Fu and 

Collins, 2003). To generate pBS-U3-hTR-U64-500 and pBS-U3-hTR H/ACA-500, mature hTR 

sequence in pBS-U3-hTR-500 was replaced by hTR-U64 or the H/ACA-domain region of hTR 

(nt 203-451), respectively. H/ACA snoRNA expression constructs pBS-U3-U64-500 and pBS-

U3-ACA28-500 were similarly constructed by replacing mature hTR sequence with the mature 

snoRNA sequence. The functionally validated structures of the U64 5’ hairpin and the ACA28 5’ 
and 3’ hairpins target known modifications of human rRNA (Lestrade and Weber, 2006; Xiao et 

al., 2009). N-terminally tagged proteins were expressed in the backbone contexts pcDNA-Z 

(where Z represents tandem Protein A domains followed by a cleavage site for tobacco etch virus 

protease), pcDNA-F (where F represents three copies of the FLAG tag), and pcDNA-ZF. Due to 

extract proteolysis in the N-terminal tag region of ZF-WDR79/TCAB1, assays shown here used 

the extract-stable C-terminal FZ-tagged subunit. A plasmid containing Tetrahymena thermophila 

TER under the control of the human U6 Pol III promoter was used as a control for transfection 

efficiency (Mitchell et al., 1999a). All constructs were verified by sequencing. 

 

Blot detection of RNA and protein. 

RNA was purified using TRIzol according to the manufacturer’s protocol (Invitrogen). 
Northern blot detection of hTR, hTR-U64, and the recovery control was performed using an end-

labeled 2’-O-methyl RNA oligonucleotide complementary to hTR positions 51-72 as previously 

described (Fu and Collins, 2003). The 5’-processed hTR H/ACA domain alone was detected 

using DNA oligonucleotide probes complementary to nt 305-335, 363-390, or 419-449 

depending on the hTR variants analyzed. Endogenous and recombinant human snoRNAs were 

detected using DNA oligonucleotide probes complementary to positions 54-82 of U64 or 

positions 79-107 of ACA28. Immunoblots to detect tagged proteins used FLAG M2 monoclonal 

antibody or rabbit IgG primary antibody and were imaged using a LI-COR Odyssey system. 

 

Telomerase activity assay. 

Cell extracts prepared by freeze-thaw lysis (Mitchell and Collins, 2000) were clarified by 

centrifugation. Nine µg of total protein as determined by Bradford assay was used in each 

reaction. Assay buffer contained final concentrations of 10 mM HEPES, 50 mM Tris acetate, 5% 

glycerol, 40 mM NaCl, 50
 
mM potassium acetate, 4 mM MgCl2, 1 mM EGTA, 1 mM 

spermidine, and 5 mM β-mercaptoethanol at pH 8.0. Reactions were initiated by the addition of 

500 nM telomeric
 
repeat primer (G3T2A)3, 0.25 mM dTTP and dATP, 5.5 µM unlabeled

 
dGTP, 

and 0.33 µM [α-
32

P] dGTP (3000 Ci/mmol, PerkinElmer
 
Life Sciences) and incubated at 30°C 

for 1 hour. The 40 µl assay volumes were supplemented with 60 µL RNase A stop solution, 

incubated at 37°C for 15 min, supplemented with 50 µL Proteinase K solution, and incubated 

again at 37°C for 15 min. Product DNA was purified by phenol-chloroform extraction and 

ethanol precipitation and then analyzed by denaturing acrylamide
 
gel electrophoresis. 

 

Affinity purification. 

 For tandem affinity purification of tagged dyskerin, NHP2, GAR1, TERT, and 



 16 

WDR79/TCAB1, cell extracts from freeze-thaw cell lysis were diluted to ~2 mg/mL in binding 

buffer (20 mM HEPES at pH 8.0, 150 mM NaCl, 2 mM MgCl2, 0.2 mM EGTA, 10% glycerol, 

0.1% Igepal, 1 mM DTT, 0.1 mM PMSF, and 1/1000 volume of Sigma Protease Inhibitor 

Cocktail). A volume of 0.9 mL of diluted extract was clarified by centrifugation immediately 

prior to purification using 5 μL of packed resin. Rabbit IgG agarose (Sigma) or FLAG M2 
antibody resin (Sigma) was washed 3 times in 1 mL of binding buffer prior to use. Samples were 

rotated end-over-end for 2 hours at room temperature or overnight at 4°C. Bound samples were 

washed twice at room temperature in 1 mL of wash buffer (binding buffer with 0.1% Triton X-

100, 0.1% CHAPS, 100 ng/μL BSA, and 100 ng/μL tRNA) for 5 min each wash and then 
transferred to ultra-low retention tubes (Phenix) for a third wash. To elute bound protein, a final 

concentration of 150 ng/μL 3xFLAG peptide (Sigma) or ~30 ng/μL of the S219V variant of 
tobacco etch virus protease was added in a volume of 50 μL of wash buffer and rotated end-over-

end for 15 min at room temperature. Supernatant was removed and the resin rinsed with another 

50 μL of wash buffer. The combined 100 μL of elution supernatant was cleared of contaminating 
beads using Micro Bio Spin columns (Bio-Rad) and added to 5 μL of the second resin. Second-

step binding was performed by end-over-end rotation for 30 min at room temperature followed 

by washing and elution as described above. Single-step purification of WDR79/TCAB1 was 

performed using Z-tagged protein with conditions described above. 
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Results 

 

The hTR H/ACA motif has a noncanonical secondary structure.  

The first investigation of hTR H/ACA motif structure proposed a 5’ hairpin starting at 
position 211 (Fig. 1B, left). Consistent with studies of the yeast H/ACA snoRNAs known at that 

time, the hTR H box, ACA, and 3’ hairpin lower stem were each found to be essential for in vivo 

accumulation (Bortolin et al., 1999; Mitchell et al., 1999a; Mitchell and Collins, 2000). Although 

the 5’ hairpin lower stem is critical for intron-encoded snoRNA accumulation, it is not essential 

for accumulation of an independently transcribed yeast snoRNA (Bortolin et al., 1999). 

Substitutions of the predicted hTR 5’ hairpin lower stem did not inhibit mature hTR 
accumulation, but changes in the size and accumulation level of the hTR H/ACA domain 

processed from the hTR primary transcript at its 5’ and 3’ ends suggested that mutagenesis of the 
5’ hairpin created alternative stem pairings (Mitchell and Collins, 2000). A full-length hTR 

secondary structure prediction derived by phylogenetic comparison supported the original model 

of H/ACA motif structure and placed the 5’ hairpin at the base of a hypervariable stem (Chen et 

al., 2000). More recently, 5’ end mapping of the 5' and 3' end-processed hTR H/ACA domain 

raised the prospect of an alternative 5' hairpin lower stem beginning at position 225 (Theimer et 

al., 2007), which could fold a hairpin structure with canonical rather than noncanonical spacing 

from the H box to the top of the 5’ pocket (Fig. 1B, right). Notably, in vivo modification 

protection of hTR (Antal et al., 2002) is most consistent with the alternative secondary structure 

model. 

 To establish the pairing register of the hTR H/ACA motif 5’ hairpin, we introduced stem 
disruptions and stem repair combinations in the expression context U3-hTR-500, in which a Pol 

II snRNA promoter drives expression of hTR and its endogenous downstream flanking 500 bp. 

This construct produces mature hTR and catalytically active telomerase holoenzyme that is 

functional for telomere elongation (Fu and Collins, 2003; Wong and Collins, 2006). 

Recombinant hTR was expressed by transient transfection of 293T cells, allowing a high level of 

recombinant RNP accumulation. Substitutions that should discriminate the original and 

alternative models for 5’ hairpin structure were designed in blocks of two to four nt (Fig. 1B), 
using folding predictions to minimize the potential for formation of alternative pairings. Every 

experiment included an empty vector control for endogenous hTR background. RNA was 

harvested from cells transfected to express recombinant versions of hTR and a ciliate TER 

transcribed using the human U6 snRNA Pol III promoter as a transfection control (TC). Total 

RNA was resolved by denaturing PAGE and probed to detect the RNAs of interest. Due to 

partial folding during acrylamide gel electrophoresis, hTR typically migrates as doublet. In this 

and previous studies, substitutions in the 5’ hairpin induce variability in hTR gel migration.  
Single-sided substitutions of the 5’ hairpin lower stem inhibited hTR accumulation, and 

in each case this inhibition was rescued by the compensatory combination of left-side (L) and 

right-side (R) changes (Fig. 1C, lanes 3-11). Compensatory combinations also rescued 

accumulation of the hTR H/ACA domain alone, albeit giving rise to migration heterogeneity that 

could reflect differences in size and/or partial folding during electrophoresis. Notably, only two 

of the six single-sided stem substitutions reduced recombinant hTR accumulation to near the 

level of endogenous hTR background (Fig. 1C, compare lanes 1, 6, and 10) while the 

corresponding other-side substitutions (lanes 7 and 9) or a larger substitution involving the same 

residues (lane 3) were permissive for some hTR accumulation. Together the results support the 

original model of a 5’ hairpin 8 bp lower stem beginning at position 211 (Fig. 1B, left), because 
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compensatory mutagenesis rescued the loss of accumulation imposed by a two nt substitution at 

the left-side base of this stem (pairing B) or a four nt right-side substitution at the top of this stem 

(pairing C). Although the loss and rescue of accumulation is less dramatic, disruption and repair 

of the hTR H/ACA motif 5’ hairpin upper stem lends modest support for formation of this 
element as well (Fig. 1C, lanes 12-14). 

We also investigated potential formation of the alternative 5’ hairpin stem beginning at 
position 225 (Fig. 1B, right). Despite its several attractions, the alternative model was not 

favored by mutagenesis results. The combination of putative compensatory left-side and right-

side stem substitutions did not improve hTR accumulation (Fig. 1C, lanes 17-19). We conclude 

that the hTR H/ACA motif 5’ hairpin can and likely does begin at position 211, although 
alternative foldings appear to support the accumulation of mature hTR. Also, the 5’ hairpin 
structural requirements for full-length hTR appear more lenient than for the hTR H/ACA domain 

alone, suggesting that folding of the 5’ hairpin region could differ in full-length hTR versus the 

H/ACA domain stable to 5’ processing. Overall these findings establish differences between the 
architecture of the hTR H/ACA motif 5’ hairpin and the 5’ hairpins of other H/ACA RNAs. 

 

A 5’ hairpin pocket is not required for hTR accumulation.  
The role of the H/ACA motif hairpin pockets in base pairing to target RNAs has been 

well established, but to our knowledge the significance of these pockets for canonical snoRNA 

accumulation and RNP assembly has not been examined. Previous studies of hTR found that 

sequence substitution of the 3’ hairpin pocket or sequence tag insertion in the 5’ pocket were 
both tolerated for accumulation, while a substitution intended to force pairing of the canonically 

positioned 3’ pocket was not (Mitchell et al., 1999a; Mitchell and Collins, 2000). To directly 

compare the significance of the hTR 5’ and 3’ hairpin pockets, we first examined the impact of 
deleting the left-side, right-side, or left and right sides of each hairpin pocket (Fig. 1D, left; 

pocket residues are shown for the most recent model based on phylogenetic comparison 

(Podlevsky et al., 2008). None of the deletions within the 5’ pocket strongly reduced hTR 
accumulation (Fig. 1D, lanes 3-5). Making a smaller 5’ pocket by deleting all but five residues of 

the right-side pocket (boxed in Fig. 1D, left), without or with accompanying deletion of all left-

side pocket residues (lane 7 or 8, respectively), also allowed hTR accumulation. In contrast, the 

corresponding perturbations of the 3’ pocket reduced or eliminated hTR accumulation (Fig. 1D, 

9-11).  

 We also tested the impact of pairing across the pocket. In the 5’ pocket, converting the 
pocket to a 5 bp duplex (depicted by the cross-pocket lines in the illustration of Fig. 1D) was 

detrimental for hTR accumulation (lane 6). We note that the long 21 bp duplex created by this 

pocket pairing could have indirectly led to transcript degradation. Replacement of the 3’ pocket 
with a 3 bp or 9 bp duplex was also detrimental for hTR accumulation (Fig. 1D, lanes 12-13), 

despite the shorter overall length of duplex that was created. In general, perturbations of pocket 

structure had parallel impact on the accumulation of full-length hTR and the hTR H/ACA 

domain alone, although accumulation of the H/ACA domain alone was less tolerant of complete 

5’ pocket deletion (Fig. 1D, lane 5). The combined results of hTR H/ACA motif pocket 
mutagenesis reveal additional asymmetry in the structural requirements for the 5’ and 3’ 
hairpins.  

 

Holoenzyme catalytic activity is tolerant of changes in 5’ hairpin structure.  
The hTR H/ACA motif 5’ hairpin elements separate two TERT-interacting regions of 
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hTR critical for catalytic activity (Mitchell and Collins, 2000). To test whether relative 

positioning of the two TERT-interacting regions is important for holoenzyme catalytic activity, 

we reconstituted hTR variants into telomerase holoenzyme by transfection of VA13 cells lacking 

endogenous hTR (Bryan et al., 1997). VA13+TERT cells (VA13 cells with an integrated TERT 

expression vector) were transfected to express hTR variants that abrogate wild-type pairing of 

the H/ACA motif 5’ hairpin lower stem (single- or double-sided substitutions of pairing A) or 

upper stem (single- or double-sided substitutions of pairing D) or eliminate the 5’ hairpin pocket 

(combined left-side and right-side pocket deletion). Telomerase activity in cell extracts was 

assayed by direct primer extension to monitor repeat addition processivity as well as activity 

overall.  

Surprisingly, most H/ACA motif 5’ hairpin substitutions did not affect telomerase 

activity: catalytic activity generally paralleled hTR accumulation (Fig. 2). One exception was the 

left-side substitution of the 5’ hairpin lower stem (Fig. 2, lane 3), which could indirectly affect 
the folding of the adjacent template/pseudoknot region. Notably, holoenzymes with disrupted 

pairing of the alternative 5’ hairpin lower stem beginning at position 225 also retained catalytic 
activity (Fig. 2, lanes 4 and 6). We conclude that the relative positioning of TERT-interacting 

motifs across the intervening H/ACA motif 5' hairpin is not important for holoenzyme catalytic 

activity. Sufficient TERT interaction affinity for each of its bound hTR motifs may obviate the 

role of other proteins in hTR-TERT interactions.  

 

Asymmetric 5’ and 3’ hairpin requirements are shared by canonical snoRNAs.  
To establish some necessity of 5’ hairpin structural elements for hTR accumulation, we 

sought to determine the maximal extent of the 5’ hairpin that could be deleted. We created 
internal truncations of the 5’ hairpin that removed the H/ACA motif upper stem (∆1), the upper 

stem and pocket (∆2), or the entire stem/pocket/stem hairpin (∆3). Remarkably, deletions that 

removed the upper stem or the upper stem and pocket did not substantially affect hTR 

accumulation (Fig. 3A, lanes 3-4). A detectable level of hTR accumulated even with complete 5’ 
hairpin deletion (Fig. 3A, lane 5), in contrast to the undetectable accumulation of hTR variants 

with substitutions in the H box or ACA expressed from the same vector (data not shown).  

 To determine whether the minimal 5’ hairpin requirement was unique to hTR, we tested 
the accumulation of canonical human H/ACA snoRNAs U64 (Fig. 3B) and ACA28 (Fig. 3C) 

with deletions in the 5’ or 3’ hairpin. Surprisingly, for both of these snoRNAs, combined 

deletion of the 5’ pocket right-side and left-side residues did not reduce accumulation (Figs. 3B 

and 3C, lane 5). Deletion of either pocket side alone had a partially inhibitory impact, perhaps 

resulting from induced misfolding (Figs. 3B and 3C, lanes 3-4). Remarkably, deletions of the 

entire 5’ hairpin upper stem and pocket were permissive for snoRNA accumulation (Figs. 3B and 
3C, lane 9). In contrast to the 5’ hairpin pocket, any perturbation of the 3’ hairpin pocket was 

strongly inhibitory (Figs. 3B and 3C, lanes 6-8). These unexpected findings suggest that although 

hTR has a uniquely divergent 5’ hairpin structure, there are not fundamental differences between 
hTR and canonical H/ACA snoRNAs in the asymmetry of 5’ and 3’ hairpin requirements for 
RNP assembly in vivo. 

 

The hTR H/ACA motif recruits two full sets of core proteins.  
Yeast H/ACA snoRNAs assemble a set of core proteins on each hairpin, as demonstrated 

by snoRNP gel filtration and electron microscopy (Watkins et al., 1998) and cooperative 

function of two hairpin units in vivo (Bortolin et al., 1999). The atypically large spacing between 
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the hTR H box and the top of the 5’ hairpin pocket and the autonomy of the hTR 3’ hairpin for 
H/ACA RNP assembly in vitro (Dragon et al., 2000) suggest that the hTR 5’ hairpin may not 
assemble a typical set of H/ACA RNP proteins. To address whether one or both hTR H/ACA 

motif hairpins assemble core proteins in vivo, we exploited a tandem affinity purification strategy 

schematized in Fig. 4A. We transiently transfected 293T cells to express plasmids encoding hTR, 

the hTR-U64 chimera with the 3’ half of hTR replaced by a snoRNA (Mitchell and Collins, 

2000), and tagged versions of the H/ACA RNP core proteins dyskerin, NHP2, or GAR1. Tagged 

forms of the very small protein NOP10 accumulate poorly due to tag interference with RNP 

assembly (Fu and Collins, 2007), but because this subunit organizes the dykerin-NOP10-NHP2 

heterotrimer, its presence can be inferred from the combination of dyskerin and NHP2. Each 

protein was tagged with tandem Protein A domains (Z), a triple FLAG tag (F), or the fusion of 

both tags (ZF). In addition to each tagged protein expressed separately, the Z- and F-tagged 

proteins were coexpressed (indicated by +). Plasmid concentrations were optimized to yield 

nearly equal amounts of each tagged form of protein, as monitored by immunoblots of cell 

extract (data not shown).  

Affinity purification was performed using panels of four transfected cell extracts in 

parallel (Z, F, +, ZF). First, any Z-tagged complexes were bound to IgG resin and eluted. Next, 

enriched Z-tagged RNPs that also harbored an F-tag were bound to FLAG antibody resin and 

eluted. Tandem affinity purified RNPs were supplemented with a recombinant RNA recovery 

control (RC) prior to RNA extraction. Purified RNA was then resolved by denaturing PAGE and 

interrogated by blot hybridization. For ZF-tagged protein, tandem steps of purification will 

recover all RNPs assembled with even a single subunit of tagged protein, but only RNP 

complexes containing at least two subunits of tagged protein will be recovered by tandem steps 

of purification from extract with the combination of Z- and F-tagged protein (Fig. 4A). 

Purifications from extracts containing only Z- or F-tagged protein serve as negative controls for 

non-specific background. This methodology has demonstrated the monomeric nature of TERT 

and hTR in the catalytically active human telomerase holoenzyme (Errington et al., 2008). 

Here we cotransfected the hTR-U64 chimera as an internal control for tandem 

purification efficiency. Because U64 is a canonical snoRNA, the chimera should assemble two 

sets of H/ACA core proteins. Also, because hTR-U64 shares the 5’ template/pseudoknot region 
of hTR, the same oligonucleotide hybridization probe can be used to detect hTR and hTR-U64 

simultaneously. The ratio of hTR to hTR-U64 recovered by the Z- and F-tagged protein 

combination relative to the ZF-tagged control provides a rigorously normalized quantification of 

subunit stoichiometry: only if an hTR RNP harbors at least two H/ACA protein subunits will 

hTR be recovered from extract containing the combination of Z- and F-tagged proteins, and only 

if the vast majority of hTR RNP assembles precisely two sets of H/ACA proteins will the ratio of 

hTR to hTR-U64 recovered by the combination of Z- and F-tagged protein versus the ZF-tagged 

protein be consistent.  

Using tagged dyskerin and tagged NHP2 extracts (Fig. 4B, lanes 1-8), recovery of hTR 

and hTR-U64 by ZF-tagged protein was robust. Little if any non-specific background was 

detected after tandem steps of purification from the negative control extracts with Z-tagged or F-

tagged protein alone. As expected if H/ACA RNP complexes assemble on both the 5’ and 3’ 
hairpins of the U64 and hTR H/ACA motif, both the hTR-U64 chimera and hTR were recovered 

from the extracts with coexpressed Z- and F-tagged subunits. The efficiency of RNP purification 

by coexpressed single-tagged subunits should be less than that obtained by the double-tagged 

subunit, because some RNPs will assemble with two Z-tagged subunits or two F-tagged subunits 
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instead of one of each. Notably, the ratio of hTR to hTR-U64 remained consistent comparing 

purifications with the tagged protein combination and the ZF-tagged control (Fig. 4B, compare 

lane 3 to 4 and lane 7 to 8). These results indicate that H/ACA RNP proteins are deposited on 

both stems of the hTR H/ACA motif, despite the noncanonical nature of the hTR 5’ hairpin. This 
finding is consistent with the dependence of hTR accumulation on both the H box and the ACA 

(Mitchell et al., 1999a). As additional controls, we confirmed that ZF-tagged TERT but not the 

Z- and F-tagged TERT combination copurified hTR (Fig. 4B, lanes 11-12). TERT did not 

substantially enrich hTR-U64 because the chimeric RNA is missing a major motif for TERT 

interaction. 

GAR1 differs from other core H/ACA proteins in its late assembly and its dispensability 

for precursor RNA processing and mature RNP stability (Reichow et al., 2007). Roles proposed 

for GAR1 include improving the efficiency of target RNA modification and enhancing RNP 

nucleolar localization. Because hTR does not guide RNA modification and only a minor 

percentage of hTR is stably associated with nucleoli (Mitchell et al., 1999a), there is not an 

obvious functional requirement for GAR1 in the telomerase holoenzyme. GAR1 contacts 

dyskerin directly, but this interaction is mutually exclusive with at least one other direct dyskerin 

binding protein (Darzacq et al., 2006). GAR1 does copurify human telomerase holoenzyme, but 

the stoichiometry of its association could differ from that of the dyskerin-NOP10-NHP2 

heterotrimer (Fu and Collins, 2007). Therefore, we compared GAR1 purification of hTR and 

hTR-U64 using the tandem affinity purification strategy. As observed for the other H/ACA RNP 

core proteins, the combination of Z- and F-tagged GAR1 purified hTR as well as hTR-U64, and 

a consistent ratio of the two RNAs was obtained in purifications using the single-tag subunit 

combination compared to the double-tagged ZF-GAR1 (Fig. 4B, lanes 15-16). Importantly, 

analysis of RNPs from the first step of tandem purifications confirmed the expected RNP 

recoveries, and when the same panels of tagged dyskerin, NHP2, and GAR1 extracts were used 

in purifications with the order of tandem affinity purification steps reversed, parallel results were 

obtained (data not shown). All results were highly reproducible over independent transfections 

and purifications (data not shown). Together these affinity purification assays indicate that RNP 

assembly on the hTR H/ACA motif yields the canonical bipartite architecture of an H/ACA 

snoRNP.  

 

Assembly of two sets of H/ACA proteins requires only a minimal 5’ hairpin stem.  
Because most H/ACA motif elements of the hTR 5’ hairpin could be eliminated without 

inhibition of RNA accumulation or RNP catalytic activity, it seemed possible that one set of 

H/ACA proteins assembled on the 3’ hairpin would be sufficient for biogenesis of a telomerase 

RNP. To investigate whether removing most of the 5’ hairpin converted hTR to an archaeal-like 

single-stem ACA RNP, we applied the tandem affinity purification strategy to hTR variants 

lacking the 5’ hairpin pocket (Fig. 1D, L+R del) or lacking all nucleotides above the lower stem 

(Fig. 3A, ∆2; note that this RNA migrates with different mobility depending on sample heating). 

These two hTR variants accumulated to a sufficient level for detection after tandem steps of 

affinity purification. Remarkably, both of these hTR variants assembled two subunits of 

dyskerin, NHP2, and GAR1 per telomerase RNP (Fig. 5, lanes 3-4, 7-8, 11-12, 15-16, 19-20, 23-

24). These findings indicate that a bipartite H/ACA RNP is assembled even when the 5’ hairpin 
lacks RNA elements thought to be necessary for scaffolding of protein-protein interactions. We 

conclude that there is a different specificity of RNP assembly on the two hairpins of the 

eukaryotic H/ACA motif. 
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WDR79/TCAB1 association with hTR has the stoichiometry and specificity of a CAB box 

interaction.  

WDR79/TCAB1 was recently discovered as a direct protein-protein interaction partner of 

dyskerin (Venteicher et al., 2009) and as a direct RNA interaction partner of the CAB box 

(Tycowski et al., 2009). We therefore wondered whether one or two subunits of WDR79/TCAB1 

would assemble with hTR, given that a human telomerase RNP has two subunits of dyskerin but 

only one CAB box. Consistent with previous studies, hTR was detected after a single step of Z- 

or F-tagged WDR79/TCAB1 purification on the corresponding resin (data not shown). Using the 

tandem affinity purification strategy described above, hTR was detected after tandem steps of 

purification of the double-tagged WDR79/TCAB1 (Fig. 6A, lane 8) but not after tandem steps of 

purification from extract with the coexpressed Z- and F-tagged subunit combination (lane 7). The 

same result was observed when either order of tandem purification steps was used and was 

reproducible for independent transfections and purifications (data not shown). 

 The largely single-subunit nature of WDR79/TCAB1 association with hTR predicted that 

its interaction would be dependent on the CAB box. Using single-step WDR79/TCAB1 affinity 

purification from extracts of transfected VA13+TERT cells, we compared protein association 

with wild-type hTR and an hTR variant with a single-nucleotide CAB box substitution sufficient 

to disrupt hTR concentration in Cajal bodies (Jády et al., 2004). The CAB box substitution 

strongly impaired but did not eliminate hTR association with WDR79/TCAB1 (Fig. 6B, lanes 5-

6). Similar results were obtained using extracts from transfected 293T cells (data not shown). 

With or without a CAB box, it seems likely that WDR79/TCAB1 binds only to the hTR 3’ 
hairpin loop because the loop context of the CAB box is important for Cajal body localization 

(Theimer et al., 2007) and the hTR 5’ hairpin lacks a similarly positioned loop. Overall our 
studies of human telomerase holoenzyme RNA and RNP architecture support the hTR-

scaffolded steps of telomerase RNP biogenesis schematized in Fig. 7. 
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Discussion 

 

Unique and shared features of the hTR H/ACA motif have implications for RNP biogenesis.  

 Elucidation of the requirements for human telomerase RNP biogenesis will bring insights 

for disease therapy, because differences that distinguish hTR from H/ACA snoRNAs and 

scaRNAs must somehow give rise to the specificity of telomerase deficiency in patients with 

altered dyskerin (Mitchell et al., 1999b; Wong et al., 2004). We first suspected that our original 

model for hTR 5’ hairpin folding was incorrect, based on the potential for a more canonical 5’ 
hairpin that satisfied the limited amount of structural data on hTR H/ACA motif folding in vivo 

(Antal et al., 2002; Theimer et al., 2007). However, extensive mutagenesis supported the original 

model of noncanonical 5’ hairpin secondary structure. Subsequently, the surprisingly minimal 5’ 
hairpin structural requirements for hTR accumulation led us to suspect that the hTR H/ACA 

motif was unique in its RNP assembly specificity. However, our studies of two canonical human 

snoRNAs revealed that they shared the hTR asymmetry of 5’ and 3’ hairpin requirements for 
accumulation. Another surprise was the lack of catalytic activity dependence on 5’ hairpin 

structure. This observation suggests that vertebrate TERT has a greater autonomy in organizing 

TER tertiary structure than ciliate TERT, which likewise binds two separated TER motifs but 

does so in a manner sensitive to the geometry of intervening stem folding by the holoenzyme 

protein p65 (Stone et al., 2007). Combined, these findings reveal that the noncanonical hTR 

H/ACA motif 5’ hairpin has evolved in a manner relatively unconstrained by requirements for 
mature RNA accumulation, unfettered by a requirement for function as an RNA modification 

guide, and with few if any obligations to the telomeric-repeat synthesis activity of telomerase 

holoenzyme. 

The general asymmetry of 5’ and 3’ hairpin requirements for H/ACA RNA accumulation 
has unexpected implications for the pathway of RNP assembly in vivo. Our results establish that 

RNP assembly on the H/ACA motif 5’ hairpin does not require the extensive protein-RNA 

interactions evident in structures of reconstituted archaeal single-stem RNPs (Ye, 2007). In 

contrast, RNP assembly on the H/ACA motif 3’ hairpin does appear to require this large surface 
of protein-RNA contact. If RNP assembly on the 5’ hairpin occurs subsequent to or concerted 
with RNP assembly on the 3’ hairpin, protein-protein interactions across the hairpins could allow 

the 5’ hairpin RNP assembly reaction to have a reduced requirement for protein-RNA 

interaction. Cross-hairpin interactions could be mediated by dyskerin motifs not present in the 

archaeal protein ortholog, a hypothesis that would account for the reduced exchange of RNP-

assembled dyskerin compared to RNP-assembled NOP10 or NHP2 (Kittur et al., 2006).  

 

Holoenzyme proteins have distinct specificities and stoichiometries of hTR interaction.  

The RNP architecture of the human telomerase holoenzyme has been hotly debated. 

While several studies conclude that a complex of TERT and hTR has catalytic function only with 

a dimer of each subunit, others studies indicate that such dimerization is neither required nor 

physiological (Errington et al., 2008; Sekaran et al., 2010). Also, while one study claims that the 

human telomerase holoenzyme contains only dyskerin, TERT, and hTR (Cohen et al., 2007), 

other studies establish that the human telomerase holoenzyme assembles all of the H/ACA RNP 

proteins (Fu and Collins, 2007). Most published models draw one set of H/ACA proteins per 

telomerase RNP, but we demonstrate that hTR assembles two full sets of H/ACA proteins. Our 

results define a human telomerase holoenzyme architecture in which each subunit of hTR 

assembles two sets of H/ACA core proteins as a prerequisite for biogenesis of a biologically 
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stable telomerase RNP (Fig. 7). A telomerase RNP can then assemble single subunits of TERT 

and WDR79/TCAB1 to become the holoenzyme functional for telomere maintenance (Fig. 7). 

Additional hTR binding proteins actively or passively distinguish telomerase RNP 

subpopulations with differential localization and regulation (Collins, 2008). 

 Less hTR was recovered with tagged WDR79/TCAB1 than with any tagged H/ACA core 

protein after a single step of purification or after tandem purification steps using ZF-tagged 

protein. This lower efficiency of purification was not due to lower tagged protein expression 

level, because all of the tagged WDR79/TCAB1 proteins were highly overexpressed compared 

to any of the tagged H/ACA core proteins (data not shown). A relatively low stoichiometry of 

WDR79/TCAB1 association is consistent with the single peptide of WDR79/TCAB1 detected by 

mass spectrometry of purified holoenzyme (D. Fu and K.C., unpublished data) and with 

modification rather than protection of the CAB box in the endogenous pool of telomerase RNP 

(Antal et al., 2002). Because WDR79/TCAB1 was identified as direct dyskerin binding protein 

(Venteicher et al., 2009) and because other dyskerin binding proteins that interact with the core 

heterotrimer trade places during RNP biogenesis and regulation (Darzacq et al., 2006), we 

hypothesized that WDR79/TCAB1 could promote telomerase function by displacing GAR1. In 

contrast to predictions of this model, GAR1 association with hTR was unaffected by 

overexpression of WDR79/TCAB1 or by hTR CAB box mutation (data not shown). Relatively 

low occupancy of hTR by WDR79/TCAB1 may have precluded our ability to detect binding 

competition with GAR1, but the CAB-box dependence of WDR79/TCAB1 association with hTR 

suggests that it may not need to compete with GAR1 for telomerase RNP interaction. It seems 

plausible that the single hTR CAB box results in only partial telomerase RNP occupancy with 

WDR79/TCAB1 in vivo. The maximal single-subunit stoichiometry of WDR79/TCAB1 

association with hTR distinguishes it from H/ACA snoRNAs and scaRNAs, perhaps sensitizing 

telomerase RNP to its unique dynamic of TERT-dependent and cell-cycle-regulated partitioning 

between nucleoli, Cajal bodies, and nucleoplasm.  
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Figure 1, part 1 
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Figure 1, part 2 
 

 
 

The hTR H/ACA motif 5’ hairpin is noncanonical and has few structural requirements for 

hTR accumulation. (A) Secondary structure and primary sequence motifs of hTR are illustrated. 

(B) At left, the secondary structure of the originally proposed hTR H/ACA motif 5’ hairpin is 
shown with boxes around four or two nt on each side of the putative stem pairings tested by 

substitution. At right is shown an alternative, more canonical secondary structure model for the 

H/ACA motif 5’ hairpin based on a 5’ domain boundary at position 225. P4, P4.1, and P4.2 are 
paired elements predicted by phylogenetic comparison; P4a (alt.) and P4b (alt.) are alternative 

pairings of the residues involved in P4 and P4.1. (C) Total RNA from transfected 293T cells was 

examined by blot hybridization. Empty vector lanes provide a background control for detection 

of endogenous hTR compared to recombinant wild-type (WT) hTR or the hTR variants 

indicated. Full-length hTR, the 5’ processed hTR H/ACA domain, and the transfection control 
(TC) were detected on the same blot. In the boxed and numbered regions of hTR secondary 

structure taken from (B), the substituted sequences tested in (C) are specified. L and R indicate 

left and right side of stem pairings as illustrated. (D) Total RNA from transfected 293T cells was 

examined by blot hybridization. At left is shown the hTR H/ACA motif from the most recent 

secondary structure model based on phylogenetic comparison. Pocket sequences are highlighted 

in bold. L del, R del, L+R del indicate deletion of the left, right, or combined sides of the pocket. 

Pairings forced in the hTR variant of lane 6 are shown with connecting lines; all other pocket 

residues were deleted. The five right-side pocket residues retained in the hTR variants of lanes 7-

8 are boxed; the other eight right-side pocket residues were deleted (R8 del).  
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Figure 2 
 

 
 

Holoenzyme catalytic activity does not require any specific paired region of the 5’ hairpin 
stem or the 5' hairpin pocket. Direct primer extension activity assays were performed using 

extracts of VA13+TERT cells transfected to express the indicated hTR variants. Levels of hTR 

in the extracts are shown by blot hybridization; note that the hTR variant of lane 8 was slightly 

under-accumulated in this set. 
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Figure 3 
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A minimal 5’ hairpin stem is sufficient for accumulation of hTR and snoRNAs. Total RNA 

from transfected 293T cells was examined by blot hybridization. At left are shown secondary 

structures of the hTR H/ACA domain phylogenetic model (A), the human snoRNA U64 (B), and 

the human snoRNA ACA28 (C). Positions of internal deletion are indicated; only hTR ∆2 and 

the snoRNA 5’ stem cap (SC) deletions insert a GAAA tetraloop in place of the deleted 
sequence. Human snoRNA pocket sequences are highlighted in bold. L del, R del, L+R del 

indicate deletion of the left, right, or combined left and right sides of the pocket. 
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Figure 4 
 

 
 

Two subunits of dyskerin, NHP2, and GAR1 assemble on each molecule of hTR. (A) 

Schematic of the tandem affinity purification strategy for discriminating subunit stoichiometry. 

(B) Extracts from 293T cells transfected to express a protein with the tag(s) indicated (Z, F, +, 

ZF), wild-type hTR, and the hTR-U64 chimera were subject to tandem steps of affinity 

purification. Input cell extracts (2%) and final purified RNP elutions (100%) were supplemented 

with a recombinant RNA recovery control (RC) prior to RNA extraction. Input and purified 

samples for the GAR1 panel were from a separate set of transfections and purifications. 
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Figure 5 
 

 
 

Two subunits of dyskerin, NHP2, and GAR1 assemble on hTR variants lacking consensus 

elements of the 5’ hairpin. Extracts from 293T cells transfected to express a protein with the 

tag(s) indicated (Z, F, +, ZF), hTR-U64, and one of two hTR variants (5’ pocket L+R del from 
Fig. 1D or ∆2 from Fig. 3A) were subject to tandem steps of affinity purification. RNAs in the 

input and purified material were analyzed as described for Fig. 4. Note that hTR ∆2 migrated 

with different mobility depending on sample heating. The input and purified samples of any 

given protein were analyzed in parallel. 
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Figure 6 
 

 
 

Association of WDR79/TCAB1 is influenced by the hTR CAB box. (A) Extracts from 293T 

cells transfected to express hTR and WDR79/TCAB1 with the tag(s) indicated (Z, F, +, ZF) were 

subject to tandem steps of affinity purification. RNAs in the input and purified material were 

analyzed as described for Fig. 4. (B) Extracts of VA13+TERT cells transfected to express either 

Z-tagged WDR79/TCAB1 or empty vector and either wild-type (WT) hTR or the G414C CAB-

box mutant (Mut) were used for single-step affinity purification. RNAs in the input and purified 

material were analyzed as described above. 
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Figure 7 
 

 
 

Interaction specificity and stoichiometry of telomerase holoenzyme proteins. Initial 

recruitment of H/ACA proteins is proposed to involve an association of dyskerin, NOP10, and 

NHP2 with the hTR 3' hairpin, scaffolded by extensive protein-RNA interactions. Either 

sequentially (as shown) or in concerted manner, there is assembly of a second H/ACA protein 

heterotrimer. Assembly of the second set of H/ACA proteins is proposed to have a reduced 

requirement for RNA interaction surface due to the formation of cross-hairpin protein-protein 

interaction(s). Following hTR release from the site of transcription, an exchange of biogenesis 

factors for GAR1 yields the mature telomerase RNP with two full sets of all four H/ACA RNP 

proteins. Motifs of hTR not required for stable RNP biogenesis can associate independently with 

TERT and WDR79/TCAB1, both of which are likely substoichiometric in the overall population 

of endogenous telomerase RNP.  
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CHAPTER THREE 

 

 

An Enhanced H/ACA RNP Assembly Mechanism for Human Telomerase RNA 
 

Abstract 

  

The integral telomerase RNA subunit templates the synthesis of telomeric repeats. The 

biological accumulation of human telomerase RNA (hTR) requires hTR H/ACA domain 

assembly with the same proteins that assemble on other human H/ACA RNAs. Despite this 

shared RNP composition, hTR accumulation is particularly sensitized to disruption by disease-

linked H/ACA protein variants. We show that contrary to expectation, hTR-specific sequence 

requirements for biological accumulation do not act at an hTR-specific step of H/ACA RNP 

biogenesis; instead, they enhance hTR binding to the shared, chaperone-bound scaffold of 

H/ACA core proteins that mediates initial RNP assembly. We recapitulate physiological H/ACA 

RNP assembly with a preassembled NAF1/dyskerin/NOP10/NHP2 scaffold purified from cell 

extract and demonstrate that distributed sequence features of the hTR 3’ hairpin synergize to 
improve scaffold binding. Our findings reveal that the hTR H/ACA domain is distinguished from 

other human H/ACA RNAs not by a distinct set of RNA-protein interactions but by an increased 

efficiency of RNP assembly. Our findings suggest a unifying mechanism for human telomerase 

deficiencies associated with H/ACA protein variants. 
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Introduction 

   

Incomplete genome replication by DNA-templated DNA polymerases can lead to 

progressive shortening of the telomeric repeats that cap eukaryotic nuclear chromosomes 

(O'Sullivan and Karlseder, 2010). To maintain chromosome integrity, the RNP enzyme 

telomerase compensates for terminal sequence loss by new repeat synthesis, for example adding 

tandem repeats of TTAGGG in human cells. At the catalytic core of human telomerase, a 

structured 451-nucleotide (nt) telomerase RNA (hTR) provides the template for repeat synthesis 

by telomerase reverse transcriptase (Zhang et al., 2011). Numerous proteins must associate with 

hTR to direct the biological specificity of precursor synthesis, processing, and RNP assembly as 

well as to direct mature RNP trafficking, localization, and catalytic activation (Blackburn and 

Collins, 2010). Improved knowledge of human telomerase RNP biogenesis and regulation should 

provide new strategies for enzyme activation and inhibition as disease therapies (Shay and 

Wright, 2010).  

Human and other vertebrate telomerase RNAs, but not ciliate or yeast telomerase RNAs, 

have a 3' domain shared with the evolutionarily ancient H/ACA RNA family (Chen et al., 2000; 

Mitchell et al., 1999a). H/ACA RNAs generally function as guides for site-specific 

pseudouridylation of a target RNA. Eukaryotic H/ACA small nucleolar (sno) RNAs modify 

ribosomal RNAs, while small Cajal body (sca) RNAs modify small nuclear RNAs (Hamma and 

Ferre-D'Amare, 2010; Kiss et al., 2010). Eukaryotic H/ACA RNAs have a universally conserved 

5’ hairpin-Hinge (H box)-3’ hairpin-ACA structure, including unpaired pockets in the hairpin 

stems that hybridize to target RNA sequence flanking the substrate uridine. The hairpin pockets 

of vertebrate telomerase RNAs show little if any phylogenetic sequence conservation (Podlevsky 

et al., 2008), and no complementary putative target RNA(s) have been identified. In contrast to 

this functional divergence, hTR and pseudouridylation guide RNAs share the cellular 

requirement for structural integrity of the H/ACA motif, including the H box (ANANNA) and 

ACA sequences, as a prerequisite for assembly of a biologically stable RNP. The 5' hairpin of 

the hTR H/ACA motif deviates from pseudouridylation guide RNA consensus in its atypical 

spacing of the apex of the 5’ hairpin pocket from the H box, but the H box and lower stem of the 
5' hairpin are nonetheless critical for hTR maturation and RNP accumulation in vivo and the 

presence of a hairpin pocket is strongly stimulatory (Egan and Collins, 2010; Mitchell et al., 

1999a; Mitchell and Collins, 2000). Therefore, albeit with structural deviations, the hTR H/ACA 

domain shares the two-hairpin secondary structure common to all eukaryotic H/ACA RNAs.  

Assays of protein recruitment to an ectopic site of H/ACA RNA synthesis suggest that 

four proteins become rapidly associated with the RNA transcript: dyskerin, NOP10, NHP2, and 

NAF1 (Darzacq et al., 2006). Cotranscriptional RNP assembly protects the H/ACA RNA 

sequence from alternative processing or exonucleolytic degradation (Ballarino et al., 2005; 

Richard et al., 2006; Yang et al., 2005). The RNP subunit with pseudouridylase activity, termed 

dyskerin in human cells (also NAP57 or Cbf5p), binds to NOP10, which in turn binds to NHP2 

to constitute the core heterotrimer (Hamma and Ferre-D'Amare, 2010; Kiss et al., 2010). 

Dyskerin also binds the H/ACA RNP assembly chaperone NAF1 (Fatica et al., 2002), which is 

exchanged after initial RNP assembly for the fourth mature RNP protein GAR1 (Darzacq et al., 

2006). Reticulocyte lysate-expressed core heterotrimer proteins alone, with or without NAF1 or 

GAR1, can bind an H/ACA RNA (Trahan and Dragon, 2009; Wang and Meier, 2004). In vivo 

this assembly depends on NAF1 and additional H/ACA RNP biogenesis factors including the Pol 

II-associated protein NUFIP and RNA/RNP remodeling enzymes such as the helicase-domain 
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proteins RUVBL1/PONTIN and RUVBL2/REPTIN (Kiss et al., 2010). Extensive chaperoning 

of the H/ACA RNP assembly process may account for the technical barrier to eukaryotic core 

heterotrimer reconstitution as intact RNP. No high-resolution structural studies have been 

successful for the complete eukaryotic core heterotrimer; only structures of protein complexes 

lacking NHP2 have been very recently described (Li et al., 2011a; Li et al., 2011b). 

Archaeal pseudouridylation guide RNAs bind dyskerin, NOP10, and an NHP2-related 

protein L7Ae, but unlike the eukaryotic RNAs they can autonomously assemble a single-hairpin 

RNP (Dennis and Omer, 2005). High-resolution structures of reconstituted single-stem archaeal 

RNP assemblies reveal that the archaeal ortholog of dyskerin contacts a large RNA surface 

spanning the ACA, lower hairpin stem, and 3' side of the pocket (Duan et al., 2009; Li, 2008; 

Liang et al., 2009). RNA structural requirements to maintain this contact surface rationalize the 

conserved 14-16 nt spacing of an H box or ACA from the apex of the preceding hairpin pocket. 

In contrast to dyskerin, which has an evolutionarily conserved RNA binding specificity, the 

RNA binding specificity of archaeal L7Ae is different from eukaryotic NHP2: L7Ae recognizes 

a defined kink-turn motif, while NHP2 shows weaker general RNA binding activity (Henras et 

al., 2001; Klein et al., 2001; Nolivos et al., 2005). Accordingly, L7Ae binds RNA dependent 

only on RNA sequence while the RNA binding specificity of NHP2 derives from its assembly 

with other eukaryotic H/ACA proteins.  

All known vertebrate pseudouridylation guide RNAs are 5’- and 3’-processed from 

introns of host mRNAs (Kiss et al., 2010). In contrast, vertebrate telomerase RNAs are unspliced 

transcripts of Pol II that must be only 3'-processed to the hTR H/ACA domain boundary (Fu and 

Collins, 2003; Mitchell et al., 1999a; Mitchell and Collins, 2000; Theimer et al., 2007). The 

template-containing hTR 5’ extension is not removed and instead gains a trimethylguanosine cap 
added by the nuclear (short) form of the methyltransferase TGS1 (Feng et al., 1995; Girard et al., 

2008; Mitchell et al., 1999a). RNP biogenesis steps required for hTR maturation but not for 

maturation of intron-encoded human H/ACA RNAs could account for why hTR accumulation is 

uniquely affected by H/ACA protein gene mutations that underlie diseases such as the bone 

marrow failure syndrome dyskeratosis congenita (DC). X-linked DC patient cells that express a 

variant dyskerin have reduced levels of hTR and prematurely short telomeres, but they show 

little if any general change in H/ACA snoRNAs and scaRNAs (Batista et al., 2011; Mitchell et 

al., 1999b; Wong and Collins, 2006). Here, we describe the mechanism by which hTR sequence 

features distinguish H/ACA RNP assembly on hTR from assembly of the same RNP on other 

human H/ACA RNAs. Instead of a difference in the pathway of RNP assembly, we find that 

hTR-specific in vivo requirements for RNP assembly act to stimulate a common, direct step of 

RNA-protein interaction. Our findings have implications for the specialized assembly 

requirements of hTR versus other H/ACA RNAs and for the mechanism of eukaryotic H/ACA 

RNP assembly in general. 
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Materials and Methods 

 

Cell culture and expression constructs.  

Human 293T and HeLa cells were cultured in DMEM with 10% fetal bovine serum and 

transiently transfected using the calcium phosphate method or lipofection with Lipofectamine 

(Invitrogen), respectively. The pBS-U3-hTR-500 and pBS-U3-hTR H/ACA-500 expression 

constructs for mature hTR and the hTR H/ACA domain, the snoRNA expression vectors pBS-

U3-U64-500 and pBS-U3-ACA28-500, and the Tetrahymena TER transfection control (TC) 

expression construct have been previously described (Egan and Collins, 2010; Fu and Collins, 

2003). Hammerhead and hepatitis δ virus self-cleavage motifs were used as previously published 

(Bird et al., 2005; Dower et al., 2004). Tagged proteins were expressed as N-terminal fusions in 

a pcDNA-ZZ-TEV (where ZZ represents two IgG-binding domains of Protein A and TEV is a 

tobacco etch virus protease cleavage site) or pcDNA-ZZ-TEV-calmodulin binding peptide 

(pcDNA-TAP) plasmid backbone. In vitro transcription templates were constructed by cloning 

DNA sequences encoding a full-length RNA or 3’ hairpin into the Pvu II site of pBluescript with 
retention of the Pvu II site at the 3’ end. The tagged RNAs harbor a Pseudomonas phage 7 (PP7) 

hairpin sequence (Chao et al., 2008) and a linker (AGUC) followed by the hTR 3’ hairpin 
sequence. All constructs were verified by sequencing. 

 

Blot detection of RNA and protein.  

RNA was purified using TRIzol according to the manufacturer’s protocol (Invitrogen). 
For analysis of total RNA, 10-20 μg was loaded on a 5% or 6% acrylamide, 7 M urea, 0.6X TBE 

gel. Northern blots were performed as previously described, using end-labeled complementary 

oligonucleotides as probes (Egan and Collins, 2010; Fu and Collins, 2003). The hTR H/ACA 

domain was detected using an end-labeled DNA probe complementary to nt 371-398; the 

ACA28 probe was complementary to nt 79-107, and the U64 probe was complementary to nt 54-

72. Northern blots were imaged using a Typhoon Trio phosphorimaging system (GE Healthcare). 

Quantification of hybridization signal intensity was adjusted for background and then normalized 

relative to the relevant control signal in the same lane. Immunoblots to verify tagged protein 

expression (data not shown) used rabbit IgG primary antibody (Sigma) and were imaged using a 

LI-COR Odyssey system. 

 

RNA synthesis and purification.  

RNAs were generated using T7 RNA polymerase and Pvu II-digested plasmid templates. 

Radiolabeling was performed by incorporation of [α-
32

P]-UTP (NEN/Perkin Elmer). RNAs were 

resolved by electrophoresis on a 6% acrylamide, 7 M urea, 0.6X TBE gel, excised from the gel 

and eluted in 0.3 M sodium acetate overnight at 37°C followed by ethanol precipitation. The 

concentrations of purified RNAs were determined by absorbance and their quality verified by 

electrophoresis and SYBR gold staining or autoradiography.  

 

RNP assembly in extract.  

RNP assembly was performed in 10 μL reactions containing ~20 μg of HeLa whole cell 

extract total protein obtained from freeze-thaw lysis in a final buffer of 20 mM HEPES at pH 

8.0, 2 mM MgCl2, 0.2 mM EGTA, 10% glycerol, 0.1% Igepal, 0.1 mM PMSF, 100 mM NaCl, 5 

mM DTT, 0.25 μL of RNasin (Promega), 500 ng of yeast tRNA (Sigma), and loading dyes. 

Approximately 50 pg of radiolabeled RNA probe was added and reactions were incubated at 
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30°C for 1 hour followed by a 10 min chase with 1.5 μg of heparin. Cold competitor RNAs were 

preincubated at 30°C for 30 min in the presence of all components except radiolabeled RNA. 

RNP complexes were resolved by electrophoresis on a 5% acrylamide, 0.5X TBE gel at 4°C. 

Gels were dried and imaged using the Typhoon Trio. 

 

RNP assembly and detection of radiolabeled RNA.  

For affinity purification of RNPs using a tagged protein, cell extracts from freeze-thaw 

lysis were diluted to ~2.5 mg/mL in binding buffer (20 mM HEPES at pH 8.0, 100 mM NaCl, 2 

mM MgCl2, 0.2 mM EGTA, 10% glycerol, 0.1% Igepal, 1 mM DTT, and 0.1 mM PMSF). A 

100-150 μL volume of diluted extract was clarified by centrifugation and adjusted to a final 

concentration of 5 mM DTT and supplemented with 0.5 μL of RNasin. The extract was 

incubated at 30°C for 20-30 min with ~5 ng of radiolabeled RNA. Then 2.5 μL of packed IgG 

agarose (Sigma) prewashed in 1 mL of binding buffer was added, and samples were rotated end-

over-end for 1-2 hours at 4°C. Alternatively, the IgG agarose purification and RNA incubation 

steps were reversed, with a single wash at room temperature in 1 mL of binding buffer for 5 min 

and resuspension of the resin in 50 μL binding buffer plus 100 ng/μL bovine serum albumin in 

between. Bound RNPs were washed three times at room temperature in 1 mL of wash buffer 

(binding buffer with 0.1% Triton X-100 and 0.1% CHAPS) for 5 min each wash. Buffer was 

removed and the resin was resuspended in formamide with EDTA and loading dye then boiled 

for 5 min. The supernatant was loaded on a 6% acrylamide, 7 M urea, 0.6X TBE gel. Gels were 

dried and imaged using the Typhoon Trio.  

 

Cellular RNP affinity purification.  

For affinity purification of ZZ-tagged NHP2 RNPs assembled in vivo, cell extracts from 

freeze-thaw lysis were diluted to ~0.75 mg/mL in binding buffer as above with 150 mM NaCl. A 

900 μL volume of diluted extract was clarified by centrifugation immediately prior to 

purification using 2.5 μL of prewashed IgG agarose. Samples were rotated end-over-end for 2 

hours at 4°C then washed three times at room temperature in 1 mL of wash buffer for 5 min each 

wash. To elute bound RNPs, ~30 ng/μL of the S219V variant of Tobacco Etch Virus protease 

was added in a volume of 50 μL of elution buffer (wash buffer with 100 ng/μL bovine serum 

albumin and 100 ng/μL tRNA), and samples were rotated end-over-end for 30 min at room 

temperature.  
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Results 

 

The hTR BIO box functions in collaboration with consensus elements of the H/ACA motif.  

 The biological accumulation of hTR but not any other studied human H/ACA RNA 

depends on a sequence motif in the loop of the 3’ hairpin (Fig. 1A). The 3’ half of this hTR loop 
contains the biogenesis-promoting box (the BIO box) important for mature RNA accumulation, 

while the 5’ half of the loop contains a CAB box dispensable for RNA accumulation but required 
for mature RNP concentration in Cajal bodies (Fu and Collins, 2003; Jády et al., 2004; Theimer 

et al., 2007). Function of both the BIO box and the CAB box depends on the integrity of the 

adjacent stem, and disruption of this stem imposes autosomal dominant DC (Vulliamy et al., 

2001). Previously assayed BIO box sequence substitutions that eliminated mature hTR 

accumulation either replaced the entire loop or severely disrupted loop structure by introducing 

additional base pairing (Fu and Collins, 2003; Theimer et al., 2007). In search of a minimal 

change that selectively disrupts BIO box function without altering the length of the 3’ hairpin 
stem, we assayed additional sequence variants for their impact on mature hTR accumulation.  

We expressed hTR precursor using the Pol II expression construct U3-hTR-500, which 

contains the U3 C/D box snoRNA promoter, mature hTR sequence, and 500 bp of downstream 

sequence from the endogenous locus. This construct efficiently produces 3’ processed hTR that 
is incorporated into the biologically active telomerase holoenzyme (Fu and Collins, 2003; Wong 

and Collins, 2006). Total RNA was harvested from transfected human 293T cells, resolved by 

denaturing polyacrylamide gel electrophoresis (PAGE), and probed by northern blot to detect the 

accumulation of hTR and an internal loading control (LC). As demonstrated previously, the 

disruption of CAB box function with the substitution G414C did not inhibit mature hTR 

accumulation, while deletion of the 3’ hairpin upper stem loop or loop replacement with a 
structured tetraloop reduced hTR accumulation to a level undetectable over the background of 

endogenous hTR in cells transfected with empty vector (Fig. 1B, lanes 1-3 and 8-9; note that 

mature hTR often migrates as a doublet due to partial folding). To reduce loop interaction with 

CAB box binding proteins for purposes of the RNP assembly assays described below, we 

included the G414C CAB box substitution in ‘wild-type’ hTR unless indicated otherwise. 
Vertebrate telomerase RNAs share absolute conservation of the final loop residue that is 

hTR U418 (Fig. 1A) and >85% conservation of the preceding guanosine that is hTR G417 

(Podlevsky et al., 2008). The NMR structure of a model hTR 3’ hairpin stem loop suggests that 
G417 pairs with U411 (Theimer et al., 2007). Although the G417C substitution strongly reduced 

hTR RNP accumulation monitored by RNase protection (Theimer et al., 2007), substitution of 

G417 with adenosine had little impact (Fig. 1B, lane 4), perhaps because A-U base pairing would 

still be possible. In contrast, substitution of the absolutely conserved U418 with cytidine strongly 

reduced mature hTR accumulation (Fig. 1B, lane 5). The combination of these two substitutions 

was no more deleterious than the U418C substitution alone (Fig. 1B, lane 6). Substitution of the 

entire 3’ hairpin loop with the U17 snoRNA 3’ hairpin loop CUGUC, which contains the BIO 
box sequence with an extra 3’ cytidine, did not provide full BIO box function (Fig. 1B, lane 7). 

Because the U418C substitution substantially reduced mature hTR accumulation in vivo without 

changing 3’ hairpin stem or loop length, we used this substitution for BIO box disruption in 
subsequent studies. 

Surprisingly, it has not been addressed whether the BIO box functions autonomously or 

in coordination with the H/ACA motif. To investigate potential positioning-dependent 

coordination between the BIO box and the H/ACA motif, we altered or extended 3’ hairpin base 
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pairing in the upper stem (Fig. 1C). We found that deleting or pairing a predicted internal loop in 

the upper stem did not severely inhibit mature hTR accumulation (Fig. 1C, lanes 3-5). In 

contrast, insertion of additional base pairs in the upper stem reduced mature hTR accumulation 

in proportion to the increase in stem length: insertion of two base pairs only partially inhibited 

hTR accumulation, while the insertion of eight base pairs reduced hTR accumulation to 

undetectable above background (Fig. 1C, lanes 6-7). Similar inhibition of mature hTR 

accumulation was observed when five or eight base pairs were added to a 3’ hairpin upper stem 
that retained the wild-type internal loop (Fig. 1C, lanes 8-9). Accumulation was not restored by 

insertion of eleven base pairs, which would present the BIO box on the same helical face as in 

wild-type hTR (Fig. 1C, lane 10). We also attempted to functionally transplant an ectopic BIO 

box to other positions of mature or precursor hTR without achieving a rescue of the 

accumulation defect imposed by U418C substitution of the native BIO box (data not shown). 

Together these results suggest that the physical spacing between the BIO box and the 3’ hairpin 
pocket is critical for BIO box function. 

 

BIO box function does not require Pol II-coupled precursor expression or 3' end formation.  

 The BIO box remains critical for RNA accumulation even if the noncanonical hTR 

H/ACA motif is swapped for a canonical H/ACA snoRNA (Fu and Collins, 2003). However, 

BIO box function is not required if the hTR H/ACA domain accumulates by processing from a 

spliced intron rather than an unspliced autonomous transcript (Theimer et al., 2007). Together 

these findings suggested that BIO box function is coupled to transcription context. This 

hypothesis has support from precedent, because transcription-coupled association of processing 

factors with nascent yeast H/ACA snoRNA transcripts determines their specificity of 3’ end 
formation and processing as snoRNAs (Steinmetz et al., 2001). 

To investigate whether BIO box function is dependent on hTR H/ACA domain 

expression as an autonomous transcript of Pol II, we compared the BIO box dependence of hTR 

H/ACA domain accumulation in a Pol II versus Pol III expression context (Fig. 2A). Pol III does 

not support the synthesis of full-length hTR due to the presence of internal polyuridine tracts 

(Mitchell et al., 1999a). Therefore, the U3-hTR H/ACA-500 expression vector, which includes 

only the hTR H/ACA domain (nt 203-451), was minimally altered to create U6-hTR H/ACA-

500, which replaces the human U3 C/D-box snoRNA Pol II promoter with the human U6 small 

nuclear RNA Pol III promoter. The hTR H/ACA domain has been shown to be 5’- and 3’-
processed from a full-length hTR transcript in vivo (Mitchell and Collins, 2000). As expected 

from previous work, BIO box mutation reduced hTR H/ACA domain accumulation from the Pol 

II-transcribed precursor (Fig. 2B, lanes 1-3). Unexpectedly, BIO box mutation also reduced the 

accumulation of a Pol III-transcribed RNA that migrates with the mobility expected for a 

properly 5’- and 3’-processed hTR H/ACA domain (Fig. 2B, lanes 4-5). Based on blot 

hybridization results (data not shown), longer RNAs produced by Pol III are likely to be 

polyuridine-terminated primary transcripts protected from 3’ end trimming by La protein. We 
conclude that although the efficiency of processing is affected by transcription context, the BIO 

box can promote hTR H/ACA RNP accumulation independent of the transcribing polymerase 

and its associated factors.  

Even if forced to be uncoupled from primary transcript synthesis, the BIO box could still 

function to recruit productive 3' end processing machinery. For example, the BIO box could 

promote endonucleolytic cleavage of the primary transcript to override polyadenylation-induced 

nuclear export or degradation. This model has the appeal of accounting for a complete lack of a 
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recognizable or required 3’ end formation signal downstream of mature hTR at its genomic locus 
(Feng et al., 1995; Fu and Collins, 2003; Mitchell et al., 1999a). We tested this model by 

inserting a self-cleaving ribozyme (RZ) after the 3’ end of mature hTR in an attempt to rescue 
the accumulation defect imposed by BIO box mutation (Fig. 2C). We inserted either a minimal 

hammerhead RZ or a hepatitis δ virus RZ, the latter of which is reported to undergo particularly 
rapid cotranscriptional cleavage (Fong et al., 2009). Surprisingly, although either RZ improved 

the accumulation of wild-type or BIO box mutant hTR, neither rescued the relative accumulation 

deficit imposed by BIO box disruption (Fig. 2D, compare lane 2 to lanes 3-4 and lane 5 to lanes 

6-7; also lanes 2-4 to lanes 5-7). These findings suggest that the formation or persistence of a 

precursor 3' end can be rate-limiting for hTR accumulation, such that RZ self-cleavage and/or 

formation of a nuclease-resistant 2’3’ cyclic phosphate promotes mature hTR production. In 
addition, towards understanding the role of the BIO box, the findings above indicate that the hTR 

requirement for a BIO box is independent of the precursor 3’ end formation mechanism. 

 

The BIO box promotes hTR 3’ hairpin RNP assembly.  
Instead of acting at an hTR-specific step of RNA processing, the BIO box could act at an 

early RNP assembly step by directly binding to a recruiting factor for H/ACA proteins. In this 

scenario, the hTR-specific requirement for the BIO box would derive from the need for hTR 

RNP assembly to compete with the more rapid degradation of its precursor relative to intron-

encoded H/ACA RNA precursors, which would be protected from exonucleolytic degradation 

within a host mRNA transcript. Consistent with the hypothesis above, RNP assembly monitored 

by electrophoretic mobility shift assay (EMSA) indicated that HeLa cell extract assembled a 

distinct complex on the hTR H/ACA domain in addition to the complexes formed by both hTR 

and H/ACA snoRNAs (Dragon et al., 2000). The hTR 3’ hairpin with a wild-type CAB box and 

BIO box (both uncharacterized at the time) could compete for RNP assembly on the entire hTR 

H/ACA domain (Dragon et al., 2000). We therefore used HeLa whole cell extract to determine 

whether the BIO box has a stimulatory role in RNP assembly on a pretranscribed RNA. We used 

radiolabeled hTR 3’ hairpin with the internal loop of the upper stem paired to promote stable 
folding (variant B in Fig. 1C) and with the CAB box disruption G414C to inhibit loop binding by 

the proteins that mediate Cajal body localization. RNA containing only these substitutions was 

the ‘wild-type’ backbone for BIO box disruption by U418C substitution or ACA disruption by 
trinucleotide replacement with UGU (BIO and ACA variants, respectively).  

When incubated with HeLa whole cell extract, the reference wild-type hTR 3’ hairpin 
assembled an RNP with a discrete shift in electrophoretic mobility (Fig. 3A, lanes 1-2). This 

RNP assembly was sensitive to increasing salt concentration but was still detectable in the 

presence of 300 mM NaCl (Fig. 3A, lanes 2-4). RNPs assembled by the BIO and ACA variant 

RNAs migrated faster than RNPs assembled on the wild-type RNA and were nearly eliminated 

by only 200 mM NaCl (Fig. 3A, lanes 6-8 and 10-12). Disruption of the salt-stable RNA 

mobility shift by BIO box or ACA mutation suggested that the BIO box could have a role in 

promoting RNP assembly.  

To better compare the relative RNP assembly efficiencies of the wild-type versus BIO 

and ACA variant RNAs, we measured the ability of unlabeled competitor RNAs to inhibit RNP 

assembly on the radiolabeled wild-type RNA (Fig. 3B). Varying concentrations of unlabeled 

competitor RNA were preincubated with whole cell extract and other buffer components before 

radiolabeled wild-type 3’ hairpin RNA was added. Unlabeled wild-type RNA inhibited RNP 

assembly to half-maximum at a concentration of 0.1 ng/μL, an approximately 20-fold excess 
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over the limiting radiolabeled RNA (Fig. 3B, lane 4). In contrast, BIO box mutant RNA at an 

over 2,000-fold excess or ACA mutant RNA at an over 20,000-fold excess of was required to 

achieve half-maximal inhibition (Fig. 3B, lane 9 or 13). We conclude that the U418C BIO box 

mutation reduced hTR 3’ hairpin RNP assembly efficiency significantly but to a lesser extent 
than mutation of the ACA motif. This parallels the impact of BIO box or ACA mutation on hTR 

accumulation in vivo. 

 

The BIO box promotes direct H/ACA protein-RNA interaction.  

The BIO box and ACA dependence of RNP assembly on a pretranscribed RNA 

suggested that whole cell extract reconstituted a physiological H/ACA RNP complex, but this 

was not conclusively established by EMSA alone. To further investigate the nature of the RNP 

assembled in whole cell extract, we used extracts from HeLa cells overexpressing a protein of 

interest N-terminally tagged by fusion to tandem IgG binding domains (the ZZ tag). All tagged 

proteins used here were robustly and comparably overexpressed in transfected cells, as 

quantified by immunoblots of whole cell extract (data not shown). After radiolabeled RNA 

incubation in cell extract, RNPs containing the tagged protein were recovered on IgG resin, 

washed, and quantified using denaturing PAGE. In this assay, the amount of recovered 

radiolabeled RNA indicates the success of its assembly into RNP complexes containing the 

protein of interest.  

We first applied this approach to the H/ACA RNP proteins dyskerin, NHP2, and GAR1 

(NOP10 is refractory to tagging, but since it is the bridge between dyskerin and NHP2, its 

presence can be inferred). To reduce extract-mediated degradation of the radiolabeled RNA 

during affinity purification, we tagged the hTR 3’ hairpin at its 5’ end with the Pseudomonas 

phage 7 (PP7) stem loop binding site for coat protein (Hogg and Collins, 2007b), which we 

found to stabilize the recombinant RNA in extract even without added PP7 coat protein. 

Dyskerin, NHP2, and GAR1 all assembled on the hTR 3’ hairpin, with an efficiency reduced by 
BIO box mutation and abrogated entirely by ACA mutation (Fig. 4A). Cell extract containing no 

tagged protein was used as a specificity control (Fig. 4A, Mock lanes 13-15). Similar results 

were obtained using untagged hTR 3’ hairpin RNAs (data not shown). We also verified that this 
specificity was not due enhanced degradation of the BIO and ACA variant RNAs in extract, as 

judged by equal recovery of radiolabeled RNAs from the unbound extract fraction following 

RNP affinity purification (data not shown). We conclude that the BIO box strongly stimulates 

H/ACA RNP assembly on the hTR 3’ hairpin in whole cell extract. 

We then modified the reconstitution assay, reversing the immunopurification and RNA 

incubation steps. The tagged protein alone and any complexes containing the tagged protein were 

isolated by binding to IgG resin, washed resin was incubated with radiolabeled RNA, and after 

removal of free RNA with additional washes, any RNP-assembled RNA was recovered and 

resolved by denaturing PAGE. In this assay, complexes containing tagged dyskerin or NHP2 but 

not GAR1 could assemble on the hTR 3’ hairpin, and this assembly was reduced by BIO box 
mutation and eliminated by ACA mutation (Fig. 4B). Because GAR1 joins an H/ACA RNP late 

in its maturation, our RNP assembly assay with prepurified complexes recapitulates the 

physiological specificity of H/ACA RNP assembly: GAR1 should not purify an RNA-free 

protein complex that can load recombinant RNA, but if RNA is assembled into RNP in extract, 

additional maturation steps including the recruitment of GAR1 can occur.  

We next examined the specificity of NAF1 interaction. Tagged NAF1 copurified the hTR 

3’ hairpin RNA following RNP assembly in extract (Fig. 4C, lanes 7-9), and prepurified protein 
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complexes with tagged NAF1 bound RNA directly (Fig. 4D, lanes 7-9). In either case, RNP 

formation was strongly reduced by BIO box mutation and eliminated by ACA mutation. Overall 

the findings above indicate that NAF1, dyskerin, NHP2, and, by extension, NOP10 form a 

preassembled protein complex that is capable of binding the hTR 3’ hairpin. Also, at least under 
our extract RNP assembly conditions, the exchange of NAF1 for GAR1 remains incomplete. 

More surprisingly, BIO box-dependent hTR RNP reconstitution with purified, NAF1-bound core 

proteins suggests that the BIO box binding partner is part of this preassembled protein scaffold.  

 

The preassembled core protein scaffold lacks other known chaperones.  

Cellular biogenesis of H/ACA RNPs requires numerous factors, in addition to NAF1, that 

interact with dyskerin, NOP10, and/or NHP2 and assist in the RNA processing and RNP 

assembly steps preceding formation of a mature RNP. To evaluate whether these factors 

associate with RNP assembled in extract, or, of special interest, form part of the preassembled 

NAF1/dyskerin/NOP10/NHP2 scaffold competent for direct RNA binding, we expressed tagged 

versions of known H/ACA RNP biogenesis factors and assayed their hTR interaction using both 

reconstitution protocols. Assembly of radiolabeled hTR 3’ hairpin in extract followed by RNP 
purification detected BIO box- and ACA-dependent interaction of two assembly chaperones: 

NUFIP and RUVBL2 (Fig. 4C, lanes 4-6 and 10-12). Similar assays of additional factors 

required for hTR biogenesis in vivo, including the nuclear cap methyltransferase sTGS1 (Fig. 4C, 

lanes 13-15), failed to detect associations with the extract-assembled hTR 3’ hairpin RNP. 
Notably, neither NUFIP nor RUVBL2 was part of the preformed protein scaffold 

competent for direct RNA binding (Fig. 4D, lanes 4-6 and 10-12). Assays of additional factors 

required for hTR biogenesis in vivo, including sTGS1 (Fig. 4D, lanes 13-15), also did not 

copurify the assembly-competent protein scaffold. Despite many years of investigation it remains 

possible that some H/ACA RNP assembly factors remain to be discovered, but the most likely 

explanation to account for the results above is that a scaffold containing only NAF1, dyskerin, 

NOP10, and NHP2 is the platform for direct binding to an H/ACA RNA precursor. Other 

biogenesis factors that associate with an H/ACA RNP reconstituted in cell extract are not part of 

this assembly-competent scaffold prior to RNA loading. Furthermore, because hTR association 

with the preassembled protein scaffold remains dependent on the BIO box even when the 

scaffold is purified from extract prior to RNP assembly, the scaffold itself provides the BIO-box-

dependent RNP assembly stimulation.  

No high-resolution structure of a eukaryotic core heterotrimer is available, with or 

without bound RNA. Of the core heterotrimer proteins, only NHP2 would be positioned suitably 

for direct contact with the BIO box (Hamma and Ferre-D'Amare, 2010; Kiss et al., 2010). 

Consistent with results from a previous study of yeast Nhp2p (Henras et al., 2001), we find that 

recombinant human NHP2 alone binds the hTR 3’ hairpin without specificity for the BIO box 

(data not shown). A measurable sequence preference of NHP2 binding is likely to require its 

structural constraint by protein-protein interaction(s). We suggest that protein preassembly to 

form the NAF1/dyskerin/NOP10/NHP2 scaffold biases the conformational heterogeneity 

observed in recent solution structures of isolated yeast Nhp2p (Koo et al., 2011) to favor the 

NHP2 conformation with binding preference for the loop uridine presented by the hTR BIO box.  

 

The preassembled core protein scaffold supports concerted two-hairpin RNP assembly.  

Results above demonstrate that hTR H/ACA RNP assembly is dependent on the hTR 

BIO box in vitro as well as in vivo, but other human H/ACA RNAs lack this motif. To 
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investigate the in vitro RNP assembly properties of other human H/ACAs in comparison to hTR, 

we created a panel of one- or two-hairpin RNAs based on the validated secondary structures of 

the human U17, U64, and ACA28 snoRNAs (Cervelli et al., 2002; Ganot et al., 1997b; Xiao et 

al., 2009). U17 is the only human H/ACA RNA known to function in ribosomal RNA precursor 

cleavage rather than pseudouridylation, and it is the only known individually essential H/ACA 

RNA in yeast (Kiss et al., 2010). Like hTR, U17 has a noncanonical 5’ hairpin structure and a 3’ 
hairpin that can compete for full-length U17 RNP assembly in HeLa nuclear extract (Dragon et 

al., 2000).  

We first assayed RNP assembly in extract for the radiolabeled two-hairpin U17, U64, and 

ACA28 snoRNAs and a comparably snoRNA-sized version of hTR (Fig. 5A), which lacks the 5’ 
hairpin extension for telomerase catalytic activation (Fig. 1A). We also assayed RNP assembly 

on the single 3’ hairpin of each snoRNA. The two-hairpin and 3’ hairpin hTR and U17 RNAs 
each assembled an H/ACA RNP in extract, as monitored by post-assembly purification of tagged 

NHP2 (Fig. 5A, lanes 8-9, 11, and 13-14). In contrast, although the two-hairpin versions of U64 

and ACA28 assembled an RNP, the 3’ hairpin of either snoRNA alone did not (Fig. 5A, lanes 
26-29). Notably, the BIO box enhanced RNP assembly even for the snoRNA-like two-hairpin 

version of hTR (Fig. 5A, compare lane 9 to 10 and lane 11 to 12). Parallel controls for 

background binding used cell extracts with no tagged protein (Fig. 5, Mock purification lanes). 

The isolated 5’ hairpins from hTR, U17, or other snoRNAs failed to assemble an RNP (data not 
shown). The same results were obtained using tagged dyskerin instead of tagged NHP2 (data not 

shown). 

We next assayed the panel of single-hairpin and two-hairpin RNAs by RNP 

reconstitution following protein purification. To our surprise, complexes containing tagged 

NHP2 (Fig. 5B) or tagged dyskerin (data not shown) that were purified prior to RNP assembly 

supported not only the same specificity of single-hairpin RNP assembly characterized in extract 

but also robust two-hairpin-dependent RNP assembly (Fig. 5B, lanes 3-4). This finding suggests 

that the purified, resin-immobilized NAF1/dyskerin/NOP10/NHP2 scaffold achieves concerted 

assembly of core proteins on two H/ACA-motif hairpins. Although we cannot exclude some 

potential for physical association of two separately immobilized NAF1-bound core protein 

complexes, the results above suggest that the preassembled scaffold for productive RNP 

assembly could already contain two sets of core proteins (Fig. 5C). This scaffold architecture 

would account for why eukaryotic H/ACA RNAs all have two hairpins, whereas archaeal RNAs 

that assemble directly with dyskerin/NOP10 and separately with L7Ae do not. Unfortunately, we 

found the RNA-binding-competent NAF1/dyskerin/NOP10/NHP2 scaffold to be unstable to 

stringent washes and/or extended additional purification, hampering direct physical 

characterization of the functional scaffold architecture. 

 

Distributed features of the hTR 3’ hairpin cooperate to promote RNP assembly.  
The BIO box alone should contribute only a small fraction of the RNA binding surface 

for an H/ACA core protein complex, so we considered the possibility that it is necessary but not 

sufficient for stimulation of hTR 3’ hairpin RNP assembly. We constructed a series of chimeric 
3’ hairpin RNAs that contained combinations of elements from hTR and ACA28 (Fig. 6). 

Chimeras 1 and 2 contained ACA28 sequence with the hTR 3' loop and also pocket-region 

sequences, including deletion of two base pairs above the pocket and insertion of two base pairs 

below the pocket to make the stem lengths more similar to those of hTR. In addition, in chimera 

1 an adenosine was inserted in the 5’ side of the upper stem and a guanosine was inserted in the 
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3’ side of the lower stem to make internal loop and bulge sizes identical to hTR. Efficient RNA 

assembly with H/ACA proteins in extract was not supported by transplant of the hTR loop and 

pocket sequences; instead, these chimeric RNAs showed only low, near-background purification 

similar to the ACA28 3’ hairpin (Fig. 6, lanes 8-11). We next transplanted the hTR 3’ hairpin 
loop and its atypically long lower stem into the ACA28 3’ hairpin backbone, to generate chimera 
3. The combination of these two hTR elements conferred a robust and reproducible improvement 

of RNP assembly (Fig. 6, lane 12) that was more than provided by the loop alone (lane 14) or the 

undetectable RNP assembly with transplant of the lower stem alone (lane 13). Nonetheless, even 

the combination of loop and lower stem did not fully recapitulate the RNP assembly efficiency 

of the intact hTR 3’ hairpin (Fig. 6, lane 8). Consistent with the findings above, partially 
unpairing the 3’ hairpin lower stem to produce a more typical stem length severely reduced 
mature hTR accumulation in vivo (data not shown). An atypically long lower stem could be 

precluded in modification guide RNAs by competing structural requirements for biological 

function (see Discussion). These results suggest that multiple features of the hTR 3’ hairpin act 
in a synergistic manner to increase RNA interaction affinity with the preassembled NAF1-bound 

core protein scaffold. 

 

Disease-associated H/ACA protein variants affect different steps of RNP assembly.  

Finally, we investigated a potential connection between hTR sequence-mediated 

enhancement of H/ACA RNP assembly and the specificity of telomerase deficiency in DC. We 

overexpressed tagged disease-associated variants of dyskerin and NHP2 in HeLa cells and used 

the resulting whole cell extract for reconstitution assays. All of the dyskerin variants supported 

hTR 3’ hairpin RNP assembly in both reconstitution assays (Figs. 7A and 7B, lanes 2-9). This 

observation is consistent with the modest if any inhibition of RNA binding observed when 

dyskerin variants were assembled as core heterotrimer in reticulocyte lysate (Trahan et al., 2010; 

Wang and Meier, 2004). On the other hand, the NHP2 variants imposed severe defects in RNP 

assembly (Figs. 7A and 7B, lanes 11-13). NHP2 variants expressed by transient transfection of 

293T cells showed reduced association with hTR as well as other snoRNAs (Fig. 7C), indicating 

that their assembly defect is not specific to hTR. These findings also parallel results from studies 

using reticulocyte lysate for RNP reconstitution (Trahan et al., 2010). Importantly, because 

NHP2 variants are expressed heterozygously in DC patient cells, they would decrease but not 

eliminate functional NHP2. In sum, for the overexpressed disease-linked dyskerin and NHP2 

variants tested here, we did not find an RNP assembly defect specific to hTR. Instead, we 

suggest that in their physiological genomic contexts, DC mutations impose phenotypes by 

reducing the cellular level of the preassembled RNA-binding-competent H/ACA core protein 

scaffold. This could result in a more dramatic reduction of mature hTR than other H/ACA 

RNAs, due to a differentially sensitized balance of precursor RNP assembly versus degradation. 
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Discussion 

 

Against our initial hypotheses for hTR BIO box function at an RNP biogenesis step that 

is not required for other human H/ACA RNAs, we found that the hTR BIO box influences a 

shared step of H/ACA RNP assembly. In vivo we suggest that hTR BIO box stimulation of RNP 

assembly tips the balance of hTR precursor protection versus exonucleolytic degradation. 

Degradation of a vertebrate telomerase RNA precursor may predominate over RNP assembly 

even in the presence of a BIO box, based on the increase in mature hTR accumulation resulting 

from insertion of a self-cleaving ribozyme that generates an exonuclease-resistant precursor 3’ 
end (Fig. 2D). Because intron-encoded H/ACA RNA precursors would be less sensitive to 

degradation within the host pre-mRNA transcript or within a spliced intron lariat, reducing the 

cellular level of the initial RNP assembly scaffold could preferentially compromise mature hTR 

accumulation without impact on other human H/ACA RNAs. Indeed, even hTR H/ACA domain 

accumulation becomes independent of BIO box function when the RNA is processed from intron 

context (Theimer et al., 2007). We offer the unifying hypothesis that telomerase deficiency in 

DC patients with mutations that affect dyskerin, NOP10, or NHP2 results from reduced 

availability of the RNA-binding-competent H/ACA core protein scaffold. One prediction of this 

model is that the NAF1 promoter and/or open reading frame would be a locus of DC mutations. 

Matching the two-hairpin specificity of eukaryotic H/ACA RNP assembly in vivo, we 

show that the resin-immobilized NAF1/dyskerin/NOP10/NHP2 scaffold has a two-hairpin 

requirement for binding pseudouridylation guide RNAs in vitro. Preorganization of two sets of 

core proteins as a NAF1-bound scaffold would account for the universality of the eukaryotic 

two-hairpin motif. In vivo, even if one of the two RNA hairpins is not biologically functional, its 

presence would still be required to give the second set of H/ACA proteins an RNA landing pad. 

This would account for why the biological accumulation of hTR depends on at least a minimal 5’ 
hairpin stem (Egan and Collins, 2010). The preorganized, NAF1-chaperoned H/ACA core 

protein scaffold may have been a eukaryotic adaption to increasing transcriptome complexity, 

which would have obliged enhanced discrimination of H/ACA RNP assembly on transcripts 

encoding advantageous modification guide RNAs versus the vast diversity of other transcription 

products. 

From a structural perspective, it is notable that H/ACA RNA hairpins sharing the same 

consensus bind to the same protein scaffold with different affinities. This observation echoes 

previous findings of non-equivalence in protein recognition of a family of related nucleic acid 

binding sites (Meijsing et al., 2009). Like the hTR 3’ hairpin, the single U17 3’ hairpin is 
sufficient to reconstitute as an H/ACA RNP in vitro. However, U17 does not share the specific 

sequence determinants that enhance hTR RNP assembly. U17 also does not substitute 

functionally for hTR H/ACA domain sequence in vivo (Fu and Collins, 2003). The features of 

the U17 3’ hairpin that enhance RNP assembly could act in a distributed manner, analogous to 
the assembly-enhancing sequence features of the hTR 3’ hairpin, or they could instead act by 
providing a U17-specific NAF1-RNA interaction (Trahan and Dragon, 2009).  

 From an evolutionary perspective, we note that although hTR and U17 gained 3’ hairpin 
features that enhance RNP assembly, other tested snoRNAs did not. The loss of 

pseudouridylation guide function by hTR and U17 may have provided the tolerance for a wider 

range of changes in hairpin structure. On the other hand, restrained from altering the architecture 

of RNA-protein interactions necessary for their function, vertebrate pseudouridylation guide 

RNAs instead gained an RNP assembly advantage by migrating into mRNA introns. Like the 
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pseudouridylation guide H/ACA RNAs, U17 is intron-encoded. For any known human H/ACA 

RNA other than hTR, there would be no detriment to expression in an intron context because 5’ 
and 3’ processing can generate the mature RNA independent of its flanking sequence. In 
contrast, hTR maturation is highly context dependent because 5' processing would remove the 

functionally essential template. Therefore, as all other known vertebrate H/ACA RNAs migrated 

to genomic locations within mRNA introns, vertebrate telomerase RNAs had to remain 

independently transcribed genes. We suggest that this difference in the nascent RNA substrate 

for RNP assembly accounts for the preferential impact of disease-linked H/ACA protein variants 

on hTR accumulation in vivo. 
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Figure 1 
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The BIO box has sequence and positioning requirements for function. (A) Secondary 

structure of full-length hTR and primary sequence of the 3’ hairpin upper stem loop. Open boxes 
within the H/ACA domain indicate the location of the H box and ACA (left and right boxes, 

respectively). (B,C) BIO box sequence and positioning requirements. Total RNA from 

transfected cells was examined by northern blot hybridization for recombinant wild-type (WT) 

hTR or the hTR variants indicated, as well as for an endogenous cross-hybridizing RNA (LC) 

detected in parallel on the same blot. Cells transfected with an empty expression vector provided 

an endogenous hTR background control (lanes labeled none). The CUGUC mutation replaces the 

entire loop sequence with that of the 3’ hairpin loop of the human U17 snoRNA. The stem cap 
(SC) mutation replaces the entire loop with a GAAA tetraloop. In (C), base pairing and length of 

the 3’ hairpin upper stem were altered as indicated by bold font and lower case lettering in the 
illustrations for variant stems A-G, with a line indicating the internal loop deletion in variant A. 

Values below the lane numbers are loading-normalized accumulation levels relative to wild-type. 
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Figure 2 
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The BIO box enhances RNP accumulation in different transcription contexts. (A,B) 

Construct schematics and results for BIO box function in Pol II versus Pol III expression context. 

The hTR H/ACA domain (nt 203-451) with a wild-type 3’ hairpin loop (WT) or the CAB 

box/BIO box G414C/U418C double mutation (mut) were expressed using the promoter of 

human U3 or U6. Relative accumulation values were quantified using the signal intensities of the 

fastest-migrating, 3’-processed RNAs (with potential additional 5’ processing of a few nt for 
transcripts of Pol III), first normalized to the transfection control (TC) and expressed relative to 

the corresponding wild-type RNA. (C,D) Schematic of hTR RZ expression constructs and RZ 

impact on hTR accumulation. WT or U418C hTR backbones were assayed in parallel without 

the RZ (lanes 2 and 5) or with the minimal hammerhead (hh) or hepatitis δ virus (HDV) RZ 
inserted 10 nt after the mature hTR 3’ end. Accumulation values were normalized to the 
transfection control (TC) and expressed relative to the U3-hTR-500 construct (numbers given 

directly below lane numbers). Fold stimulation by ribozyme insertion was also calculated 

(numbers in bottom rows). 
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Figure 3 
 

 
 

The BIO box stimulates RNP assembly on the hTR 3’ hairpin. Radiolabeled hTR 3’ hairpin 
probes were added to HeLa whole cell extract with RNP assembly monitored by EMSA. In (A), 

wild-type (WT) RNA corresponds to nt 381-451 of hTR variant B from Fig. 1C, in which the 

upper stem internal loop is paired and the CAB box is disrupted by the G414C substitution. BIO 

variant RNA harbors an additional U418C substitution, while ACA variant RNA has the 

substitution ACA446-448UGU. The concentration of NaCl was 100, 200, or 300 mM. In (B), 

RNP assembly on WT RNA was challenged by preaddition of unlabeled WT competitor RNA 

(comp.) at final concentrations of 0.01 ng/μL to 100 ng/μL or unlabeled BIO or ACA variant 
RNA at final concentrations of 1 ng/μL to 100 ng/μL in 10-fold steps. 
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Figure 4 
 

 
 

RNP assembly specificity is recapitulated with a purified protein scaffold. (A,C) HeLa 

whole cell extracts from cells transfected to express the indicated ZZ-tagged protein or 

untransfected cells (Mock) were incubated with radiolabeled PP7-tagged hTR 3’ hairpin probe 

(WT or the BIO or ACA variant). Following RNP purification on IgG resin, bound RNA (100%) 

was detected relative to input RNA (2%). (B,D) Complexes containing the indicated ZZ-tagged 

protein were purified from whole cell extract of transfected HeLa cells prior to incubation with a 

radiolabeled PP7-tagged hTR 3’ hairpin RNA. After washing, bound RNA (100%) was detected 

relative to input RNA (2%). Values below lane numbers are the input-normalized quantification 

of bound BIO or ACA RNA relative to WT RNA within each bracketed set. 
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Figure 5 
 

 
 

Pseudouridylation guide RNAs show concerted two-hairpin RNP assembly. (A) HeLa whole 

cell extracts from cells transfected to express ZZ-tagged NHP2 were incubated with radiolabeled 

3’ hairpin or two-hairpin hTR (WT or BIO variant), U17, U64, or ACA28. The snoRNA-sized 

version of hTR used as the two-hairpin RNA is depicted. An asterisk indicates RNAs in which 

the internal loop of the hTR 3’ hairpin was paired. Following RNP purification and washing to 

remove unbound RNA, bound RNA (100%) was detected relative to input RNA (2%). Values 

below lane numbers are percent of input RNA bound. (B) Complexes containing ZZ-tagged 

NHP2 were immunopurified from whole cell extract prior to incubation with radiolabeled 3’ 
hairpin or two-hairpin ACA28 RNA. Following washing to remove unbound RNA, bound RNA 

(100%) was detected relative to input RNA (2%). Values below lane numbers are percent of 

input RNA bound. (C) Model for the subunit composition of a protein scaffold competent for 

RNA binding. Protein interaction(s) that could putatively dimerize the core proteins are not 

established; for sake of illustration, contact between dyskerin subunits is suggested. 
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Figure 6 
 

 
 

Several hTR 3’ hairpin features contribute to RNP assembly enhancement. HeLa whole cell 

extracts from cells transfected to express ZZ-tagged NHP2 were incubated with a radiolabeled 

hTR 3’ hairpin, ACA28 3’ hairpin, or chimeric hairpin with hTR sequence in bold font. The 
ACA motif is boxed and a line indicates a deletion of 2 base pairs. Following RNP 

immunopurification and washing to remove unbound RNA, bound RNA (100%) was detected 

relative to input RNA (2%). Values below lane numbers are the input-normalized quantification 

of bound RNA relative to the hTR 3' hairpin. 
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Figure 7 
 

 
 

DC variants of NHP2 but not dyskerin inhibit hTR 3’ hairpin RNP assembly. (A) HeLa 

whole cell extracts from cells transfected to express the indicated TAP-tagged dyskerin or ZZ-

tagged NHP2 variant were incubated with radiolabeled PP7-tagged hTR 3’ hairpin RNA. 
Following RNP immunopurification and washing to remove unbound RNA, bound RNA (100%) 

was detected relative to input RNA (2%). Values below lane numbers are the normalized 

quantification of bound RNA within each bracketed set. (B) Complexes containing the tagged 

protein with indicated variant sequence were immunopurified from whole cell extract of 

transfected HeLa cells prior to incubation with radiolabeled PP7-tagged hTR 3’ hairpin RNA. 
Following washing to remove unbound RNA, bound RNA (100%) was detected relative to input 

RNA (2%). Values below lane numbers are the normalized quantification of bound RNA within 

each bracketed set. (C) Complexes containing tagged protein were immunopurified from whole 

cell extracts of 293T cells transfected to express the indicated ZZ-tagged NHP2 variant and 

H/ACA RNA. RNPs were immunopurified by binding to and elution from IgG resin. A 

recombinant RNA recovery control (RC) was added to input cell extracts (2%) and purified 

RNPs (100%) prior to RNA extraction.  
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CHAPTER FOUR 

 

 

Analysis of Human Telomerase Interacting Factors and Multimerization Using Designed 

Cell Lines 

 

Abstract 

 

 Human telomerase is a ribonucleoprotein (RNP) complex composed of the telomerase 

RNA, hTR, the telomerase reverse transcriptase, TERT, and several other proteins. Telomerase 

uses its RNA component as a template to add simple sequence repeats to linear chromosome 

ends, balancing the loss of repeats that results from incomplete DNA replication. In addition to 

motifs important for TERT-binding and catalytic activity, hTR contains elements that interact 

with specific protein partners essential for RNA biogenesis, RNP assembly, localization, and 

regulation. The telomerase holoenzyme is a large complex, and it is likely that many subunits 

remain to be discovered. Also, some studies suggest that this large size is the result of telomerase 

multimerization. Many telomerase-associated factors have been identified by affinity purification 

of TERT. However, hTR independently assembles a stable RNP, some components of which 

may dissociate before TERT assembly. Here we establish a system for the investigation of hTR-

interacting proteins and telomerase RNP multimerization by RNA- and protein-based affinity 

purification of telomerase from stable cell lines expressing tagged hTR and TERT.  
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Introduction  

 

 Human telomerase is a ribonucleoprotein (RNP) enzyme that adds DNA repeats to 

chromosome ends to compensate for incomplete replication by conventional DNA polymerases. 

The repeats assemble with DNA-binding proteins to form nucleoprotein structures called 

telomeres that protect the chromosome end from nuclease and DNA repair activities. At the 

catalytic core of human telomerase is the telomerase reverse transcriptase, TERT, and the 

integral telomerase RNA component, hTR, which provides the template for repeat synthesis 

(Blackburn and Collins, 2010).  

TERT can be divided into four relatively conserved domains. The telomerase N-terminal 

(TEN) domain associates with hTR and with DNA to promote processive synthesis (Robart and 

Collins, 2011). A linker region connects the TEN domain to the telomerase RNA-binding 

domain (TRBD) which interacts with hTR with high affinity. The reverse transcriptase (RT) 

domain contains the active site residues, and the C-terminal extension (CTE) contributes to 

processivity through unknown mechanisms (Autexier and Lue, 2006).  

In addition to the template, the 451-nucleotide (nt) hTR contains several additional motifs 

(see Fig. 1A). Adjacent to the template is a conserved pseudoknot. The template-pseudoknot and 

a distal stem-loop present in a three-way junction element (the activation region) form the 

binding surface for TERT (Collins, 2009). The 3’ half of hTR contains a motif shared with a 

large family of H/ACA RNAs, which function to guide pseudouridylation of ribosomal and small 

nuclear RNAs. H/ACA small nucleolar (sno) and small Cajal body (sca) RNAs adopt hairpin-

Hinge-hairpin-ACA secondary structures containing conserved H box and ACA primary 

sequence elements and pockets in the hairpin stems that hybridize to sequence surrounding the 

target uridine(s). Each hairpin assembles with the H/ACA core proteins dyskerin, NHP2, 

NOP10, and GAR1. Within the 3’ terminal loop of hTR and scaRNAs is an additional element 

called the CAB box, which directs Cajal body localization through interaction with 

TCAB1/WDR79 (Kiss et al., 2010).  

Although hTR possesses an H/ACA domain, its biogenesis pathway differs from that of 

other human H/ACA RNAs. hTR is independently transcribed by RNA polymerase II as a 

potentially non-polyadenylated precursor that is exonucleolytically processed only at its 3’ end 
(Feng et al., 1995; Mitchell et al., 1999a). In contrast, other human H/ACA RNAs are processed 

from introns by 5’ and 3’ exonuclease action (Kiss et al., 2006). hTR acquires a 5’ 
trimethylguanosine cap, while other human H/ACA RNAs are uncapped (Fu and Collins, 2006; 

Jády et al., 2006). These unique features of hTR and its specialized function in telomere 

maintenance may require biogenesis factors that do not act on canonical H/ACA RNAs.  

Based on glycerol gradient sedimentation, the molecular weight of the active human 

telomerase complex from HeLa cell extracts is ~1 megaDalton (Schnapp et al., 1998), which 

suggests that the RNP contains several subunits in addition to hTR, TERT, the H/ACA core 

proteins, and TCAB1/WDR79. Other hTR- and TERT-interacting proteins have been identified, 

but most appear to associate with only a fraction of the total telomerase holoenzyme population 

(Cohen et al., 2007; Collins, 2008; Podlevsky and Chen, 2012). It is likely that additional 

telomerase subunits remain to be identified, and there is also evidence that telomerase RNPs in 

some species may form multimers. 

Several studies have suggested that human telomerase is capable of multimerization. 

Telomerase purified from HeLa cells under stringent chromatography conditions fractionated in 

glycerol gradients at ~650 kiloDaltons (kDa), and only TERT and dyskerin were detected by 
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mass spectrometry. This mass equals the combined mass of two TERT (127 kDa), two hTR (153 

kDa), and two dyskerin (57 kDa) molecules, leading the authors to propose a dimeric structure 

(Cohen et al., 2007). However, comparing an RNP assembled on a highly structured RNA to 

globular protein standards may not accurately reflect its mass, and this highly purified and 

concentrated RNP may behave differently than the endogenous holoenzyme. Additional studies 

have attempted to define the architecture of a potentially multimeric telomerase complex and 

identify the subunit(s) mediating dimerization. Several groups have found that TERT can form 

multimers that do not require hTR in vitro and in vivo (Arai et al., 2002; Armbruster et al., 2001). 

Others have proposed the dimerization of hTR via intermolecular base pairing in the pseudoknot 

or 3’ H/ACA hairpin pocket (Ly et al., 2003; Ren et al., 2003).  

If telomerase complexes multimerize, an important question is whether multimerization 

affects telomerase activity. One influential study found that hTR variant-specific oligonucleotide 

affinity purification of telomerase reconstituted in insect cell lysate recovered wild-type and 

template mutant hTR, and the presence of mutant hTR compromised wild-type telomerase 

activity (Wenz et al., 2001). These results suggest that the two hTR molecules are present within 

a single complex and functionally interact. In another study, inactive TERT mutants or 

truncations complemented one another, reconstituting telomerase activity when purified from 

rabbit reticulocyte or human cell lysate. The functional complementation required one TERT 

molecule to contain a functional TEN domain and the other a CTE (Beattie et al., 2001). 

However, these reconstitution systems do not recapitulate all aspects of the native, in vivo 

assembled enzyme. 

While there is evidence for telomerase multimerization, other studies have found that 

telomerase monomers exist and are fully active. Single-molecule two-color coincidence 

detection of hTR-TERT complexes reconstituted in rabbit reticulocyte lysate detects a 1:1 ratio 

(Alves et al., 2008). Coexpression of two differently tagged TERT variants in 293T cells 

followed by two-step affinity purification does not recover telomerase activity, suggesting that 

multimers do not form under these conditions (Errington et al., 2008). Similarly, purification of 

tagged hTR does not recover coexpressed untagged hTR (Errington et al., 2008). Finally, 

catalytically inactive hTR variants stably expressed in telomerase-deficient cells transduced with 

TERT do not exert dominant negative effects on catalytic activity or telomere extension 

(Errington et al., 2008). However, it remains possible that telomerase multimerizes under certain 

conditions, such as during a specific cell cycle stage or in a particular subcellular region such as 

in the Cajal body or on a telomere. Thus, whether telomerase present at endogenous levels inside 

cells multimerizes and, if so, whether multimerization has functional consequences, remains 

unclear. 

RNA-based affinity purification has been successfully applied to the study of RNP 

complexes including spliceosomes, 7SK RNPs, Y RNPs and mRNPs (Hogg and Collins, 2007a, 

b; Hogg and Goff, 2010; Jurica et al., 2002). This method exploits a high-specificity, high-

affinity interaction between the Pseudomonas phage 7 (PP7) or MS2 phage coat protein and an 

RNA hairpin operator element present at the 5’ end of the replicase mRNA. Coat protein binding 
stabilizes the hairpin, which includes the Shine-Dalgarno box and start codon, and sequesters 

these sequences to prevent ribosome assembly and translation (Babitzke et al., 2009). RNA-

based affinity purification of telomerase complexes using tagged hTR has the potential to reveal 

novel aspects of holoenzyme architecture and identify additional hTR-interacting proteins. Past 

studies of telomerase subunit composition have relied on the affinity purification of TERT 

(Cohen et al., 2007; Fu and Collins, 2007; Venteicher et al., 2008). However, this approach may 
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fail to detect some RNP subunits that do not interact directly with TERT. In addition, hTR 

assembles a stable RNP in the absence of TERT that may contain proteins that dissociate before 

TERT binding. RNA-based affinity purification of telomerase from human cells can also be used 

to detect telomerase multimers under conditions that are more physiological compared to 

heterologous reconstitution systems. Finally, affinity purification of hTR can be used to isolate 

complexes for structural studies, and in combination with TERT affinity purification, can 

selectively purify assembled telomerase RNPs rather than TERT-free RNPs or hTR-free protein 

complexes. In this study, we develop a set of HeLa S3 cell lines stably expressing PP7 hairpin-

tagged hTR variants in the presence or absence of epitope-tagged TERT and demonstrate the 

successful isolation of telomerase complexes using RNA-based affinity purification. 
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Materials and Methods 

 

Cell culture, constructs, transfection and retroviral integration. 

Human 293T, HeLa, and HeLa S3 cells were grown on plates in DMEM with 10% fetal 

bovine serum. The HeLa S3 cell line was adapted to adherent growth and provided by the Rapé 

lab at UC Berkeley. For large-scale cultures, HeLa S3 cells were grown in suspension in a 

volume of 500 mL in uncoated 2 L roller bottles, which also supported some adherent growth. 

293T cells were transiently transfected using the calcium phosphate method. 

The mature hTR expression construct pBS-U3-hTR-500 was previously described (Fu 

and Collins, 2003). The hTR variant harboring the template mutations U47A, C51A, and U53A 

was generated by site-directed mutagenesis of pBS-U3-hTR-500. The PP7 hairpin sequence 

(Hogg and Collins, 2007b) was inserted at various positions in mature hTR in the pBS-U3-hTR-

500 backbone and constructs were named according to the hTR nt 5’ of the insertion unless 
otherwise noted. The PP7 5’ end construct contained three tandem PP7 hairpins at the 5’ end of 
hTR, as described previously (Errington et al., 2008). In the PP7 268 construct, nt 266-291 of 

hTR were replaced with the sequence CCGGCACAGAAGAUAUGGCUUCGUGCCAUC, 

which minimally modifies the hTR sequence to create a consensus PP7 hairpin. In the PP7 278 

long construct, an AC/AG bulge and three additional base pairs (CGG/CCG) were inserted 

below the PP7 hairpin. The PP7 17 construct contained three additional basepairs (CGC/GCG) 

below the PP7 hairpin. In addition, the first G of the GG dinucleotide in the stem was changed to 

C with a compensatory C to G substitution to maintain pairing and the final loop nt was changed 

from G to A. In the PP7 6 hTR variant, nt 1-5 were repeated after the PP7 hairpin.  

To create the N-terminal triple FLAG (F)-tagged PP7 coat protein (CP) E. coli expression 

construct, the sequence encoding the tandem Protein A domains (ZZ) and the tobacco etch virus 

protease cleavage site (TEV) of pET28a-ZZ-TEV-PP7 CP-6xHIS (Hogg and Collins, 2007b) 

were replaced with the triple FLAG sequence. Similarly, the triple FLAG sequence was inserted 

to create the ZZ-TEV-3xFLAG (ZF)-tagged PP7 coat protein construct. Recombinant coat 

proteins were expressed and purified as previously described (Hogg and Collins, 2007b). 

To generate pBS-U3-hTR-500-box and pBS-U3-hTR-box, the 14-base pair U1 snRNA 3’ 
box RNA processing element (box) with a 5’ 10-base pair spacer was inserted after, or in place 

of, the 500 base pairs of endogenous downstream sequence in the pBS-U3-hTR-500 construct. 

The U3 C/D box snoRNA promoter sequence was replaced with the U1 promoter to generate 

pBS-U1-hTR-500-box and pBS-U1-hTR-box. A PP7 hairpin was inserted at position 278 in 

pBS-U3-hTR-box with or without the G414C CAB box mutation. In addition, the PP7 hairpin 

inserted at position 278 was combined with an MS2 hairpin inserted at position 17 (with the 

same additional base pairs as in PP7 17 construct) in the pBS-U1-hTR-box or pBS-U3-hTR-box 

contexts. The U3-hTR-box or U1-hTR-box portions of these constructs were then blunt-cloned 

into the NheI site in the 3’ long terminal repeat of the retroviral vector pBABE puro. The TERT 

cDNA with an N-terminal ZF or ZZ-TEV-streptavidin binding peptide (ZS) tag (Keefe et al., 

2001) was cloned into pBABE hygro using SnaBI and XhoI. The ∆TEN TERT truncation lacked 

the N-terminal 325 amino acids (Robart and Collins, 2011). 

Viruses were packaged using Phoenix 293T cells. HeLa S3 cells were infected with the 

hTR-containing viruses. Selection with 2.5 μg/mL puromycin began 48 hours after infection and 
was continued for four days followed by expansion as polyclonal cultures. The hTR-expressing 

stable cell lines were then infected with the TERT-containing viruses. Selection with 350 μg/mL 
hygromycin began 48 hours after infection and was continued for one week followed by 
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selection with 175 μg/mL hygromycin for one week and expansion as polyclonal cultures. 
Population doublings were counted starting at the first post-selection split of the empty vector-

infected cells. 

 

Blot detection of RNA and protein.  

RNA was purified using TRIzol according to the manufacturer’s protocol (Invitrogen). 
For analysis of total RNA, 10-20 μg was loaded on a 5% acrylamide, 7 M urea, 0.6X TBE gel. 

Northern blot detection of hTR, the crossreacting endogenous RNA loading control (LC), and 

the recombinant RNA recovery control (RC) was performed using an end-labeled 2’-O-methyl 

RNA oligonucleotide complementary to hTR positions 51 to 72, as previously described (Fu and 

Collins, 2003). The hTR H/ACA domain was detected using an end-labeled probe 

complementary to nt 419-449. In some cases, PP7 hairpin-tagged hTR was specifically detected 

using probes complementary to the tag and hTR sequence flanking the insertion site. Northern 

blots were imaged using a Typhoon Trio phosphorimaging system (GE Healthcare). The ZF- and 

ZS-tagged TERT variants were detected by western blotting used rabbit IgG primary antibody 

(Sigma) diluted 1:10,000 and anti-rabbit AlexaFluor800 secondary antibody (Invitrogen) diluted 

1:20,000 in 3% nonfat dry milk in TBS (50 mM Tris at pH 8.0, 150 mM NaCl). Tubulin was 

detected using mouse anti-α-tubulin primary antibody (Calbiochem) diluted 1:500 and anti-

mouse AlexaFluor680 secondary antibody (Invitrogen) diluted 1:20,000 in 3% nonfat dry milk in 

TBS. Western blots were imaged using a LI-COR Odyssey system. 

 

RNA-based affinity purification. 

For affinity purification of PP7 hairpin-tagged hTR from transiently transfected 293T 

cells, cell extracts from freeze-thaw cell lysis were diluted to ~1.25 mg/mL in binding buffer (20 

mM HEPES at pH 8.0, 150 mM NaCl, 2 mM MgCl2, 0.2 mM EGTA, 10% glycerol, 0.1% 

Igepal, 1 mM DTT, and 0.1 mM PMSF). A volume of 500 μL of diluted extract was clarified by 

centrifugation and ~5 μg of F-tagged PP7 coat protein was added. Samples were rotated end-

over-end for 2 hours at room temperature. Then 10 μL of washed anti-FLAG M2 antibody resin 

(Sigma) was added and samples were rotated end-over-end for 1.5 hours at room temperature. 

Bound samples were washed twice at room temperature in 1 mL of wash buffer (binding buffer 

with 0.1% Triton X-100 and 0.1% CHAPS) for 5 min each wash and then transferred to new 

tubes for a third wash. The same procedure was repeated using a high-salt buffer containing 20 

mM HEPES at pH 8.0, 300 mM KCl, 2 mM MgCl2, 1 mM EDTA, 10% glycerol, 0.1% Triton X-

100, 1 mM DTT, and 0.1 mM PMSF (Cohen et al., 2007).  

For affinity purification of PP7 hairpin-tagged hTR from HeLa S3 stable cell lines, 40 µL 

of washed anti-FLAG antibody or IgG resin (Sigma) and PP7 coat protein (~12 μg of F-tagged, 

~24 μg of Z- or ZF-tagged) were combined in 500 µL of binding buffer containing 150 mM or 

200 mM NaCl. Samples were rotated end-over-end for 2 hours at 4°C. Resin was rinsed in 1 mL 

of binding buffer before the addition of 1.5-2 mL of ~1.25 mg/mL clarified cell extract. Samples 

were rotated end-over-end for 2 hours at 4°C. Bound samples were washed twice at room 

temperature in 1 mL of binding buffer for 5 min each wash and then transferred to ultra-low 

retention tubes (Phenix) for a third wash (PMSF was omitted in the last wash of IgG 

purifications). To elute bound RNPs, a final concentration of 150 ng/μL 3xFLAG peptide 
(Sigma) or ~90 ng/μL of the S219V variant of TEV protease was added in a volume of 100 μL of 
binding buffer (without PMSF for IgG purifications) and rotated end-over-end for 30 min at 

room temperature. For the second purification step, 5 μL of IgG or Ni-NTA agarose (Qiagen) 
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was added to the first-step FLAG eluate along with 100 μL of binding buffer (containing 30 mM 
imidazole for Ni-NTA purifications). Samples were rotated end-over-end for 30 min at room 

temperature. Bound samples were washed as in the first step, except that the wash buffer for Ni-

NTA purifications contained 15 mM imidazole. Bound RNPs were eluted in a volume of 15 μL 
with TEV protease as described above or with 500 mM imidazole for 30 min at room 

temperature. In large-scale purifications, ~300 μg of F-tagged PP7 coat protein and 1 mL of anti-

FLAG antibody beads were combined in 12.5 mL binding buffer containing 150 mM NaCl. 

Samples were rotated end-over-end for 2.5 hours at 4°C. Resin was rinsed in 15 mL of binding 

buffer before the addition of 200 mL of ~1.25 mg/mL clarified cell extract. Samples were rotated 

end-over-end for 2 hours at 4°C. Bound samples were washed three times at room temperature in 

25 mL of ice-cold binding buffer for 5 min each. RNPs were eluted as above in a volume of 2 

mL. For the second step, 10 μL of Ni-NTA agarose was added, and samples were bound and 

washed as above. Bound material was eluted in batch format by two successive 30-minute 

incubations in 25 μL of binding buffer containing 500 mM imidazole. 

 

Telomerase activity assay. 

Anti-FLAG antibody resin-immobilized RNPs from affinity purification of PP7 hairpin-

tagged hTR were rinsed in 100 µL of binding buffer without NaCl, Igepal, or protease inhibitors 

and then resuspended in 10 µL of the same buffer. Assay buffer contained final concentrations of 

10 mM HEPES, 50 mM Tris acetate, 5% glycerol, 40 mM NaCl, 50
 
mM potassium acetate, 4 

mM MgCl2, 1 mM EGTA, 1 mM spermidine, 0.5 mM DTT, and 5 mM β-mercaptoethanol at pH 

8.0. In the experiment in Fig. 1C, reactions were initiated by the addition of 500 nM telomeric
 

repeat primer (T2AG3)3, 0.25 mM dTTP, 0.25 mM dATP, 5.5 µM unlabeled
 
dGTP, and 0.33 µM 

[α-
32

P] dGTP (3000 Ci/mmol, PerkinElmer
 
Life Sciences). In the experiments in Fig. 2, reactions 

were initiated by the addition of 500 nM WT primer T2AG3 or mutant primer T3GTG, 0.25 mM 

dTTP, 0.25 mM dATP (wild-type only), 5.5 µM unlabeled
 dGTP, and 0.33 µM [α-

32
P] dGTP. 

The 20 µl assays were incubated at 30°C for 1 hour then quenched with 80 µL of TE (10 mM 

Tris at pH 7.5, 1 mM EDTA). Product DNA was purified by phenol-chloroform extraction and 

ethanol precipitation and analyzed by denaturing acrylamide
 
gel electrophoresis. 

 

Telomere length assay. 

Telomere length was measured by in-gel hybridization using a 5’ end-labeled telomeric
 

repeat oligodeoxynucleotide (T2AG3)3 as previously described (Fu and Collins, 2007). Fragment 

sizes were compared to an ethidium bromide-stained DNA ladder.  
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Results and Discussion 

 

RNA-based affinity purification recovers active telomerase complexes. 

 RNA tag insertion sites must be carefully chosen to avoid the disruption of RNA folding 

or RNP assembly. Guided by the secondary structure model of hTR (Chen et al., 2000), we chose 

several insertion sites for the PP7 hairpin tag (Fig. 1A). We transiently expressed the tagged hTR 

variants along with untagged TERT in 293T cells and purified RNPs using triple FLAG (F)-

tagged PP7 coat protein. We then measured hTR accumulation and purification efficiency by 

northern blotting (Fig. 1B). We included an untagged version of hTR for the determination of 

relative accumulation levels and to control for nonspecific binding of RNA to the anti-FLAG 

antibody resin (Fig. 1B, lanes 1 and 9). The first tagged hTR variant, which was used in a 

previous study (see below), has three PP7 hairpins inserted at the hTR 5’ end. However, this 

RNA accumulated poorly (Fig. 1B, lane 2), potentially due to effects of the tag on transcription 

or 5’ end processing steps such as cap hypermethylation. PP7 hairpin insertion at position 221, in 
the 5’ H/ACA pocket, had little effect on accumulation (Fig. 1B, lane 8), but purification did not 

significantly enrich this RNA above the level of nonspecific background binding exhibited by 

untagged hTR (Fig. 1B, compare lane 16 to lane 9). This result could be due to H/ACA core 

proteins interfering with coat protein binding. We also inserted the tag in the 5’ single-stranded 

region 3’ of positions 6 and 17, avoiding the disruption of guanosine tracts predicted to form a 

G-quadruplex structure important for hTR accumulation (Sexton and Collins, 2011). For the 

insertion at position 6, nt 1-5 were repeated after the PP7 hairpin to restore the potential for G-

quadruplex formation. For the insertion at position 17, three base pairs were added to the base of 

the PP7 hairpin and the sequence of the hairpin was modified to remove GG dinucleotides that 

could interfere with G-quadruplex formation. These tag insertions had little impact on hTR 

levels, but only the insertion at nt 17 allowed efficient purification (Fig. 1B, lanes 6-7 and 14-

15). Finally, we made three hTR variants tagged in the activation region, outside of the area 

critical for TERT binding. We first modified the terminal hairpin sequence (nt 268-288) to create 

a consensus PP7 hairpin. This 268 variant accumulated to wild-type levels and allowed efficient 

purification (Fig. 1B, lanes 3 and 11). We also inserted the PP7 hairpin, or a long version with a 

small bulge and three base pairs added to the base of the stem, in the terminal loop 3’ of position 
278. These tagged RNAs accumulated to wild-type levels and were highly enriched by F-tagged 

PP7 coat protein purification (Fig. 1B, lanes 4-5 and 12-13).  

 We next verified that the telomerase complexes retained their catalytic activity when 

immobilized on anti-FLAG antibody resin via an interaction between the PP7 hairpin-tagged 

hTR and F-tagged PP7 coat protein. We performed activity assays using the same samples 

obtained for the northern blot in Fig. 1B. Activity paralleled the amount of hTR enrichment 

(compare Fig. 1B, lanes 9-16 to Fig. 1C, lanes 1-8). These results suggest that PP7 coat protein 

bound to hTR at the sites we tested does not interfere with telomerase catalytic activity. For 

future experiments, we used the tagged hTR variants with the 5’ terminal hairpin modified to 
create a consensus PP7 hairpin (268) or the PP7 hairpin inserted at position 17 or 278. 

 

Discrimination of monomeric versus multimeric hTR in RNPs assembled in vivo. 

 Many studies have suggested that telomerase complexes multimerize in vitro and 

possibly in vivo. Our laboratory has not found evidence for hTR or TERT multimerization using 

affinity purification from human cell extracts. In one such study, hTR tagged with three PP7 

hairpins at the 5’ end was unable to purify coexpressed untagged hTR as detected by northern 
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blot (Errington et al., 2008). In order to determine whether only a small fraction of telomerase 

complexes contain two or more hTR molecules, we took a similar approach but used our new 

tagged hTR variants, which accumulate to higher levels and are more efficiently purified than the 

one used previously. In addition, instead of northern blotting, we designed a more sensitive 

system that discriminates between the tagged and untagged RNAs using telomerase activity 

assays. We coexpressed the PP7 hairpin-tagged hTR 268 variant and an untagged version of hTR 

harboring three template mutations (U47A, C51A, and U53A) along with untagged TERT in 

293T cells (Fig. 2A). The template mutant hTR accumulated in vivo and exhibited a wild-type 

level of activity on a cognate primer, albeit with a boundary bypass defect (data not shown). 

Then we purified tagged hTR using F-tagged PP7 coat protein and used the bound material in 

telomerase activity assays. We divided the sample in half and added either the cognate wild-type 

primer T2AG3 or the mutant primer T3GTG to distinguish between the two hTR variants.  

 After purification, tagged wild-type hTR was enriched and its activity was detected using 

the wild-type primer (Fig. 2A, lane 1). However, this RNA did not copurify the untagged 

template mutant hTR, as evidenced by lack of activity using the mutant primer (Fig. 2A, lane 2). 

No background activity was detectable using either primer in the absence of tagged hTR 

expression (Fig. 2A, lanes 3 and 4). These findings were confirmed using the PP7 17 hTR 

variant and did not change when a high-salt buffer (see Materials and Methods) from a previous 

study that suggested telomerase is multimeric was used for purification (data not shown) (Cohen 

et al., 2007). Thus, even using a sensitive activity assay, no functional hTR multimers were 

detected in this experiment. 

 Another way to demonstrate telomerase multimerization is to observe dominant negative 

effects when wild-type and a catalytically inactive, but TERT-binding competent, mutant are 

coexpressed. Mutations in the template region of hTR can change the sequence of telomeric 

repeats with negative effects on telomerase function. Consistent with this finding, our hTR 

variants exhibited minimal activity on non-cognate primers (data not shown). Previous studies 

have found evidence either for or against potential hTR multimers influencing one another’s 
activity (Rivera and Blackburn, 2004; Wenz et al., 2001). Our laboratory has demonstrated that 

hTR variants with mutations in the template region do not compromise wild-type telomerase 

activity in telomere maintenance when stably coexpressed in vivo (Errington et al., 2008). We 

sought to extend this finding using our sensitized in vitro assay. Increasing amounts of template 

mutant hTR were expressed in the presence of PP7 hairpin-tagged wild-type hTR in 293T cells. 

Then tagged hTR-containing RNPs were purified using F-tagged PP7 coat protein and their 

activity on wild-type or mutant primer was measured. As shown in Fig. 2B, coexpressed 

template mutant hTR did not exert a dominant negative effect on the activity of purified PP7 

hairpin-tagged wild-type hTR; activity was proportional to the amount of tagged hTR purified 

(Fig. 2B, lanes 1, 3 and 5 and data not shown). A low level of activity from the untagged 

template mutant hTR distinguished by its atypical product ladder profile was detected even in the 

absence of tagged hTR, suggesting it resulted from nonspecific binding of the untagged RNA to 

the anti-FLAG antibody resin (Fig. 2B, lanes 2 and 8). Using the alternative buffer described 

above did not change these results (data not shown). These findings further demonstrate that 

human telomerase assembled in vivo does not form functional multimers under these conditions.  

 

Stable expression of tagged hTR and TERT variants affects telomere length. 

 It is possible that transient expression of telomerase components does not recapitulate 

important aspects of telomerase assembly, including its modulation by factors such as cell cycle 
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stage and subcellular localization. In addition, many methods to investigate telomerase 

architecture and identify additional subunits require more material than easily obtained by 

transient transfection. For these reasons, we constructed a series of stable HeLa S3 cell lines 

expressing tagged hTR and/or TERT.  

The mature hTR transcript can be produced by a variety of RNA polymerase II 

promoters, but mature hTR accumulation is sensitive to the presence of 3’ end processing 
elements. The 3’ end formation signal for hTR is unknown but appears to be present within the 

mature RNA sequence. Insertion of a polyA site or the U1 snRNA 3’ box RNA processing 
element and transcription terminator downstream of the mature hTR sequence greatly reduces 

RNA accumulation (Fu and Collins, 2003). Previous cell lines made in our laboratory have 

expressed hTR from an integrated U3-hTR-500 cassette. In this expression context, the U3 C/D 

box snoRNA promoter is followed by mature hTR and 500 bp of 3’ flanking genomic sequence. 
Cell lines have also been generated using the U1 snRNA promoter and 3’ box RNA processing 
element (without the downstream transcription terminator) to express hTR (Cristofari and 

Lingner, 2006). Before constructing our cell lines, we compared the relative amounts of hTR 

produced by different expression contexts in order to maximize RNA accumulation. We 

transiently transfected 293T cells and measured the levels of hTR by northern blotting. We found 

the U3 promoter yielded more hTR than the U1 promoter (Fig. 3A, compare lanes 6-7 to lanes 2-

5). The presence of the U1 3’ box immediately downstream modestly increased the levels of hTR 
expressed by both promoters relative to when the element was separated from the mature 3’ end 
by 500 bp (Fig. 3A, compare lanes 4 and 6 to lanes 5 and 7). Based on these results, we inserted 

a PP7 hairpin tag at hTR position 278 in the pBS-U3-hTR-box construct and cloned the U3-hTR-

box fragment into the 3’ long terminal repeat of the retroviral vector pBABE puro. We also made 

a version with a CAB box mutation (G414C) to determine whether disrupting the localization of 

hTR changes its binding partners and/or multimerization state. We also combined the PP7 tag 

with an MS2 tag at position 17 for tandem RNA-based affinity purification. We expressed this 

RNA under the control of the U3 or U1 promoter.  

Retroviruses packaged in Phoenix 293T cells were used to infect HeLa S3 cells adapted 

to adherent growth. After integration and selection, we verified the expression of the tagged 

RNA variants by northern blotting. The PP7 hairpin- and tandem (MP)-tagged hTR variants 

expressed by the U3 promoter accumulated to levels comparable to untagged endogenous hTR 

(Fig. 3B, lanes 3-5). However, the expression of tandem-tagged hTR by the U1 promoter was 

undetectable (Fig. 3B, lane 2). The mobilities of the tagged RNAs varied between experiments, 

likely due to sample heating and folding during gel electrophoresis. Unfortunately, purification 

using tagged MS2 coat protein was inefficient (data not shown) and the cell lines expressing 

tandem-tagged hTR were not analyzed further. 

The cell lines with integrated empty vector or PP7 hairpin-tagged wild-type or CAB box 

mutant hTR were then infected with retroviruses containing TERT. We also infected the tagged 

wild-type hTR-expressing line with the corresponding empty vector. We expressed full-length 

TERT or a truncation lacking the TEN domain (∆TEN) tagged with a ZS tag composed of 
tandem protein A domains and a streptavidin-binding peptide (SBP) separated by a tobacco etch 

virus (TEV) protease cleavage site. Previous studies have suggested the TEN domain could 

mediate TERT multimerization (Beattie et al., 2001), and this region may interact with known or 

yet to be discovered subunits. We also expressed full-length TERT with a ZF tag, in which SBP 

portion is replaced with the triple FLAG sequence. Tagged protein expression in these cell lines 

was monitored by western blotting (Fig. 3C).  



 67 

In different cell lines, hTR and/or TERT can be limiting for telomere length set-point. In 

HeLa cells, a previous study suggested that both hTR and TERT limit telomere elongation 

(Cristofari and Lingner, 2006). To determine whether the tagged versions of hTR and TERT 

were biologically functional, we measured telomere length in our stable HeLa S3 cell lines. We 

collected cells after increasing numbers of population doublings (PD) and digested their genomic 

DNA with restriction enzymes that cut ubiquitously in the genome but lack a recognition site in 

the T2AG3 telomeric repeats. The DNA fragments were separated by agarose gel electrophoresis 

and detected by in-gel hybridization with an end-labeled telomeric probe. In the tagged hTR-

expressing lines, telomeres were maintained at a short, but stable, length of approximately 4 kbp 

(Fig. 4D, lanes 3-6). This length was similar to that of the empty vector line (Fig. 4D, lanes 1-2), 

suggesting that tagged hTR expression alone had little effect on telomere elongation. In contrast, 

when full-length TERT was expressed in the absence or presence of tagged hTR, telomere length 

increased dramatically to approximately 10 kbp (Fig. 4D, lanes 9-10, 13-14, 17-18). The length 

in cells expressing PP7 hairpin-tagged wild-type hTR was slightly greater than in those without 

hTR or with CAB box mutant hTR (Fig. 4D, compare lanes 13-14 to 9-10 and 17-18), possibly 

reflecting a contribution of the tagged RNA to telomere lengthening dependent on its Cajal body 

localization. Interestingly, expression of truncated TERT decreased telomere length relative to 

the absence of TERT expression (Fig. 4D, compare lanes 11-12, 15-16 and 19-20 to lanes 7-8). 

This dominant negative effect on telomere length may be due to competition for a limiting 

amount of hTR or another telomerase component or could potentially result from RNP 

multimerization. 

 

Tagged RNA- and protein-based purifications recover RNP complexes from stable cell lines. 
In order to obtain telomerase complexes for analysis of their subunit composition and 

multimerization state, we tested various affinity purification schemes. We first performed IgG 

purifications using whole cell extract from the stable cell lines and compared the amount of PP7 

hairpin-tagged hTR bound to Z-tagged PP7 coat protein versus ZS- or ZF-tagged TERT. We 

found that the RNA-based purification recovered more RNA than the protein-based purification 

(Fig. 4A, compare lane 9 to lanes 10-12). However, while the tagged TERT variants bound hTR, 

they exhibited a preference for endogenous untagged, rather than tagged, hTR. This finding was 

surprising given the robust activity of PP7 coat protein-purified telomerase complexes (Fig. 1C) 

and the comparable levels of tagged and untagged hTR purified by tagged TERT from 

transiently transfected cells (data not shown). Experiments employing transient overexpression 

may have failed to detect small differences in binding affinity. As expected, the ∆TEN version of 
TERT bound to hTR less efficiently than the full-length protein (Fig. 4A, lanes 11-12) due to the 

loss of TEN domain interaction with the template-pseudoknot region of hTR (Robart and 

Collins, 2011). The bias against tagged RNA binding by TERT will greatly decrease the yield 

from combined RNA- and protein-based tandem affinity purification using these cell lines. 

However, the fact that RNA-based affinity purification selects for hTR-containing RNPs lacking 

TERT may also be an advantage. The analysis of these complexes could reveal novel proteins 

required for hTR biogenesis and stability that are not part of TERT-containing RNPs. 

We next investigated possible two-step RNA-based affinity purification schemes using 

tandem-tagged PP7 coat proteins. All of the PP7 coat proteins have a C-terminal 6xHIS tag for 

purification from E. coli. In addition to the Z- and F-tagged variants used in earlier experiments, 

we also expressed and purified a ZF-tagged coat protein. We then compared the relative 

efficiency of two-step purifications employing anti-FLAG antibody resin in the first step and  
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either IgG or Ni-NTA resin in the second step in the presence of 150 mM or 200 mM NaCl. We 

found that while the first step of purification was successful, only the Ni-NTA purification 

recovered hTR in the second step. The same results were obtained when the order of purification 

steps was reversed (IgG then anti-FLAG antibody) and was not due to defective binding of the 

ZF-tagged coat protein to either resin since one-step purifications recovered hTR (data not 

shown). In addition, western blotting of purification fractions showed that ZF-tagged coat protein 

was present in second-step eluates (data not shown). It appears that during the second binding 

step, the ZF-tagged coat protein or telomerase RNP undergoes a conformational change that 

dissociates this coat protein from the RNA. The amount of NaCl in the buffers had little effect on 

the first step, but the higher salt condition reduced binding to the Ni-NTA resin slightly (Fig. 4B, 

lanes 14-19). Two-step purifications in which IgG was followed by Ni-NTA resin also recovered 

hTR, but the presence of a 6xHIS tag on the TEV protease used in the first-step elution made this 

approach unfavorable for mass spectrometric analysis of telomerase complexes. 

Based on the above results, we scaled up the tandem anti-FLAG antibody-Ni-NTA two-

step purification approximately 100-fold and analyzed the protein composition of the purified 

complexes by SDS polyacrylamide gel electrophoresis and silver staining. Unfortunately, to 

minimize the elution volume in the second step, a smaller relative volume of Ni-NTA resin was 

used and the tagged RNPs failed to bind appreciably, based on the absence of hTR from the 

imidazole elution fractions (data not shown). As a result of this low recovery, no proteins 

specifically bound to tagged hTR were detectable (Fig. 4C). If the amount of material obtained 

after two-step RNA-based affinity purification is insufficient for mass spectrometry analysis, 

single-step purification followed by excision of specific bands may be required. Alternatively, 

large-scale transient transfection may be necessary to increase yield. Small-scale transient 

transfection of 293T cells followed by single-step RNA-based affinity purification successfully 

recovered high levels of overexpressed tagged hTR, but silver staining did not reveal any 

specifically copurifying proteins (data not shown). 

 In summary, in this study we have demonstrated that RNA-based affinity purification 

using PP7 hairpin-tagged hTR and epitope-tagged PP7 coat protein is a useful approach for the 

isolation of human telomerase complexes. This method can be combined with mass spectrometry 

to identify novel hTR-interacting proteins. In addition, the analysis of purified telomerase 

complexes using gel filtration, and potentially direct structural approaches such as electron 

microscopy, will shed light on the multimerization state of telomerase. The study of human 

telomerase subunit composition and holoenzyme architecture will expand our knowledge of 

telomerase RNP biogenesis, activity, and regulation.  

 

 

 

 

 

 

 

 

 

 

 

 



 69 

Figure 1 
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A subset of PP7 hairpin insertions allow hTR accumulation and purification of catalytically 

active telomerase. (A) Secondary structure of full-length hTR. Open boxes within the H/ACA 

domain indicate the location of the H box and ACA (left and right boxes, respectively). Positions 

of PP7 hairpin tag insertions are indicated. The 268 variant minimally modifies the hTR 

sequence to create a consensus PP7 hairpin. (B) Extracts from 293T cells transfected to express 

untagged TERT and PP7 hairpin-tagged hTR variants were subjected to RNA-based affinity 

purification using F-tagged PP7 coat protein. Untagged (ut) hTR provides a control for 

nonspecific binding of RNAs to anti-FLAG antibody resin. The hTR variants and the recovery 

control (RC) were detected on the same blot. (C) Direct primer extension activity assays were 

performed using the bound material in (B).  
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Figure 2 
 

 
 

Telomerase complexes containing PP7 hairpin-tagged hTR are monomeric. (A) Diagram 

showing the alignment of wild-type (WT) and mutant (mut) hTR templates with cognate 

substrate DNA primers. Extracts from 293T cells transfected to express untagged TERT and 

untagged template mutant hTR with or without PP7 hairpin-tagged wild-type hTR were 

subjected to RNA-based affinity purification using F-tagged PP7 coat protein. Direct primer 

extension activity assays were performed using the bound material. (B) Extracts from 293T cells 

transfected to express untagged TERT and varying relative amounts of untagged template mutant 

hTR and PP7 hairpin-tagged wild-type hTR were subjected to RNA-based affinity purification 

using F-tagged PP7 coat protein. Direct primer extension activity assays were performed using 

the bound material.  
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Figure 3 
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Stable expression of PP7 hairpin-tagged hTR and/or epitope-tagged TERT variants affects 

telomere length. (A) Construct schematics and results for hTR expression from different Pol II 

expression contexts (U1, U1 snRNA promoter; U3, U3 snoRNA promoter; 500, 500 bp of hTR 

genomic 3’ flanking sequence; box, U1 3’ box RNA processing element). Total RNA from 293T 

cells transfected with an empty vector (EV) or constructs encoding hTR in different expression 

contexts was examined by blot hybridization. Full-length hTR and the endogenous loading 

control (LC) were detected on the same blot. (B) Total RNA from HeLa S3 cells stably 

expressing hTR with a PP7 hairpin inserted at position 278 (PP7) or a PP7 hairpin inserted at 

position 278 and a MS2 hairpin at position 17 (MP) was examined by blot hybridization. CAB 

indicates the presence of the G414C CAB box mutation. (C) Extract from HeLa S3 cells stably 

expressing epitope-tagged TERT (FL, full-length; ΔTEN, TEN domain truncation) with or 

without hTR was examined by western blotting using rIgG, which recognizes the Protein A 

domains (Z) of the epitope tags. The same blot was reprobed with anti-α-tubulin antibody as a 

loading control. (D) Genomic DNA from HeLa S3 cells stably expressing tagged hTR and or 

TERT was subjected to restriction enzyme digestion and telomere fragments were detected by 

in-gel hybridization of a telomeric DNA probe. Telomere lengths were measured relative to an 

ethidium bromide-stained DNA ladder.  
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Figure 4 
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RNA-based and protein-based affinity purifications recover telomerase RNPs. (A) Extracts 

from HeLa S3 cells stably expressing epitope-tagged TERT and/or PP7 hairpin-tagged hTR were 

subjected to RNA-based affinity purification using Z-tagged PP7 coat protein (CP) and IgG resin 

or protein-based affinity purification using IgG resin (FL, full-length TERT; ΔTEN, TEN 
domain truncation). (B) Extracts from HeLa S3 cells stably expressing PP7 hairpin-tagged hTR 

were subjected to two-step RNA- based affinity purification using ZF-tagged PP7 coat protein 

and anti-FLAG antibody resin followed by either IgG or Ni-NTA resin. The PP7 hairpin-tagged 

hTR, untagged endogenous hTR, and the recovery control (RC) were detected on the same blot. 

(C) Extracts from HeLa S3 cells stably expressing empty vector (mock) or PP7 hairpin-tagged 

hTR were subjected to two-step RNA-based affinity purification using F-tagged PP7 coat protein 

and anti-FLAG antibody resin followed by Ni-NTA. Proteins recovered after the first or second 

step of purification was resolved by SDS PAGE and detected by silver staining. 
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