
Architecture and Concepts of the ARGuE Guard

Jeremy Epstein
jepstein@nai.com

NAI Labs
McLean Virginia

Abstract

ARGuE (Advanced Research Guard for Experimentation)
is a prototype guard being developed as a basis for
experimentation. ARGuE is based on Network
Associates’ Gauntlet firewall. By integrating capabilities
developed under several government programs, we were
able to create a system which is easier to extend than
other guards, provides significant new features (such as
integration with an intrusion detection system), and yet
has a reasonable degree of assurance.

1. Introduction

Standalone system high networks are a thing of the
past. Historically, networks of different classifications
were usually not connected. When connection was
imperative, a person in the middle was required to review
all data flowing between the networks (a slow and error-
prone process). Today, even users of highly classified
networks need instantaneous access to resources on the
Internet. For example, planning a military operation
requires access to public “open source” news and weather
information (e.g., CNN). Additionally, organizations
need to allow limited subsets of users on the outside to
access resources inside the classified networks, especially
in coalition environments.

Connecting such networks together historically
required a guard, a special purpose device designed to
prevent information flowing from the inside (the more
highly classified side) to the outside (the less highly
classified side). Guards differ from firewalls in their
primary intent: a firewall is mostly concerned with
keeping unauthorized users out, while a guard has the
additional goal of preventing information on the inside
from being sent to the outside.

Existing guards suffer from several key problems:
• They were either built on special purpose operating

systems to maximize their resistance to attack (which
made them both expensive to obtain and manage), or
they were built on weak COTS operating systems
(which made them vulnerable to attack). Examples of
the former class include the C2 Guard [Fiorino], which

is built on the XTS-300 B3-rated operating system
[XTS-300]. Examples of the latter class include the
ISSE guard [ISSE], which is built on an ordinary
Solaris operating system.1

• The guards were also built for particular applications,
and were generally hard to extend to other uses. For
example, a DISA-sponsored study [SGS] found
approximately 50 different guards built by the US
Department of Defense. None of these guards have the
capability to deal with modern middleware protocols
such as IIOP (used by CORBA).

• In many cases, guards require a human to “certify”
each piece of data (e.g., E-mail message) to be released
from the inside to the outside, which is difficult to do
accurately. In general, the certification occurs inside
the enclave, using trusted software which puts a digital
signature on the data to be released. The signature is
then verified by the guard before release. This
technique relies on the correct operation of the user’s
approval software (i.e., the correct functioning of the
user’s workstation). For example, Secure Computing’s
Standard Mail Guard [Smith] requires that the user
invoke a Fortezza card to perform signing of each
message to be released, without any assurance that the
Fortezza card is signing what the user intended. The
SMG can verify that the signature was applied
correctly, but cannot determine whether the signed
data is in fact appropriate for release, or even if it is
what the user intended to release. Even aside from
assurance issues, this scheme is inappropriate for
connections involving lower level protocols (e.g.,
IIOP), since users cannot realistically approve each
object invocation.

• As special purpose devices, guards lack integration
with other security devices, such as working with
intrusion detection systems. They require a separate
set of management capabilities, and cannot be
managed along with the rest of the network.

Our goal in designing ARGuE was to use a modern
firewall as a base, thus providing a strong platform that
has already withstood concerted attack. We then

1 Earlier versions of the ISSE were built on the Harris

Nighthawk, a B1 UNIX system.

extended the firewall in ways to provide modular
functionality that provides a reasonable degree of
assurance. Our goal was not to build an accredited (or
even accreditable) guard; as such we have not developed
any of the formal documentation required to field a
product. Rather, our goal was to explore how we could
use existing commercial and research technologies to
provide a prototype of a next generation guard.

The remainder of this paper is organized as follows:
Section 2 describes the ARGuE capabilities and
architecture. Section 3 describes the current status of our
work, limitations, and our future research directions.
Section 4 concludes the paper.

2. ARGuE Capabilities

This section describes the Gauntlet capabilities, how
we extended it to create the prototype guard (ARGuE),
and the ARGuE architecture.

As described above, our goal was to build a guard with
reasonable assurance, yet based on COTS products for
low cost, flexibility, etc. Our method of achieving
assurance was to build on a strong firewall platform,
adding multi-part proxies (described below) that reduce
the risks inherent in all firewall proxies, and strengthen
the foundation by using operating system level wrappers
to constrain the behavior of the proxy. Collectively, we
believe this layered defense approach results in a guard
that provides both functionality and assurance.

2.1 Gauntlet Capabilities

By building ARGuE (Advanced Research Guard for
Experimentation) on the Gauntlet firewall, we gained
several key capabilities.

First, Gauntlet has a strong pedigree, having been
installed in thousands of sites. Although it has never been
evaluated for use in Multi-Level Secure (MLS)
environments, its ability to withstand attack is understood.

Second, as a COTS software product Gauntlet is a low-
cost solution, running on COTS hardware architectures
such as Intel PCs, Sun SPARC, and Hewlett-Packard PA-
RISC.

Third, existing Gauntlet facilities provide many of the
necessary features for a guard, including Virtual Private
Networks, and the ability to block based on IP addresses.

Fourth, Gauntlet is readily extensible by including a
Proxy Development Toolkit (PDK). The availability of
existing protocol proxies allows incremental development
of the guard. Initially, the guard can use existing proxies
(with the limited filtering capabilities they provide),
replacing them as more sophisticated filtering proxies
become available.

Fifth, Gauntlet includes sophisticated management
capabilities, including integration with Network
Associates’ Cybercop intrusion detection products.

2.2 ARGuE Extensions to Gauntlet

ARGuE extends the Gauntlet product in several ways:
by adding “safer” multi-part proxies for critical protocols;

Inside

Hardware

Figure 1. The Overall ARGuE Architecture

Outside

Hardened Operating System

Gauntlet Packet Filtering

FTP
Multi-
Part

Proxy

IIOP
Multi-
Part

Proxy

HTTP
Multi-
Part

Proxy
…

ARGuE

Proxy Wrappers

by providing “data sealing” capabilities; by integrating

wrappers technology for constraining incorrect proxy
behavior; and by providing data and application-specific
intrusion detection information.

Figure 1 shows that an ARGuE system is made up of a
Gauntlet with one or more multi-part proxies, where each
proxy is constrained using wrapper technologies.

2.2.1 The Multi-Part Proxy Architecture

Proxies in most firewalls (including Gauntlet) are
trusted software that communicate between the “inside”
and “outside” networks. Figure 2 shows a traditional
proxy, which provides communications between one
inside and two outside networks. In general, such proxies
allow unlimited communication from inside to outside,
and limited communication from outside to inside. Any
flaw in the proxy (including subversion), can cause the
proxy to provide direct communication from the outside
to the inside.

By contrast, the ARGuE multi-part proxy, shown in
Figure 3, divides the work
of the proxy into several
programs: one that
communicates with (each)
outside network, one that
communicates with (each)
inside network, and one in
the middle that provides for
filtering between each
combination of inside and
outside networks.

The inside
listener/sender performs two
functions: it listens for
protocol operations (e.g.,
IIOP requests or replies)
coming from the inside
network and translates
(externalizes) them into
files, and it listens for the

results of the content-based filter and translates the
externalized files into protocol operations (e.g., IIOP
requests or replies). Each outside listener/sender
performs the analogous function for its attached outside
network. The content-based filters review the file created
by the inside or outside listener/sender, performing any
necessary content-based decision-making depending on
the direction of the transfer, and forwards the request to
the opposite side. The content-based filter can also
modify the file, thus performing sanitation (e.g., excising
dirty words or "fuzzing" data values).

The use of files as the transfer mechanism is to reduce
the binding between the different parts of the system.
However, there is no fundamental architectural reason
why the connection needs to be using a file. For example,
a different implementation might use UNIX shared
memory segments as the communication method, using
appropriate permissions on the memory to control which

Inside

Outside #2

Outside #1

Firewall
Proxy

Figure 2. Traditional Firewall Proxy Architecture

Inside

Outside #2

Outside #1

Inside
Listener/
sender

Figure 3. ARGuE Multi-Part Firewall Proxy Architecture

Inside
Listener/
sender

Content-
based
Filter

Outside #1
Listener/
sender

Outside #2
Listener/
sender

Content-
based
Filter

processes can read and write. Using shared memory
would probably be faster than the existing file-based
mechanism.

Figure 4 shows the sequences for a typical successful
or unsuccessful protocol operation.

Consider the sequence of operations shown in the
upper portion of Figure 4. The operation starts on the
inside, where the client application sends a request (S1) to
the inside listener/sender. Access controls may be
performed at this step before the request is externalized
into a file and transferred (S2) to the content-based filter.
The filter makes a decision based on the contents of the
request, and forwards the file (S3) to the outside
listener/sender. The file is converted from the file format
back into the original protocol format, and sent to the
server on the outside network. When the server responds
(S5), the outside listener/sender may perform access
controls, and then converts the response to a file,
continuing back through the content-based filter (S6) to
the inside listener/sender (S7), where it is converted back
into a protocol stream and sent to the originating client.

The lower portion of Figure 4 shows an unsuccessful

operation, beginning on the outside (although an
unsuccessful operation could begin either on the inside or
outside). In this case, the request is sent to the outside
listener/sender (U1), which may perform access controls
before converting the request to a file (U2) and sending it
to the content-based filter. After reviewing the contents
of the request, the filter may reject the request (the dotted
line), or it may forward the request on to the inside
listener/sender (U3), which converts the file back to a
protocol request, and sends it to the inside server (U4).
The server’s response (U5) is sent to the inside
listener/sender which may perform access control and
reject the response (shown as the dotted line), or accept it
and forward it (U6) to the content-based filter, which may
also reject the request (the dotted line).

One complicating factor in the unsuccessful case is
that if the response is rejected (at any of the locations
shown in Figure 4), the client is left waiting for a
response. Depending on the application architecture, it
may be necessary to generate a synthetic response to the
client indicating that the request or response has failed. In
some cases it may be sufficient to reject it without

Inside

Outside #2

Outside #1

Inside
Listener/
sender

Figure 4. Sequence of Operations

Content-
based
Filter

Outside #1
Listener/
sender

Outside #2
Listener/
sender

Content-
based
Filter

S1
S3 S4

S5S6S7S8

U1U2U3U4

U5 U6

S2

Inside Outside

Figure 5. Expanded ARGuE Architecture

Inside
Listener/
sender

Content-
based
Filter

Outside
Listener/
sender

Request/
Response
Queuing

Request/
Response
Queuing

indicating whether it was the request or the response that
was unsuccessful; in other cases it may be necessary to
indicate what the cause of the failure was. In any case,
some information leakage will occur as a result of the
synthetic response, so careful definition of the generic
response is necessary.

Figure 5 shows an expanded version of the
architecture, adding the queuing and dequeuing
components which are not shown in Figure 3. Each
queuing component has an input and an output directory
for each transfer direction. Only filters copy files from
the input directories to the output directories.

The concept of a multi-part proxy was inspired by the
C2Guard [Fiorino], which uses a similar sequence (shown
in Figure 6) to split up the operation. The C2Guard
consists of three computers: a Sun Solaris system that
queues files from the inside and passes them over a serial
line to the Wang XTS-300; the XTS-300 running the
content-based filters; and a second Sun Solaris system
that accepts the files over a serial line from the XTS-300
and transfers them to the outside. (The process is
equivalent for files being transferred from the outside to
the inside.) The queuing and dequeuing computers are
required to be dedicated to that purpose; they accept (and
send) files using NFS and FTP. In environments where
protocols such as IIOP are required, another pair of
computers (shown as the protocol/file translators) are
required to translate from the native protocol to file
format and back. The key difference is that ARGuE
requires a single computer to provide all of the
capabilities (protocol handling, queuing, and filtering) as
opposed to three or five computers as in the case of the
C2Guard.

2.2.2 Writing Content-based Filters

Each multi-part ARGuE proxy consists of the five
parts enumerated above:

1. the inside listener/sender,
2. the inside request/response queuing,
3. the content-based filter,
4. outside request/response queuing, and
5. outside listener/sender.

Of these five parts, the first two and last two are generic
for a given protocol. That is, all installations of ARGuE
which use IIOP as the transfer mechanism will use
identical software. The content-based filter, however, is
highly application specific.

There are two parts to content-based filtering: figuring
out what is to be filtered (i.e., the organizational security
policy), and translating those rules into filtering code. Of
these, the first is clearly more difficult, because
organizations frequently do not know what makes data
sensitive, especially at the protocol level where the higher
level semantics are stripped away. It is further
complicated with classified data (i.e., when connecting
classified to unclassified networks) in that few individuals
are willing to take the risk of identifying information as
unclassified. It is far simpler to claim that all data is
classified, thus leading to the traditional unconnected
system-high systems. Determining what is to be filtered
is a primarily social exercise, not a technical one, and as
such is not further explored in this paper.

The ARGuE design allows for use of any executable
program as a filter. Thus, the filter could be written in a
low level language like C, in a scripting language such as
Perl, or in an interpreted language such as Java. Since the
filtering is done directly on the boundary controller

Inside

Figure 6. C2Guard Architecture

Protocol/
file

Translator
Content-

based Filter
(XTS-300)

Outside

Queueing/
dequeueing

(Solaris)

Queueing/
dequeueing

(Solaris)

C2 Guard

Protocol/
file

Translator

machine, any vulnerabilities in the filter may make it
vulnerable to outside attacks. While we could use our
Wrappers technology to limit the capabilities of the Perl
or Java interpreters, there seemed to be little to be gained
by that choice, and much to lose if there are other types of
vulnerabilities in Java that we are not currently aware of.
For these reasons, we rejected use of Perl or Java,
primarily because of the complexity they introduce.

Instead, we decided to use Felt [Guttman], a language
developed specifically for filter development. Felt
provides constructs for parsing input files into fields and
filtering based on content values. It can also be extended
by writing C code, which can be embedded in the filter
definition.

While it is non-procedural (with the exception of C
extensions), Felt is still a programming language, and as
such, requires significant expertise to write filters. Since
filters are application specific, the effort involved in
development is a significant cost in fielding a guard, as
opposed to the generic parts of the system which can be
amortized over multiple instances. As an area for further
research, we are investigating whether a graphical user
interface (GUI) could be used to present templates to a
non-programmer who is knowledgeable about the security
constraints, and have that person fill in the content
limitations. The result of the GUI would be a Felt
program, which could then be reviewed along with the
GUI inputs to verify that it meets the organizational
security requirements.

2.2.3 Data Sealing in ARGuE

In some cases, data comes into a system from the
outside, is stored, and is then exported back either to its

origin or to some other outside organization. In these
cases, filtering can be avoided if the data can be
recognized as having previously been imported, using the
theory that if something came in then it must be
acceptable to send out again.

In ARGuE, we implemented this concept by allowing
filters to place digital signatures on data items as they
transit from the outside to the inside. An inside-to-outside
filter can then verify the digital signature as part of the
filtering process, most likely in preference to performing
content-based filtering.

The most difficult part of data sealing is determining
what to do with the seal data (i.e., the data that makes up
the seal itself). Our goal was to add seals to CORBA
(IIOP) traffic, preferably without changing either the
client or server application. We considered three
approaches:
1. Figure 7 shows the initial approach where the seal

would be embedded in the Interoperable Object
Reference (IOR). This method was not feasible
because it interfered with the operation of the
CORBA application.

2. Figure 8 shows the second approach where the seal is
calculated and embedded in a field designated as part
of the application definition. This method worked
acceptably, although it required that both the client
and server applications be aware of the seal to reserve
space for the seal storage. Additionally, it required
that the server application store the seal with the data
and retrieve it whenever retrieval is required. Thus, it
was operable, but it did not meet our goals.

3. Figure 9 shows the third approach where the seal is
calculated in the guard and stored there. Neither the
client nor the server need be aware of the seal

Figure 7. Seal Stored in IOR

Client Server

IIOP
Request

IOR

IIOP
Request

IOR w/
seal

ARGuE

IIOP request

Outside Inside

Client Server

IIOP
Request

IOR

IIOP
Request

IOR w/
seal

ARGuEOutside Inside

Tampered
seal

Good
seal

Seal
added

IIOP Retrieval

calculation, as it is kept exclusively within the guard.
However, there are several problems with this
approach. The guard must have a mechanism to
determine whether a particular piece of data being
presented for release has a corresponding seal in the
database. The simplest method is for the guard to
recalculate the seal, and then search its database for a
previous instance of the seal value. Presuming that
the digital signature algorithm is sufficiently strong
that collisions are acceptably unlikely, this method
will allow release of previously signed data, but will
not allow release of unsigned data. A concern is that
the guard cannot know when it is safe to discard any

of the seals it has kept in its database, since it does
not receive any notifications that the server has
discarded data (the server being unaware of the
presence of the database in the guard).

While any of these methods can be implemented, ARGuE
currently uses the second and third of these methods (with
the second being preferred).

One of the more difficult aspects of data sealing is
determining what can realistically be sealed, and still have
the seal be meaningful. For instance, if a seal were
applied to a one byte value, then there would be too few
realistic seals to be meaningful. There is no "magic"
correct size for sealed data, but it is a consideration in

Figure 8. Seal Stored in User-Defined Field (UDF)

Client Server

IIOP
Request

UDF

IIOP
Request

UDF w/
seal

ARGuE

IIOP request

Outside Inside

Client Server

IIOP
Request

UDF

IIOP
Request

UDF w/
seal

ARGuEOutside Inside

Tampered
seal

Good
seal

Seal
added

IIOP Retrieval

Figure 9. Seal Stored in Guard Database

Client Server
IIOP

Request
IIOP

RequestARGuE

IIOP request

Outside Inside

Client Server
IIOP

Request
IIOP

RequestARGuEOutside Inside

Tampered
seal

Seal
found

Seal
calculated

IIOP Retrieval

developing the application-specific filtering software that
adds and verifies seals.

2.2.4 Wrappers to Constrain Proxies

One of the concerns associated with having all of the
guard processes on a single platform is that a flaw in any
of the processes could lead to undesired results. For
example, a flaw in the content-based filter or in any of the
listener/sender processes could allow traffic to flow
directly from the inside to the outside, bypassing the
content-based filtering.

At first blush it might seem that existing operating
system controls could be used to constrain behavior of the
proxy. However, our base is the UNIX version of
Gauntlet, and UNIX, like most operating systems, does
not provide a thorough access control system. For
example, while it is possible to control access to
individual files within the Gauntlet (which ARGuE uses
through use of unique UIDs and GIDs to represent each
part of the multi-part proxy), there is no means to control
which TCP/IP ports may be accessed by an application,
other than the restriction that unprivileged processes
cannot bind to ports below 1024. Our goal was to provide
finer grained controls on the operation of the proxy parts.

Our means of controlling the proxies is to develop
wrappers, using the Wrapper Definition Language (WDL)
[Fraser]. There are three wrappers associated with each
ARGuE multi-part proxy:
• A wrapper for the listener/sender programs,

parameterized to allow it to bind to specified TCP/IP
ports on the appropriate network interface (i.e., so the
inside listener/sender can access the inside network,
and the outside listener/sender can access the outside
network, but not vice versa), and to allow it to access
files in its corresponding directories, but not the
directories belonging to the opposite side. This
wrapper will vary depending on the protocol being
processed by the proxy, especially insofar as the port
numbers that can be bound.

• A wrapper for the queuing/dequeuing programs,
parameterized to allow it to access the correct
directories only, but not allowing them to access any
TCP/IP ports.

• A wrapper for the filtering program, allowing it to
operate on the queuing directories, but not allowing it
to access any TCP/IP ports.

The wrappers are designed to allow the corresponding
program to do little as possible, to minimize the risk of
erroneous or malicious code. For example, the wrapper
for the listener/sender program allows the following:
• Fork a child process
• Use semaphores used for synchronizing the different

parts of ARGuE

• Make open() calls on files in specified directories (with
limitations on what directories can be opened for
reading and what directories can be opened for
writing)

• Make read() and write() calls to access already opened
files

• Make unlink() calls to remove files from specified
directories

• Exit

2.2.5 Integration with Intrusion Detection

The final part of ARGuE is integration with intrusion
detection technology. The Intruder Detection and
Isolation Protocol (IDIP) [IDIP] can be used both to
identify potential attacks, and to cause real-time changes
in configurations to respond to those attacks.

IDIP integration is currently limited to notification of
potential attacks. The listener/sender processes can detect
incorrectly formatted protocols (by comparing the data
received to the expected protocol), and can send
appropriate notifications. The filter is capable of
generating application specific alerts, depending on
values received. For example, if data representing the
amount of a bank deposit is being passed through
ARGuE, an intrusion detection system might be
configured as follows:
• For deposits less than $1000, no alert is ever

generated.
• For deposits less than $10,000 made during banking

hours, no alert is generated, but if outside of normal
hours then a low level alert is generated.

• For deposits less than $100,000, an alert is generated,
but the transaction is allowed to go through.

• For deposits less than $1,000,000, an alert is generated
and the transaction is blocked, but other transactions
are permitted.

• For deposits greater than $1,000,000, an alert is
generated, and future transactions are refused (perhaps
because it indicates a significant security breach).

The most interesting alerts are application specific, and
hence require knowledge and planning on the part of the
filter developer.

One of the critical issues in interacting with an
intrusion detection system is where to report problems.
We decided to report problems detected by the inside
listener/sender and by the filter to devices on the inside,
and problems detected by the outside listener/sender (but
not the filter), to devices on the outside. It is unclear
whether outsiders should also be notified of potential
attacks found by the filter. We believe that attacks on the
filter are most likely to be attempts to release data which
fails the filtering criteria, and is more likely to indicate an
error in the program sending the data (or the filter itself)

than a concerted effort by an inside user to leak
information.

3. Current Status, Limitations, and Future
Work

ARGuE has been demonstrated in several government
testbeds to connect together networks of the same
classification (but where we pretended that the data was
of different classifications). Protocols transferred in these
demonstrations included IIOP (CORBA) and FTP. In the
latter case, the data was stored within the file being
transferred using XML. Use of XML meant that the filter
had to parse the XML to find the relevant data to be
filtered; an additional step.

ARGuE has several significant limitations:
• It is not, and is not planned to be accredited. It is only

a testbed.
• There are inherent delays introduced by the

architecture. Since filtering is not possible until an
entire operation is available for review, the
listener/sender processes accumulate an entire request.
If the protocol being processed is FTP, this means that
the entire file is collected into the ARGuE device
before filtering begins and subsequent transfer. Thus,
the transfer time is at least twice what it would be if
ARGuE were not reviewing the data. Use of shared
memory instead of files (as described earlier) would
reduce this latency somewhat, but the requirement for
assembling the entire operation would remain. The
doubling of transfer time is therefore fixed, while the
interim processing may be speeded up.

• Addition of each new protocol requires different
listener/sender pairs. While it may be possible to adapt
these from existing firewall proxies, they have
different requirements, and hence will always be less
flexible than corresponding firewalls. Additionally,
the wrappers will differ somewhat for each
listener/sender pair, thus increasing development
effort.

• Developing filters is still hard, especially for protocols
where the level of detail available in each request is
small, and hence difficult to determine whether a
particular message should be allowed through. For
organizations accustomed to "out of the box" firewalls,
the software development effort is a significant issue
(although no worse than other guards).

• Because the filters are dynamically invoked for each
message, they are inherently stateless. This has been
adequate for our current purposes, but may not be in
the future.

• CORBA implementations do not have fixed TCP ports,
as do other network services such as SMTP or HTTP.
Most CORBA implementations provide a mechanism
to specify a particular TCP port to be used. Since the

proxies must listen on particular ports, this requires
application effort. However, this is no worse than the
effort required to use CORBA applications through a
firewall.

Our future directions include an in depth look at the
assurance granted by the multi-part proxies (as compared
to the traditional single part proxy), and the value of
wrappers on proxies. As noted above, we also plan to
build a graphical user interface to make it easier for non-
programmers to specify filtering rules, and to compare the
quality of filtering rules generated by non-programmers
with those developed by programmers. Additionally, we
plan to integrate ARGuE with central network
management capabilities, so the set of filtering rules can
be dynamically changed under the control of an
administrator (perhaps in response to an operational need
to transfer data, or to restrict traffic when a leak is
suspected).

4. Conclusion

ARGuE provides significant features normally found
in guards. The concept of a implementing a multi-part
proxy within a single computer is unique to ARGuE, and
provides assurances not typically found in firewalls,
especially when married with the wrapper technology.
The data sealing capability, while certainly not new,
provides a useful capability in environments where data is
imported and subsequently exported.

5. Acknowledgements

We are indebted to Sami Saydjari at DARPA who
encouraged this effort, to Don Faatz at MITRE who
contributed many of the ideas toward this architecture, to
Debi Robertson for her tireless efforts to help us gain
access to the Felt compiler used for data filtering, and to
all our colleagues at NAI Labs who provided the
inspiration, technologies, and work environment that
made the CORBA Guard possible. In particular, James
Croall developed the first version of the ARGuE software,
Brian Schechter made significant enhancements and
developed the data sealing capabilities, Matt Woods wrote
many of the initial filters, and Chris Marcellin wrote the
proxy wrappers. Finally, we appreciate the many
constructive suggestions from the referees.

6. References

[ISSE] “Imagery Support Server Environment
(ISSE) Guard System Description”,
http://www.itd.sterling.com/rome/projects/pr
oducts/isse/ISSE_SD.html

[Smith] Richard Smith, "Constructing a High
Assurance Mail Guard," Proceedings of the

17th National Computer Security
Conference, Baltimore MD, October 1994.

[Fiorino] Thomas Fiorino et al, “Lessons Learned
During the Life Cycle of an MLS Guard
Deployed at Multiple Sites”, Proceedings of
the Eleventh Annual Computer Security
Applications Conference, New Orleans LA,
December 1995.

[Fraser] Timothy Fraser, Lee Badger, and Mark
Feldman, "Hardening COTS Software with
Generic Software Wrappers", Proceedings of
the 1999 IEEE Symposium on Security and
Privacy, Oakland CA, May 1999.

[Guttman] Joshua Guttman, John Ramsdell, and Vipin
Swarup, Felt, a Security Filter Compiler,
Personal Communication, November 1998.

[IDIP] "Dynamic, Cooperating Boundary
Controllers Final Technical Report", Boeing
report D658-10822-1, August 1998.

[SGS] "Security Guard Study", Defense Information
Systems Agency, August 1995.

[XTS-300] Final Evaluation Report, Wang Government
Services, Inc., XTS-300 (Report CSC-EPL-
92/003.C), National Computer Security
Center, 1992.

