
Research Article

Architecture and Implementation of a Scalable
Sensor Data Storage and Analysis System Using Cloud
Computing and Big Data Technologies

Galip Aydin, Ibrahim Riza Hallac, and Betul Karakus

Computer Engineering Department, Firat University, 23100 Elazig, Turkey

Correspondence should be addressed to Galip Aydin; gaydin@�rat.edu.tr

Received 6 February 2015; Accepted 20 February 2015

Academic Editor: Sergiu Dan Stan

Copyright © 2015 Galip Aydin et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sensors are becoming ubiquitous. From almost any type of industrial applications to intelligent vehicles, smart city applications,
and healthcare applications, we see a steady growth of the usage of various types of sensors. �e rate of increase in the amount of
data produced by these sensors ismuchmore dramatic since sensors usually continuously produce data. It becomes crucial for these
data to be stored for future reference and to be analyzed for �nding valuable information, such as fault diagnosis information. In this
paper we describe a scalable and distributed architecture for sensor data collection, storage, and analysis. �e system uses several
open source technologies and runs on a cluster of virtual servers. We use GPS sensors as data source and run machine-learning
algorithms for data analysis.

1. Introduction

Sensors are generally used for measuring and reporting some
properties of the environment in which they are installed,
such as the temperature, pressure, humidity, radiation, or gas
levels. Traditionally these measurements are collected and
stored in some sort of a data store and then are processed to
�nd any extraordinary situations. However in such cases like
smart city applications where large numbers of sensors are
installed, the amount of data to be archived and processed
becomes a signi�cant problem. Because when the volume
of the data exceeds several gigabytes traditional relational
databases either do not support such volumes or face per-
formance issues (see [1] for a comparison of the database
size limits). Storing and querying very large volumes of data
require additional resources; sometimes database clusters are
installed for this purpose. However storage and retrieval are
not the only problem; the real bottleneck is the ability to
analyze the big data volumes and extract useful information
such as system faults and diagnostic information.

Additionally in recent years more demanding applica-
tions are being developed. Sensors are employed in mission
critical applications for real or near-real time intervention.

For instance, in some cases it is expected from the sensor
applications to detect the system failures before they happen.

Traditional data storage and analysis approaches fail to
meet the expectations of new types of sensor application
domains where the volume and velocity of the data grow
in unprecedented rates. As a result, it becomes necessary to
adapt new technologies, namely, big data technologies, to be
able to cope with these problems.

�is paper outlines the architecture and implementation
of a novel, distributed, and scalable sensor data storage and
analysis system, based on modern cloud computing and big
data technologies. �e system uses open source technologies
to provide end-to-end sensor data lifecycle management and
analysis tools.

2. Background, Related Concepts,
and Technologies

2.1. Sensors, Internet of �ings, and NoSQL. Sensors are
everywhere and the size and variety of the data they pro-
duce are growing rapidly. Consecutively, new concepts are
emerging as the types and usage of sensors expands steadily.

Hindawi Publishing Corporation
Journal of Sensors
Volume 2015, Article ID 834217, 11 pages
http://dx.doi.org/10.1155/2015/834217

2 Journal of Sensors

For example, the statistics shows that amount of the things
on the Internet is much larger than the number of the users
on the Internet [2]. �is inference de�nes the Internet of
things (IoT) as the Internet relating to things. �e term
“things” on the IoT, �rst used by Ashton in 1999 [3], is a
vision that includes physical objects. �ese objects, which
collect information and send it to the network autonomously,
can be RFID tags, sensors, GPS, cameras, and other devices.
�e connection between IoT and Internet enables the com-
munication between people and objects, objects between
themselves, and people between themselves with connections
such as Wi-Fi, RFID, GPRS, DSL, LAN, and 3G. �ese
networks produce huge volumes of data, which are di�cult
to store and analyze with traditional database technologies.

IoT enables interactions among people, objects, and
networks via remote sensors. Sensors are devices, which can
monitor temperature, humidity, pressure, noise levels, and
lighting condition and detect speed, position, and size of an
object [4]. Sensor technology has recently become a thriving
�eld including many industrial, healthcare, and consumer
applications such as home security systems, industrial pro-
cess monitoring, medical devices, air-conditioning systems,
intelligentwashingmachines, car airbags,mobile phones, and
vehicle tracking systems.

Due to the rapid advances in sensor technologies, the
number of sensors and the amount of sensor data have been
increasing with incredible rates. Processing and analyzing
such big data require enormous computational and storage
costs with a traditional SQL database. �erefore the scala-
bility and availability requirements for sensor data storage
platform solutions resulted in use of NoSQL databases, which
have the ability to e�ciently distribute data overmany servers
and dynamically add new attributes to data records [5].

NoSQL databases, mostly open source, can be divided
into following categories.

(i) Key-Value Stores. �ese database systems store values
indexed by keys. Examples of this category are Redis,
Project Voldemort, Riak, and Tokyo Cabinet.

(ii) Document Stores. �ese database systems store and
organize collections of documents, in which each
document is assigned a unique key. Examples of
this category are Amazon SimpleDB, MongoDB, and
CouchDB.

(iii) Wide-Column Stores. �ese database systems, also
called extensible record stores, store data tables of
extensible records that can be partitioned vertically
and horizontally across multiple nodes. Examples of
this category are HBase, Cassandra, and HyperTable.

Dierent categories of NoSQL databases, such as key-
value, document, and wide-column stores, provide high
availability, performance, and scalability for big data. Refer-
ence [6] has proposed two-tier architecture with a datamodel
and alternative mobile web mapping solution using NoSQL
database CouchDB, which is available on almost all operating
systems.

van der Veen et al. [7] have discussed the possibilities
to use NoSQL databases such as MongoDB and Cassandra

in large-scale sensor network systems. �e results show that
while Cassandra is the best choice for large critical sensor
application, MongoDB is the best choice for a small or
medium sized noncritical sensor application. On the other
hand, MongoDB has a moderate performance when using
virtualization; by contrast, read performance of Cassandra is
heavily aected by virtualization.

2.2. Big Data. Using sensors in large quantities results in big
volumes of data to be stored and processed. Data is valuable
when information within is extracted and used. Information
extraction requires tools and algorithms to identify useful
information such as fault messages or system diagnostic
messages buried deep in the data collected from sensors.
Data mining or machine learning can be used for such
tasks. However big data analytics requires nontraditional
approaches, which are collectively dubbed as big data.

Big data is the nameof a collection of theories, algorithms,
and frameworks, dealing with the storage and analysis of very
large volumes of data. In other words “big data” is a term
maturing over time that points a large amount of data which
are di�cult to store, manage, and analyze using traditional
database and so�ware technologies. In recent years, big data
analysis has become one of the most popular topics in the IT
world and keeps drawing more interest from the academia
and the industry alike. �e rapid growth in the size, variety,
and velocity of data forces developers to build new platforms
to manage this extreme size of information. International
Data Corporation (IDC) reports that the total amount of data
in the digital universe will reach 35 zettabytes by 2020 [8].
IEEE Xplore states that “in 2014, the most popular search
terms and downloads in IEEE Xplore were: big data, data
mining, cloud computing, internet of things, cyber security,
smart grid and next gen wireless (5G)” [9].

Big data has many challenges due to several aspects like
variety, volume, velocity, veracity, and value. Variety refers to
unstructured data in dierent forms such as messages, social
media conversations, videos, and photos; volume refers to
large amounts of data; velocity refers to how fast the data is
generated and how fast it needs to be analyzed; veracity refers
to the trustworthiness of data; value, the most important V
of big data, refers to the worth of the data stored by dierent
organizations [10]. In order to facilitate better understanding
of big data challenges described with 5V, Figure 1 shows the
dierent categories to classify big data.

In the light of the categories given in big data classi�ca-
tion, big data map can be addressed in seven aspects: (i) data
sources, (ii) data type, (iii) content format, (iv) data stores,
(v) analysis type, (vi) infrastructure, and (vii) processing
framework.

Data sources include the following: (a) human-generated
data such as social media data from Facebook and Twitter
or text messages, Internet searches, blogs and comments,
and personal documents; (b) business transaction data such
as banking records, credit cards, commercial transactions,
and medical records; (c) machine-generated data from the
Internet of things such as home automation systems mobile
devices and logs from computer systems; (d) various types

Journal of Sensors 3

Data
sources

Big data
classi�cation

IoT

Media data Historical

Business
transactions

Private
data

center

Hadoop MapReduce

Public
cloud

Real
timeBatchSensing

devices

Structured SemistructuredUnstructured

columnDocument

Master dataTransactional Mahout Spark

Data type Data
stores

Processing
framework

Content
format

Analysis
type

Infrastructure

Web
and social

media

Key-value Wide-

Figure 1: Big data classi�cation (based on [52]).

of sensors such as tra�c sensors, humidity sensors, and
industrial sensors.

2.3. MapReduce and Hadoop. �e amount of data gener-
ated from web, sensors, satellites, and many other sources
overcomes the traditional data analysis approaches, which
pave the way for new types of programming models such
as MapReduce. In 2004, Google published the MapReduce
paper [11] which demonstrated a new type of distributed pro-
grammingmodel that makes it easy to run high-performance
parallel programs on big data using commodity hardware.
Basically MapReduce programs consist of two major mod-
ules, mappers and reducers, which are user-de�ned programs
implemented by using the MapReduce API. �erefore a
MapReduce job is composed of several processes such as
splitting and distributing the data, mapping and reducing
codes, and writing results to the distributed �le system.
Sometimes analyzing data using MapReduce may require
running more than one job. �e jobs can be independent
of each other or they may be chained for more complex
scenarios.

MapReduce paradigm works as shown in Figure 2:
MapReduce jobs are controlled by a master node and are
splitted into two functions called Map and Reduce. �e Map
function divides the input data into a group of key-value pairs
and the output of each map task is sorted by their key. �e
Reduce function merges the values into �nal result.

MapReduce, Google’s big data processing paradigm, has
been implemented in open source projects like Hadoop [12].

Hadoop has been the most popular MapReduce implemen-
tation and is used in many projects from all areas of big
data industry [13, 14]. �e so-called Hadoop Ecosystem
also provides many other big data tools such as Hadoop
Distributed File System [15], for storing data on clusters, Pig
[16], an engine for parallel data �ow execution on Hadoop,
HBase [17], Google’s Big Table like nonrelational distributed
database, Hive [18], a data warehouse so�ware on Hadoop,
and data analysis so�ware like Mahout [19].

Major advantages of Hadoop MapReduce framework are
scalability, cost eectiveness, �exibility, speed, and resilience
to failures [20]. On the other hand, Hadoop does not fully
support complex iterative algorithms for machine learning
and online processing.

Other MapReduce-like systems are Apache Spark and
Shark [21], HaLoop [22], and Twister [23].�ese systems pro-
vide better support for certain types of iterative statistical and
complex algorithms inside a MapReduce-like programming
model but still lack most of the data management features of
relational database systems [24]. Usually these systems also
take advantage of the following: (1) programming languages
with functional and parallel capabilities such as Scala, Java, or
Python; (2)NoSQL stores; (3)MapReduce-based frameworks
[25].

Hadoop uses the Hadoop Distributed File System
(HDFS), which is the open source version of Google File
System [26]. �e data in HDFS is stored on a block-by-
block basis. First the �les are split into blocks and then are
distributed over the Hadoop cluster. Each block in the HDFS

4 Journal of Sensors

Merge and sort
by keys

Master node

Input
data

Final
result

Map (key, value)

Map (key, value)

Map (key, value)

Map (key, value)

Reduce (key 1, ∗)

Reduce (key 2, ∗)

Reduce (key 3, ∗)

Reduce (key 4, ∗)

Figure 2: An overview of the Map and Reduce steps.

is 64MB by default unless the block size is modi�ed by the
user [15]. If the �le is larger than 64MB the HDFS splits it
from a line where the �le size does not exceed the maximum
block size and the rest of the lines (for text input) are moved
to a new block.

Hadoop uses master-slave architecture. Name Node and
Job Tracker are master nodes whereas Data Node and Task
Tracker are slave nodes in the cluster. �e input data is
partitioned into blocks and these blocks are placed intoName
Node which holds the metadata of the blocks so the Hadoop
system knows which block is stored on which Data Node.
And if one node fails it does not spoil the completion of
the job because Hadoop knows where the replicas of those
blocks are stored [27]. Job Tracker and Task Tracker track the
execution of the processes. �ey have a similar relation with
Name Node and Data Node. Task Tracker is responsible for
running the tasks and sending messages to Job Tracker. Job
Tracker communicates with Task Tracker and keeps record
of the running processes. If Job Tracker detects that a Task
Tracker is failed or is unable to complete its part of the job,
it schedules the missing executions on another Task Tracker
[14].

2.4. Cloud Computing. Running Hadoop e�ciently for big
data requires clusters to be set up. Advances in the virtu-
alization technology have signi�cantly reduced the cost of
setting up such clusters; however they still require major
economic investments, license fees, and human intervention
in most cases. Cloud computing oers a cost-eective way of
providing facilities for computation and for processing of big
data and also serves as a service model to support big data
technologies.

Several open source cloud computing frameworks such
as OpenStack [28], OpenNebula [29], Eucalyptus [30], and
Apache CloudStack allow us to set up and run infrastructure
as a service (IaaS-cloud model). We can set up platforms as
a service (PaaS) such as Hadoop on top of this infrastructure
for big data processing.

Hadoop cluster can be set up by installing and con�g-
uring necessary �les on the servers. However it can be a
daunting and challenging work when there are hundreds
or even thousands of servers to be used as Hadoop nodes

Servers

Virtual machines

Hadoop Distributed File System (HDFS)

O

MapReduce platform

H
ad

o
o

p
 c

lu
st

er

OpenStack (IaaS-cloud so�ware)

· · ·

· · ·

Figure 3: OpenStack Cloud +Hadoop integration and architecture.

in a cluster. Cloud systems provide infrastructure, which
is easy to scale and easy to manage the network and the
storage and provides fault tolerance features. Gunarathne
et al. [31] show the advantages and challenges of running
MapReduce in cloud environments. �ey state that although
cloud computing provides storage and other services which
meets the distributed computing framework needs, it is less
reliable than “their traditional cluster counterparts and donot
provide the high-speed interconnects needed by frameworks
such as MPI” [31].

�e Hadoop platform created for this study is shown in
Figure 3.

�ere are several options for setting up a Hadoop cluster.
Paid cloud systems like Amazon EC2 provide EMR [32]
clusters for runningMapReduce jobs. In EC2 cloud the input
data can be distributed to Hadoop nodes through uploading
�les over the master node. Because pricing in the clouds is
on a pay as go basis, customers do not have to pay for the
idle nodes. Amazon shuts down the rented instances a�er the
job completes. In this case, all the data will be removed from
the system. For example, if the user wants to run another job
over the preused data he/she has to upload it again. If data is

Journal of Sensors 5

stored on Amazon Simple Storage Service (Amazon S3) [32]
users can use it as long as he/she pays for the storage. Amazon
also provides some facilities for monitoring working Hadoop
jobs as well.

2.5. Big Data Analysis. Analyzing big data requires use
of data-mining or machine-learning algorithms. �ere are
many user-friendly machine-learning frameworks such as
RapidMiner [33] and Weka [34]. However, these tradi-
tional frameworks do not scale to big data due to their
memory constraints. Several open source big data projects
have implemented many of these algorithms. One of these
frameworks is Mahout [19], which is a distributed machine-
learning framework and licensed under the Apache So�ware
Foundation License.

Mahout provides various algorithms ranging from clas-
si�cation to collaborative �ltering and clustering, which can
be run in parallel on clusters. �e goal of Mahout is basically
to build a scalable machine-learning library to be used on
Hadoop [35]. As such, the whole task for analysis of large
datasets can be divided into a set of many subtasks and
the result is the combination of the results from all of the
subtasks.

Ericson and Palickara compared the performance of
various classi�cation and clustering algorithms usingMahout
library on two dierent processing systems: Hadoop and
Granules [36]. �eir results showed that the processing time
of Granules implementation is faster than Hadoop, which
spends the majority of the processing time to load the
state from �le on every step, for �-means, fuzzy �-means,
Dirichlet, and LDA (latent Dirichlet allocation) clustering
algorithms. �ey saw the increased standard deviation for
both Näıve Bayes and Complementary Bayes classi�cation
algorithms in Granules implementation. Esteves et al. [37]
evaluated the performance of �-means clustering algorithm
on Mahout using a large dataset. �e tests were run on
Amazon EC2 instances, demonstrating that the execution
times or clustering times of Mahout decrease, as the number
of node increases and the gain in performance reaches from
6% to 351% when the data �le size is increased from 66MB
to 1.1 GB. As a result, Mahout demonstrates bad performance
and no gain for �les smaller than 128MB. Another study
described by [37] presented a performance analysis of two
dierent clustering algorithms: �-means andmean shi� using
Mahout framework. �e experimental results have shown
that �-means algorithm has better performance than mean
shi� algorithm, if size of the �les is over 50%.

MLLib [38], a module of Spark [21], an in-memory-based
distributed machine-learning framework developed at the
BerkeleyAMPLab, is also licensed under theApache So�ware
License like Mahout. It is a fast and �exible iterative com-
puting framework, which aims to create and analyze large-
scale data hosted in memory. It also provides high-level APIs
in Java, Python, and Scala for working with distributed data
similar to Hadoop and presents an in-memory processing
solution oered for Hadoop. Spark supports running in four
cluster modes as follows:

(i) standalone deploy mode, which enables Spark to run
on a private cluster using a set of deploy scripts;

additionally all Spark processes are run in the same
Java virtual machine (JVM) process in standalone
local mode;

(ii) Amazon EC2, which enables users to launch and
manage Spark clusters on;

(iii) Apache Mesos, which dynamically provides sharing
the resources between Spark and other frameworks;

(iv) Hadoop YARN which is commonly referred to as
Hadoop 2, which allows Spark drivers to run in the
application master.

When machine-learning algorithms are performed on
distributed frameworks using MapReduce two approaches
are possible: all iteration results can be written to the disk
and read from the disk (Mahout) and all iteration results
can be stored in memory (Spark). �e fact that processing
data from memory will be inherently faster than from disk,
Spark provides signi�cant performance gain when compared
to Mahout/Hadoop.

Spark presents a new distributed memory abstraction,
called resilient distributed datasets (RDDs), which provides a
data structure for in-memory computations on large clusters.
RDDs can achieve fault tolerance, meaning that if a given
task fails due to some reasons such as hardware failures
and erroneous user code, lost data can be recovered and
reconstructed automatically on the remaining tasks [39].
Spark is more powerful and useful for iterative computations
than existing cluster computing frameworks, by using data
abstraction for programming including RDDs, broadcast
variables, and accumulators [21]. With recent releases of
Spark, many rich tools such as a database (Spark SQL instead
of Shark SQL), a machine-learning library (MLLib), and
a graph engine (GraphX) have also been released. MLLib
[38] is a Spark component to implement machine-learning
algorithms, including classi�cation, clustering, linear regres-
sion, collaborative �ltering, and decomposition. Due to rapid
improvement of Spark, MLLib has lately attracted more
attention and is supported by developers from open source
community.

�e comparison results of Spark and Hadoop perfor-
mances presented by [40] show that Spark outperforms
Hadoop when executing simple programs such as Word-
Count and Grep. In another similar study [41], it has
been shown that �-means algorithm on Spark runs about
5 times faster than that on MapReduce; even the size of
data is very small. On the contrary, if dataset consistently
varies during the process, Spark loses the advantage over
MapReduce. Lawson [42] proposed a distributed method
named alternating direction method of multipliers (ADMM)
to solve optimization problems using Apache Spark. �e
result of another study [43], which preferred to implement the
proposed distributedmethod on Spark instead ofMapReduce
due to the ine�ciency on iterative algorithms, demonstrated
that the distributed Newtonmethod was e�cient for training
logistic regression and linear support vector machine with
fault tolerance provided by Spark. �e performance com-
parisons of Hadoop, Spark, and DataMPI using �-means
and Näıve Bayes benchmarks as the workloads are described

6 Journal of Sensors

Internet

Sensors

Spark

Sensor data

MongoDB

JSON data storage

Virtual servers

Hadoop Distributed File System

Mahout

Output Output

QuickServer

NMEA
�les

G
P

S
d

at
a

se
n

t
b

y
G

P
R

S

GPS signals
Hadoop

.

.

.

.

.

.

Figure 4: System architecture.

in [44]. �e results show that DataMPI and Spark can use
CPU more e�ciently than Hadoop with 39% and 41% ratios,
respectively. Several similar studies as well point to the fact
that Spark is well suited for iterative computations and has
other advantages for scalable machine-learning applications,
when compared to distributedmachine-learning frameworks
based on MapReduce paradigm.

3. System Architecture

We have created an end-to-end sensor data lifecycle man-
agement and analysis system using the aforementioned tech-
nologies. �e system uses open source so�ware and provides
a distributed and scalable infrastructure for supporting as
many sensors as needed.

�e overview of the proposed system is illustrated in
Figure 4.�e system architecture consists of threemain parts:
(1) data harvesting subsystem, (2) data storage subsystem, and
(3) data analysis subsystem.�e application platform used in
the system is Sun Fire X4450 servers with 24 processing cores
of Intel 3.16GHz CPU and 64GB of memory, using Ubuntu
14.04 as the host operating system.

In this study we used GPS sensors as data generators;
however the system architecture is appropriate for other types
of sensor networks since the data harvesting subsystem can
collect any type of sensor data published through TCP or
UDP channels.

3.1. SensorDataHarvesting Subsystem. GPS is one of themost
commonly used technologies for location detection, which is
a space-based satellite navigation system for providing time
and location information of the receivers globally [45]. It
became fully operational in 1995 and since then has been used
in numerous industrial and academic projects.

One major use of GPS is vehicle tracking applications.
In this study we use a commercial vehicle tracking system
called Naviskop [46], developed in Firat Technopark, Elazig,
Turkey. Naviskop has been in use for almost a year and
the authors have active collaboration in the development of
the system. We used GPS sensors mounted on 45 dierent
vehicles. �e identity of the drivers and vehicles is not used
in the study.

GPS sensors are mostly used in tracking the location
of the objects in real time as well as for checking the past
location history. However in most of the GPS applications

Journal of Sensors 7

data are not analyzed a�erwards. In this study we use
the location data from the vehicles for discovering hidden,
interesting information. For example, by applying machine-
learning algorithms, GPS data can reveal the driving habits
of individuals, most popular places which people visit with
their vehicles, and tra�c density for a certain period of
the day. Several academic studies have investigated the use
of location data with data-mining and machine-learning
algorithms [47–50].

GPS receivers mounted on the vehicles have the ability
to report their location via GPRS. �e sensors open a
connection to the TCP server in several situations such as in
every 100m location change or in every 30 degrees of turns.

We use QuickServer, an open source Java library for
quick creation of robust and multithreaded, multiclient TCP
server applications and powerful server applications [51].
QuickServer supports multiclient TCP server applications
and secure connections like SSL and TLS, thread per client,
nonblocking communications, and so forth. It has a remote
administration interface calledQSAdminServerwhich can be
used to manage every aspect of the server so�ware.

QuickServer is used to collect the real time data sent
by the GPS servers. We created a data �ltering and parsing
program on the server for immediately extracting useful
information and inserting it into the database.

3.2. Sensor Data Storage Subsystem. Data collected from the
sensors are usually stored in some sort of a data storage
solution. However as the number of sensors and hence
the amount of data increase it becomes a nontrivial task
to continuously store it. Traditional sensor data storage
solutions advise storing data for only certain period of times.
However the data collected from the sensors are valuable
since they might carry hidden motifs for faults or diagnostic
information. For this reason we have created a scalable,
distributed data storage subsystem for storing sensor data
until they are analyzed.

Open source NoSQL databases provide e�cient alterna-
tives for large amount of sensor data storage. In this study we
usedMongoDB, a popular open source NoSQL database [53].
MongoDB is a document-oriented database with support for
storing JSON-style documents. It provides high performance,
high availability, and easy scalability. Documents stored in
MongoDB can be mapped to programming language data
types. Dynamic schema support makes polymorphism easy
to implement. MongoDB servers can be replicated with
automatic master failover. To scale the databases, auto-
matic clustering (sharding) distributes data collections across
machines.

MongoDB has been investigated in several studies and
been used in various types of commercial and academic
projects [54–58].

�e main reason for using MongoDB in our imple-
mentation is providing high-performance write support for
QuickServer. It also allows us to easily scale the databases for
cases where large numbers of sensors are used.

3.3. Sensor Data Analysis Subsystem. Storing sensor data
inde�nitely is a very important feature for the system.

However sensor data must be analyzed to �nd important
information such as early warning messages and fault mes-
sages. Data analysis can be done by simply using statistical
methods as well as by using more complex data-mining or
machine-learning algorithms. In this study we have created
a scalable, distributed data analysis subsystem using big data
technologies. Our goal is to be able to run advancedmachine-
learning algorithms on the sensor data for �nding valuable
information.

Big data processing requires processing power as well
as storage support usually provided by computing clusters.
Clusters are traditionally created using multiple servers;
however virtualization allows us to maximize the resource
utilization and decrease the cluster creation costs. Virtual-
ization helps us in running several operating systems on
a single physical machine which in turn can be used as
cluster nodes. On the other hand, since most virtualization
so�ware requires high license fees or extensive professional
background, we utilize open source cloud computing so�-
ware calledOpenStack for creating the compute nodes for the
Hadoop cluster.

OpenStack is the popular technology cloud computing
that oers many opportunities for big data processing with
scalable computational clusters and advanced data storage
systems for applications and science researchers [28, 59–
61]. Cloud computing stack can be categorized in three
service models: infrastructure as a service (IaaS), platform
as a service (PaaS), and so�ware as a service (SaaS) where
IaaS is most �exible and basic cloud computing model.
IaaS provides the access and management to computing
hardware, storage, networking, and operating systems with a
con�gurable virtual server [62]. IaaS providers include Ama-
zon EC2, Rackspace Cloud, and Google Compute Engine
(GCE). OpenStack, as used in this study, is an IaaS-cloud
computing so�ware project based on the code developed by
Rackspace and NASA. OpenStack oers a scalable, �exible,
and open source cloud computing management platform.
�e comparative study in [60] shows that OpenStack is the
best reference solution of open source cloud computing.
OpenStack provides a web based GUI for management of
the system and creating/deleting VMs. Figure 5 shows the
overview of the resource usage in our OpenStack installation.

In this study, we created a private cloud using OpenStack
and run 6 instances of virtual machines (master node oper-
ates as a worker too) as Hadoop cluster nodes (see Figure 6).

4. Sensor Data Analysis Results

To analyze data on the aforementioned architecture we use
distributed machine-learning algorithms. Apache Mahout
and MLLib by Apache Spark are open source distributed
frameworks for big data analysis. We use both frameworks
for implementing clustering analysis on the GPS sensor data.
�e clustering results might be used for road planning or
interpreted to �nd most crowded places in the cities or most
popular visitor destinations, tra�c density in certain time
periods, and so forth. We map data stored in MongoDB to
HDFS running on the cluster nodes.

8 Journal of Sensors

Figure 5: OpenStack overview screen.

Figure 6: OpenStack GUI screenshot shows the cluster node speci�cations.

GPS sensors provide us with several important pieces
of information such as the latitude, longitude, and altitude
of the object being tracked, time, and ground speed. �ese
measurements can be used for various purposes. In this study
we used latitude and longitude data fromvehicleGPS sensors.

Several studies demonstrate usage of machine-learning
and data-mining algorithms on spatial data [63–66]. How-
ever the size of data is a signi�cant limitation for running
these algorithms since most of the algorithms are computa-
tionally complex and require high amount of resources. Big
data technologies can be used to analyze very large spatial
datasets.

We have used �-means algorithm for clustering two-
dimensional GPS position data. �-means algorithm is a very
popular unsupervised learning algorithm. It aims to assign
objects to groups. All of the objects to be grouped need to be
represented as numerical features. �e technique iteratively
assigns � points to � clusters using distance as a similarity
factor until there is no change in which point belongs to
which cluster.
�-means clustering has been applied to spatial data in

several studies. Reference [67] describes clustering rice crop
statistics data taken from the Agricultural Statistics of India.

However spatial data clustering using �-means becomes
impossible on low end computers as the number of points
exceeds several millions.

In this study we use our architecture to cluster large
datasets with millions of points. Performance results shown
in Figures 7, 8, and 9 show that the system is able to cluster
very large numbers of points e�ciently.

Table 1 shows the data �le sizes used in the tests.
As a reference, we �rst run Weka on a desktop machine

with 8GB of RAM and Intel i5-3470 CPU. Table 2 and
Figure 7 show the results. Weka [68] is a well-known data-
mining and machine-learning so�ware and has been used in
many studies.

As Table 2 shows Weka demonstrates good performance
for data with a relatively small number of coordinates.
However as the number of points increases the performance
of Weka decreases and for over 2 million points it gives out
memory exceptions. By changing Java heap size, this limit
can be increased, but there will always be an upper limit
depending on the computer speci�cations.

Table 3 shows the execution times for �-means clustering
on our system using Spark for up to 5 million coordinates. As
the table shows the system demonstrates worse performance

Journal of Sensors 9

O
u

t
o

f

Execution time (s)

k-means clustering performance with Weka
16

14

12

10

8

6

4

2

0

2
,3
4

8
,2

1
1

,2

1
6

,6

2
0

,2

4
6

,0
8

6
7

,3
3

×10
5

N
u

m
b

er
 o

f
p

o
in

ts

m
em

o
ry

Figure 7: �-means performance with Weka.

32 46 72 192

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

×10
6

Execution time (s)

N
u

m
b

er
 o

f
p

o
in

ts

k-means clustering performance with Spark 1

Figure 8: �-means performance with Spark, up to 5 million points.

2
4
1

3
0
7

5
3
2

7
4
3

1
6
6
4

k-means clustering performance with Spark 2
11

10

9

8

7

6

5

4

3

2

1

0

N
u

m
b

er
 o

f
p

o
in

ts

Execution time (s)

×10
7

Figure 9: �-means performance with Spark, up to 100 million
points.

for a small number of points but it can process 5 million
points in a reasonable time.

However the real advantage of using distributed algo-
rithms can be seen in Table 4, where performance results of
Spark �-means clustering are shown for a very large number
of points.

As Figure 9 shows the execution time on the Spark cluster
increases linearly and the system can analyze millions of
coordinates without any performance issues.

Table 1: Input data sizes.

Number of points (millions) File size

1 14MB

10 134MB

20 268MB

30 401MB

50 668MB

100 1.4GB

Table 2: Weka �-means clustering performance results.

Number of points Execution time (sec)

100.000 2,34

200.000 8,23

300.000 11,29

400.000 16,67

500.000 20,23

1.000.000 46,08

1.500.000 67,33

2.000.000 Out of memory

3.000.000 Out of memory

Table 3: �-means clustering performance results with Spark 1.

Number of points Execution time (sec)

100.000 32

500.000 46

1.000.000 72

5.000.000 192

Table 4: �-means clustering performance results with Spark 2.

Number of points Execution time (sec)

10.000.000 241

20.000.000 307

30.000.000 532

50.000.000 743

100.000.000 1664

5. Conclusion

In this paper we demonstrated the architecture and test
results for a distributed sensor data collection, storage, and
analysis system. �e architecture can be scaled to support
a large number of sensors and big data sizes. It can be
used to support geographically distributed sensors and collect
sensor data via a high-performance server. �e test results
show that the system can execute computationally complex
data analysis algorithms and shows high performances with
big sensor data. As a result we show that, using open
source technologies, modern cloud computing and big data
frameworks can be utilized for large-scale sensor data analysis
requirements.

10 Journal of Sensors

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

References

[1] Comparison of Relational Database Systems, http://en.wikipe-
dia.org/wiki/Comparison of relational database management
system.

[2] G. Press, Internet of �ings by the Numbers: Market Estimates
and Forecasts, http://www.forbes.com/.

[3] K. Ashton, �at “Internet of �ings” �ing, 2015, http://www
.r�djournal.com/articles/view?4986.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol.
38, no. 4, pp. 393–422, 2002.

[5] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIG-
MOD Record, vol. 39, no. 4, pp. 12–27, 2010.

[6] M. Miler, D. Medak, and D. Odobašić, “Two-tier architecture
for web mapping with NoSQL database couch DB,” Geospatial
Crossroads GI Forum, vol. 11, pp. 62–71, 2011.

[7] J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor
data storage performance: SQL or NoSQL, physical or virtual,”
in Proceedings of the IEEE 5th International Conference on Cloud
Computing (CLOUD ’12), pp. 431–438, IEEE, June 2012.

[8] J. Gantz and D. Reinsel, Extracting Value from Chaos State of the
Universe, IDC (International Data Corporation), 2011.

[9] IEEE XPLORE, “Year in Review: Top Search Terms in IEEE
Xplore,” http://ieeexplore.ieee.org/Xplore/.

[10] A. Katal, M. Wazid, and R. H. Goudar, “Big data: issues,
challenges, tools and good practices,” in Proceedings of the 6th
International Conference on Contemporary Computing (IC3 ’13),
pp. 404–409, IEEE, Noida, India, August 2013.

[11] J. Dean and S.Ghemawat, “MapReduce: simpli�ed data process-
ing on large clusters,” Communications of the ACM, vol. 51, no.
1, pp. 107–113, 2008.

[12] O�cial Hadoop Web Site, 2015, http://hadoop.apache.org/.

[13] C. Sweeney, L. Liu, S. Arietta, J. Lawrence, and B. S.�esis,HIPI:
aHadoop Image Processing Interface for Image-BasedMapreduce
Tasks, University of Virginia, Charlottesville, Va, USA, 2011.

[14] T. White, Hadoop: �e De
nitive Guide, O'Reilly Media, 2009.

[15] D. Borthakur, HDFS Architecture Guide, Hadoop Apache
Project, 2008.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,” in
Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD ’08), pp. 1099–1110, ACM, June
2008.

[17] L. George, HBase: �e De
nitive Guide, O'Reilly Media, 2011.

[18] A. �usoo, J. S. Sarma, N. Jain et al., “Hive: a warehousing
solution over a map-reduce framework,” Proceedings of the
VLDB Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[19] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in
Action, Manning Publications, 2011.

[20] M. Nemscho, Big Data: 5 Major Advantages of Hadoop,
http://www.itproportal.com/.

[21] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working set,” in
Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, 2010.

[22] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop:
e�cient iterative data processing on large clusters,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[23] J. Ekanayake, H. Li, B. Zhang et al., “Twister: a runtime
for iterative mapreduce,” in Proceedings of the ACM Interna-
tional Symposium on High Performance Distributed Computing
(HPDC ’10), pp. 810–818, ACM, June 2010.

[24] S. Madden, “From databases to big data,” IEEE Internet Com-
puting, vol. 16, no. 3, pp. 4–6, 2012.

[25] D. Kourtesis, J. M. Alvarez-Rodŕıguez, and I. Paraskakis,
“Semantic-based QoS management in cloud systems: current
status and future challenges,” Future Generation Computer
Systems, vol. 32, no. 1, pp. 307–323, 2014.

[26] S. Ghemawat, H. Gobio, and S. T. Leung, “�e google �le sys-
tem,” in Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), pp. 29–43, October 2003.

[27] A. Bialecki, M. Cafarella, D. Cutting, and O. O'Malley,Hadoop:
A Framework for Running Applications on Large Clusters Built
of Commodity Hardware, Wiki, 2005, http://lucene.apache.org/
hadoop.

[28] OpenStack, 2015, http://www.openstack.org.

[29] OpenNebula Web page, 2015, http://www.opennebula.org.

[30] Eucalyptus, 2015, https://www.eucalyptus.com/eucalyptus-cloud/
iaas.

[31] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “MapReduce
in the clouds for science,” in Proceedings of the 2nd IEEE
International Conference on Cloud Computing Technology and
Science (CloudCom ’10), pp. 565–572, IEEE, December 2010.

[32] Amazon Web Services, 2015, http://aws.amazon.com.

[33] RapidMiner Predictive Analysis, 2015, https://rapidminer.com/.

[34] G. Holmes, A. Donkin, and I. H. Witten, “Weka: a machine
learning workbench,” in Proceedings of the 2nd Australian and
New Zealand Conference on Intelligent Information Systems, pp.
357–361, Brisbane, Australia, December 1994.

[35] A. Mahout, “Scalable machine-learning and data-mining
library,” http://mahout.apache.org/.

[36] K. Ericson and S. Pallickara, “On the performance of high
dimensional data clustering and classi�cation algorithms,”
Future Generation Computer Systems, vol. 29, no. 4, pp. 1024–
1034, 2013.

[37] R. M. Esteves, R. Pais, and C. Rong, “K-means clustering in the
cloud—a Mahout test,” in Proceedings of the IEEE Workshops of
International Conference on Advanced Information Networking
and Applications (WAINA ’11), pp. 514–519, IEEE, 2011.

[38] Spark MLLib scalable machine learning library, https://spark
.apache.org/mllib/.

[39] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (NSDI '12),
USENIX Association, 2012.

[40] S. Shahrivari, “Beyond batch processing: towards real-time and
streaming big data,” Computers, vol. 3, no. 4, pp. 117–129, 2014.

[41] H. Wang, B. Wu, S. Yang, and B. Wang, “Research of decision
tree on YARN using 16 MapReduce and spark,” in Proceedings
of the �e 2014 World Congress in Computer Science, Computer
Engineering, andAppliedComputing, LasVegas,Nev,USA, 2014.

[42] D. Lawson, Alternating Direction Method of Multipliers Imple-
mentation Using Apache Spark, 2014.

Journal of Sensors 11

[43] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin, “Large-scale
logistic regression and linear support vector machines using
spark,” in Proceedings of the IEEE International Conference on
Big Data, pp. 519–528, Washington, DC, USA, October 2014.

[44] F. Liang, C. Feng, X. Lu, and Z. Xu, “Performance bene�ts of
DataMPI: a case study with BigDataBench,” in Big Data Bench-
marks, Performance Optimization, and Emerging Hardware, vol.
8807 of Lecture Notes in Computer Science, pp. 111–123, Springer
International Publishing, Cham, Switzerland, 2014.

[45] Wikipedia, “Global Positioning System,” http://en.wikipedia
.org/wiki/Global Positioning System.

[46] Yonca CBS, “Naviskop Vehicle Tracking Systems,” 2015, http://
www.naviskop.com/.

[47] J. Han, K. Koperski, and N. Stefanovic, “GeoMiner: a system
prototype for spatial data mining,” ACM SIGMOD Record, vol.
26, no. 2, pp. 553–556, 1997.

[48] C. J. Moran and E. N. Bui, “Spatial data mining for enhanced
soil map modelling,” International Journal of Geographical
Information Science, vol. 16, no. 6, pp. 533–549, 2002.

[49] R. T. Ng and J. Han, “Clarans: a method for clustering objects
for spatial data mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 14, no. 5, pp. 1003–1016, 2002.

[50] S. Shekhar, P. Zhang, and Y. Huang, “Spatial data mining,” in
Data Mining and Knowledge Discovery Handbook, pp. 833–851,
Springer, 2005.

[51] Quick Server, February 2015, http://www.quickserver.org/.

[52] S. K. Divakar Mysore and S. Jain, Big Data Architecture and
Patterns, Part 1: Introduction to Big Data Classi
cation and
Architecture, IBM Big Data and Analytics, Technical Library,
2013.

[53] P. Membrey, E. Plugge, and D. Hawkins, �e De
nitive Guide
to MongoDB: the noSQL Database for Cloud and Desktop
Computing, Apress, 2010.

[54] A. Boicea, F. Radulescu, and L. I. Agapin, “MongoDB vs oracle-
database comparison,” in Proceedings of the 3rd International
Conference on Emerging Intelligent Data and Web Technologies
(EIDWT ’12), pp. 330–335, September 2012.

[55] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L.
Ramakrishnan, “Performance evaluation of a MongoDB and
Hadoop platform for scienti�c data analysis,” in Proceedings
of the 4th ACM Workshop on Scienti
c Cloud Computing
(ScienceCloud ’13), pp. 13–20, ACM, June 2013.

[56] Y. Liu, Y. Wang, and Y. Jin, “Research on the improvement of
MongoDB Auto-Sharding in cloud environment,” in Proceed-
ings of the 7th International Conference on Computer Science &
Education (ICCSE ’12), pp. 851–854, IEEE,Melbourne,Australia,
July 2012.

[57] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing nosql mongodb
to an sql db,” in Proceedings of the 51st ACM Southeast Confer-
ence, ACM, April 2013.

[58] Z. Wei-Ping, L. Ming-Xin, and C. Huan, “Using MongoDB to
implement textbook management system instead of MySQL,”
in Proceedings of the IEEE 3rd International Conference on
Communication So�ware and Networks (ICCSN ’11), pp. 303–
305, IEEE, May 2011.

[59] K. Jackson, OpenStack Cloud Computing Cookbook, Packt Pub-
lishing Ltd., 2012.

[60] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: toward
an open-source solution for cloud computing,” International
Journal of Computer Applications, vol. 55, no. 3, pp. 38–42, 2012.

[61] C. P. Chen and C.-Y. Zhang, “Data-intensive applications,
challenges, techniques and technologies: a survey on Big Data,”
Information Sciences, vol. 275, pp. 314–347, 2014.

[62] S. Gao, L. Li, W. Li, K. Janowicz, and Y. Zhang, “Constructing
gazetteers from volunteered Big Geo-Data based on Hadoop,”
Computers, Environment and Urban Systems, 2014.

[63] S. Brooker, S. Clarke, J. K. Njagi et al., “Spatial clustering
of malaria and associated risk factors during an epidemic
in a highland area of western Kenya,” Tropical Medicine and
International Health, vol. 9, no. 7, pp. 757–766, 2004.

[64] T. Cheng, J. Haworth, B. Anbaroglu, G. Tanaksaranond, and J.
Wang, “Spatiotemporal data mining,” in Handbook of Regional
Science, pp. 1173–1193, Springer, Berlin, Germany, 2014.

[65] S. Wang and H. Yuan, “Spatial data mining: a perspective of big
data,” International Journal of Data Warehousing and Mining,
vol. 10, no. 4, pp. 50–70, 2014.

[66] Y. J. Akhila, A. Naik, B. Hegde, P. Shetty, and A. J. K. Mohan,
“SDminer—a spatial datamining system,” International Journal
of Research, vol. 1, no. 5, pp. 563–567, 2014.

[67] R. Sharma, M. A. Alam, and A. Rani, “K-means clustering in
spatial data mining using weka interface,” International Journal
of Computer Applications, pp. 26–30, 2012, Proceedings of the
International Conference on Advances in Communication and
Computing Technologies (ICACACT '12).

[68] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “�e WEKA data mining so�ware: an update,”
ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18,
2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

