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ABSTRACT

Many distributed operating sysiems have been developed in recent years based on
the actionfobject paradigm, The Clouds multicomputer system provides a fanit-tolerant
distributed computing environment buill from passive data objecls, fault-atomic transac-
tions, processes, and a global. kemnel interface implemented on top of unreliable
hardwarc.

Key to the successful functioning of Clonds is its simple architectore consisting of
passive, abstract data objccts and the wniform operation invocation mcchanism. This
architccture allows plain processes or nesled transactions (o access uscr and syslem data
in a transparent, uniforrn manner, whether those objects are local to the current machine
or on some remole processor. The same basic interiace used to make operation invoca-
tion requeslts on objects can be used to spawn processes and actions, and (o gain access to
restricted kemcl services.

This paper presents an abbreviated description of the Clouds architecture and its
relation to the operation of the invocation mechanism, including remote invocation, per-
object access control, and location independent invocation. Some conclusions derived
from the first prototype arc also prescnted.

December 18, 1987
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1. Background

Recently a great deal of research has been focused on the potential benefits of distributed systems.
Distributed system offer the polential of a fault-tolerant ~omputing crvironment by replicaiion and redun-
dancy. A distributed system also suggests increased computing power through the combination and appli-
cation of resources. Multiple machincs, however, raise many questions relating to communication, con-
sistency, rcliability, configuration, and uscrinlerfaces.

The Clouds project began in 1982 wilh an examination of how 10 construct and apply a useful distri-
buted system that could address these concerns yct be built on general-purpose, *‘off-the-shelf," poten-
tially unreliable hardware. The approach was influcnced by the concept of a fully distributed processing
system:En178 2 system (partially) characterized by the Iack of any central locus of control or authority.
There is no ceniral scheduler, name ‘server, or other single entity which must be available for the com-
ponenis of the system to operate. Such a system allows autonomous operation of individual nodes should
the need arise, due Lo failure or duc 1o administrative fial. This kind of sysiem is appealing from a number
of standpoints, not least of which is its inherent potential tolerance of (at least) single-point failures.) In
systems without such full disiribution, the failure of a component supporting a centralized service, such as
a name server, results in the failure of the entire system unlil that service is restored or replaced. An expli-
cit goal of the Clowds design has been to construct a system that will tolcrate and recover from single-point
failures.

Preliminary design revealed a few requirements as basic (o this paradigm. First, for a distributed sys-
icm to provide general utility, it would be necessary 10 support the synchronized shared access and interac-
tion of distributed items of data of arbitrary type and size. Sccondly, those items of data needed to stay
consistent across failures, and that consistency had fo be made automatic in some way (further, there could
be no central authority to provide and enforce such consisicncy since such a central authority could also
fail). These requircments are also basic to many other distributed operating system projects, and the result-
ing Clouds vicw was not an isolated onc: an objcct/iransaction paradigm is a good way {0 structure a distri-
buled operating system. Objects present a convenicnt means of abstracting and isolating data, and transac-
tions provide an abstraction 1o use 1o kecp that data consistent in the face of failures. Examples of rclated
approaches include Edcn 02582, Alme83, Noc§5 1518 Bimm85, Jose85 Cgsmos, NicoS5 and Argus,Lisk83, Weihg3

The use of objects and transactions in Clouds is iniended to be at a lower level than any of these
other systcms, however, In any opcrating system, many things depend upon data that must be kept con-
sistent across failures (e.g., directorics, scheduler queues, accounting information). The Clouds philosophy
is that if objects and transactions are implemented at the lowest possible level (in the kemel), they can then
be used to build the remainder of the rcliable, distributed operating system itsclf, as well construct needed

1 A single-point [ailure, in the context of Clouds, is a failurc which alfects just & single component within any arbilsary
period of lime and which is detectable. All such failures are considercd 10 be fail-siop or halting [adurcs in that cach com-
penent will operale correaily or not at all.
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applications, This was onc of the major goals of the overall Clouds project, and is key to understanding the
resulting architccture, MeKe83,MeKe83......., Alle83 Many of Lhese (catures of Clouds have been [urther vali-

dalcd by adaption and usc in the Alpia system.Nond7

2. Sysiem Architecture

A Clouds multicomputer consists of {our types of logical enlitics: objects, actions, processes, and
sub-kernels, Sub-kemels actually represent the replicaled kemel—the virtual Clouds machine—bot we
will mention them here since it is the sub-kerncls that are respensible for implementing the interface 1o
operation invocations in Clonds. 'We will describe the major features of these entities in the following sec-
tions; rcaders desiring an in-depth understanding of the overall design should consult[Allc83, Spaf86],
and[Wilk87].

2.1. Objects

The Clouds architecture uses large and medium-grained abstract data objects as a means of encapsu-
lating functionality and isolating errors and recovery considerations, These objects, when programmed
correctly, provide excellent shared access (o the data they encapsulate because locking and synchronization
of their internal data can be wailored according 10 the semantics of that data.

Clouds objects are abstract dala items of varying size and complexity, defincd along with the opera-
tions possible on those swuctures. These operations may include explicit synchronization and recovery
operations, exception handlers, and dynamic storage management code. No other user access may be made
to the data within an ohject except through these operations.2 -

Typical Clouds objects might include ilems like culput objecls in a printer or plotter queue, text file
objects, and user mailbox objects, although it is possible 1o define and support objects consisting of single
integers or characters. The object space is flat, with no comained objects or explicit Lype inheritance.
Objects may not span machine boundaries.3

Unlike the active objects used in other research approaches (¢.g., Eden’s Ejects or Argus’ Guardi-
ans), Clouds objects are passive—thcre arc no processes bound to the object instances. All activity within
Clouds objects is as a result of an exiemal process or action doing an operation invocation on the object—
entering the object's code and dala space to perform a defined operation, and then leaving that address
space when the operation is completed. This paradigm mcans that therc arc no specific processes associ-
ated with any object on a long-term basis, nor is there any long-lerm process management associated with
each object

Passive objects have at Icast these distinct advaniages comparcd Lo active objects:

. Passive objects are simpler o code and support (especially when implemented on a *“bare™
machine) since they require no explicit code o support processes within them. For instance,
passive objects can be smaller than active objects, and nced suiler fewer (if any) restrictions
about being paged in and out of memory at any time. Furthermore, local invocations of pas-
sive objects do not require process context switches, as do active objects.

. The passive object operalion concept corresponds more closely with a paradigm familiar to
most users—that of the procedure call. Remole operations map into remote procedure calls
(RPC) in a natural manner as procedure calls, RPC operations mapped onlo active objects
require the inclusion of ports or rendezvous constructs which may nol be as easily understood
by programmers,

» There 1s no limit on the concurrency possible within the code of a passive object other than
what is specifically designed into that code. Active objects generally provide a limited number
of servers and thercfore activity within those objecls is limited to the number of servers

2 Kemel opcrations for transaction and memory management {paging)*86 and dcbupgingl®F are special cases con-
trolled by the kemel

3 More complete scmantics  and  struclural  dewils  ame  given i works om  progmmming  in
Clords Abami7, LeBIBS, WSS, Wilks?
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available. Increased concurrcney within a passive object does nol necessitte increasing its
size, since no process context is ever stored within the cbjecl.

° Clouds objects may be casily moved, deleted or replaced at almost any time; active objects
require inicraction with the kernel 10 save process staies, instantiate new Server processes, elc.

Further, by allowing the kemel to view Clouds objccls as similar, abstract entities, it is possible 10
design common operations which can operate on objects of any type. Such operations include copying or
cloning of the objects to provide increased availability, and migration of objects 1o other machines, Cou-
pled with the fact that each object delines its own access and recovery, Clouds objects fit in perfectly with
the autonomous nature of our definition of a fully distribuicd system.

2.2. Processes

Processes are the basic unit of activity in the Clouds system, A Clouds process is conceptually simi-
Iar to the wraditional nolion of a process or thread, in that it represents a scrics of related activities over a
period of time. However, Clouds processes do not have a distinel address space associated with them, A
process consists only of its process control block and registess. As a process executes, it enters the memory
context of Clouds objecis and exccuies the code therein on the data within those objects, 'When it exits the
object (returns), its context is replaced by the conlext of another object, or by the context of the machine
sub-kernel,

Processes are created by calls on the Clouds kernel specifying an initial object context. The process
is given a PCB and is mapped into the context of the specified object. Along with that mapping, the pro-
cess is provided with a lemporary slack associaled with that object. Should the process invoke an operation
on another object, its stack and context in the first object are unmapped and saved, and it is mapped into the
called object along with a new stack. Upon return, the sccond object is unmapped and the slack discarded,
and the saved conlcxts are remapped. Argement transfer between calls and process creation are both
described later in this document,

23, Actions

Clouds actions are similar to the more traditional notion of a transaction,Moss8! but (hey implement
Jailure atomicity and not necessarily view atomiciry. AU<83 That is, there is nothing inherent in the semantics
of Clouds (ransactions that prevent them {rom obscrving the effects of other actions, but all-or-nothing
behavior in the face of failure or explicit abort is preserved. To achieve scrializability with Clouds actions,
the programmer must provide cxplicit synchronization using Clouds primitives designed for that
plll'pOSC.MCK':BS

Actions are implemented as Clonds processes that are specially tracked as they exccute. Whenever a
Clouds action invokes an operation on an object marked as recoverable (i.e., intended to be failurc-atomic),
the kemnel first invokes an action manager object to record the invocation. If the recoverable object is
changed by the action, the changes are made in a lemporary manner.* When the action completes, it either
commits or aborts. If the action commits, all of its changes (o recoverable objects are written to permancnt
storage, If the action aboris, all of its changes are ignorcd and made 1o appear as if they had never
occurred. Machine or software failurcs cause aclions (o abort if they had accessed any objects related to
the failure. .

Clouds objects are marked as recoverable or not, and only actions may invoke operations on recover-
able objects. Processes are not allowed o perform commit or abort operations, either. In all other
respects, actions and processes are identical.

Actually, the design of Clouds objecls allows many types of resilient object Lo exist, along with

matching forms of actions. In fact, multiple 1ypes could coexist in the same system and polentially call
each other in a transparent manner, with the kemel detcrmining the action type based on the object type

4 The fist Clouds protolype. uses object shadowingGry81.PRBS a5 jis primary recovery mechanism, although other
methods, including logging and version stacks, have been contemplated.

5 Actions may invoke operations on non-recoverable (plain objects, 1og, but their effects are not undone in the case of
Tailure or abort. -
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information; this has not yet been explored in the prototype, nor in associatcd language work, but the
potential is present in the design.
If the action manager allows them, subactions arc also supported, The effects of subactions in rela-

tion to their ancestors and siblings is determined by the action manager involved. The Clouds prototype
may eventually support subactions, with scmantics as defined infWilk87] and [Kenl86). _

User and Systems Applications.
/f-:: S T

T e D e g Sy
ey T Yt T

Figure 1: Logical Structuee of a Clouds Multicomputer

2.4. The Sub-kernels

To a user, a Clowuds mullicomputer is one single compuicr thal provides persisicnt abstract data
objects, processes and actions, This view is the same whether the multicomputer is composed of a single
machine or a large number of machines. To achicve this view, Clonds implements a global operaling sys-
tem and a global interface on replicated local kemels or sub-kernels (figure 1). Object operation invoca-
tions occur in this global space of objects and kemel interface.

Each machinc supports a Clonds sub-kernel. Each sub-kermnel is responsible for providing an identi-
cal set of virtual machine services and functions® which can be referenced by the objects and by the global

6 These include IO, paging, and process control operations. Specifics are detailed in [Sp:t[SG]:
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opcrating system. Each sub-kerncl also supports an instance of the kernel interface through which applica-
tions may make requests of kemel and operating sysiem services (figure 2).

When a user wishes to develop a new application using Clouds objects, s/he first programs the appli-
cation in an object-oricnted language such as Acolus.WIk83 The application is programmed as onc or more
absiract data objects and as the eperations on thosc objecls. The user may also include implicit or explicit
support of cerlain kinds of recovery operations and synchronization operalions in the object definition.
Recovery operations can be used to provide a ccriain amount of fault tolerance in case of failure, and the
synchronization allows the user lo regulale sharcd accesses Lo the object. The user is never forced 1o
include any of these operations, however, and may program a simple non-recoverable, non-synchronized

object i desired.
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Figure 2: Structure of a Clouds Sub-kemel

All references to objects are done without knowledge of the Iocation and accessibility of the target
objects, and the sub-kemnels cooperale 1o bind the references 1o the current location of the indicated object.
This is done through search-and-invoke opcrations when the needed objects are not found on the local
machine. Knowledge of where objecis were located carlier is kept only as hints, and thus objects can be
moved without notifying any central aothority or without disrupting future refercnces.

3. The Invocation Mechanism




3.1, Naming

Every object, process, action and sub-kemel is uniquely named by a sysname. A sysname is con-
structed from a timestamp, birthplace and type parameter, and is guaranteed unique {(no two items will be
referenced by the same sysname). The type ficld provides a hint about the type of the item referenced—
whether it is a process, an aclion, a user-defincd cbject, cte. In some cascs it is possible for two sysnames
to have the same identificr portion, but different type ficlds. This occurs when two diffcrent forms of
access are allowed.”

A Clouds sysname coupled with an access siruclure comprises a Clouds capability. Capabilities are
employed by user code (o refercnce kernel operations, objects, processes and actions, The access rights
field is treated as an untyped bit string; the kermel docs not define the meaning of the bits, nor doss it deter-
mine or enforce access rights on anything other than its own operations. Rather, it provides the bit string to
the object being invoked for a per-invocation validation check, The programmer of the object may elect (o
have no check performed, or s/he may require some authorization and use the bit string for this.

Sysnames are not available to user code, but are used within privileged code Lo locate and operate on
various items. Sysnames arc crezted as necded by the kernel. Capabilities cannot be altered or created by
uscr code, but can be obtained and modificd through calls on the sub-kemel. Capabilities can be passed as
paramciers in invocations; this is the only means of referencing an extemal object during an object opera-
tion invocation.? _ -

3.2. Object Structures

Every Clouds object has a defining structure associated with it. This structure contains fields indicat-
ing memory mapping and protection information about the object, type information, recovery information,
and accounting information. Whenever an object is referenced, the storage version of this object descriptor
is brought into memory (if not already present) and various fields are inilfalized. The in-memory version of
this structure is known as the object control block or OCB.

Each sub-kernel maintains a cache of currently active and recently uscd OCBs, This cache, the
active object fable or AOT, can be uscd to quickly find the OCB for a referenced object. References
through sysnames (and capabilitics) are first checked against the AOT. Entries not found indicate a refer-
ence to an object not currently in memory, or an cbject not present on this machine, or possibly an object
which no longer exists dus 0 removal or failure.

3.3. Invocation

Code inside any cbject or sub-kemnel can make an object operation invecation. Before such an
operation is requested, the invoking application code must collect and format the arguments to the invoca-
tion into structures known as arglists. Arglists describe the paramelers to the call, including number and
* size (but not type). Arglists arc manipulated by the sub-kernel during the invocation to enforce value-result
semanlics, and to guard against result overflow in size-or number,

The interpretation of the data within arglists is determined by the code at cither end of the invocation,
and is otherwise treated as untyped bytes; operations 10 format data into a canonical representation could
be performed by the objects involved, if necessary, for use in a helerogencous machine environment. As
cisewhere in the Clouds design, this kind of decision is left 10 the programmer and application rather than
forced by the underlying mechanism,

Once the arglists are built, the application codc makes the invocation request on the local sub-kemnel
with four parameters: a capabilily [o the object being sought, an operation number to be pesformed, and the
two arglists (one for input, one for cutpur). These arguments are copied inlo a ncw stack for the process so
as 1o be available to Lhe invoked object afier the current object is unmapped.

? As an example, & process can also be considered as an object. That ohject can have read and wrile operstions defined
on it 50 a5 to allow a debugper 1o conwrol the associated process through simple object calls exzmining the registers and
stack, in 8 manner similar 10 [Kill84]. )

B The reason for this is explained in [Allc83] and is necessary 1o preserve atomicily consirsints in opcrations crossing
machine boundaries withou requiring every such RPC 10 be & scparate subaction.
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All operations requested by uscrs of the Clowds syslem are mapped into calls (o the kernel interface.
Conceptually, the kernel intecface extends across machine boundaries and exists on cach sub-kernel within
the Clouds system. In acluality, the interface is replicated on each machine. The kemel inicrlace imple-
menls the invoke eperation and return from invocaiion operation. The lour parameters for an invocation
are passed to the first of these two operations.

The first step in the invocation occurs as the kemnel interface finds where the invocation will occur.
This is determined by the location of the actual 1arget object instance, The first check is ry 1o find in the
AOT the sysname portion of the target capability. If no maich is found, the sysname is checked against the
maybe table P86

The maybe table is an approximate membership (cster, like a Bloom fifier,B1970 conpining informa-
tion about all stored and active objects present on this machine. The table provides a quick determination
of whether or not an object is present on the local machine. A negative response is always definitive, but a
positive response simply means the object might be present. If the maybe table indicates that the
searched-for object might be present focally, a search is performed on the secondary storage directories in
an attempt to locate the objcct.

If the named object is local and already represenied in the AOT, ihen invocation proceeds dircetly
(described below). Otherwise, if the object is local 10 this machine but not in the AOT, then a call is made
on intcrnal routines to map the object into memory from secondary storage and proceed with the invoca-
lion, _— B

3.3.1. Failures -

All failures of invocation requests arc returned to the caller as a single failure code. There is no dis-
tinction made as to the reason of the [ailure since it is not always possible to determine the actual reason for
each failure: a not found condition could mean the object does not exist, the object has been deleted, the
network is partitioned, the disk is not mounted, ete. Furthermore, it is a potential security hole to distin-
guish between diffcrent fzilure like *"access disallowed’* and “‘object not found.”™ Actions and subactions
attempting an invocation automatically abort on failure, so as to prescrve exactly-once scmantics.
Processes may retry on failore or take alternate actions, as the programmer decides. '

3.3.2. Local Invocation

The operation numbcr provided in the invocation request is checked for validity. In the prototype, if
the number is positive it indicalcs a regular operation (programmer defined), and is compared against a
range [ield in the OCB. I{ the operation number is greater than this limit, the operation is disallowed (no
such operation) and an invocation failure is signalled. If the supplied operation number is negative, it indi-
cales a special operalion, such as abort or comynit, and ficlds in the OCB are checked (o ensure that the
operation is actually defined and that the object is recoverable. At the same time Lhe object type is checked
to see if it is recoverable, the caller is checked to see if it is an action. If the caller is not and the object is
recoverable, the operation is disallowed and a failure signalled; only actions are allowed Lo aceess recover-
able objects.?

Next, a record is linked to the current PCB containing context information about the state and Ioca-
tion of the current object-space stack, current virwal memory mapping parameters, and a pointer to the
client-suppl:=d output parameter list. Then, the current object-space stack is made inaccessible, a new
stack is allocated and initialized, and the memory mapping registers are Ioaded 10 enable refercnce of the
new ‘‘current’’ object. As a result, the memory context of the invoked object (and only that object) is now
accessible to the process.

Finally, some form of branch or subroutine call (as appropriate for the machine} is made to a com-
mon starting address in the object, as given in the OCB. Provided as arguments o the call are the sysname
of the invoking object, the access righls portion of the capability used to invoke this operation, the opera-
tion number, and a pointer to the new input argument list.

9 However, aclions may frcely access nonrecoverable objects. When such accesses oceur, they are treated as if the ac-
tions were plain processes.
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If the object is recoverable, instead of performing the branch or call dircetly, a call is made on the
action management subsyslem with the arsuments and 1he address of the entrypoinL  After deicrmining the
validity of the reference and resolving any lock and visibilily considerations, (he action management code
will perform the branch or call with the given arguments.

The code within the entry routine of the object performs any necessary validation and synchroniza-
tion specific 1o the object, bascd on the information provided by the sub-keenel interface, and then a branch
is made to the code necessary 1o cxecule the indicaled operation. Note that since the call provides both the
access riphts word and the sysname of the invoking object, it is possible 10 perform highly-specilic access
and locking operations on an object-by-object basis.

3.3.3. Return

When the execution within the object is complete, the code will execule an object return operation
on the sub-kemel, supplying as arguments a success/failure flag and a pointer 10 an arglist describing the
result parameters. If the retuened slatus indicales success, the kernel interface code transfers the output
values in the arglist providcd by the return call into the locations specified in the results arglist supplied at
the time of invocation. The count and overflow ficlds in that arglist are set appropriately as part of this
transfer. If more return arguments arc provided than the user allocated room for, overflow flags are set. If
the returned siatus indicates failure, then no values are translerred (they are assumed to be: invalid) and the
count ficld of the user-supplicd arglist is set 10 zero to reflect that fact.

Next, the saved object context information is unlinked from the PCB, and its values restored, effec-
tively resuming the state the process was in prior to the invocation request. This includes vpdating the vir-
tual memory registers and restoring the previous user stack. This also has the cffect of unmapping the
invoked object and remapping the invoking object.

If the current process is acling under the auspices of an action, and if the type field in the OCB of the
object being returned from indicates that the object is recoverable, control is passed to action management
code. In this specific case, a retumned statos flag showing failure indicates an abort. 19 Control is finally
returned to the calling code. The value returned by 1he invoke function is the valuc of the stalus code pro-
vided in the object relumn call.

10 On the other hand, a rewumed siawus of “‘suceess™ docs net necessarily indicsie gommir, That is something which
must be performed with a separate invocalion on the action manogement object.
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Kernel interface

Figure 3: Object Operation Invocation

33.4. Remote Invocation

If the capability provided references an object which is not found locally, it is assumed to be avail-
able through one of the other sub-kernels on another maching. As such, the kemel interface constructs an
RPC search-and-invoke request containing the provided capability and operation number, the input argu-
ment list, the sysname of the current process, and the aclion status of the invoking process. This RPC is
then broadcast as a search and invoke operation to the other machines.!!

" Methods other than simple broadcast o multicast arc uscd, but the effect is similar. The network lopology obviously
plays a role here, as does the requirement that ne single fzilurc a1 an intermediate node prevent the call from suceesding.
The references provide more specific details, This mechanism has not yet been fully developed and Lesied for a large-scale
syslcm.
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If no reply comes within an implementation-dependenl Umeout period, a failure is signalled. If the
RPC produces an acknowledgment that the invocation has starled, the caller may elect to sct a timer to wait
for some longer period of time for results 1o be returncd.

Remoltely, code on cach machine receiving the RPC checks lhe object name specilied against the
local maybe table. If the result shows that the object cannot be present locally, the RPC request is ignored.
QOtherwise, a slave process is given the arguments and dispalched to try the invocation locally on behalf of
the invoking process. If the object is located locally, the slave process will succeed with its auempt at
invocation, and the operation will be performed. If the object is not located locally, the slave simply ter-
minatcs. Since all capabilitics reler to unique objecls, it is clear that only one slave process in the entire
multicomputer will ever succeed in the invocalion aiempt.

When the object code completes on the remote node, the interface code handling the retum request
will note that the work was being donc on behalf of a remote invocation. Instead of copying the return
arguments into the caller's address space {that does not exist on that remote machine), it will instead format
the return values and status code into an RPC ref:lv message that will be sent back 10 the calling machine’s
kemel interface. Upon receiving the return arguments, Lhc kemel interface will process the retumcd arpo-
ments as if they had been gencrated locally,

3.3.5. Processes and Actions

The mechanism for creating ncw processes and actions (and subactions) is almost identical w object
operation invocation—in fact, the creation calls on the kemel look exactly like an object operation invoca-
tion. The parameters supplied 10 the kemcl interface in these cases includé a capability to an object, an
operation number, and arglist siructures. The newly created process or action starls execution by invoking
the operation indicated on the object named by the provided capability using the provided input arguments.
From the standpoint of the invoked object, it appears exactly like a regular invocation.

From the standpoint of the new process, its ““birth’" appears exactly like an invocation, except there
is mo previous coatext to restore, and there are no paramecters o return. From the standpoint of the
“‘parent’’ process, the spawning of the child appcars as an object invocation; the retumn values include only
process id infarmation. The parent can query the status of its children at any time with calls to the sub-
kemel using a capability to the child process.

This mechanism atlows easy, consistent access (o the process and action faciliies, Code can be exe-
cuted as (effectively) object subroutines, or executed by scparale processes or actions, The same code can
be executed by top-level actions or subactions with absolutely no change in the (called) code.

This approach (o process creation is not completely new (cf. Mesal2mP80 y but it is somewhat unique
in thal there is no corresponding join nor is there any copying of parent coniext done. Additionally, actions
and subaclions can use the exact same mecharnism.

3.3.6. Access 1o Kernel Services

The kernel interface implements a pseudo-object representing the kernel, Users may make inveca-
lions on this object 1o spawn proccsscs, get accounting information, access synchronization primitives, and
access other Lypical services. Processcs can also make invocations on more privileged services, such as
direct access to device drivers, assuming they have proper capabilitics. Thus, special services may be esta-
blished for particular users who have been given the authority 1o access them. Furthermore, this also
allows new OS scrvices, such as file servers and schedulers, (o be writter outside the kemel—they only
need access to Lhe restricted kemel operations necessary for their operation, These external scrvices use
the same interface as all other objects, they reside *‘outside’ the kemel, and multiple versions can cosxist,
if desired. This mechanism is extremely flexible and can be 1ailored 10 suit almost any configuration of ser-
vices desired,

Since the Clouds kernel has been carelully designed to implement only mechanism without built-in
policy whenever possible, it is fairly simple to write traditicnal opcrating systcm functions such as file sys-
tems and schedulers as objects outside the kemel; in fact, this is onc of the longer-term goals behind the
overall Clouds architeeture. Furihermore the passive object approach allows object-context switching to
oceur fast enough to code time-critical OS functions in these objects without worrying about the overhead
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intraduced by process context swilching.

4, Current Status

A pratotype Clends kernel was compleied on a group of VAX 11/750™ computers in carly 1986,
afier approximately three man-years of clfort, The prolotype supported objects, processes, aciion tracking
(but not the full action mechanism described in[Kenl86]), RPC, disk support, intermachine communication,
debugging and trace code, and the entire invocation mechanism described in this document. The total
code (with comments) required Lo suppord this kemel was under 12,000 lines of C, and a few hundred lines
of assembler. We vicw Lhe compaciness of this sub-kernel as another strong argument in favor of passive
objects.

The unoptimizcd version of the invecation mechanism described here has been measured as taking
4.39 milliseconds per invocation and rciurn for objects local to the current machine and present in the
AOT. A simple procedure call and relurn on the same machine takes 40pscc. The majority of the object
invocation time is taken by the swilch in memory coniexts caused by entering and leaving object spaces,
and by copying of the arglists so as (o present only value parameters, Unfortunatcly, the memory system on
a VAX 750 is such that the only way 1o casily achieve a memory conlext switch for a mulii-page object is
to force a process context switch, thus negaling some of our anticipated benefits for passive objects.

Initial measurements of invocation across machinc boundaries has been overshadowed by timing
delays in the Ethemet driver. The reason for these delays has not been determined, but Jeads to remote
invecation times of approximately 40 msec, although some wials have resulied in times of less than 25
mscec; published figures for hardware and software timing figurcs of related sysiems suggest that these
times could eventually be reduced by approximalely an order of magnitude, although we are unsure of the
level of development efforl required to achieve such a speed-up.

User and OS-level objects have been written to exercise the kemel services, and provide nceded ser-
vices. A TCP/IP mechanism was addcd to the kemel in late 1986, and remote intcractive debugging and
menitoring facilities were developed on workstations running UNIX™. The current Clouds team is plan-
ning a complete rewrite on different hardware with 2 somewhat modified design!? as part of a NSF CER
project, awarded in 1987. Apparcnily, that effort will derive litde from the expericnces with the first pro-
lotype, and may well result in a redefinition of some of the basic goals driving the original Clouds
design.Bem87 This author is also contemplating a (somewhat differeni) implementation of the original
design on another hardware base with a focus on a more flexible memory archileciure and a
multiprocessor-oriented design, along with more explicit support for sccurity and a different network
mechanism.

5. Conclusions

An initial implementation of a2 Clouds kerncl has been done on top of the *‘bare hardware'” of a
machine rather than attempt to prototype it on top of an existing system, such as UNIX, to ensure the availa-
bility of needed constructs at a primitive enough level. The use of passive objects as the basis for the
Clouds design resulicd in a small, compact kernel with considerable fexibility, and a disributed environ-
ment presenting programmers with considcrable freedom of design.

The operation invocation mechanism allows a Clouds programmer 1o employ the same basic
mctheds when operating on processcs, recoverable abjects, or the kemel itself. This makes programming
simpler, and increases in simplicity usually enhance accuracy and reliability. The mechanism (and Clouds
philosophy) allow the uscr o choose the representation and level of support appropriate Lo the needs at
hand.

The Clouds mechanism for handling operation invocations is also significant because of restrictions
not present in its design. To add new operations or change access policies on an existing object it is not
necessary to invalidale or modify cxisting relerences w that object. Insicad, a modified version of the

™ VAX and ¥MS are trademarks of the Digital Equipment Corporalion.
@ UNTX is a repistered rademark of ATET.
12 As discussed by P. Hullo at the Works in Progress session, 1987 SOSP, Austin.
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object supporting al east Lle same operalions as belore is crealed with he same sysname as the previous
version. When invoked with enc of the “‘old®’ capabilitics, the invocation mechanism inds the modified
object during the scarch-and-invoke phase and the operations are performed (assuming the new access
rights wilhin the object are met). A “‘new’’ capability to the objcct will also work correctly, referencing
any new operations defined. Both kinds of change work because the kernel only binds references to
objects, performs memory mapping operations, and transfers arpuments—it does not actually manage
objects or meddle with their operalional interlaces,

Expcrience with the Clonds prolotype has shown the mechanism (o be quite feasible and potentially
efficient, given minimal hardware support. Research is currently underway 1o determine the full potential
of the mechanism in something other than a test implementation of Clouds, Thosc results will be reported
at a later date.
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