
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Architecture and Operation Invocation in the Clouds Kernel Architecture and Operation Invocation in the Clouds Kernel

Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Report Number:
87-730

Spafford, Eugene H., "Architecture and Operation Invocation in the Clouds Kernel" (1987). Department of
Computer Science Technical Reports. Paper 630.
https://docs.lib.purdue.edu/cstech/630

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ARClITTECTURE AND OPERATION
INVOCATION IN THE CLOUDS KERNEL

Eugene H. Spafford

CSD-1R-730
December 1987

. .
Architecture and Operation Invocation in the CLOUDS Kernel

Purdue University Technical Report CSD-TR·730

Eugene H. Spafford

Department of Computer Sciences
Purdue University

W. Lafayette, IN 47907-2004

spaf@cs.purduc.edu

ABSTRACT

Many distributed opcraLing systems have been developed in recent years based on
the acLion/object paradigm. The Clouds mullicamputee system provides a faull-tolemnt
distributed compuling environment buill from passive data objccts,fault-aromic lransac
tions, processes, and a global kemel inlerface implemented on LOp of unreliable
hardware.

Key to the successful functioning of Clouds is its simple architecture consisling of
passive, abslI'act data objccts and me uniform operation invocation m~hanism. This
architecture allows plain processes or nested lransactions La access user and SYSLeffi data
in a lransparem, uniform manner, whether those objects are local to the eurrent machine
or on some remoLe processor. The same basic interface used to make opcl'lluon invoca
tion requests on objects can be used to spawn processes and actions, and LO gain access to
resLriCLed kernel services.

This paper presents an abbreviated description of the Clouds architecture and its
relation to the operation of the invocation mechanism, including remote invocation, per
objcct access control, and location independent invocation. Some conclusions derived
from the first prototype arc also presented.

December 18, 1987

• Poni0ll5 of Ihis work were funded lit Georsia InstilUte of Tedmolosy by ?\,SF granL DCR-8316590 and NASA grant
NAG-1-430.

•Architecture and 0 pcration Invocation in the CLOUDS Kernel

Purdue Uni\'ersily Technical Report CSD·TR·730

Eugene Il. Spafford

Department of Compuler Sciences
Purdue University

w. LafayeLte. IN 47907-2004

spaf@cs.purdue.cdu

1. Background

Reccnlly a great deal of research has been focused on the potemial benefiLS of distributed systems.
Distributed system offer Lhe potential of a fault-tolerant ".ompuling environment oy replication and redun
dancy. A distributed system also suggesLS increased computing power Lhraugh the combinm..ion and appli
cation of resources. Multiple machines, however, raise many questions relating to communication, con-
sistency, reliability I configuration, and user inLerfaces. '

The Clouds project began in 1982 with an examination of how La conSlruct and apply a useful distri
buted sysl.em that could address these concerns yet be built on genero1-purpose. "off-the-shelf," pOlen
tially unreliable hardware. The approach was influenced by the concept of afulfy distributed processing
system:Ensl78 a system (partially) characl.erized by the lack of any cemrallocus of control or authority.
There is no central scheduler, name·server, or oLher single cmity which must be available for the com
ponents of the system to operate. S!Jch a system allows aUlOnomous operation of individual nodes should
the need arise, due to failure or due to administrative fial. This kind of system is appealing from a number
of standpoints, not least of which is its inherent potential tolerance of (at least) single-point failures. I In
systems without such full distribution, the failure of a component supporting a centralized service, such as
a name server, results in the failure of the entire system until that service is rcstored or replaced. An expli
cit goal of the Clouds design has been to construct a sysl.em that willlolerate and rccover from single-point
failures.

Preliminary design revealed a few requirements as basic La this paradigm. First, for a distributed sys
tem to provide general ut.i.lity, it would be necessary to support the synchronized shared access and inl.erac
tion of distributed items of dala of arbitrary type and size. Secondly, those il.ems of data needed to stay
consistent acroSS failures, and that consistency had lo be mride automatic in some way (funher, there could
be no central authority to provide and enforce such consistency since such a central authority could also
fail). These requirements are also basic to many other distributed. operating system projects, and the result
ing Clouds view was not an isolated one: an object/transaction paradigm is a good way to sLructure a disui
buled operating syslem. Objccts present a convenicnt means of absLrncting and isolating data, and transac
tions provide an abstraction to use to keep that data consistcnt in the face of failures. Examples of related
approaches include Edcn,1eas82,NmllS3,NOllSS ISIS,DiJm85,Jose85 Cosmos,NicoSS nnd Argus.usk83, Weih83

The use of objects and transactions in Clouds is intended to be at a lower level than any of these
other systems, however. In any opcraling system, many things dcpend upon data that must be kept con
sistent across failures (e.g., directories, scheduler queues, accounting informalion). The Clouds philosophy
is that if objects and lransactions are implcmented at the lowest possible level (in the kemel), they can then
be used to build the remainder of the reliable, distributed opemting system itself, as well construct needed

I A sing/~_point failun:, in thll conLc.;n of Clouds, is a failure whieh affeelS just a single component within any arbilla!}'
pcricd of lime IUld which is deLccub!ll.. All such failures are considered 10 be/ail-SlOP or haIling failures in 11m each com
ponent will opcrale com:aJyor not at all.

·2·

applicaLions. This was onc of the mnjor goals of the overall Clouds projcct, and is key to understanding the
resulting architccturc.McKcE3,McKcS3 AlIcSJ Many of these features of Clo/lds have been further vali-

dated by adapLion and usc in the Alpha syslem.NonS7

2. System Architecture

A Clouds multicompmcr consists of four types of logical cnLiLics: objects, actions. processcs, and
sub-kernels. Sub-kernels aClllally represent the replicaLcd kernel-Lhe virtual Clouds machine-but we
will mention them here since it is lhe sub-kernels that arc responsible for implementing the interface to
operation invocations in Clouds. We will describe lhe major features of lhcsc cmitie.s in lhe following sec
tions; readers desiring an in-depth understanding of the overall design should consull[Allc83,Spaf86J.
and[Wilk87].

2.1. Objects

The Clouds architecture uses large and medium-grained abstract data objccts as a means of encapsu
lating functionality and isolating errors and recovery considerations. These objects, when programmed
correctly, provide excellent shared access to the data they cneapsulate because locking and synchronization
of their internal data can be Lailored according to the semamics of that dala.

Clouds objects arc abstract data items of varying size and complexity, defined alqng with the opera
tions possible on those S!I1lctures. These operations may include explicit synchroniZation and recovery
operations, exception handlers, and dynamic storage management code. No other user access may be made
to the dar..a wiLhin an object exceptlhrough these operations.2

Typical Clouds objects might include items like output objccts in a printer or plotter queue, text file
objects, and user mailbox objccts, although it is possible to define and suppon objects consisting of single
integers or characters. The object space is Oat, with no contained objects or explicit type inheritance.
Objects may not span machine boundaries.3

Unlike the active objects used in other research approaches (e.g., Eden's Ejects or Argus' Guardi
ans), Clouds objects are passive-there arc no processes bound to the objcct instances. All activity within
Clouds objccts is as a result of an external process or action doing an operation invocation on the object
entering the object's code and dar..a space to perform a defined operntion, and then leaving l11at address
space when the operation is completed. This paradigm means that there arc no specific processes associ
ated with any object on a long-term basis, nor is there any long-term process management associated with
each object

Passive objects have at least l11ese distinct advantages compared to active objects:

• Passive objects are simpler to code and support (especially when implemented on a "bare"
machine) since they require no explicit code to support processes wil11in them. For instance,
passive objccts can be smaller l11an active objects, and need suffer fewer (if any) restrictions
about being paged in and oui of memory Dt Dny lime. Furthennore, local invocations of pas·
sive objects do not require process contexl switches, as do active objccts.

• The passive objcct opcration concept corresponds more closely with a paradigm familiar to
most users-that of the procedure call. Remote operations map into remote procedure calls
(RPC) in a natural manner as procedure C<llls. RPC operations mapped onto active objecls
require the inclusion of ports or rendezvous conslrucis which may not be as easily understood
by programmers.

• There is no limit on the concurrency possible within the code of a passive object other than
what is specifically designed imo that code. Active objects genernlly provide a limiled number
of servers and therefore activity within those objects is limited to the number of servers

2 Kerncl opcr:uions for transaaion and memo!)' mlll1agcmCl1t (paging)PitL86 and debugsingUoll7 are special cases con
trolled by !he kcrnel

J More complete semantics and slruelural deUlils are given in works on progmmming in
Clouds.AhsmIl7,LoBIlI5, W~1dl6, WUkS7

-3-

available. Increased concurrency within a passive object docs not necessitalC increasing its
size, since no process context is ever sLored within the objccL

• Clouds objccts may be easily moved, deleted or replaced at almost any time; active objects
require interaction with the kernel to save process st.:ltCS, instantiate new server processes, elC.

Further, by allowing the kernel to view Clouds objccts as similar, abslract entities, it is possible to
design common operations which can operate on objcclS of any type. Such operations include copying or
cloning of the objects to provide increased availability, and migration of objccts to oilier machines. Cou
pled with the fact that each objcct defines its own access and recovery, Clouds objects fit in perfectly with
the aulonomous nature of our definilion of a fully distribuled system.

2.2. Processes

Processes are the basic unit of activity in the Clouds system. A Clouds process is conceptually simi
lar to the traditional notion of a process or thrC<ld, in lhat it represents a series of related activities over a
period of time. However. Clouds processcs do not have a distinct address space associmcd with them. A
process consists only of its process control block and regisLCrs. As a process executes, it entcrs ilia memory
context of Clouds objects and executes lhe code therein on lhe data wilhin those objccts. When it exits the
object (returns). its conLCxt is replaced by the conlext of another object, or by the context of the machine
sub-kernel.

Processes are crC<lted by calls on the Clouds kernel specifying an initial object context The process
is given a PCB and is mapped into the context of the specified objecL Along wiili that mapping, the pro
cess is provided with a lcmporary stack associated with thal object. Should the process invoke an operation
on another object. its stack and context in the first object are unm<lppcd and saved, and it is mapped into ilie
caIled object along with a new stack. Upon return, the second object is unmapped and the Slack discarded.
and the saved contexts are remapped. Argument transfer between calls and process creation are both
described later in this document.

2.3. Actions

Clouds actions are similar to the more traditional notion of a transaction,MossSl but they implement
fmlwe alomicity and notneccssarily view atomicity.AlleS3 That is. there is nothing inherent in the semantics
of Clouds Lransactions thal prevent thcm from observing the effects of other actions. but all-or-nothing
behavior in the Cace of failure or explicit abort is preserved. To achieve serializability with Clouds actions,
the programmer must provide explicit synchronization using Clouds primitives designed for that
purpose.MeKe85

Actions arc implememed as Clouds processes that arc specially tracked as they execute. Whenever a
Clouds action invokes an opermion on an objcct marked as recoverable (i.e., inLended to be failure-momie),
the kernel .lirst invokes an action manager objccL to record the invocation. If the recoverable object is
changed by the action, the changes are made in a lemporary manner.4 When the action completes. it either
commits or aborts. If the action commits, all of its changes La recovcrable objccts are wriuen to permanent
storage. If the action aboflS, all of its chwges are ignored wd made to appear as if they had never
occurred. Machine or software Cailures cause aclions to abort if they had accesscd any objects related to
the failure.

Clouds objects are marked as recoverable or not, and only actions may invoke operations on recover
able objects. P:vcesses are not allowed Lo perform commit or abort operations, either.s In all other
respects, actions and processes arc identical.

Actually, the design of Clouds objects allows many types of resilient object to exist, along with
matching Corms of actions. In fact. mulliple types could coexist in the same system and potentially call
each other in a transparent manner, with the kernel dClermining the aclion type based on the object type

4 The first Clouds prototype usC.! objccl shadowinsGn)lIl,PitlSli as its primary recovcry mcchanism, although oiher
methods. including logging and version 5l:leks, have been contemplaled.

~ Actions may invokc operations on non·recoverable (plain) objccts. 100, but their effects arc not undone in the case of
Iailure or abort.

- 4 .

information; this has not yet been c"plorcd in the pIOLOLype, nor in associated language work, but the
potential is present in lhe design.

If the action manager allows them, $ubactions arc also supported. The effccts of subacLions in rela
tion to their ancestors and siblings is dctennined by lhe action manager involved. The Clouds prototype
may eventually support subactions, with semantics as defined in[Wilk~7J and [!<.enI86].

;:;~";:)§~~"'-J',.-~~

Ei.~"'$~,§~-?':;~1tj*'fi~~C'j(·
~~}J.~3~~i~~:~~~dfrt:S-

User and SystemsApplicatIons.

Figure 1: Logical Structure of a Clouds Multicomputer

2.4. TIle Sub-kernels

To a user, a Clouds mulLicomputcr is one single computer thal provides persistent abstract data
objects, processes and actions. This view is the same whcLhcr !.he multicomputer is composed of a single
machine or a large number of machines. To achieve this view, Clouds implcmcnlS a globnl operaling sys
tem and a global interfacc on rcplicated local kcrnels or sub-kernels (figure 1). ObjccL operation invoca
Lions occur in Ibis global space of objeclS and kernel interface.

Each machine supporlS a Clouds sub-kcrnel. Each sub·kcmcl is responsible for providing an identi
cal set of vinual machine services nnd funclions6 which can be refcrcnccd by the ObjcclS and by lhe global

6 lh~s~ includ~ I/O, [XIsin!:. and process l:onLroI oper:uions. Spedfics ~rc delailed in [SpafS61.

• 5 •

operating system. Each sub-kernel also supports an il1sL.allcc of the kernel interface through which applica
lions may make requcsts of kernel nnd opera Ling system services (figure 2).

When a user wishes LO develop a new application using Clouds objects, s/he first programs lhc nppli
ctltian in an object-oriented Jangllngc such us Aco!lIs.WilkS5 The opplic<lLion is programmed as onc or more
abstract data objects and as the apcmuons on lhosc objects. The user may also include implicit or explicit
support of ccrlain kinds of recovery opcrDLions ancl synchronization operations in the object definition.
Recovery operations can be used to provide a CCfluin amount of faull talemnee in case of failure, and lhe
synchronization allows the user to rcgulmc shared accesses to the object. The user is never forced to
include any of these operations, howc\'cr, and may program a simple non-rccovcrablc, non-synchronized
objcct if desired.

Mem:xy= evl

Object
Mgmt.

!:,r·I~~i~j~~ijfi~~~~~i~i~r~ii
mmm:·;i!'f Distributed State

Database.

~ Storage
_, Mgmt.

~.. .:.-.~ Mgmt

Figurc 2: Structure of a Clouds Sub-kernel

All references to objects arc done without knowledge of the location and accessibility of the target
objects, and the sub-kernels cooperalc [Q bind the references [Q the current location of the indicated object.
This is done through scarch-and-invoke opcrmions when the needed objccts arc nol found on the local
machine. Knowledge of where objects were Iocmed earlier is kepl only as hints, and thus objects can be
moved without notiIying any central authorily or withoul disrupting fUlure references.

3. The Invocation Mechanism

- 6 -

3.1. Naming

Every object, process, action and sub-kernel is uniquely named by a sysnamc. A sysnamc is con
strocted from a timcs13mp. birthplace and lype parameter, tlnd is £uaramccd unique (no two items will be
referenced by lhe same sysnamc). The type field provides a hint aboullhc type of the item rcfcrcnccd
whclhcr it is a process, an aCLion, a user-defined object, etc. In some cases it is possible for two sysnames
to have the same identifier portion, but different lype fields. This occurs when 1wo different forms of
access are allowed.7

A Clouds sysnamc coupled with an access strucLure comprises a Clouds capability. Capabilities are
employed by user code to refefence kernel operations. objects, processes and actions. The access rights
field is treated as an untyped bit Siring; the kernel docs not define the meaning of lhe bits. nor dres it deter
mine or enforce aceess rights on anything Olher than its own operations. Rather. it provides the bit string to
the object being invoked for a per-invocation validation check. The programmer of the object may eleCllo
have no check performed. or s1he may require some authorization and usc the bit slring for Lhis.

Sysnames arc not available to user code. bUl arc used within privileged code to locate and operale on
various ilems. Sysnames arc crc~tcd as needed by the kernel. Capabilities cannol be ahcred or crealed by
user code, but can be obtained and modified lhrough calls on lhe sub-kernel. Capabilities can be passed as
parameters in invocations; lhis is the only mcans of referencing an external object during an object opera
tion invocation.8

3.2. Object Structures

Every Clouds object has a defining structure associlllcd with it. This structme contains fields indicat
ing memory mapping and prot.eetion information about the object, type information. recovery information.
and accounting information. Whenever an objcctis referenced, the storage version of this object descriptor
is brought into memory (if not already present) and various fields are initialized. The in-memory version of
this structure is known as the objecl control block or DCB.

Each sub-kernel maintains a cache of currently active and recently used oeBs. This cache. lhe
active object table or ADT, can be used 10 quickly find the OCB for a referenced objecl. References
lhrough sysnames (and capabilities) are first checked against the AOT. Entries not found indicate a refer
ence to an object not currently in memory. or an object nol presenl on lhis machine, or possibly an object
which no longer exists due to removal or failure.

1 As.llll eumplc, II process C.:In also be considered as an obje". That objccl can have read and write 0pcJ"lllions denned
on it so as to allow a debugger 10 conLrOI the associated process ibrough simple objcct c:alJs examining ibe regioaers IWd
stack, in a manner similar 10 [KilIS4]. .

B The reason (or ibis is explained in [AlleS3] and is necc.ssary 10 pn:scrvc atomiciLy con5l!lIinlS in opcnllions crossing
machine bJundarics wilhoul requiring every sueh JU>C 10 be lI.scparalc subaetion.

-7-

All operations rcqucslcd by users of the Clouds system arc mapped into calls 10 lIle kernel interface.
Conceptually, lhc kernel imcrfncc extends across machine boundaries and CXiSLS on each sub-kernel wilhin
the Clouds system. In aCLUillily, the interface is rcplicmcd on each machine. The kernel interface imple
ments the invoke operation and return/rom invocatioll operation. The four parameters for an invocation
nrc passed to the first of these two operations.

The rust step in the invocation occurs as the kernel intcr[(lcc finds where the invocation wHI occur.
This is determined by the location of lhe aCLUal wrgct object instance. The first check is try LO find in the
AOT me sysname portion of the tm"gCl capabililY. If no malch is found, the sysname is checked against the
11UlJbe tablc.PillS6

The maybe table is an approximate membership Lester, like a Bloom IilLer,BlocilO conmiRing informa
tion about all Stored and active objects present on !.his machine. The mble provides a quick determination
ofwhe!.her or not an object is present on the local machine. A negative rcsponse is always definitive, but a
positive response simply means the object might be present. If the maybe lable indicates that Lbe
searched-for object might be prescnllocally, a search is performed on the secondary storage direcLaries in
an attempt to locate the object.

If Lbe named object is local and already represenLed in the AOT, Ulen invocation proceeds directly
(described below). Otherwise, if lhe object is local La this machine but not in the AOT, Lben a call is made
on internal routines to map the object inlO memory from secondary storage and proceed with the invoca-
tion. • .

3.3.1. Failures

All failures of invocation requests arc returned to the caller as a single failure code. There is no dis
tinction made as La the rcason of the failure since it is not always possible to determine the actual reason for
each failure: a not found condition could mean the object does not exist, the object has been deleted, the
network is partitioned, the disk is not mounted, etc. Furthermore, it is a potential security hole to distin
guish between different failure like "access disallowed" and "object not found:' Actions and subaetions
attempting an invocation automatically abort on failure, so as to preserve exacrfy-once semantics.
Processes may retry on failure or take alternate actions, as Lbe programmer decides.

3.3.2. LocalInvocation

The operation number provided in the invocation requcst is checked for validity. In the prototype, if
the number is positive it indicatcs a regular operation (programmer defined), and is compared against a
range field in the OCB. If the operation number is greater than this limit, the operation is disallowed (no
such operation) and an invocation failure is signalled. If the supplied operation number is negative, it indi
cates a special operation, such as aborl or commit. and fields in the OCB are checked lO ensure that the
operation is actually defined and that the object is recoverable. At the same time Lhe object type is chccl;ed
to see if it is recoverable. the caller is checked. to see if it is an action. If the caller is not and the object is
recoverable, the operation is disallowed and a failure signalled; only actions are allowed La access recover
able objccts.9

Next, a record is linked to Lbe current PCB containing Context information about Lbe state and loca
tion of the current object-space Slack, current virtual memory mapping parameters, and a pointer to the
client-suppL:d output parameter list Then, the current object-space Slack is made inaccessible, a new
stack is allocated and initialized, and the memory mapping registers are loaded to enable reference of the
new "current" object As a result, the memory context of Lhe invoked object (and only that objcct) is now
accessible to lhe process.

Finally, some form of branch or subroutine call (as appropriate for the machine) is made to a com
mon starting address in the objcct, as given in the OCE. Provided as arguments to the call are the sysname
of the invoking object, the access rights portion of the eapabilily used to invoke lhis opemtion, lhe opera
tion number, and a pointer to the new input argument list

9 However, aelions may freely :ll::ee..lS nonreeoverable objct:ts. When such :lcccsses oceur, Ihey arc lro:lled as if the lIe
lions were plain proccsse..l.

-8-

If the object is recoverable, instCl.ld of performing Lhe branch or call directly, a call is made on the
action management subsystem with lhe arguments and the address of lIlc cOLrypoinL AfLer determining me
validity of the reference and resolving any lock and visibility consideraLions, the action management code
will perform tile branch or call with the given argumellts.

The code within the cnl!)' rouline of the objecL performs any necessary validation and synchroniza
Lion specific to the object, based on lhe informlllion provided by the sub-kernel imerface, and then a branch
is made to Ute code necessary [0 execuLe the indicated operation. NOlC iliat since the call provides both the
access rights word and Lhc sysnamc of me invoking objcct, it is possible 10 perform highly-specific access
and locking operations on an objcct-by-objeet basis.

3.3.3. Return

When the execution within Lhe objcct is complete, the code will execuLe an object return operation
on the sub-kernel, supplying as arguments a success/failure nag and a pointer to an argIist describing the
result parameters. If the returned status indicates success, the kernel interface code transfers the output
values in the arglist provided by the relurn call into the locations specified in Ihe results arglist supplied at
the time of invocation. The count and overflow fields in that arglist are set appropriately as part of this
transfer. If more return arguments are provided than the user allOcalcd room for, overflow flags are set If
lhe returned SLatus indicates failure, then no values are transferred (they are assumed to be invalid) and lhe
count field of the user-supplied arglist is set to zero to rencct that facl.

Next, the saved object context information is unlinked from the PCB, and its values restored, effec
tively resuming the state the process was in prior to the invocation request. This includes updating the vir
tual memory registers and restoring the previous user Slack. This also has the effect of unmapping the
invoked object and remapping the invoking object.

If the current process is acting under the auspices of an action, and if the type field in the OCB of the
object being returned from indicates that the object is recoverable, control is passed to action management
code. In !.his specific case, a returned Status flag showing failure indicates an abort 10 Control is finally
returned to the calling code. The value returned by the invoke function is the value of the SLatus code pro
vided in the object reLum call.

10 On the othu hand, a n:wmcd SLalUS DC "success" docs not ncccs.l3rily indicale eommiJ. That is something which
must be performed with a sep:mlle invoeaLion on tlJe B<::Lion mJnogementobjCGL

\

,9,

/
[Kernel interface]
~--~---

/
g;'-~.-'ffi.;S'~~.~.-~.,,"-~••~-~•..-- 'maybe' table

.'

,
\
\
\,,,
\•,
•,,,
•,,
••,,
•,,,
•,,,
•••,,,,
•

Figure 3: Object Operation Invocation

3.3.4. Remote Invocation

If the capability provided references an objcct which is nol found locally, it is assumed to be avail
able through onc of the oilier sub-kernels on anOlhcr machine. As sllch, the kernel interface constructs an
RPC search-and-illvoke request conUlining the provided capability and operation number, lhe input argu
menl list, the sysnamc of the current process, and the action slaLUS of the invoking process. This RPC is
then broadcast as a search and invoke operation to the oLhcr machincs. l1

- 10-

If no reply comes within ,Ill implcmcnultion-dcpcndcnL Limcout period, a failure is signalled. If the
RPC produces an acknowledgment that the invocmion has starLed, the caller may elect to set a timer to wait
for some longer period of time for results La be returned.

Remolcly, code on each machine receiving the RPC checks Ule object name specified against Lbe
local maybe table. If the result shows that Lhe object cannOl be present locally, the RPC request is ignored.
OLherwise, a slave process is given the arguments and dispatched to lry the invocation locally on behalf of
the invoking process. If the object is located locally, the slave process will succeed wilh its altempt at
invocation, and lhe operation will be performed. If the objcct is not located locally, the slave simply l.er
minatcs. Since all capabilities refer to unique objects, it is clear lhat only onc slave process in lhe entire
mulLicomputer will ever succecd in the invocation attcmpt

When the object code completes on the remote node, the interface code handling Lhe return request
will note that the work was being done on behalf of a remote invocation. Instead of copying lhe return
arguments into lhe caller's address space (that does not exist on that remote machine), it will instead fonnat
lhe return values and status code into an RPC ref:!v message that will be sent back to the calling machine's
kernel interface. Upon receiving the return arguments, the kernel interface will process !he- returned argu
ments as if lhey had becn generated locally.

3.3.5. Processes and Actions

The mechanism for creating new processes and ;lCtiOns (and subactions) is almost identical to object
operntion invocaLion-in fact, the creation calls OIT the kernel look exactly like an object operation invoca
tion. The parameters supplied to the kernel intcrface in these cases inelude a capability to an object, an
operation number, and arglist SlruCLUrcs. The newly created process or action slarts execution by invoking
the operation indicated on Lhc objcct named by the provided capability using the provided input arguments.
From the standpoint of the invoked object, it appears exactly like a regular invocation.

From the standpoint of !he new process, its "binh" appears exactly like an invocation, except there
is no previous context to restore, and there arc no parameters La return. From the standpoint of the
"parent" process, the spawning of the child appears as an objcct invocation; the return values include only
process id information. The parent can qucry the s!<ltus of its children at any time with calls to the sub
kernel using a capability 10 the child process.

This mechanism allows casy, eon~istent_access to Ihe process and action facilities. Code can be exe
cuted as (effectively) object subroutines. or executed by separaLe processes or actions. The same code can
be executed by top-level actions or subaclions with absolutely no change in IDe (called) code.

This approach to process creation is not completely new (cf. McsaLampso), but it is somewhat unique
in that there is no corresponding join nor is there any copying of parent contexl doneo Additionally, actions
and subactions can use the exact same mechanism.

3.3.6. Access to Kernel Services 0 - 0 __

The kernel interface implements a pseudo-object representing the kernel. Uscrs may make invoca·
tions on this object to spawn processes, get accounting information, access synchronization primitives, and
access olher typical services. Processes can also make invocations on morc privileged services, such as
direct access to device drivers, assuming they have proper capabilities. Thus, special services may be esta
blished for particular users who have becn given the authority 10 access them. Furthermore, Illis also
allows new as services, such as file scrvers and schedulcrs, to be wriucn outside the kernel-they only
need aceess to the restricted kernel operntions necessary for their operation. These external services use
the same interface as all other objects, thcy reside "outside" the kerncl, and multiple versions can coexist,
if desired. This mechanism is extremely flexible and can be tailored to suit almost any configuration of ser·
vices desired.

Since the Clouds kernel has been Co'lrcfully designed LO implement only mechanism without built-in
policy whenever possible, it is fairly simple La write traditional operating systcm functions such as file sys
tcms and schedulers as objects outside the kernel; in fnct, this is one of the longer-tcrm goals behind lhe
overall Clouds architecture. Furthermorc lhe passive objcct approach allows object-context switching to
occur fast enough to code time-eriLieal as functions in these objects without worrying about the overhead

• 11 .

introduced by process COnlcxt swilching.

4. Current Status

A prototype Clouds kernel was completed on a group of VAX llnSO™ computers in carly 1986.
after appro;(immcly three man-years of effort, The prOLOl)'pc supponcd objcclS. processes, aeuon tnlcking
(bUl not the full aelian mechanism described in[KcnIS6]), RPC, disk support, intcrmachinc communication,
debugging and trace code, and the entire invo:ation mechanism described in this documcnL The total
code (with commcnr.s) required to support this kernel was under 12,000 lines of C, and a few hundred lines
of assembler. We view the compacUlcss of this sub-kernel as another slrong argumenL in favor of passive
objects.

The unoptimizcd version of lhe invocmion mechanism described here has been measured as taking
4.39 milliseconds per invocation and return for objeelS local to the current machine and present in Ute
AOT. A simple procedure call Dnd return on the SDme mDchine takes 40J.lScc. The majority of the object
invocaLion Lime is taken by the switch in memory contexts caused by entering and leaving objcct spaces,
and by copying of the arglists so as to present only value pDrDffieters. Unfortunately, the memory system on
a VAX. 750 is such thDllhe only way to easily achieve a memory context switch for a multi-page object is
to force a process context switch, thus negming some of our amicipatcd benefits for passive objects.

IniLial measurements of invocation across mDchine boundaries hDs been oversQDdowed by timing
delays in the Ethernet driver. The reason for these delD)'s hDs not been determhleO, "but leads to remote
invocation times of approximately 40 mscc, although some trials have resulted in times of less tilan 25
mscc; published figures for hardware and software timing figures of relaled systems suggest that these
times could eventually be reduced by approximalely an order of magnitude, although we are unsure of the
level of development effort required 1O achieve such DspecO-up.

User and OS-level objcclS have been written to exercise the kernel services, and provide needed ser
vices. A TCP/IP mechanism was added to the kernel in late 1986, ~d remOIe interactive debugging and
monitoring facilities were developed on workstations running UI\JX • The current Clouds team is plan
ning a complete rewrite on different hardware with a somewhat modified designl2 as pan of a NSF CER
projcct, awarded in 1987. Apparently, that effort will derive little from the experiences with the first pro
totype, and may well result in a redefinition of some of Ihe basic goals driving the original Clouds
design.Bcm87 This author is also contemplating a (somewhat different) implementaLion of the original
design on anoilier hardware base with a focus on a more flexible memory archilecture and a
multiprocessor-oriented design, along with more explicit support for security and a different network
mechanism.

s. Conclusions

An initial implementation of a Clouds kemel has been done on LOp of the "bare hardware" of a
machine rather than attempt to prOlOlype it on lOp of nn existing system, such as Ul\'IX, to ensure the availa
bility of needed constructs at a primitive enough level. The use of passive objects as the basis for the
Clouds design resulted in a small, compDcl kernel with considerable flexibility, and a distributed environ
ment presenting programmers with considerable freedom of design.

The operation invocation mechanism allows a Clouds programmer 10 employ the same basic
methods when operating on processcs, rccoverable objccts, or lhe kernel iLSCIf. This mDkes programming
simpler, and increases in simplicity usually enhance accuracy and reliability. The mechanism (and Clouds
philosophy) allow the user to choose the representation and level of support approprialc to the needs at
hand.

The Clouds mechanism for handling operaLion invocations is also significant because of restrictions
Dol present in its design. To Ddd new operations or change access policies on an existing objcct it is not
necessary to invalidate or modify existing references to that objecL Instead, a modified version of the

tw: VAX and VMS arc Lradcmarl<s of thc Digital Equipmc:nt ColJxll111ion.

181 m:1X is a registered tradcm:uk of AT&T.

lZ As discusscd by P. HULLO at thc Works in Progress scssion. 2987 SOSP, AusLin.

- 12 ~

object supporting aL Icast Lhc sallle operations as before is crc.:.'lLed with lhe samc sysname as the previous
version. When invoked with onc of the "olu" cDpnbiliLies, the invocmion mechanism finds the modified
object during the search-and-invoke phase Dnd the opcrJ.tions are performcd (assuming the new access
rights wiLhin Lhe object Drc met). A "new" capability to the objcct will also work correctly, referencing
any new operations defined. BOLh kinds of change work becausc tbe kernel only binds rcferenees [0

objects, performs memory mapping operations, and transfers arguments-it does not actuDlly manage
objccts or meddle wiLh tlJeir operational interfaces.

Experience with tlJe Cto/lds prototype has shown the mechanism to be quite feasible and potentially
efficicnt, given minimal hardware suppon. Research is currently underway to determine the full potential
of the mechanism in something other tlJan a tcst implemenlation of C/O/Ids. Those results will be reporled
at a Ialer date.

References

Aham87.
Ahamad, M., P. DasgupLa, R. J. LeBlanc, and C. T. Wilkes, "Fault-Tolerant Computing in Object
Based Distributed Operating Systcms," PROCEEDINGS OF THE SIITII SYMPOSIUM ON RELIABIlITY TN
DISJRlDUfED SOFTWARE AftlD DATABASE SYSTEMS, pp. 115-125, IEEE Computer Society, Willi
amsburg, VA, March 1987.

Allc83.Allehin, J. E., ,. An Architecture for Reliable Decentralized Syslems," PH.D. DISS., School of Infor
mation and Computer Science, Georgia Insti~ule ofTcchnology, Atlanta, GA, 1983. Also rcleased as
technical report GIT-ICS-83/23

Almc83.
Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe, "The Eden Syslem: A Technical
Review," TECHNICAL REpORT 83-10-05, University of Washington Department of Computer Sci-·
ence, OcLObcr 1983.

Bem87.
Bemabeu, J., P. HutLO, and Y. Khaldl, "A Modest Proposal," DrsrnmuTED SYSTE..\1S GROUP MEMo
Grr-ICS-DsG-87/01, Georgia InsUtule of Technology, Allanta, GA, 18 June 1987.

Birm85.
Birman, K. P. and othcrs, "A:n Overview of the ISIS Project," DISTRIOUTED PROCESSING TECHNICAL

COMMmEE NEIVSlEITER, vol. 7, no. 2, IEEE Computer Sociely, October 1985. Special issue on
Reliable Distributed Syslcms

Bloo70.
Bloom, B. H., "SpacefTime Trade-orrs in Hash Coding with Allowable Errors," COMMUNICATIONS

OF THE ACM, vol. 7, no. 13, pp. 422-426, July, 1970.

Ens178.
Enslow, P. H., "What is a "Distribu[ed" Processing System'!," COMPCTfER, vol. 11, no. I, pp. 13
21, IEEE, January 1978.

Gray81.
Gray, J. N. and others, "The Recovery Manrlger of tlJe System R Database Manager," COMPCTfING

SURVEYS, vol. 13, no. 2, ACM, June 1981.

Jeas82Jeasop, W. H., J. D. Noe, D. M. Jacobson, J. Baer, and C. Pu, "The Eden Transaction·Based File
System," PROCEEDINGS OF TilE SECOND SnlPosJUM ON REUIlIJIUTY IN DISJRIDUTED SOF11VAREAND

DATABASE SYSTEMS, pp. 163-169, IEEE, Pittsburgh, PA, July 1982.

Jose85.Joseph, T. A., "Low-Cost Management of Replicated Data," PH.D. DISS., Department of Com
puter Science, Cornell University, Ithaca, NY, Novembcr 1985. Also released as Technical Report
1R 85-712

Kenl86.
Kenley, G. G., "An Action Management System for a DislIibutcd Operating System," M.S. THESIS,
School of Information and Computer Scicncc, Georgia Institute of Technology, Atlanta, GA, 1986.
Also released as technical report GIT-ICS-86/0l

• 13 .

Ki1l84.KilIian, T.• "Processes as Files in EighLh Edition Unix," PROCEl::OINGS OF TIlE SUMMER USEA'fX

CONFERE1'o'CE, Uscnix Association, Salt Lnkc CiLy, Uwh, July 1934.

Lamp80.
Lampson, B. W. and D. D. Redell, "Experience wim Processes and Monitors in Mesa," COMMUNI

CATIONS OF TUE ACM I vol. 23, no. 2, pp. 105·117. February 1980.

LcBI8S.
LeBlanc, R. J. and C. T. Wilkes, "Systems Programming with Objects and Actions," PROCEEDINGS

OF THE FIFTlI INTERNATIONAL CONFEREf,'CE ON DISTRIBUTED COMPUTING SYSTEMS, Denver, July
1985. Also released, in expanded form, as lechnical report GlT-ICS-85/03

Lin87Lin, C., "The Design of a Distributed Debugger for Action·Based Object-Oriented Programs,"
PH.D. DISS.• School of Information and Computer Science, Georgia Institute of Technology, Auanta,
GA. 1987.

Lisk83.
Liskov, B. and R. Scheiner, "Guardians and AcLions: Linguistic Support for Robust DisLributed Pro
grams," TRANSACTIONS ON PROGRAMUINGLANGUAGES AND SYSTEMS, vol. 5, no. 3, ACM, July 1983.

McKe83.
McKendry, M. S., J. E. AHchin, and W. C. Thibault, "Archi\ccLUrc for a Global Operaling System,"
IEEEINFOCOM, April 1983.

McKe83.
McKendry, M. S. and J. E. Allchin, "Synchronization and Recovery of Actions," PROCEEDINGS OF

TIlE SECOND SYMPOSIUM ON PRINCIPLES OF DISJRlBCTIEO COMPUTING, ACM SIGACf/SIGOPS,
Monlreal, August 1983.

McKe85.
McKendry. M. S., "Ordering Actions for Visibility." TRANSACTIONS ON SomVARE ENGINEERING,

vol. II, no. 6, IEEE, June 1985. Also released as technical report GIT-ICS-84105

Moss81.
Moss, J., "Nested Transactions: An Appro~ch LO Reliable Distfibulcd Computing," TECHNICAL
REPORT MITJLCSfTR-260; MIT Laboratory for Computer Science, 1981.

Nico85.
Nicol, J. R., G. S. Blair, and W. D. Shepherd, "A Tailored Kernel Design for a Distributed Operat
ing System," TECHNTCAL REPORT, Deparunem of Computing, University of Lancaster, Lancaster,
England, 1985.

Noe85.Noe. J. D.• A. B. Proudfoot, and C. Pu, "Replication in Distributed Systems: The Eden Experi
ence," TECHNICAL REPORT TR·85-08·06, Dcparunent of Computer Science, University of Washing
ton, Seatue WA. Seplember 1985.

Nort87.
Northcutt, J. D., Mechanics/or Reliable Dislributed Real·Time Operating Systems, PERSPECTIVE:S IN
COMPUTING, 16, Academic Press, 1987.

Piu86.Pius, D. V., "SLOrage Management for a Reliable Decentralized Operating System," PH.D. DISS.,
School of Information and Computer Science. Georgia Institute of Technology, Atlanta, GA. 1986.
Also released as Technical Report GIT-ICS-86/21

Spaf86.
Spafford, E. H., "Kernel Structures for a Dislributed Operaling System," PH.D. Drss., School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986. Also
released as lechnical repon GlT·ICS·86/16

Weih83.
WeihI, W. and B. Liskov, "Specification and Implementation of Resilient ALOmic Data Types,"
SYMPOSIUM ON PROGRMfMING LANGUAGE ISSUES IN SOFTWARE SYSTEMS, June 1983.

Wilk8S.
Wilkes, C. T., "Preliminary Aeolus Reference Manual," TECHNICAL REPORT Grr-Ies-8S/07, School

- 14-

of Information and Computer Science, Georgia InstiLute of Technology, AtianUl, GA, 1985. Last
Revision: 17 March 1986

Wi1k86.
Wilkes, C. T. and R. J. LeBlanc, "Rationale for the Design of Aeolus: A Syslems Progrnmming
Language for an Action/Objecl SYSLCm," PROCEEDINGS OF THE 1986 ImERNATIONAL CONFERE/I.'CE

ON COMPUTER LANGUAGES, pp. 107-122, IEEE Computer Sociely, Miami, FL, Oelober 1986. Also
available as Technical Reporl GlT·ICS-86/12

Wilk87.
Wilkes, C. T., "Programming Methodologies for Resilience and Availabilily," PH.D. DISS., School
ofInfonnation and Computcr Sciencc, Gcorgia Institutc of Technology I Allanta, GA, 1987.

	Architecture and Operation Invocation in the Clouds Kernel
	Report Number:
	

	tmp.1307986960.pdf.c1QA1

