
 Open access Journal Article DOI:10.1002/SPIP.186

Architecture as a coordination tool in multi‐site software development
— Source link

Päivi Ovaska, Matti Rossi, Pentti Marttiin, Pentti Marttiin

Institutions: Aalto University, Nokia

Published on: 01 Oct 2003 - Software Process: Improvement and Practice (John Wiley and Sons Inc.)

Topics: Reference architecture, Applications architecture, Resource-oriented architecture,
Software architecture description and Software architecture

Related papers:

 Architectures, coordination, and distance: Conway's law and beyond

 Coordination in software development

 How do committees invent

 A field study of the software design process for large systems

 Global software development

Share this paper:

View more about this paper here: https://typeset.io/papers/architecture-as-a-coordination-tool-in-multi-site-software-
1veo2be8oz

https://typeset.io/
https://www.doi.org/10.1002/SPIP.186
https://typeset.io/papers/architecture-as-a-coordination-tool-in-multi-site-software-1veo2be8oz
https://typeset.io/authors/paivi-ovaska-4udp7npaz1
https://typeset.io/authors/matti-rossi-545xvtxnk7
https://typeset.io/authors/pentti-marttiin-7spojcy4rv
https://typeset.io/authors/pentti-marttiin-7spojcy4rv
https://typeset.io/institutions/aalto-university-2r0tyngt
https://typeset.io/institutions/nokia-8214gihh
https://typeset.io/journals/software-process-improvement-and-practice-1vactxk0
https://typeset.io/topics/reference-architecture-1ej5re80
https://typeset.io/topics/applications-architecture-1ur7ursm
https://typeset.io/topics/resource-oriented-architecture-1c9y4qhs
https://typeset.io/topics/software-architecture-description-3rrlj4o4
https://typeset.io/topics/software-architecture-3l1mcs2f
https://typeset.io/papers/architectures-coordination-and-distance-conway-s-law-and-272dbe4be3
https://typeset.io/papers/coordination-in-software-development-58e4ajh5yv
https://typeset.io/papers/how-do-committees-invent-2vlozn457g
https://typeset.io/papers/a-field-study-of-the-software-design-process-for-large-ooa0xio8ct
https://typeset.io/papers/global-software-development-20tbmqxjwn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/architecture-as-a-coordination-tool-in-multi-site-software-1veo2be8oz
https://twitter.com/intent/tweet?text=Architecture%20as%20a%20coordination%20tool%20in%20multi%E2%80%90site%20software%20development&url=https://typeset.io/papers/architecture-as-a-coordination-tool-in-multi-site-software-1veo2be8oz
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/architecture-as-a-coordination-tool-in-multi-site-software-1veo2be8oz
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/architecture-as-a-coordination-tool-in-multi-site-software-1veo2be8oz
https://typeset.io/papers/architecture-as-a-coordination-tool-in-multi-site-software-1veo2be8oz

SOFTWARE PROCESS IMPROVEMENT AND PRACTICE

Softw. Process Improve. Pract. 2003; 8: 233–247 (DOI: 10.1002/spip.186)

Architecture as a
Coordination Tool in
Multi-site Software
Development

Research Section
Päivi Ovaska1*,†, Matti Rossi2 and Pentti Marttiin2,3

1 South Carelia Polytechnic, Koulukatu 5B, FIN-55120, Imatra, Finland
2 Helsinki School of Economics, P.O. Box 1210, FIN-00101, Helsinki,
Finland
3 Nokia Technology Platforms, P.O. Box 407, 00045 Nokia Group, Helsinki,
Finland

A widely held understanding of coordination in software development is that it focuses
on coordinating development activities to achieve a common goal. Our study, a case study
in an international ICT company, suggests that in multi-site environment, it is not enough
to coordinate development activities to achieve a common goal. Rather, more emphasis
should be put on coordinating interdependencies between activities. Shifting the interest from
activities (and subsystems) toward system-level dependencies requires software architects and
developers to have a common understanding of the software architecture. Our findings reflect
coordination challenges in multi-site environment with geographically dispersed teams. On
the basis of the findings, we claim that architecture could be used to coordinate distributed
development. However, this requires that the chief architect is capable of maintaining the
integrity of the architecture and of communicating it. Furthermore, we list some requirements
for a development methodology that uses architecture to support the coordination. Copyright
 2004 John Wiley & Sons, Ltd.

KEY WORDS: multi-site software development; software architecture; coordination of software development

1. INTRODUCTION

Today, it is common for software development to
take place in multiple or even distributed groups
working together on a common system. Recent
projections by the Gartner Group suggest that
more than 137 million business users worldwide
were involved in some form of remote work in

∗ Correspondence to: Päivi Ovaska, South Carelia Polytechnic,
Koulukatu 5 B, FIN-55120, Imatra, Finland
†E-mail: paivi.ovaska@scp.fi

Copyright 2004 John Wiley & Sons, Ltd.

2003 (Finholt et al. 1998). Increased importance
of knowledge, technological complexity, global
competition and the availability of digital infor-
mation and communication technology are driving
the change toward global and networked envi-
ronment (Castells 1996). Carmel (1999) has intro-
duced a set of catalysts for global software teams.
These include deployment of specialized and ‘best’
expertise, expansion through company acquisitions,
reduction in development costs, visibility for the
company brand with global presence, reduction in
time to market and proximity to customers in high-
interaction tasks such as requirements gathering
and innovation.

Research Section P. Ovaska, M. Rossi and P. Marttiin

In this kind of distributed environment, the
management of uncertainty and distribution of
knowledge become focal issues. As the developers
have no immediate feedback and as they do not
necessarily share the same development culture and
values, the coordination and control of the work is
paramount.

Coordination is an inherent aspect of work in any
organization and takes place in the form of meet-
ings, scheduling, milestones, planning and pro-
cesses. Kraut and Streeter (1995) argued that coordi-
nation becomes much more difficult as project size
and complexity increases. Apparently, complexity
increases when the project is located in multiple
sites. Communication is a salient part of coordina-
tion, and it has been observed (e.g. Allen (1977))
that distance affects the frequency of communi-
cation. Communication delays and breakdowns
taking place in software development projects are
discussed in several studies (Curtis et al. 1988, Kraut
and Streeter 1995, Herbsleb et al. 2000).

Much of the research in coordination of soft-
ware development assumes that coordination is
coordinating activities to achieve a common goal
(Curtis et al. 1988, Kraut and Streeter 1995, Grin-
ter 1999, Grinter et al. 1999, Herbsleb and Grinter
1999, Carmel and Agarwal 2001). We go further
and propose that in a multi-site development envi-
ronment, it is not enough to coordinate only the
activities but it is also important to coordinate the
interdependencies between the activities to achieve
a common goal. The main mechanism for coordi-
nation is the software architecture, which describes
these activities and their interdependencies in terms
of components and their relationships (interfaces
between components) (Garlan and Perry 1995). This
kind of coordination gives the developers in multi-
ple sites a possibility to concentrate more on their
own development work and of not having to be
so aware of the work in other sites as long as the
interfaces between components remain the same
(Szyperski 1998). In the case of interface changes, the
developers should coordinate mostly their changes,
and not so much the whole component change.

To get first hand information about coordination
issues in situ, we performed an in-depth study of
a software development project of an international
information and communications technology (ICT)
company. We studied the use of architecture as
a coordination mechanism in a multi-site devel-
opment environment. Geographical, cultural and

language distances between development partici-
pants were present in the studied organization. The
focus of our study was twofold: first, we focused
on coordination problems and tried to identify cat-
egories of processes that explained most of these
problems. Second, we used these categories to iden-
tify differences between same-site and multi-site
development environments.

The goal of the studied project was to develop
a directory service platform for the global telecom-
munications market. To gain easier management,
the project was partitioned into two subprojects on
the basis of architecture and technology. The devel-
opment work in these two subprojects was carried
out in different ways, which gave us a possibility to
make comparisons between these two subprojects.
One subproject was executed in three different sites
and the other in one site in Finland.

We used grounded-theory approach according
to Strauss and Corbin (Eisenhardt 1989, Strauss
and Corbin 1990) to investigate the importance
of software architecture in multi-site coordination.
An involved case-study approach according to Yin
(1994) and Eisenhardt (1989) was used to gain
insight into the project. The principal researcher
of this study worked as a head of department in
the company and participated in the steering group
work of the project.

The rest of the article is organized as follows.
First, we discuss coordination and architecture in
software development literature and take a closer
look at two coordination theories (Section 2). Section
3 introduces our case organization and the case
project. The research settings and methods along
with a project narrative are outlined in Section
4. Section 5 describes the findings of the study.
Section 6 discusses and concludes the results, their
implications for research and practice as well as
topics for further study.

2. RELATED STUDIES

2.1. Coordination

Coordination issues in software development, espe-
cially in large software projects, have been identified
as one of the main reasons for delays and budget
overruns (Kraut and Streeter 1995). Plans, processes,
interface specifications and software architecture
are typical formal coordination mechanisms in

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

234

Research Section Architecture as a Coordination Tool

large software projects. However, there is an abun-
dance of research results, which show that informal,
unplanned, ad hoc communication is also extremely
important in supporting collaboration (Curtis et al.
1988, Kraut and Streeter 1995, Herbsleb and Grinter
1999). People need to communicate with each other
on details and things omitted from the formal spec-
ifications, and their work has to be coordinated on
the system issues (Kyng 1991). As Winograd and
Flores (1986) observed, collaboration and commu-
nication exist in all human actions except for the
simplest tasks.

2.2. Coordination Problems

2.2.1. Same Site
The formal communication mechanisms can be
vulnerable to imperfect foresight and unexpected
events, which require communication to coordi-
nate activities (Herbsleb and Grinter 1999). The lack
of informal communication channels can lead to
problems in software development, which increases
the development time. These problems can lead
to misunderstandings in design conventions and
rationale (Curtis et al. 1988) and to software integra-
tion problems (Herbsleb and Grinter 1999). As the
size and complexity of software increases, the need
for supporting informal communications increases
dramatically (Kraut and Streeter 1995).

2.2.2. Multi Site
Multi-site work often lasts longer than same-site
work and requires more people to accomplish a
job of equal size and complexity (Herbsleb et al.
2001). Kraut and Streeter found that communica-
tion barriers (geographic, organizational or social)
reduced people’s opportunities and eagerness to
share information (Kraut and Streeter 1995). Allen
(1977) has found that distance affects the frequency
of communication.

Coordination of multi-site development can be
organized according to standardized processes and
written specifications (formal communication), but
there is still a need for informal communication
channels. Virtual coordination can be supported for-
mally through legal formal contracts or informally
through ad hoc relationships (Kraut et al. 1999).

Examples of successful multi-sited projects can
be found. Open source projects such as Linux
and Apache have developed software successfully
in highly distributed loose communities. These

projects utilize informal communication channels
and governance structures and authority of project
leaders for coordinating version releases (Markus
et al. 2000).

In her research on the success factors in a highly
distributed organization, Orlikowski (2002) found
that there were a number of formal basic princi-
ples, a common process methodology, for managing
coordination work. This methodology consisted of
technical standards and coordination documents
that were prepared at all levels of the project and
that described the interdependencies between dif-
ferent parts of the system and how these parts were
coordinated in the project in order to work together.
Winograd and Flores (1986) observed further that
coordination needs the participants’ commitment to
dependencies between activities. This commitment
can be generated through ‘speaking and listening’
(Olson and Teasley 1996).

These communication barriers between teams can
be alleviated by an architect who acts as a boundary
spanner between teams (Curtis et al. 1988). The
boundary spanner translates customer needs into
terms understood by software developers.

2.3. Coordination Theories

Several coordination theories exist in different
disciplines, which consider the coordination from
different perspectives (Malone and Crowston 1994,
Tolksdorf 2000). However, basically, there are only
two kinds of models of coordination: ‘traditional’
and ‘modern’. The ‘traditional’ model defines
coordination as coordinating activities toward a
common goal. This understanding is widely used
to describe coordination in software development
(Curtis et al. 1988, Grudin 1994b, Kraut and Streeter
1995, Grinter et al. 1999, Herbsleb and Grinter 1999,
Herbsleb et al. 2001) and assumes a common goal
shared by all entities. The ‘modern’ model sees
coordination as the coordination of dependencies
between activities toward a common goal. Both
models are shown in Figure 1.

We will discuss the ‘modern’ model in more
detail. Our aim is to compare our findings of the case
of an international ICT company with this model. In
order to do this, we have selected the coordination
model developed by Malone and Crowston (1990,
1994). They defined coordination as management of
interdependencies between activities. They assume that
if there are no interdependencies, there is nothing

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

235

Research Section P. Ovaska, M. Rossi and P. Marttiin

Goal

Activity

Coordinates
with

Coordination Dependency

Activity

Figure 1. Two models of coordination: traditional (left)
and modern model (right). Adapted from (Tolks-
dorf 2000)

to coordinate. The activities can be activities or
objects; everything that has dependencies requires
coordination (Malone and Crowston 1994). The
model was selected because of its usefulness in
characterizing development activities taking place
in multiple sites. This kind of coordination does not
require activities in different sites to be aware of
each other all the time and to be able to cooperate to
achieve the common goal. They should only have a
common understanding of dependencies between
activities and coordinate through them.

The model suggests that interdependencies
between activities could be analyzed in terms of
common objects that are involved in some way in
both activities. These common objects constrain how
each activity is performed. Different patterns of use
of the common objects by the activities will result in
different kinds of interdependencies. Malone and
Crowston gave an example of a common object
from designing and manufacturing a part, both
involving the detailed design of the part: the design
activity creates the design and the manufacturing
activity uses it. The parts can be manufactured only
after the design is complete and the actor doing
the manufacturing has received a copy. This kind
of pattern of usage can be called a prerequisite con-
straint. In a prerequisite constraint, one task creates
an object, which is used by another object. This pre-
requisite constraint leads to a producer–consumer
relationship between activities.

2.4. Coordination and Architecture

One of the first people to realize the relationship
between coordination and software architecture
was Melvin Conway (Conway 1968), who did so
over 30 years ago. Since then, his findings have

become known as Conway’s Law, which suggests
that software architecture mirrors the structure of
the organization that designed the architecture.

Conway’s structural view is the only widely
accepted definition of software architecture (Shaw
2001). Structural view defines architecture as the
structure of the components of a system, their
interrelationships and principles and guidelines
governing their design and evolution over time
(Garlan and Perry 1995). The other definitions
emphasize the configuration and style (Jacobsson
et al. 1999), the constraints and semantics (Gacek
et al. 1995) and the analysis and properties of the
architecture as well as the different rationale (Perry
and Wolf 1992), requirements and stakeholder
needs (Kruchten 1995, Shaw 2001), Smolander’s
research study (2002) emphasizes ‘architecture as
a mutual reality’. In other words, the architecture is
an important communication tool between different
stakeholders on high-level structures and solutions
of the system.

A few years after Conway’s findings, Parnas
(1972) recommended that the decomposition of
software into modules should be done according
to the division of labor rather than on the basis of
flowcharts. He viewed a module as ‘a responsibil-
ity assignment rather than a subprogram’. In large
and complex systems, the developers, their divi-
sion into groups and sites and their communication
demands create the need for the coordination of the
development effort. The software architecture influ-
ences the communication requirements between the
project members. Geographically dispersed teams
can develop software when the software architec-
ture components are independent of each other
(Olson and Teasley 1996).

This kind of software architecture requires com-
munication and coordination for the successful
development of the components. Thus, we believe
that architecture is in fact a coordination mechanism
in multi-site development. According to Malone
and Crowston, the following seven types of depen-
dencies are involved in coordinating activities. Basic
coordination processes manage the relationships,
and support processes serve to disseminate and
collect information relevant to coordination pro-
cesses (Malone and Crowston 1990). The four basic
coordination processes are as follows:

Management of shared resources. Whenever multiple
activities share some limited resources, they need

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

236

Research Section Architecture as a Coordination Tool

a resource allocation process to manage the
interdependencies between them.

Producer–consumer relationships. When one activity
produces something that is used by another
activity, they need to manage how to sequence
activities, how to transfer the shared product,
and how to ensure its usability by the activity
that receives it.

Simultaneity constraints. Activities need to occur at
the same time. This type of dependency requires
activities to be synchronized.

Task–subtask relationships. When a group of activities
are all subtasks for achieving some overall goal,
they need to be integrated either through top-
down goal decomposition or through bottom-up
goal identification.

Support processes are orthogonal to these fun-
damental types of coordination processes. These
processes serve dissemination and collection of
information relevant to coordination processes.
They process relevant information with the pur-
pose of reaching consensus on specific coordination
strategies (Malone and Crowston 1990). The three
support processes are as follows:

Communication. Actors share the same language and
‘common knowledge’.

Decision making. Actors propose alternatives, eval-
uate them and make choices (e.g. by authority,
consensus or voting).

Perception of common objects. Actors see the same
physical object in a shared situation or informa-
tion in a shared database.

Most of the basic coordination processes require
a decision to be made and accepted by a group.
For example, the question of when actors should
be assigned to activities requires a decision. Group

decisions, in turn, require members of the group to
communicate in some form the goals to be achieved,
the alternatives being considered, the evaluations
of these alternatives and the choices that are
made. Finally, the establishment of communication
language depends on the ability of actors to perceive
common objects in the same way. These support
processes can also be thought to coordinate the
interdependencies between activities.

3. CASE ORGANIZATION

This study was performed in the software develop-
ment department of an international ICT company.
The whole department was divided into three dif-
ferent units at different geographical locations in
Finland. Although the development happened in
Finland, there were a couple of foreign devel-
opers participating in the development process.
The coordination between the different sites had
been planned to be carried out by using common
processes and written specifications. This was sup-
ported by an extensive formal project handbook
available in each subproject that described the com-
munication and coordination to be used. In order
to support informal communication across the sites,
computer-mediated communication devices such as
video conferencing, Internet Relay Chat (IRC) chan-
nels, shared calendars and electronic mail were in
place. Table 1 shows some of the characteristics of
the project.

The customer of this project was an inter-
nal one. The project was completed in 2001 and
followed a traditional waterfall model with dis-
tinct requirements of collection, analysis, software
design, implementation and testing phases. The aim

Table 1. The characteristics of the project

Characteristic Project

Project execution start and end dates Start date: 3.4.2001 End date: 5.12.2001
Software size (Line Of Codes, LOC) 138,000 LOC
Project cost In total 3500 man days, design and implementation phase 2900 man days
Architecture Service platform, distributed Server and centralized Client
Projecting Divided into two subprojects, Server subproject and Client subproject
Work allocation Server developed in the same site, Client developed in three different sites
The goal of the project The renewal of old architecture
Maturity of used technology New technology
Product life cycle phase In the middle of its life cycle
Targeted markets International

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

237

Research Section P. Ovaska, M. Rossi and P. Marttiin

of the project was to develop a directory service plat-
form for global telecommunications markets. The
service had already been in the domestic market for
several years. The global market posed such new
requirements for service maintenance and delivery
that the platform renewal was seen as necessary.

The project was divided into the following phases
on the basis of the company’s process model: the
prestudy, feasibility study, project execution and
piloting and maintenance. During the prestudy and
feasibility study, requirements were collected, ana-
lyzed and the execution of the project was planned.
In the execution phase, the software architecture
was defined through the respective modules and
their interfaces. This was followed by a detailed
design, implementation, integration and system
testing phases. After the system testing showed
the quality of the software to be acceptable, the
product went onto piloting and customer accep-
tance phases. The project was partitioned into
two subprojects to facilitate easier management.
Partitioning was carried out on the basis of the
architecture and technology: one subsystem had a
highly distributed, component-based architecture
(Server) and the other was a centralized subsystem
(Client), which handled authentication, authoriza-
tion and the user interfaces. The functionality of
the services required subsystems to communicate
only through an easily extensible and configurable
interface. The architecture of the case project, taken
from the project architecture description, is shown
in Figure 2.

The Server subsystem was responsible for
dynamically resolving the information resources
to be used by examining a service request and rout-
ing it to the right information resource. To do that,
Server subsystem used CORBA (Common Object
Request Broker) trading service. The main require-
ment for Server subsystem was high configurability:
new information resources and services should be
added by simply configuring it and adding the
new modules to the system. Server subsystem was
geographically distributed. The distribution was
implemented using CORBA technology.

The Client subsystem was responsible for the
user interfaces, authentication and authorization
as well as for the interfaces to external systems.
It converts the end-user’s requests to a standard
request for the Server subsystem, responds to
the standard reply from Server subsystem and
sends the answer back to the end user. The

Web user

Da tabase

IIOP

IIOP

IIOP

IIOP (Internet Inter-Orb P rotocol)IIOP

r

Gateway Gateway

Da tabase

IIOP

IIOP

IIOP

IIOP (Internet Inter-Orb P rotocol)IIOP

r
Database

Database

Client

SMs user WAP user

WWW

UI(User

Interface

SMS

(Short

Message

Service)

UI

Mobile

UI (Wireless

Application

Protocol,

WAP)

Authentication

Database

Billing system

HTTPHTTP

HTTP

Adapter
Adapter

Adapter
Database

Server

Logging

Logging

CORBA

Trading Service

Adapter AdapterAdapter

Encapsulator

Figure 2. Architecture of the case-study system

Client subsystem was required to be independent
of the location of the information maintained by
the Server subsystem or how that information
is retrieved from the information resources all
over the world. This requirement was not well
implemented; Client subsystem was dependent on
the types of information resources residing in the
Server subsystem. The platform was designed for
the needs of different international markets and had
to support interfaces for different kinds of external
systems, e.g. SMS (Short Message) centers, WAP
(Wireless Application Protocol) gateways, other
platforms and billing systems. The needs of the
international market posed additional demands on
the user interfaces; e.g. they should be localizable
to any language and should show the results in a
country-specific manner. This also posed challenges
on the Server subsystem: it had to be possible to
dissipate the information all over the world and
it had to support different kinds of information
protocols.

From the user point of view, the service was
quite simple. The user requested a service through
the user interface that could be either mobile or

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

238

Research Section Architecture as a Coordination Tool

World Wide Web (WWW). The service fetched the
requested information, processed it and returned
the reply to the user.

4. RESEARCH METHOD

4.1. Research Subject and Method

We studied only architecture design, detailed
design and implementation phases of the case
project. The work allocation of the development
activities was done according to the architecture. On
the basis of this assumption, the research question
of our study was formulated as follows:

Question 1. What kind of coordination problems related
to software architecture was present during the system
development?

Question 2. How did these problems differ in the same-site
and multi-site environments?

The nature of our research problem led us to
use a qualitative approach. Among the qualitative
research methods, we used the case-study approach
according to Yin (1994) and Eisenhardt (1989) for
gaining insight into the phenomena and composed
the study according to the theory building structure
of grounded theory (Strauss and Corbin 1990).
According to Strauss and Corbin, the grounded-
theory method (Glaser and Strauss 1967, Strauss and
Corbin 1990) is a ‘qualitative research method that
uses a systematic set of procedures to develop and
inductively derive a theory about a phenomenon’
(Glaser and Strauss 1967, Strauss and Corbin 1990).
The notion of common object in Malone and
Crowston’s coordination theory was used as a priori
construct (Eisenhardt 1989).

Our qualitative data analysis was performed
in three phases following Strauss and Corbin’s
methodology of open coding, axial coding and
selective coding (Strauss and Corbin 1990).

4.2. Research Process

The research process proceeded in four broad
phases: data collection, data analysis, formulation of
project narrative and cross-case analysis (Figure 3).

Data for the study was gathered from exten-
sive documentation of the project (Table 2), using
a theoretical sampling strategy. On the basis of
the analysis of documentation, we decided to com-
plement the written project material with focused

Project meeting minutes
Theoretical sampling

Initial data analysis
Open coding and axial coding
Identification of ‘problems and deviations’

Using a priority construct common object
Identification of ‘component’ and ‘development activity’

Selective coding
and identification of ‘interdependencies’

Cross-case analysis
Identification of ‘informal communication’ and ‘orientation’

Formulation of project narrative

Focused group interviews
Architecture and design specifications

Figure 3. Research process

Table 2. Data available from the project

Data/Document
15 Progress report (from Project Manager)
Project managementSoftware: plan vs actual costs
11 Project steering group meeting minutes
46 Project group meeting minutes
Project plan
Functional specifications
Requirement catalog
Risk analysis document
Project quality criteria document
Architecture descriptions
Module specifications
Group interview material

group interviews among project participants. Glaser
and Strauss (1967) call this dynamic process of data col-
lection in which the sample is extended and focused
according to emerging needs as theoretical sam-
pling.

The open coding started with the identification of
problems and deviations related to software archi-
tecture and coordination in the project progress.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

239

Research Section P. Ovaska, M. Rossi and P. Marttiin

These issues were brought to project meetings for
discussion and decision making. The project meet-
ing minutes and the group interview were the main
sources for incident data. We used architecture and
design specifications to help pinpoint the prob-
lems. We could observe in total 329 deviations and
problems related to software architecture and coor-
dination.

The concept of common object from Malone
and Crowston’s coordination theory was used as
a starting point to interpret the identified issues
in data. First, we divided the development process
into software design and implementation phases
according to the project management guidelines
of the company. We observed that the common
object in designing and implementing the software
was a component. Software architecture described
the structure of the components and the principles
and guidelines for their design and implementa-
tion (Garlan and Perry 1995). It also described
constraints concerning the pattern of use of the
components, resulting in possible interdependen-
cies between components.

We also assumed that the main support activity
of software development was the management of
the development process. It can be divided into two
parts in the same way as software development:
software process planning and execution manage-
ment. The common object of these is a development
activity. In the next table (Table 3), the processes
involved in software development and their com-
mon objects are summarized.

We used these two common objects, namely,
component and development activity, to find the
interdependencies between activities that caused
problems in the project. In the analysis of the
materials, we identified three interdependencies
between components (interfaces, assembly order
and interdependence) and three interdependen-
cies between development activities (responsibility,
communication and orientation) that could largely
explain coordination problems in the project. How
these interdependencies appeared in the project is

Table 3. Processes in software development

Process Common object

Software design and implementation Component
Software process planning and
execution management

Development activity

explained in the project narrative (Section 4.3) and
the resulting coordination processes in Section 5.1.

After finding the interdependencies, we tried to
find the answer to the research question of how
the problems in coordination differed in multi-
site and same-site environment. Eisenhardt calls
this cross-case analysis (Eisenhardt 1989). To find
these differences, we compared the two subprojects,
multi-site Client subproject and same-site Server
subproject, and analyzed the differences in the
coordination processes between them. The results
of this comparison are explained in Section 5.2.

4.3. Project Narrative

The following project narrative traces coordination
problems in our case project. Coordination prob-
lems are traced both in Client and Server subprojects
through four episodes.

4.3.1. Episode 1. The Beginning: Assumptions,
Atmosphere and Communication
At the beginning of the project, software architec-
ture was regarded as an important method in the
coordination of distributed software development.
The allocation of the development work was per-
formed according to the software architecture. The
software development processes in the company
were also thought to guarantee coordination. Dur-
ing the project, it became apparent that the actual
allocation of work did not follow the plans and that
the processes did not guide the work at all.

The project participants and the customer repre-
sentatives were chosen for the project on a technical
basis. The project’s goal (new architecture of the
old system) also emphasized technical matters. In
the Client subproject, the social and organizational
communication barriers between the foreign con-
sultant architect and the software developers were
high. The consultant architect was appreciated as
a business-oriented and capable architect, but the
language and cultural differences made the conver-
sation difficult. He did not understand his role as a
communicator of architecture, and he left many of
the design decisions to be resolved by the designers.
He concentrated on conversation with the customer
about the Client subsystem features and functional-
ities. They had nine official project meetings during
the project. They used e-mail and the project’s IRC
channel for communication, but not enough to get
the common understanding of the architecture of

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

240

Research Section Architecture as a Coordination Tool

the Client subsystem. The problems of teamwork,
communication and coordination were discussed
many times in the Client subproject meetings.

In the Server subproject, the architect was appre-
ciated as a technically capable and experienced
person. He was not a communicator either, but
the designers resided in the same site and they
could discuss with the architect and other devel-
opers every day. There were also problems with
communication within the Server subproject, but
they concerned the formal communication. They
did not have any official project meetings, only
those that concerned the whole project. The project
participants did not raise issues in the project meet-
ings and project managers had problems when they
tried to find out the situation of the subproject.
Still, the designers knew what to do because they
used informal communication channels actively,
especially face-to-face conversations.

4.3.2. Episode 2. Architecture Design: Orientation and
Responsibilities
The orientation of the project architects affected
their interest in the project activities. The architect
of the Server subproject concentrated on the coding
and technical matters of Server subsystem, and
the architect of the Client subsystem concentrated
on the functionalities and features of the Client
subsystem. In the architecture design phase, they
did not see that the two subsystems would be so
interdependent on the project. They considered the
interface between the subsystems to be a technical
‘request–reply tube’.

The interface between the subsystems was
defined at the technical level, using terms such
as ‘XML’ (Extensible Markup Language) and
‘TCP/IP’. The information that passed between
these subsystems in XML documents seemed to be
unimportant. The promises of the new XML tech-
nique were so fascinating that the main issue, the
information that passed within the XML documents,
was forgotten.

In the Client subproject, the architecture design
document was more an analysis of the different
alternatives for doing business with the Client sub-
system. In the Server subproject, this document
contained technical viewpoints of the Server archi-
tecture. Although the document was limited, this
was still considered adequate by the Server sub-
project participants. Furthermore, there was no
document describing the overall architecture in

either project. This was despite the need to com-
municate the complex architectural structures and
solutions between the teams. The architect of the
Server subproject had an intrinsic responsibility
for the whole architecture. However, there was no
official decision about it and, in practice, nobody
assumed this responsibility.

4.3.3. Episode 3. Different Interpretations of the System
Problems described in the previous Episodes heav-
ily affected the project stakeholders’ interpretation
of what kind of system they were developing in the
project. They did not have a common understand-
ing of the architecture of the system. Every designer
saw the architecture of the system and its compo-
nent dependencies differently. This phenomenon
can be seen in Figure 4.

The figure shows component design specifica-
tions of four designers and how they visualize
their component’s communication with the other
components of the system. We can observe that
each designer has put his/her own component in
the middle of the subsystems, thus emphasizing
the importance of his/her task. Each component
designer has in this way his/her own individual
understanding of the architecture. Thus, in practice,
there exist as many interpretations of the archi-
tecture as there are component developers in the
system. In other words, this has led to eight different
interpretations of the system architecture.

4.3.4. Episode 4. Emerging Coordination Problems
In the later phases of development, the lack of
common understanding of the architecture caused

1

2 3

5
1

5

42 3

6

6
7

7

6

8

8

1

9

9

10

10

5 8

11

12

13

4

Figure 4. Representations of the system based on design-
ers’ interpretations

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

241

Research Section P. Ovaska, M. Rossi and P. Marttiin

a lot of coordination problems in the Client
subproject. These problems made the realization
of the actual system more difficult.

The Client subsystem was tightly coupled with
the Server subsystem, which complicated the devel-
opment of the Client subsystem. A change imple-
mented in the information structure of the Server
side could have a major influence on the functional-
ity of the Client. The problems became more serious
when the Client subproject initiated the implemen-
tation phase one month before Server subproject.

The interface specification between the Client and
Server was sketched parallel to the other design
in the Server subproject, which meant that the
interface specification was way too late for the
Client project. The design of the Server subsystem
should have been ready before the Client and not
vice versa. This brought about serious difficulties
for the Client module designers and especially for
those developing module(s) near the subsystem
interface. Their module functionality depended
on the structure of information in the interface
and the designers were not aware of that. The
module designers communicated the situation to
the architects, but this was done too late. The
specification of the interface was delayed, and a
lot of work had already been wasted.

The system integration phase, in which the system
was composed from its components, was time
consuming in the Client subproject. The integration
caused a lot of problems, and many changes to
the interfaces and components had to be made
before the integration of the components into a
working system. These problems surfaced in the
testing phase, in which the integration problems
made it impossible to run the tests.

5. RESEARCH FINDINGS

5.1. Coordination Processes

During the analysis, we discovered six different
coordination processes to explain most of the
coordination problems in our case study. These
categories were as follows:

Managing interface between system components,
i.e. how the functionalities of one component affect
the functionality of the other components.

Managing the assembly order of system compon-
ents, i.e. how the components can be integrated to
each other into a working system.

Managing interdependence of the system compo-
nents, i.e. how the system components are depen-
dent on each other.

Communication, i.e. how the communication
between development participants is taking place.

Overall responsibility, i.e. how the responsibility
of decisions related to the software architecture is
taking place.

Orientation, i.e. how the orientation of develop-
ment participants affects the interpretation of the
architecture in a shared situation.

Each type of coordination process corresponds
with a dependency between components or activi-
ties. Table 4 shows the dependency types along with
an explanation of dependency in the case-study
context. The explanations of the dependencies are
supported with examples taken from the project
material.

5.2. Same-site Versus Multi-site Development

The results of the comparison between same-site
and multi-site development problems in our case
study are shown in Table 5. The project episode
number is noted in italics and indicates where the
description of each dependency is described in the
project narrative in Section 4.3.

As we can see in the table, the main difference
between the two subprojects seemed to be in the
informal communication and orientation. Client
subproject had problems in informal communica-
tion mainly because the subproject architect and
designers had cultural differences and they could
not communicate with each other. The physical
distance between subproject participants resulted
in poor informal communication. The situation in
the Server subproject was better: they were in the
same site, and in this way, informal communica-
tion was easier. The architecture description was
poor in both subprojects, but the Server subproject
participants did not see this as a major problem
because they could talk with the architect every
day. The difference between architects’ orientation
in these two subprojects affected, mostly, the con-
tent of the architecture description. In the Client
subproject, the architect’s orientation was business
oriented containing analysis of different business
cases and in the Server subproject, it was a technical
one containing technical terms. Both of the archi-
tecture descriptions were partial, one from a purely

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

242

Research Section Architecture as a Coordination Tool

Table 4. Dependencies between components and development activities: explanations and examples

Dependency Explanation Examples from the project material

Interface between system
components

Components of the system share the common
functionality, the functionality of one
component affects the functionality of other
component

‘Interfaces were designed too late in the Client subproject,
the implementation of components were already going on’

Assembly order of system
components

System is composed of components. The
integration of system components into a
working system has some predefined and
planned order.

‘According to Build Plan Client 4th build was postponed
due to Client-Server integration problems. . . ‘
‘Start of testing is late because of integration problems’

Interdependence of system
components

One component produces something that is
consumed by another component

‘The functionality of the Client subsystem was dependent
on the resources of the Server subsystem’
‘Client-Server interface was dependent on Server resources’
‘The Client subproject initiated implementation one month
before the Server subproject’

Communication Communication disseminates information
between activities

‘In the Client subproject, there is a big need to talk with
architect and designers’
‘The language and cultural barriers were huge between
architect and designers in the Client subproject’
‘I asked several times the Client subsystem architect help to
design my component but I did not understand what he
answered to me’

Overall responsibility The responsibilities of the architectural
decisions. Hierarchy/decision-making
approach.

‘No-one in the project took responsibility for the whole
architecture and the interface between the two subsystems.
The project needed this kind of a ‘chief architect.’
‘The Server architect should concentrate more on the
architecture and not module coding’

Orientation Partial orientation in activities that affect how
the common language was shared between
activities and how the architecture was
interpreted in shared situations

‘Service should be easy to configure and manage with its
components’
‘Data transfer between components and configuration
should be in XML-format’
‘Client architect concentrated too much on customer
requirements, not architecture design’

Table 5. Differences between two subprojects

Dependency Client in a multi-site
environment

Server in a same-site
environment

Interface between system components Problems exist (episode 4) No problems exist (episode 4)
Assembly order of system components Problems exist (episode 4) No problems exist (episode 4)
Interdependence of system components Problems exist (episode 4) No problems exist (episode 4)
Overall responsibility Problems exist (episode 2) Problems exist (episode 2)
Communication Problems exist in informal

communication (episode 1)
Problems exist in formal
communication (episode 1)

No problems exist in informal
communication (episode 1)
Problems exist in formal
communication (episode 1)

Orientation Business oriented (episode 2) Technically oriented (episode 2)

business point of view and the other from a purely
technical point of view.

In the multi-site Client subproject, there were sev-
eral coordination problems in the implementation
of the final system. Interfaces between system com-
ponents were designed too late and the interface

design between Client and Server subsystem had
the wrong timing. Both of these caused a lot of
changes and wasted work in the Client subsys-
tem. This also affected the compatibility of the
system components, which made the integration
of components and testing difficult and delayed the

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

243

Research Section P. Ovaska, M. Rossi and P. Marttiin

finalization of the project. In the Server subproject,
these problems did not surface.

6. DISCUSSION AND CONCLUSIONS

This paper described the role of software archi-
tecture in the coordination of multi-site software
development through a case study. Our objective
was to better understand the coordination in multi-
site environment, characterized by geographical,
cultural and language distances between develop-
ment participants. We used a case-study approach
to study two subprojects in an international ICT
company.

Architecture was intended to be the tool for
coordination in the project. The architecture descrip-
tion was supposed to contain the rules of how
the components of the system exchange informa-
tion with each other. The observed problems in
coordination (lack of overall responsibility, com-
munication and orientation) in architecture design
resulted in poor or missing architecture descrip-
tion and different interpretations of the architecture
by the project members. These problems caused
actual system coordination problems in later phases.
There were problems with managing the interfaces
between system components, their assembly order
and interdependencies between them. These prob-
lems manifested themselves in the difficulties of the
realization of the final system as well as delays in
the timetable.

Our study suggests that in the multi-site envi-
ronment, it is not enough to coordinate activities,
but in order to achieve a common goal, it is
important to coordinate interdependencies between
the activities. This kind of coordination needs a
common understanding of the software architec-
ture between software development participants.
According to our understanding, participants coor-
dinate their development work through interfaces
of their components. Each component can be devel-
oped separately, and thus, it is not necessary to take
into account development of other components or
distance, cultural and language differences between
sites. The important issues that matter in this case
are the appropriate architecture description and
well-defined interfaces between components. Fur-
thermore, these need to be communicated, both
informally and through formal descriptions, to all
parties involved.

6.1. Implications for Research

The common understanding of coordinating soft-
ware development activities means, from the multi-
site perspective, that activities residing in different
sites should have awareness of each other all the
time to coordinate their work. Quite often this is
not possible, although different kinds of electronic
media are seen as remedies to this problem. Also,
this approach assumes that all activities are willing
and are able to cooperate to achieve a common goal.
In multi-site environment with different cultures
and languages, this is not a realistic assumption.

We suggest that in multi-site software develop-
ment, it is not enough to coordinate activities, but
in order to achieve a common goal, it is impor-
tant to coordinate interdependencies between the
activities. The interdependencies between compo-
nents are described by software architecture. When
the coordination is done by using architecture, the
work allocation is made according to this compo-
nent structure. All the component designers have
to have a common understanding of component
interdependencies and they have to have well-
defined interfaces to be able to develop their own
components. The component developer does not
have to be aware of other component development
as long as the interfaces remain the same. In the
case of interface changes, the component develop-
ers should coordinate, mostly, the interface change,
not so much the whole component. This principle is
widely known as encapsulation and information hiding
(Parnas 1972).

Correspondences between our findings and Mal-
one and Crowston’s model are summarized in

Table 6. Correspondence between coordination processes in this
study and Malone and Crowston’s study (Malone and Crowston
1994)

Our coordination processes Malone and Crowston’s
coordination process

Managing the interface
between system
components

Managing shared resources

Managing assembly order
of system components

Managing task–subtask
relationships

Managing
interdependence of system
components

Managing producer–consumer
relationships

Communication Communication
Overall responsibility Decision making
Orientation Perception of common objects

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

244

Research Section Architecture as a Coordination Tool

Table 6. The main difference is the importance of
software architecture as a coordination tool in multi-
site software development. Software architecture
was meant to serve as a vehicle for communicating
the dependencies between components among the
project participants and development activities in
our case project.

We extend Malone and Crowston’s findings and
emphasize that software architecture could serve as
a coordination tool, especially in multi-site develop-
ment, but the usefulness of it depends heavily on the
key people. The software architecture in our study
served as a commitment into dependencies between
the activities. However, we observed that without
this commitment in a multi-site environment, coor-
dination did not succeed and caused problems for
the project. As discussed in Section 2.2, such a com-
mitment is not so much the result of ‘speaking and
listening’ but, rather, the result of authorized deci-
sion making by a chief architect to maintain the
conceptual integrity of the system (Brooks 1995).

Our suggestions for the role of the software
architecture in multi-site software development
extend Smolander’s research study (Smolander
2002) about the role of software architecture as
a communication tool. The coordination of multi-
site work needs a common understanding of the
architecture of the system to direct the development
work toward a coherent, working system.

6.2. Implications for Practice

To improve the use of architecture in the coordi-
nation of practical multi-site development work,
organizations should improve both their informal
communication capabilities and software develop-
ment methodologies. One way to improve informal
communication in multi-site environment is the
effective use of electronic communication chan-
nels and CSCW (Computer-supported Cooperative
Work) technology (Lee and Malone 1990, Grudin
1994a, 1994b). A software development methodol-
ogy that supports multi-site development instead of
concentrating only on the individual work practices
should include at least the following requirements
derived from the observations and explanations in
our case study.

First, we emphasize the use of multiple view-
points in architecture design for various stakehold-
ers. Boland, Tenkasi and Te’eni (1994) observed in
their study that representations of knowledge need

to be distinctive for different individuals and that
they need to include various levels of detail. The
architecture can be regarded as a representation of
knowledge of the system structure.

Different representations of architecture would
help organizations get better common understand-
ing of the architecture to satisfy all stakeholders.
These viewpoints are dependent on the stakehold-
ers needs. The use of viewpoints helps in finding
interdependencies of architecture components, and
it is important to choose such viewpoints that
reveal these interdependencies. The organization
and work division should be made according to
software architecture, considering the interdepen-
dencies of the system parts. The components that
depend heavily on each other should be devel-
oped in the same site or sites residing near each
other.

Second, the architecture design work in a multi-
site development environment requires a ‘chief
architect’ to communicate the structures and solu-
tions of the system to get the common understand-
ing of the architecture of the system and to help in
coordination of development work. In Section 2.2,
we discussed that architects are boundary span-
ners through which other groups can sufficiently
coordinate the design work in order to accomplish
the architectural design. As Brooks (1995) stated in
the ‘The Mythical Man-Month’: ‘the architect is like
a director and the manager, like a producer of the
motion picture’. He also emphasized the chief archi-
tect’s important role in maintaining the conceptual
integrity of the system developed (Brooks 1995).
We emphasize that the architect’s role as a commu-
nicator and coordinator is even more important in
multi-site development, in which communication
and coordination is more difficult because of long
distances.

Third, the interface design should be done early
enough in the architecture design phase to guide the
designers in their component design work. In this
way, the designers can concentrate on their compo-
nent design independently. A special coordination
plan, in which the coordination between different
sites is described, is also needed.

6.3. Topics for Further Study

In the future, we will seek, and possibly develop, a
software development method that supports the
multi-site coordination aspects of organizations

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

245

Research Section P. Ovaska, M. Rossi and P. Marttiin

that deal with distributed software development
on the basis of the requirements derived from
our study. This requires a more comprehensive
sample of projects. Further, the method should
concentrate on multi-site working practices with
a set of people collaborating with each other
instead of concentrating only on individual work
practices. We seek also to combine the research on
distributed teamwork with the work on architecture
definition languages. This could give us new tools
for managing complex system development across
geographical, cultural and technical borders.

REFERENCES

Allen T. 1977. Managing the Flow of Technology. MIT Press:
Cambridge, MA.

Boland RJ, Tenkasi RV, Te’eni D. 1994. Designing
information technology to support distributed cognition.
Organization Science 5(3): 456–475.

Brooks FPJ. 1995. The Mythical Man-Month: Essays on
Software Engineering, Second Edition, Addison-Wesley:
Boston, Massachusetts, USA.

Carmel E. 1999. Global Software Teams: Collaborating Across
Borders and Time Zones. Prentice Hall: New Jersey, USA.

Carmel E, Agarwal R. 2001. Tactical approaches for
alleviating distance in global software development. IEEE
Software 18(2): 22–29.

Castells M. 1996. Rise of the Networked Society. Blackwell
Publishers: Cambridge, MA.

Conway ME. 1968. How do committees invent?
Datamation 14(4): 28–31.

Curtis B, Krasner H, Iscoe N. 1988. A field study
of the software design process for large systems.
Communications of the ACM 31(11): 1268–1287.

Eisenhardt KM. 1989. Building Theories from Case Study
Research. Academy of Management Review 14(4): 532–550.

Finholt TA, Rocco E, Bree D, Jain N, Herbsleb JD. 1998.
NotMeeting: A field trial of NetMeeting in a
geographically distributed organization. SIGGROUP
Bulletin 20(1): 66–69.

Gacek C, Abd-Allah A, Clark B, Boehm B. 1995. On the
definition of software system architecture. ICSE 17
Software Architecture Workshop, Seattle, Washington,
April 24-25, 1995; IEEE Press.

Garlan D, Perry D. 1995. Introduction to the special issue
on software architecture. IEEE Transaction on Software
Engineering 21(4): 269–274.

Glaser B, Strauss AL. 1967. The Discovery of Grounded
Theory: Strategies for Qualitative Research. Adline: Chicago,
IL.

Grinter RE. 1999. Systems architecture: product designing
and social engineering. Proceedings of the International
Joint Conference on Work Activities Coordination and
Collaboration (WACC ‘99), San Francisco, CA.

Grinter RE, Herbsleb JD, Perry DE. 1999. The geography
of coordination: dealing with distance in R&D
work. Proceedings of the International Conference on
Supporting Group Work (GROUP ‘99),: Phoenix, AZ,
November 14-17, 1999 ACM Press.

Grudin J. 1994a. Computer-supported cooperative work:
history and focus. IEEE Computer 27(5): 19–27.

Grudin J. 1994b. Groupware and social dynamics: eight
challenges for developers. Communications of the ACM
37(1): 93–105.

Herbsleb JD, Grinter RE. 1999. Architectures, coordina-
tion, and distance: conway’s law and beyond. IEEE
Software 16(5): 63–70.

Herbsleb JD, Mockus A, Finholt TA, Grinter RE. 2000.
Distance, dependencies and delay in global collaboration.
Proceedings of the Conference on Computer Supported
Cooperative Work (CSCW ‘00), Philadelphia, PA,
December 2-6, 2000 ACM Press.

Herbsleb JD, Mockus A, Finholt TA, Grinter RE. 2001.
An empirical study of global software development:
distance and speed. Proceedings of the 23th International
Conference on Software Engineering (ICSE ‘01), Toronto,
Canada, May 15-18, 2001 IEEE Press.

Jacobsson I, Booch G, Rumbaugh J. 1999. The Unified
Software Development Process. Addison-Wesley Longman.

Kraut RE, Steinfield C, Chan AP, Butler B, Hoag A. 1999.
Coordination and virtualization: the role of electronic
networks and personal relationships. Organization Science
10(6): 722–740.

Kraut RE, Streeter LA. 1995. Coordination in software
development. Communications of the ACM 38(3): 69–81.

Kruchten PB. 1995. The 4 + 1 view model of architecture.
IEEE Software 12: 42–50.

Kyng M. 1991. Designing for cooperation: cooperating in
design. Communications of the ACM 34(12): 64–73.

Lee J, Malone TW. 1990. Partially shared views: a scheme
for communicating among groups that use different type

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

246

Research Section Architecture as a Coordination Tool

hierarchies. ACM Transactions on Information Systems 8(1):
1–26.

Malone TW, Crowston K. 1990 What is coordination
theory and how can it help design cooperative work
systems? Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW ‘90), Los Angeles,
CA, October 7-10, 1990 ACM Press.

Malone TW, Crowston K. 1994. The interdisciplinary
study of coordination. ACM Computing Surveys 26(1):
87–110.

Markus ML, Manville B, Agres CE. 2000. What makes
a virtual organization work? Sloan Management Review
42(1): 13–26.

Olson JS, Teasley S. 1996. Groupware in the wild: lessons
learned from a year of virtual collocation. Proceedings
of the Conference on Computer-Supported Cooperative
Work (CSCW ‘96), Boston, MA, November 16-20, 1996
ACM Press.

Orlikowski WJ. 2002. Knowing in practice: enacting
a collective capability in distributed organizing.
Organization Science 13(3): 249–273.

Parnas DL. 1972. On the criteria to be used in
decomposing systems into modules. Communications of
the ACM 15(12): 1053–1058.

Perry D, Wolf A. 1992. Foundations for the study of
software architecture. ACM Sigsoft Software Engineering
Notes 17: 40.

Shaw M. 2001. The coming-of-age of software architecture
research. Proceedings of the 23rd International
Conference on Software Engineering (ICSE ‘01), Toronto,
Canada, May 15-18, 2001 IEEE Press.

Smolander K. 2002. Four metaphors of architecture in
software organizations: finding out the meaning of
architecture in practice. International Symposium on
Empirical Software Engineering (ISESE 2002), Nara,
Japan, October 03-04, 2002.

Strauss A, Corbin J. 1990. Basics of Qualitative Research:
Grounded Theory Procedures and Applications. Sage
Publications: Thousand Oaks, CA.

Szyperski C. 1998. Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, Boston, MA,
USA.

Tolksdorf R. 2000. Models of coordination. Proceedings
of the Engineering Societies in the Agent World (ESAW),
Berlin, Germany, August 21, 2000 Springer-Verlag.

Winograd T, Flores F. 1986. Understanding Computers and
Cognition. Ablex: Norwood, New Jersey.

Yin RK. 1994. Case Study Research: Design and Methods,
2nd edn. Sage Publications: Thousand Oaks, CA.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 233–247

247

