Appeared in the Proceedings of the International Conference on Software Engineering 1998 (ICSE'98). Kyoto, Japan, 2¢#i819-25,
http:/Mww.ics.uci.edu/~peymano/

Architecture-Based Runtime Software Evolution

Peyman Oreizy Nenad Medvidovic Richard N. Taylor

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA
+1 714 824 8438
{peymano, neno, taylor}@ics.uci.edu

ABSTRACT effectively utilizing mechanisms for runtime change. Change
Continuous availability is a critical requirement for an management is a principal aspect of runtime system
important class of software systems. For these systemsegvolution that:

runtime system evolution can mitigate the costs and risks. pelps identify what must be changed,

associated W|th Shutting dOWn and I‘estarting the SyS'[em fOI’. provides context for reasoning about’ Specifying’ and
an update. We present an architecture-based approach to jmplementing change, and

runtime SOftWare eVOIUtion and h|ghl|ght the I'Ole Of SOftWa.re ° Controls Change to preserve System |ntegr|ty

connectors in supporting runtime change. An initial
implementation of a tool suite for supporting the runtime
modification of software architectures, called ArchStudio, is
presented.

1 INTRODUCTION Software_architectures [26, 34] can _provide a_foundation_ for
systematic runtime software evolution. Architecture shifts
developer focus away from lines-of-code to coarse-grained
components and their overall interconnection structure. This
. . enables designers to abstract away fine-grained details that
and restarting the system for upgrades incurs unacceptablgpscyre understanding and focus on the “big picture:”
delays, increased cost, and risk. Support for runtime gystem structure, the interactions between components, the

modification is a key aspect of these systems. EXistingaqgignment of components to processing elements, and,
software systems that require dynamic update generally,,iangially, runtime change. A distinctive feature of software

adopt ad-hoc, application-specific approaches. Such systemychitectures is the explicit modeling afonnectors.
would benefit from a systematic, principled approach 0 connectors mediate and govern interactions among
runtime change supported by a reusable infrastructure. components, and thereby separate computation from

The benefits of runtime evolution are not restricted to safety-Communication, minimize component interdependencies,
intensive, mission-critical systems. A growing class of and facilitate system understanding, analysis, and evolution.

commercial software applications exhibit similar properties ;g paper presents an architecture-based approach to

in an effort to provide end-user customizability and rnime software evolution. Several unique elements of our
extensibility. Runtime extension facilities have become approach are (a) an explicit architectural model, which is
readily available in popular operating systems (e.g., dynamiCyenjoved with the system and used as a basis for change,
link libraries in UNIX and Microsoft Windows) and () preservation of explicit software connectors in the system
component object models (e.g., dynamic object binding implementation, and (c)an imperative language for
services in CORBA [24] and COM [6]). These facilities qqifying architectures. We also present our initial

enable system evolution without recompilation by aIIowing rotofype of a tool suite that supports runtime software
new components to be located, loaded, and executed during, | tion at the architectural level.

runtime.

Without change management, risks introduced by runtime
modifications may outweigh those associated with shutting
down and restarting a system.

An important class of safety- and mission-critical software
systems, such as air traffic control, telephone switching, and
high availability public information systems, shutting down

The paper is organized as follows. Section 2 describes key

: _— X ; aspects of effective change management. Section 3
operating systems, distributed object technologies, andg,mmarizes previous approaches to runtime software

programming languages, have a major shortcoming. They dq;pange. Section 4 advocates a generic architecture-based

not ensure the consistency, correctness, or desired propertieg, ,-oach to runtime change management and demonstrates

of runtime change.Change managemens critical 10 hoy gifferent kinds of software evolution are supported at
the architectural level. Section5 describes the role
components and connectors play in supporting architectural
change. Section 6 describes the particular architectural style
that our tool suite, described in Section7, supports.
Section 8 identifies related research areas and Section 9
summarizes the contributions of the paper.

The facilities for runtime modification found in current



2 MANAGING RUNTIME CHANGE system, for example, relinquishes computer control to a

There are several critical aspects to change managemenP€rson during system maintenance. If around-the-clock

These determine the degree to which change can be reason&yStem availability is not required, system updates are
about, specified, implemented, and governed. postponed until the next scheduled downtime. Some

distributed systems employ functional redundancy or
clustering as a mechanism to circumvent the need for
runtime change. Web servers, for example, are upgraded by
redirecting incoming network traffic to a redundant host,
reconfiguring the original host in a traditional manner, and
redirecting network traffic back to the original host.
However, these approaches are not feasible or desirable in all
cases due to the increased risk and costs they impose. Our
goal is to reduce the costs and risks designers typically
“associate with runtime change, making it a more attractive
design alternative.

» Change application policycontrols how a change is
applied to a running system. A policy, for example, may
instantaneously replace old functionality with new func-
tionality. Another policy may gradually introduce change
by binding invocations subsequent to the change to the
new functionality, while preserving bindings previously
established to the old functionality. Ideally, change appli-
cation policy decisions should be made by the designer
based on application requirements. Approaches that dic
tate a particular policy may force designers to “design
around” the restrictions to attain desired effects.

» Change scopés the extent to which different parts of a Several approaches to runtime software evolution have been
system are affected by a change. A particular approachproposed in the literature [13, 15, 18, 27, 32]. In the
for example, may stall the entire system during the following paragraphs, we describe some representative
course of a change. The designer’s ability to localize the approaches and evaluate them with respect to the aspects of
effects of runtime change by controlling its scope facili- change management presented in Section 2. We start by
tates change management. The designer's ability todiscussing techniques for statement- and procedure-level
ascertain change scope helps reason about change. runtime change and move up levels of abstraction.

* Separation of concemsaptures the degree to which ‘Gupta et al. [15] describe an approach to modeling changes

issues concerning a system’s functional behavior are dis . ;
tinguished from those regarding runtime change. The at the statement- and procedure-level for a simple theoretical

greater the separation, the easier it becomes to alter ond"PErative programming language. The technique is based
without adversely affecting the other. on locating the program control points at which all variables

» Thelevel of abstractiorat which changes are described affected by a change are guaranteed to be redefined before

impacts the complexity and quantity of information that US€: They show that in the general case locating all such
must be effectively managed. control points is undecidable, and approximate techniques

) ) based on source code data-flow analysis and developer
We refer to these aspects in subsequent sections of the papghowledge are required. Scaling up this approach to manage
when comparing and contrasting different approaches tochange in large systems written in complex programming
runtime change. languages is still an open research problem. Dynamic
We also distinguish between two types of change: programming languages, such as Lisp and Smalltalk, support
(1) changes to system requirements, and (2) changes tstatement- and procedure- level runtime change. This
system implementation that do not alter requirements. flexibility is gained at the expense of heterogeneity and

When the requirements change, it is the responsibility of thePerformance. Applications must be written entirely in the
designer to determine what to change, how to change it, andlynamic language to benefit from dynamism. This incurs
whether or not the change preserves application integrity.Performance overhead because every function invocation
Once a change has been designed, implemented, and testeggfust be bound during runtime. Furthermore, application
it is executed on the running system. It is unrealistic to P€havior and dynamism are not explicitly separated or
assume that any preconceived measures for maintainingoc@lized. As a result, concerns regarding dynamic change
system integrity would support this type of unpredictable Peérmeate system design, making change management
and unrestricted change. exceedingly difficult.

When changes are confined to the implementation, aPeterson et al. [27] present an approach to module-level
preconceived set of application invariants may serve as duntime change based on Haskel, a higher-order, typed
basis for preserving system integrity. Designers can specifyPfogramming  language. ~ Their  technique requires

these invariants as a part of the deployed system and preveffogrammers to anticipate portions of the program likely to
changes that violate these invariants. change during runtime, and structure the program around

functions that encapsulate such changes. Developers encode
The inherent difficulty of predicting likely changes during decisions regarding change application policy and change
the initial software design phase necessitates that arscope in the application source code. This technique permits
approach to runtime software evolution support both types offine-grained control over runtime change since designers can

change. implement change policies tailored to the application.
3 PREVIOUS APPROACHES TO RUNTIME However, because change policies are not _isolated in the
CHANGE application source code, they can be difficult to alter

" . _ . independent of application behavior. As a result, managing
Traditionally, designers have sought alternatives to runtlmechange in large systems becomes complex.

change altogether. A manual override in a safety critical



Gorlick et al. [13, 14] present a data flow based approach tocan be made based on an understanding of application
runtime change called Weaves. A weave is an arbitraryrequirements and semantics. Previous approaches to runtime
network of tool fragments connected together by transportchange either dictate a single policy that all systems must
services. Tool fragments communicate asynchronously byadopt or fail to separate application-specific functionality
passing object references (i.e., pointers). A tool fragment is afrom runtime change considerations. As a result, concerns
small software component, on the order of a procedure, thatover runtime change permeate system design.
performs a single, well-defined function and may retain
state. Each tool fragment executes in its own thread of
control. Transport services buffer and synchronize data X . :
communication between tool fragments. The Weave runtime E¥lution, and the circumstances under which changes may
Ii)e performed. We refer to three characteristic types of

system guarantees the atomicity of data transfer between tooevolution: corrective, perfective, and adaptive [12].

fragments and queues; if any problem occurs during . ; N
communication, the tool fragment initiating the Corre(_:tlve evolution removes so_ftware faults. Perfectl_ve
evolution enhances product functionality to meet changing

communication is notified and may retry the operation at its user needs. Adantive evolution chanaes the software to run
discretion. This enables the runtime reconfiguration of a . - Adap 9
in a new environment.

weave without disturbing the flow of objects. Designers use
an interactive, graphical editor to visualize and directly 4.1 Runtime Component Addition

reconfigure a weave during runtime. Weaves does notcomponent addition supports perfective evolution by
currently provide a mechanism to check the consistency of5 ,gmenting system functionality. Some design styles are
runtime qhanges and no _e?<pI|C|t support s proylded for more readily amenable to component addition than others.
representing change policies. The designer is solelypqr example, the observer design pattern [9] separates data
responsible for change management. providers from its observers, facilitating the addition of new

Kramer and Magee [18] present a structural-based approacpbserver.s with mlnlmal impact on the rest of the system. In
to runtime change of a distributed system’s configuration. In the mediator design approach [35], new mediators may be
their approach, a configuration consists of processing nodedntroduced to maintain relationships between independent
interconnected using bidirectional communication links. components. Design approaches that utilize implicit

When a runtime change is required, a reconfiguration invocation mechanisms [11] are generally more amenable to
manager orders processing nodes directly affected by thguntime component addition since the invoking component
change and nodes directly adjacent to them to enter into dS unaware of the number of components actually invoked.

“quiescent” state. While in the quiescent state, a node sy order for a component to function properly when added to
expected not to initiate communication with peers. This 5 rnning system, it must not assume that the system is in its
ensures that nodes directly affected by a change will notiniiia| state. Typically, a component added during runtime

receive service requests during the course of the changéy st discover the state of the system and perform necessary
Changes, specified in a declarative language, are induced tQqtions to synchronize its internal state with that of the
the running system by the reconfiguration manager. Thesystem.

reconfiguration manager is responsible for making decisions

regarding the change application policy and its scope. ItArchitectural change specifications typically specify
must do so based on a limited model of the application structural changes necessary to incorporate new components.
consisting of the system’s structural configuration and In some cases, the structural configuration changes may be
whether or not its nodes are in quiescent states. As a resulimplicit to the architectural style or application-domain, or
designers must consider the reconfiguration manager’s rolederivable from externally visible properties of the

in runtime change, and structure the system to attain desire¢omponent. For example, Adobe Photoshop plug-in
effects. components export a “plug-in type” property, whose value is

4 RUNTIME ARCHITECTURAL CHANGE selected from a fixed list [1]. Photoshop uses these values to

determine how to interact with the plug-in.

We advocate an approach that operates at the architecture}i .

level. Four immediate benefits result from managing change®-2 Runtime Component Removal

at the architectural level. First, software engineers use aComponent removal enables a designer to remove unneeded
system’s architecture as a tool to describe, understand, anbiehavior, potentially as a result of recent additions
reason about overall system behavior [26, 34]. Leveragingsupplanting original behavior. Appropriate conditions
the engineer’s knowledge at this level of system design holdsgoverning component removal are application-specific. For
promise in helping manage runtime change. Second, if noexample, a system’s runtime environment may prohibit
restrictions are placed on component internals it becomescomponent removal if any of its functions are on the
feasible to accommodate off-the-shelf (OTS) components.execution stack. Some systems, especially distributed
Third, decisions regarding change application policy and systems communicating over inherently undependable
scope are naturally encapsulated within connectors andconnections, are specifically designed to tolerate sudden loss
separated from application-specific behavior. This facilitates of functionality or state. As with component addition, certain
the task of changing policies independent of functional design approaches and styles are more amenable to runtime
behavior. Fourth, control over change application policy and removal than others.

scope is placed in the hands of the architect, where decisions

In the following subsections, we demonstrate how
architectures can support different types of software



4.3 Runtime Component Replacement in the previous section. The following subsections describe

We consider component replacement as a special case dhe specific roles components and connectors must fulfill to
addition followed by removal when two additional SUPPOrtruntime change.

properties are required: (1) the state of the executings 1 Components

component must be transferred to the new component, anc&:
(2) both components must not be simultaneously active
during the change. Corrective and adaptive evolution are
characteristic of such changes.

omponents are responsible for implementing application
behavior. We treat their internal structure as a black box. A
component encapsulates functionality of arbitrary
complexity, maintains internal state information, potentially
Component replacement is simple when components lackutilizes multiple threads of control, and may be implemented
state or belong to systems specifically designed to toleratén any programming language. Treating components as black
state loss. Such systems typically detect state loss and switchoxes significantly increases the opportunity for reusing
to a degraded mode of operation while recovering. AnotherOTS components. However, OTS component may not be
approach, exemplified by the Simplex architectural style able to participate in runtime change if it lacks certain
[32], incorporates an ‘“operational model” in the functionality. For example, the inability to extract
implementation. The model rejects upgraded componentscomponent state from a component prevents component
when they do not satisfy explicit performance and accuracyreplacement. We cannot circumvent these problems without
requirements. modifying the component.

In systems not specifically designed to tolerate state loss,Components should not communicate by directly

component replacement requires additional considerationsreferencing one another. Instead, they should utilize a
beyond those discussed for component addition andconnector, which localizes and encapsulates component
removal. Several approaches for preserving component statinterfacing decisions. This minimizes coupling between

and preventing communication loss during runtime change components, enabling binding decisions to change without
have been proposed [5, 8, 17]. Hofmeister's approach [17]requiring component modification [29].

requires each component to provide two interface methods:E h ¢ i id inimal f
one for divulging state information, and the other for ach component must provide a minimal amount 0

performing initialization when replacing another component, Unctional behavior to participate in runtime change. To
Wsupport runtime addition and removal, components must be

These approaches are applicable only when the ne ackaged in a form that the underlying runtime environment
component’s externally visible interface is a strict superset ofP g . ying .
can dynamically load. Most popular operating systems

the component being replaced. Approaches not restricted in’ " . S - 9 2FS
such a manner are an open research topic prov!de a dynamic Illnkmg capability. Dynamic Imkmg
' provides a language-independent mechanism for loading

4.4 Runtime Reconfiguration new modules during runtime and invoking the services they
Structural reconfiguration of the architecture supports €XPort. Higher level mechanisms, such as CORBA [24] and
recombining existing functionality to modify overall system COM [6], provide similar functionality. To support runtime

behavior. Data-flow architectures, such as UNIX’s pipe and réconfiguration, components must be able to alter their
filter style and Weaves [13], provide substantial flexibility connector bindings. These additional behaviors can typically
through static reconfiguration of existing behaviors. For b€ provided in the form of reusable code libraries which act
example, UNIX's pipe-and-filter style enables construction @ @ Wrapper or proxy to the actual component (see

of a rich set of behaviors through the recombination of Section 7). This alleviates the burden of implementing such
existing behavior. functionality for every component.

Runtime reconfiguration can be performed by altering ©-2 Connectors
connector bindings since connectors mediate all componentConnectors are explicit architectural entities that bind
communication. As with component replacement, if components together and act as mediators between
components assume reliable communication, it is necessaryhem [34]. In this way, connectors separate a component’s
to prevent communication loss. interfacing requirements from its functional
4.5 Summary _requirer_nents [29]. Connectors encapsulate component
' interactions and localize decisions regarding communication
It is important to note that with any type of architectural policy and mechanism. As a result, connectors have been
change, concerns regarding the mechanics of change must bgsed for a wide variety of purposes, including: ensuring a
separated from the semantic effects of change on theparticular interaction protocol between components [3];
particular application. The injudicious application of specifying communication mechanism independent of
architectural changes can compromise system integrity. As &unctional behavior, thereby enabling components written in
result, such changes must be verified before being applied tajifferent programming languages and executing on different
a running system. The use of architectural modeling andprocessors to transparently interoperate [29]; visualizing and
analysis tools is crucial in this regard. debugging system behavior by monitoring messages
5 ENABLING RUNTIME ARCHITECTURAL CHANGE between components [28]; and integrating tools by using a

. . . connector to broadcast messages between them [30].
This section outlines the roles components and connectors

should play in supporting the architectural changes describedAlthough connectors are explicit entities during design, they



have traditionally been implemented as indiscrete entities infor architectural dynamism. However, the field of software
the implementation. In UniCon, for example, procedure call architectures is still relatively young and largely unexplored.
and data access connectors are reified as linker instruction3his is particularly true of dynamism: we can learn from
during system generation [33]. Similarly, component binding traditional approaches to dynamism, outlined in Section 3,
decisions, while malleable during design, are typically fixed but some of the issues they raise will be inapplicable to
during system generation. As a result, modifying binding architectures; additionally, architectures are likely to
decisions during runtime becomes difficult. introduce other, unique problems, such as supporting
heterogeneity, adhering to architectural styles, and

Connectors, like components, must remain discrete emitiesmaintaining compatibility with OTS components

in the implementation to support their runtime addition and
removal. They must also provide a mechanism for addingFor these reasons, our initial strategy has been to address
and modifying component bindings in order to support concrete problems and learn from experience. We have
reconfiguration: Supporting runtime rebinding can degrade focused on supporting architectures in a layered, event-based
performance in primitive connectors, such as procedurearchitectural style, called C2 [36]. In the C2-style, all
calls, since an additional level of indirection is introduced. communication among components occurs via connectors,
For more complex connectors, such as RPC and softwarghus minimizing component interdependencies and strictly
buses (e.g. Field [30]), the functionality we require can separating computation from communication. The style also
usually be integrated without a significant runtime imposes topological constraints: every component has a
performance penalty. Recent approaches to dynamic linking“top” and a “bottom” side, with a single communication port
attempt to reduce or eliminate the runtime overheadon each side. This restriction greatly simplifies the task of
associated with altering binding decisions during adding, removing, or reconnecting a component. A C2
runtime [7]. Ultimately, designers should determine which connector also has a top and a bottom, but the number of
connectors are used based on application requirements. IEommunication ports is determined by the components
runtime change is not required, connectors without rebindingattached to it: a connector can accommodate any number of
overhead may be used. components or other connectors. This enables C2 connectors
accommodate runtime rebinding. Finally, all
munication among components is done asynchronously
by exchanging messages through connectors.

Connectors play a central role in supporting several aspect%%m
of change management. They can implement different
change policies by altering the conditions under which
newly added components are invoked. For example, toAlthough the C2-style places several restrictions on
support immediate component replacement, a connector camrchitectures and architectural building blocks, we believe
direct all communication after a certain point in time away these restrictions to be permissive enough to allow us to
from the old component to the new one. To support a moremodel a broad class of applications. Narrowing our focus has
gradual component replacement policy, a connector canenabled us to construct tools for supporting runtime
direct new service requests to the new component, whilearchitectural change. As a result, we've gained direct
directing previously established requests to the original practical experience with runtime evolution of architectures
component. To support a policy based on replication, serviceand uncovered important issues in effectively supporting
requests can be directed to any member of a known set othem.

functionally redundant components. Connectors can also be7 TOOLS SUPPORTING ARCHITECTURE-BASED

used as a means of localizing change. For example, if a
component becomes unavailable during the course of a EVOLUTION OF SOFTWARE SYSTEMS

runtime change, the connectors mediating its communicationThis section describes ArchStudio, our tool suite that
can queue service requests until the component becomelnplements our architecture-based approach to runtime
available. As a result, other components are insulated fromsoftware evolution. The following subsections describe our
the change. Using connectors to encapsulate chang&eneral approach to enabling evolution of software systems

application policy and scope decisions lets designers selec@t the architectural level. We then present an implementation
the most appropriate policy based on application based on this approach and demonstrate its use on a simple

requirements. application. We conclude by discussing the current
limitations of our implementation.
6 APPLYING CONCEPTS TO A SPECIFIC ARCHI-
TECTURAL STYLE 7.1 Approach

We are developing general techniques for runtime Our general approach to supporting architecture-based
architecture evolution that are applicable across applicationsoftware —evolution  consists of several interrelated
domains, architectural styles, and architecture modelingmechanisms (see Figure 1). The mechanisms are described

notations. We are also investigating a general formal basisbe|0\r/1v- Section 7.2 describes our implementation of these
mechanisms.

1. Runtime rebinding can be supported without explicit connectors . . .
by essentially replacing relevant machine language instructionsEXpl!C't Architectural Model. In order to effectlvely

during runtime. This technique is highly dependent on the execu-modify a system, an accurate model of its architecture must
tion environment (memory protection, restrictions on self-modify- be available during runtime. To achieve this, a subset of the
ing code, etc.) and the programming language and compilersystem’s architecture is deployed as an integral part of the
optimizations (polymorphic functions, function inlining, etc.). system. The deployed architectural model describes the



interconnections between components and connectors, anReusable Runtime Architecture Infrastructure: The
their mappings to implementation modules. The mapping runtime architecture infrastructure (a) maintains the
enables changes specified in terms of the architectural modetonsistency between the architectural model and
to effect corresponding changes in the implementation. Theimplementation as modifications are applied, (b) reifies
runtime  architecture infrastructure  maintains the changes in the architectural model to the implementation,
correspondence between the model and the implementation.and (c) prevents runtime changes from violating
architectural constraints. As a result, the runtime architecture
infrastructure can support different component addition,
removal, and replacement policies and can be tailored for
articular application domains. The runtime architecture
nfrastructure uses the architectural model's implementation
mapping and the facilities of the underlying environment to
This approach supports a flexible model of system evolutionimplement changes.
In W.h'ch mOd'f'Cat'Onr? are Ilpro_\nded by multiple 7.2 Archstudio: A Tool Suite For Runtime Modification
organizations (e.g., the app ication vendor, system Of C2-style Architectures
integrators, site managers) and selectively applied by end-_ . i : i .
users based on their particular needs. By applying differentThis section describes our initial prototype of a tool suite,
sets of modifications, an end-user can effectively create g\rchStudio, which implements the mechanisms described in
different member of the system family at her site. As a result,the preceding section. The tools comprising ArchStudio are
the modifications should be robust to variations in those Implemented in the Java programming language, and can
systems. Facilities for querying the architectural model and Modify C2-style applications written using the Java-C2 class
using the results of the query to guide modifications should framework [22]. The Java-C2 class framework provides a set
be provided as an integral part of supporting architectural ©f extensible Java classes for fundamental C2 concepts such
change. Using the model to inform and guide modifications @S components, connectors, and messages. Developers create

eliminates many accidental difficulties inherent in evolving N€W components and connectors by subclassing from
systems. framework classes and providing application-specific

behavior. Connectors remain discrete entities in the
Governing Runtime Change: Our approach to runtime  implementation, and support runtime rebinding through a set
system evolution supports a mechanism for restricting of functions they export. Connectors that utilize intra- and
changes that compromise system integrity. Constraints play anter-process communication facilities are provided with the
natural role in governing change, and several approaches t&amework.
applying them at the architectural level have been developed . ) _ .
(see Section 8). In addition, mechanisms governing runtimeFigure 2 depicts a conceptual view of the ArchStudio

change should also constraimen particular changes may arch_itec_ture. The Architectural_ Model represents an
oceur. application's  current  architecture.  Our  current

implementation encapsulates the architectural model in an
During the course of a complex modification, the system’s apstract data type (ADT). This ADT exports operations for
architecture may “move” through several invalid states querying and changing the application’s architectural model.
before reaching a final valid state. Although constraints may

Describing Runtime Change.Madifications are expressed

in terms of the architectural model. A modification

description uses operations for adding and removing
components and connectors, replacing components an
connectors, and changing the architectural topology.

legitimately restrict certain modification “paths”, doing so ‘Sources of
solely based on intermediate invalid states will prevent some Architectural Change
classes of valid runtime changes. As a result, a mechanism Script
that supports transactional modifications should be provided. [ Archshell
Argo ~. changes
s, implicitly affect

* implementation
A

changes Changes -, .«  changes \
applied t ~+ implicitly affect \
model ~ implementation v
* Architectural Implementation

Architectural Implementation
ADL Environment /

Architectural

Reusable / Infrastructure| Infrastructure
Runtime Architecturt @) @) External

Infrastructure governs ] :
Consistengcy Architecture ¢832/5|s
Evolution Manager

Figure 1. Architectural changes applied to the model
are reified into implementation by the runtime Figure 2. A conceptual echitectue dagram for the
architecture infrastructure. ArchStudio tool suite.



B8 suoply Routing Plannct =[O | Clock | | Ports | | Warehouses | | Vehicles |
Port-1: Airport Runway 1 Port-2: Airport Runway 2 Port-3: Train Station I | | ]

TIME: 15 ITEM: tents QTY: 9tons TIME: 23 ITEM: oranges QTY: 7 tons TIME: 38 ITEM:tea QTY:8tons 1
TIME: 7 ITEM: beef QTY:2tons [ Connector 1 |

| Connector 2 |

Available Vehicles Port ‘Warehouse Vehicle
=*INUSE = VEHICLE-1:Truck-1 SPEED: 40 mph CAPACITY: 24 tons Artist Artist Artist
*+|NUSE ™ VEHICLE-2: Trailer ~ SPEED: 40 mph CAPACITY: 13 tons T 1 |
=+ |NUSE ™ VEHICLE-3:Train  SPEED: 50 mph CAPACITY: 22tons 1

N USE ** VEHICLE-5: Truck-2  SPEED: 30 mph CAPACITY: 14 tons
VEHICLE-6: Forklit-2 SPEED: 40 mph CAPACITY: 12tons

=+ IN USE *** VEHICLE-4: Forkiit-1 SPEED: 40 mph CAPACITY: 18 tons
| Connector 3 |

| Connector 4 |

Figure 3.(a) On the left, the cargo routing system'’s user interface. (b) On the right, the architecture of the cargo routing
system in the C2-style.

Warehouses

WAREHOUSE-1  CAPACITY:100tons CURRENT: O tons
WAREHOUSE-2  Currently Empty
WAREHOUSE-3  Currently Empty
WAREHOUSE-4  Currently Empty

The model is stored in a structured ASCII format and removing components and connectors, reconfiguring the
maintained by the runtime architecture infrastructure. The architecture, and displaying a textual representation of the
model consists of the interconnections between componentsrchitecture. ArchShell provides two commands currently

and connectors, and their mapping to Java classes. Runtimaot available in Argo. The first command enables the

modifications consist of a series of query and changearchitect to send arbitrary messages to any component or
requests to the architectural model and may generally arriveconnector in the same manner as if they were sent from
from several different sources. another component or connector. This facilitates debugging

The Architecture Evolution ManagefAEM) maintains the and exploration of architectural behavior.

correspondence between thechitectural Modeland the As design tools for architects, Argo and ArchShell facilitate
ImplementationAttempts to modify the architectural model rapid exploration of architectural designs. They also provide
invoke the AEM, which determines if the modification is valuable feedback in exploring proposed runtime
valid. TheADL and Environment infrastructurénsulate the architectural changes.

AEM from changes to the ADL and runtime environment.

The AEM may utilize an architectural constraint mechanism Argo and ArchShell are interactive tools used by software

or extermal analysis tools to determine 1f a change s ScTecs o descrbe ehfecres and archiectu
acceptable. The current implementation of the AEM uses PSS : P
modification, she uses tHextension Wizardo deploy the

implicit knowledge of C2-style rules to constrain changes; e . . .
the addition of an architectural constraint mechanism and themOd'ﬂCatlon to end-users. The Extension Wizard provides a

ability to utilize external analysis tools is planned for the simple end-user interface for enacting runtime modifications

future. If a change violates the C2-style rules, the AEM and is deployed as a part of the end-user system. The
rejects the change. Otherwise, the architectural model isExtensmn Wizard is responsible for executing a modification

altered and its implementation mapping is used to make theScrlpt on the end-user’s _mstallatlo_n of the system. End-users
corresponding modification to the Implementation. use a ng browser to .dlsplay a list of c_jow_nloadable :system
update files, e.g., provided on the application vendor’'s Web
ArchStudio currently includes three tools which act as site. A system update file is a compressed file containing a
Sources of Architectural Modificatio#rgo, ArchShell, and runtime modification script and any new implementation
the Extension Wizard. In addition to these tools, an modules. Selecting a system update causes the Web browser
application can obtain access to its own architectural modelto download the file and invoke the Extension Wizard to
and manipulate itself using the same set of mechanisms.  process it. The Extension Wizard uncompresses the file,
locates the modification script it contains, and executes it. A

model that the architect may manipulate directly. New similar approach for deploying system updates is used by

Ialall et al. [16].

components and connectors are selected from a palette an

added to the architecture by dragging them onto the desigr7.3 The Cargo Routing System Example

canvas. Components and connectors are removed b¥ye demonstrate the use of our tool suite using a simple
selecting them, and issuing a delete command. The|ggistics system for routing incoming cargo to a set of
configuration is altered by directly manipulating the links \yarehouses. Figure 3(a) shows the system’s user interface.
between components and connectors. The three list boxes on the top represent three incoming
ArchShell [25] is an alternative to Argo that provides a Cargo delivery ports, in this case two airport runways and a
textual, command-driven interface for specifying runtime train stat|0n,. V\/_hen cargo arrives at a port, an item is added
modifications. Commands are provided for adding and to the port's list box. The system keeps track of each

Argo [31] provides a graphical depiction of the architectural



> add component try {

ClassNamec2.planner.RouterArtist if (model.architectureName().equals(“CargoSystem”)) {
Name?RouterArtist Connector above = model.connectorBelow(“Ports”);

> weld Connector below = model.connectorAbove(“PortArtist”)
Top entity:Connectorl model.addComponent("Planner”, "planner");

Bottom entity:RouterArtist model.weld(above, "planner");

> weld model.weld("planner", below);

Top entity:RouterArtist model.startEntity(“planner”);

Bottom entity:Connector4 return true;

> start } else return false;

Entity: RouterArtist } catch (ArchitectureModificationException €) {

return false;
Figure 4. The ArchShell commands used to add the }
Router Artist component. Commands are denoted using . ; : - -
: Figure 5. A portion of the Extension Wizard script us
ﬁg:%itzegé ?Q)?t command arguments are denoted using to add the Planner component into the running syst
: The “model” represents the ADT interface to the
shipment's content, weight, and the amount of time it has system’s architectural model.

been sitting idle at the port. The text box in the center component to the architecture. The new planner component
displays available vehicles for transporting cargo 1o s added below Connector 1 because it monitors the state of
destination warehouses. The system displays the vehicle’she ADTs to determine optimal routes. Figure 5 shows the
name, maximum speed, and maximum load. The bottomcritical portion of the modification script the Extension
most text box displays a list of destination warehouses. Thewizard executes when installing the change. The script
system displays each warehouse’s name, maximum capacityjetermines if the architectural model is that of the cargo
and currently used capacity. End-users route cargo byrouting system, then queries the model to determine the
selecting an item from a delivery port, an available vehicle, names of the connectors to which the planner component
and a destination warehouse, and then clicking the “Route” st be attached. If any of these operations fail, an exception

button. is thrown which aborts the installation. An operation may
Figure 3(b) depicts the architecture of the cargo routing fail if the architectural elements on which the change relies
system in the C2 architectural style. Tts Vehiclesand ~ have been previously altered by other architectural

Warehousesomponents are ADTs which keep track of the modifications.

state of ports, the fransportation vehicles, and thefigyure 6 depicts the updated user interface and architecture
warehouses, respectively. Theelemetry component  after both modifications have been made.

determines when cargo arrives at a port, and tracks the cargo _ ) o _

from the time it is routed until it is delivered to the Supporting runtime modification requires the deployment of
warehouse. Th&ort Artist Vehicle Artist and Warehouse the Architecture Evolution Manager, the Extension Wizard,
Artist components are responsible for graphically depicting and a portion of the cargo routing system’s architectural
the state of their respective ADTs to the end-userRihger ~ model. The Architecture Evolution Manager and the
component sends a message to the telemetry ComponerﬁxtenSIOH Wizard COﬂSIS.t of 38 kllobytes Of. Complled Java
when the end-user presses the “Route” button and providegode. The cargo routing system's architectural model
the end-user’s last selected port, vehicle, and warehouse. Theonsumes 2 kilobytes of disk space. The Planner system
Graphicscomponent renders the drawing requests sent fromupdate, which consists of the modification script and the
the artists using the Java AWT graphics package. compiled Planner component, is 6 kilobytes.

We now describe the use of ArchShell and Extension Wizard7-4 Limitations and Future Work

in adding new functionality to the system. ArchShell is used Our prototype facilitates exploration of architectural

to add a new graphical visualization of cargo routing, and andynamism, but has several practical limitations. Currently,
Extension Wizard script is used to add an automatedall components and connectors must be written using the
planning component that assists users in making optimalJava-C2 class framework. The framework, however, does
routing decisions. Both changes are made during executiomot make any assumptions about execution threads and
of the cargo routing system. processes or message passing protocols. This has allowed us
to implement runtime component addition using Java's
gynamic class loading facilities. In the future, we plan to use

between Connector 1 and Connector 4 because it use2nguage independent facilities, such as those provided by

notification messages provided by tert, Warehousgand ORBA and COM.

Vehicle ADTs and utilizes theGraphics component for Currently, C2 components communicate by passing
drawing graphics. The architect uses ArchShell to add theasynchronous message through connectors. Although
component using the “add component” command, connect ittechniques for emulating other communication mechanisms
to buses using the “weld” command, and signal that the(e.g., method invocation, shared memory) atop a message
component should receive execution cycles using the “start’passing substrate have been developed by researchers in the
command (see Figure 4). parallel algorithms domain, we are investigating how these
different communication mechanisms impact dynamism.

Adding the new visualization requires addinB@uter Artist
component to the architecture. We add the new router artis

Adding the automated planner involves addinglanner



f25 Supply Routing Planner _ (O] x|

Port-1: Airport Runway 1 Port-2: Airport Runway 2 Port-3: Train Station

on [4] [TIME:154 ITEM: coffee QTY:Stons ITIME: 113 ITEM: beef QTY:10tons
ITIME: 162 ITEM: apples QTY:8tons ITIME: 106 ITEM: beef QTY: 4 tons ITIME: 88 ITEM: apples QTY: 4 tons l
ITIME: 146 ITEM: tea QTY:8tons ITIME: 82 ITEM: tents  QTY: 9 tons ITIME: 73 ITEM: chicken QTY:5tons | C N 1 |
ITIME: 138 ITEM: apples QTY: 2tons ITIME: 65 ITEM: bandages QTY: 4 tons onnector

ITIME: 122 ITEM: bandages QTY:6tons TIME: 43 ITEM:tea QTY: 2tons
. ITEM: oranges QTY: 3tons ITIME: 41 ITEM: tents  QTY: 3tons n
:34  ITEM: oranges QTY-1 tons Telemetr
: ITEM: coffee QTY: 7 tons b =2 Shipments In Progress [-[O[X]

| Clock | | Ports | | Warehouses | | Vehicles |
| | | ]

ITEM: tea QTY:6tons | Connector 2 |
Available Vehic| e /arehouse-4 I 1 1
N USE *™* "
Vehicle- Port Warehouse Vehicle
**IN USE ™ . . .
=N USE = Artist Artist Artist
N USE I I J

Connector 3 |

Router
it

Vehicle5 Shipment: 4 tons of tea | Connector 4

Port-1 Warehouse-3
Vehicle-6 *Gra phics
I DL E

Figure 6. (a) On the left, the cargo routing system user interface after the addition of the new router artist and planner
components. (b) On the right, the updated cargo system architecture highlighting new components.
For simplicity, we assume a one-to-one mapping betweennote that our approach does not attempt to replace static
components in the architectural model and Java architecture description languages. In fact, our tools can
implementation classes. This enables us to focus onutilize existing ADLs, instead of our own, for the static
dynamism independently of issues concerning mappingsportion of the architectural model. In this way, our approach
between architectures and their implementations, which is anaugments current ADLs with runtime change support.

open research area of significant complexity [10, 23], Architectural modification languages (AMLs): While

The runtime architecture infrastructure currently supports ADLs focus on describing software architectures for the
the addition and removal of components and connectors, anghurposes of analysis and system generation, AMLs focus on
the reconfiguration and querying of the architectural model. describing changes to architecture descriptions. Such
There is currently no support for component replacement,languages are useful for introducing unplanned changes to
though the implementation allows currently available deployed systems by changing their architectural models.
approaches to be adopted. The Extension Wizard’s modification scripts, C2's
AML [21], and Clipper [2] are examples of such languages
and share many similarities.

VEHICLE-6: Forkiift-

Vehicle=3 Shipment: 8 tons of tea |

Warehouses [l AN e T T TR

[WAREHOUSE-1  (JN
T = M Vehicle-4 Shipment: 9 tons of coffee

WAREHOUSE-3 (RN e
I PO ———————  —— /arehouse-3

Finally, our current implementation is limited to checking
invariants derived from the C2-style rules. The addition of a
general purpose architectural-constraint mechanism thatArchitectural constraint languages: Several approaches
supports application-specific invariants is the focus of future for specifying architectural constraints have been proposed.
work. Our positive experience with incorporating the C2- Constraint languages have been used to restrict system
style invariants suggests that our approach will support astructure using imperative [4] as well as declarative [20]

more general mechanism. specifications. Others advocate behavioral constraints on
components and their interactions [19]. Finding appropriate
8 RELATED ISSUES mechanisms for governing architectural change using

This section briefly outlines a number of cross cutting constraints is an active topic of ongoing research.
research issues that are pertinent to runtime architectural
9 CONCLUSIONS

modification.

. - Software architectures have the potential to provide a
Architecture Description - Languages (ADLS): ADLs foundation for systematic runtime sgftware modifigation, as
provide qurmal basis for describing softyvare archl'[ectu_resoppoSed to britle, “one-of-a-kind” patches. An effective
by specifying the syntax and semantics for quelmg approach to runtime change can reduce the risks and costs
components, _connectors, and configurations. Since ay ooy associated with such change. Our experience
majority of existing ADLS have focused on design iSSUES, jorqngirates that an architecture-based approach to runtime
their use has been limited to static analysis and systemy,g a0 “evolution provides several unique benefits over
generation. As such, existing ADLs support Static joios approaches. These benefits include a common
dESC!’Ip.tIOI’l of'a system, but provide no facilities for representation for describing software systems and managing
specifying runtime architectural changes. Although a few runtime  change, separation of computation from

ADLs, such as Darwin [20], Rapide [19], and communication. and encai . P
. e ) psulation of change application
LILEANNA[37], can express runtime modification to dpolicies and scope within connectors.

architectures, they require that the modifications be specifie
during design and “compiled into” the application. Our Our work has benefited from hands-on experience with
approach, in contrast, can accommodate unplannedarchitectural dynamism. In the process, we have produced a
modifications of an architecture and incorporate behavior set of results that are generally applicable to the problem of
not anticipated by the original developers. It is important to runtime software evolution. We have confirmed the central



role of connectors in supporting runtime change and 17.C. R. HofmeisteDynamic Reconfiguration of Distributed
identified the desired characteristics of connectors that Applications Ph.D. Thesis. University of Maryland, Com-
facilitate that change. We have also demonstrated the role of _ puter Science Department, 1993.

connectors in supporting different change policies. We havels'E])' Kfameﬂhl Magee. The e}/g'&/g‘g philosophers péot]ztlem:
recognized the need for both architecture-specific wg?:rllzq%cgicneﬂ?neg\%ﬂ%g%rgil Novrzigsg%ctlons on Soft-
(structural) and application-specific (behavioral) constraints 19 p_ | yckham, J. Vera. An event-based architectural defini-
in making runtime changes, as well as the need for tjon languagelEEE Transactions on Software Engineer-
transaction support during those changes. Finally, a simple ing, pp 717-734, September 1995.

imperative modification language has proven to be adequate?0. J. Magee, J. Kramer. Dynamic structure in software archi-

for specifying a broad class of runtime chan’ges. tecturesFourth SIGSOFT Symposium on the Foundations
of Software Engineeringan Francisco, October 1996.

REFERENCES 21.N. Medvidovic. ADLs and dynamic architecture changes.

1. Adobe Systems Incorporateddobe Photoshop Plug-In Second International Software Architecture Workshop
SDK  http://www.adobe.com/supportservice/devrelations/ (ISAW-2) San Francisco, October 1996.
sdks.html. 1997. 22.N. Medvidovic, P. Oreizy, R. N. Taylor. Reuse of off-the-

2. B. Agnew, C. R. Hofmeister, J. Purtilo. Planning for shelf components in C2-style architecturggmposium on
change: A reconfiguration language for distributed sys- Software ReusabiliyBoston, May 1997.
tems.Proceedings of CDS'94.994. 23. M. Moriconi, X. Qian, R. A. Riemenschneider. Correct

3. R. Allen, D. Garlan. A formal basis for architectural con- architecture refinementEEE Transactions on Software
nection.ACM Transactions on Software Engineering and Engineering pp 356-372, April 1995.

MethodologyJuly 1997. 24. Object Management Grouphe Common Object Request

4. R. Balzer. Enforcing architectural constrainecond Broker: Architecture and SpecificatipRevision 2.0, July
International Software Architecture Workshop (ISAW-2) 1996. http://www.omg.org/corba/corbiiop.htm
San Francisco, October 1996. 25. P. Oreizy. Issues in the runtime modification of software

5. T. Bloom, M. Day. Reconfiguration and module replace- architecturesUC Irvine Technical Report UCI-ICS-96-35
ment in Argus: Theory and practickeE Software Engi- Department of Information and Computer Science, Univer-
neering Journalvol 8, no 2, March 1993. sity of California, Irvine, August 1996.

6. K. Brockschmidtinside OLE 2 Microsoft Press, 1994. 26.D. E. Perry, A. L. Wolf, Foundations for the study of soft-

7. M. Franz. Dynamic linking of software componehE&EE ware architecture Software Engineering Notes/ol 17,
Computeyvol 30, no 3, pp 74-81, March 1997. no 4, October 1992.

8. O. Frieder, M. Segal. On dynamically updating a computer 27. J. Peterson, P. Hudak, G. S. Ling. Principled dynamic code
program: From concept to prototyp#ournal of Systems improvement.Yale University Research Report YALEU/
and Softwarevol 14, pp 111-128. 1991. DCS/RR-1135 Department of Computer Science, Yale

9. E. Gamma, R. Helm, R. Johnson, J. VlissidEsign Pat- University, July 1997.
terns Addison-Wesley, 1995. 28.J. Purtilo. MINION: An environment to organize mathe-

10. D. Garlan. Style-based refinement for software architec- matical problem solving?roceedings of the 1989 Interna-
ture.Second International Software Architecture Workshop tional Symposium on Symbolic and Algebraic

(ISAW-2) San Francisco, CA, October 1996. Computation July 1989.
11.D. Garlan, G. E. Kaiser, D. Notkin. Using tool abstraction 29. J. Purtilo. The Polylith software busCM Transactions on
to compose systemEEEE Computervol 25,no 6, pp 30- Programming Languages and Systemd 16, no 1, Jan.
38, June 1992. 1994.
12. C. Ghezzi, M. Jazayeri, D. Mandriokundamentals of = 30.S. P. Reiss. Connecting tools using message passing in the
Software EngineeringPrentice-Hall, 1991. FIELD environmentlEEE Softwarevol 7, no 4, pp 57-67,

13. M. M. Gorlick, R. R. Razouk. Using weaves for software July 1990.
construction and analysiBroceedings of the 13th Interna- 31.J. E. Robbins, D. F. Redmiles, D. M. Hilbert. Extending

tional Conference on Software EngineerinBEE Com- design environments to software architecture dedigth
puter Society Press, May 1991. Knowledge-Based Software Engineering Conference

14. M. M. Gorlick, A. Quilici. Visual programming-in-the- (KBSE'96) Syracruse, New York. Sept. 1996.
large versus programming-in-the-sm#&ltoceedings of the  32.L. Sha, R. Rajkumar, M. Gagliardi. Evolving dependable
IEEE Symposium on Visual LanguagédSEE Computer real-time systemslEEE Aerospace Applications Confer-
Society Press, October 1994. ence New York, NY, pp 335-346, 1996.

15. D. Gupta, P. Jalote, G. Barua. A formal framework for on- 33. M. Shaw, R. DeLine, D. V. Klien, T. L. Ross, D. M. Young,
line software version changlEEE Transactions on Soft- and G. Zelesnik. Abstractions for software architecture and
ware Engineeringvol 22, no 2, February 1996. tools to support themlEEE Transactions on Software

16. R. S. Hall, D. Heimbigner, A. van der Hoek, A. L. Wolf. Engineeringpp 314-335, April 1995.

An architecture for post-development configuration man- 34. M. Shaw, D. GarlanSoftware Architecture: Perspectives
agement in a wide-area netwodkZth International Con- on an Emerging DisciplineéPrentice-Hall, 1996.

ference on Distributed Computing SystenBaltimore, 35. K. Sullivan, D. Notkin. Reconciling environment integra-
Maryland, May 1997. tion and software evolutioPACM Transactions on Soft-

ware Engineering and Methodologyol 1, no 3, pp 229-

1. The material is based on work sponsored by the Defense 268, July 1992. o .
Advanced Research Projects Agency, and Rome Laboratory, Air36.R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. White-
Force Materiel Command, USAF, under agreement number head, J. E. Robbins, K. A. Nies, P. Oreizy, D. L. Dubrow. A
F30602-97-2-0021. The views and conclusions contained herein are  Component- and message-based architectural style for GUI
those of the authors and should not be interpreted as necessarily software.lEEE Transactions on Software Engineeripg,
representing the official policies or endorsements, either expressed 390-406, June 1996.

or implied, of the Defense Advanced Research Projects Agency,37.W. Tracz. Parameterized programming in LILEANNA.
Rome Laboratory or the U.S. Government. Approved for Public Proceedings of ACM Symposium on Applied Computing
Release - Distribution Unlimited. SAC’93,February 1993.




	ABSTRACT
	1 INTRODUCTION
	2 MANAGING RUNTIME CHANGE
	3 PREVIOUS APPROACHES TO RUNTIME CHANGE
	4 RUNTIME ARCHITECTURAL CHANGE
	4.1 Runtime Component Addition
	4.2 Runtime Component Removal
	4.3 Runtime Component Replacement
	4.4 Runtime Reconfiguration
	4.5 Summary

	5 ENABLING RUNTIME ARCHITECTURAL CHANGE
	5.1 Components
	5.2 Connectors

	6 APPLYING CONCEPTS TO A SPECIFIC ARCHITECTURAL ST...
	7 TOOLS SUPPORTING ARCHITECTURE-BASED EVOLUTION OF...
	7.1 Approach
	Figure 1. Architectural changes applied to the mod...

	7.2 Archstudio: A Tool Suite For Runtime Modificat...
	Figure 2. A conceptual architecture diagram for th...

	7.3 The Cargo Routing System Example
	Figure 3. (a) On the left, the cargo routing syste...
	Figure 4. The ArchShell commands used to add the R...
	Figure 5. A portion of the Extension Wizard script...
	Figure 6. (a) On the left, the cargo routing syste...

	7.4 Limitations and Future Work

	8 RELATED ISSUES
	9 CONCLUSIONS
	REFERENCES
	1. Adobe Systems Incorporated. Adobe Photoshop Plu...
	2. B. Agnew, C. R. Hofmeister, J. Purtilo. Plannin...
	3. R. Allen, D. Garlan. A formal basis for archite...
	4. R. Balzer. Enforcing architectural constraints....
	5. T. Bloom, M. Day. Reconfiguration and module re...
	6. K. Brockschmidt. Inside OLE 2. Microsoft Press,...
	7. M. Franz. Dynamic linking of software component...
	8. O. Frieder, M. Segal. On dynamically updating a...
	9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. De...
	10. D. Garlan. Style-based refinement for software...
	11. D. Garlan, G. E. Kaiser, D. Notkin. Using tool...
	12. C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamen...
	13. M. M. Gorlick, R. R. Razouk. Using weaves for ...
	14. M. M. Gorlick, A. Quilici. Visual programming-...
	15. D. Gupta, P. Jalote, G. Barua. A formal framew...
	16. R. S. Hall, D. Heimbigner, A. van der Hoek, A....
	17. C. R. Hofmeister. Dynamic Reconfiguration of D...
	18. J. Kramer, J. Magee. The evolving philosophers...
	19. D. Luckham, J. Vera. An event-based architectu...
	20. J. Magee, J. Kramer. Dynamic structure in soft...
	21. N. Medvidovic. ADLs and dynamic architecture c...
	22. N. Medvidovic, P. Oreizy, R. N. Taylor. Reuse ...
	23. M. Moriconi, X. Qian, R. A. Riemenschneider. C...
	24. Object Management Group. The Common Object Req...
	25. P. Oreizy. Issues in the runtime modification ...
	26. D. E. Perry, A. L. Wolf, Foundations for the s...
	27. J. Peterson, P. Hudak, G. S. Ling. Principled ...
	28. J. Purtilo. MINION: An environment to organize...
	29. J. Purtilo. The Polylith software bus. ACM Tra...
	30. S. P. Reiss. Connecting tools using message pa...
	31. J. E. Robbins, D. F. Redmiles, D. M. Hilbert. ...
	32. L. Sha, R. Rajkumar, M. Gagliardi. Evolving de...
	33. M. Shaw, R. DeLine, D. V. Klien, T. L. Ross, D...
	34. M. Shaw, D. Garlan. Software Architecture: Per...
	35. K. Sullivan, D. Notkin. Reconciling environmen...
	36. R. N. Taylor, N. Medvidovic, K. M. Anderson, E...
	37. W. Tracz. Parameterized programming in LILEANN...

	Architecture-Based Runtime Software Evolution
	Peyman Oreizy
	Nenad Medvidovic
	Richard N. Taylor
	Information and Computer Science
	University of California, Irvine
	Irvine, CA 92697-3425 USA
	+1 714 824 8438
	{peymano, neno, taylor}@ics.uci.edu



