
ge
em

nd

me
ing

for
fts
ed
his
that
e:”
 the
nd,
re

g
om
es,
n.

 to
ur

 is
nge,
em
or
al
re

key
n 3
are
sed
ates
at
le
ral
tyle
ts.
n 9

Architecture-Based Runtime Software Evolution

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+1 714 824 8438
{peymano, neno, taylor}@ics.uci.edu

Peyman Oreizy Nenad Medvidovic Richard N. Taylor

Appeared in the Proceedings of the International Conference on Software Engineering 1998 (ICSE'98). Kyoto, Japan, April 19-25, 1998.
http://www.ics.uci.edu/~peymano/
ABSTRACT
Continuous availability is a critical requirement for an
important class of software systems. For these systems,
runtime system evolution can mitigate the costs and risks
associated with shutting down and restarting the system for
an update. We present an architecture-based approach to
runtime software evolution and highlight the role of software
connectors in supporting runtime change. An initial
implementation of a tool suite for supporting the runtime
modification of software architectures, called ArchStudio, is
presented.

1 INTRODUCTION
An important class of safety- and mission-critical software
systems, such as air traffic control, telephone switching, and
high availability public information systems, shutting down
and restarting the system for upgrades incurs unacceptable
delays, increased cost, and risk. Support for runtime
modification is a key aspect of these systems. Existing
software systems that require dynamic update generally
adopt ad-hoc, application-specific approaches. Such systems
would benefit from a systematic, principled approach to
runtime change supported by a reusable infrastructure.

The benefits of runtime evolution are not restricted to safety-
intensive, mission-critical systems. A growing class of
commercial software applications exhibit similar properties
in an effort to provide end-user customizability and
extensibility. Runtime extension facilities have become
readily available in popular operating systems (e.g., dynamic
link libraries in UNIX and Microsoft Windows) and
component object models (e.g., dynamic object binding
services in CORBA [24] and COM [6]). These facilities
enable system evolution without recompilation by allowing
new components to be located, loaded, and executed during
runtime.

The facilities for runtime modification found in current
operating systems, distributed object technologies, and
programming languages, have a major shortcoming. They do
not ensure the consistency, correctness, or desired properties
of runtime change. Change management is critical to

effectively utilizing mechanisms for runtime change. Chan
management is a principal aspect of runtime syst
evolution that:

• helps identify what must be changed,
• provides context for reasoning about, specifying, a

implementing change, and
• controls change to preserve system integrity.

Without change management, risks introduced by runti
modifications may outweigh those associated with shutt
down and restarting a system.

Software architectures [26, 34] can provide a foundation
systematic runtime software evolution. Architecture shi
developer focus away from lines-of-code to coarse-grain
components and their overall interconnection structure. T
enables designers to abstract away fine-grained details
obscure understanding and focus on the “big pictur
system structure, the interactions between components,
assignment of components to processing elements, a
potentially, runtime change. A distinctive feature of softwa
architectures is the explicit modeling of connectors.
Connectors mediate and govern interactions amon
components, and thereby separate computation fr
communication, minimize component interdependenci
and facilitate system understanding, analysis, and evolutio

This paper presents an architecture-based approach
runtime software evolution. Several unique elements of o
approach are (a) an explicit architectural model, which
deployed with the system and used as a basis for cha
(b) preservation of explicit software connectors in the syst
implementation, and (c) an imperative language f
modifying architectures. We also present our initi
prototype of a tool suite that supports runtime softwa
evolution at the architectural level.

The paper is organized as follows. Section 2 describes
aspects of effective change management. Sectio
summarizes previous approaches to runtime softw
change. Section 4 advocates a generic architecture-ba
approach to runtime change management and demonstr
how different kinds of software evolution are supported
the architectural level. Section 5 describes the ro
components and connectors play in supporting architectu
change. Section 6 describes the particular architectural s
that our tool suite, described in Section 7, suppor
Section 8 identifies related research areas and Sectio
summarizes the contributions of the paper.

 a
ck
re
e

or
for
 by
t,

nd
t.
n all
 Our
ally
tive

een
e

tive
ts of
t by
vel

ges
ical
sed
es
fore
uch
ues
per
age
ng
ic

port
his
nd
e
rs
ion
on
or

nge
ent

vel
ed

es
to
nd

code
ge
its

can
n.
the
er
ing
2 MANAGING RUNTIME CHANGE
There are several critical aspects to change management.
These determine the degree to which change can be reasoned
about, specified, implemented, and governed.

• Change application policy controls how a change is
applied to a running system. A policy, for example, may
instantaneously replace old functionality with new func-
tionality. Another policy may gradually introduce change
by binding invocations subsequent to the change to the
new functionality, while preserving bindings previously
established to the old functionality. Ideally, change appli-
cation policy decisions should be made by the designer
based on application requirements. Approaches that dic-
tate a particular policy may force designers to “design
around” the restrictions to attain desired effects.

• Change scope is the extent to which different parts of a
system are affected by a change. A particular approach,
for example, may stall the entire system during the
course of a change. The designer’s ability to localize the
effects of runtime change by controlling its scope facili-
tates change management. The designer’s ability to
ascertain change scope helps reason about change.

• Separation of concerns captures the degree to which
issues concerning a system’s functional behavior are dis-
tinguished from those regarding runtime change. The
greater the separation, the easier it becomes to alter one
without adversely affecting the other.

• The level of abstraction at which changes are described
impacts the complexity and quantity of information that
must be effectively managed.

We refer to these aspects in subsequent sections of the paper
when comparing and contrasting different approaches to
runtime change.

We also distinguish between two types of change:
(1) changes to system requirements, and (2) changes to
system implementation that do not alter requirements.

When the requirements change, it is the responsibility of the
designer to determine what to change, how to change it, and
whether or not the change preserves application integrity.
Once a change has been designed, implemented, and tested,
it is executed on the running system. It is unrealistic to
assume that any preconceived measures for maintaining
system integrity would support this type of unpredictable
and unrestricted change.

When changes are confined to the implementation, a
preconceived set of application invariants may serve as a
basis for preserving system integrity. Designers can specify
these invariants as a part of the deployed system and prevent
changes that violate these invariants.

The inherent difficulty of predicting likely changes during
the initial software design phase necessitates that an
approach to runtime software evolution support both types of
change.

3 PREVIOUS APPROACHES TO RUNTIME
CHANGE

Traditionally, designers have sought alternatives to runtime
change altogether. A manual override in a safety critical

system, for example, relinquishes computer control to
person during system maintenance. If around-the-clo
system availability is not required, system updates a
postponed until the next scheduled downtime. Som
distributed systems employ functional redundancy
clustering as a mechanism to circumvent the need
runtime change. Web servers, for example, are upgraded
redirecting incoming network traffic to a redundant hos
reconfiguring the original host in a traditional manner, a
redirecting network traffic back to the original hos
However, these approaches are not feasible or desirable i
cases due to the increased risk and costs they impose.
goal is to reduce the costs and risks designers typic
associate with runtime change, making it a more attrac
design alternative.

Several approaches to runtime software evolution have b
proposed in the literature [13, 15, 18, 27, 32]. In th
following paragraphs, we describe some representa
approaches and evaluate them with respect to the aspec
change management presented in Section 2. We star
discussing techniques for statement- and procedure-le
runtime change and move up levels of abstraction.

Gupta et al. [15] describe an approach to modeling chan
at the statement- and procedure-level for a simple theoret
imperative programming language. The technique is ba
on locating the program control points at which all variabl
affected by a change are guaranteed to be redefined be
use. They show that in the general case locating all s
control points is undecidable, and approximate techniq
based on source code data-flow analysis and develo
knowledge are required. Scaling up this approach to man
change in large systems written in complex programmi
languages is still an open research problem. Dynam
programming languages, such as Lisp and Smalltalk, sup
statement- and procedure- level runtime change. T
flexibility is gained at the expense of heterogeneity a
performance. Applications must be written entirely in th
dynamic language to benefit from dynamism. This incu
performance overhead because every function invocat
must be bound during runtime. Furthermore, applicati
behavior and dynamism are not explicitly separated
localized. As a result, concerns regarding dynamic cha
permeate system design, making change managem
exceedingly difficult.

Peterson et al. [27] present an approach to module-le
runtime change based on Haskel, a higher-order, typ
programming language. Their technique requir
programmers to anticipate portions of the program likely
change during runtime, and structure the program arou
functions that encapsulate such changes. Developers en
decisions regarding change application policy and chan
scope in the application source code. This technique perm
fine-grained control over runtime change since designers
implement change policies tailored to the applicatio
However, because change policies are not isolated in
application source code, they can be difficult to alt
independent of application behavior. As a result, manag
change in large systems becomes complex.

tion
time
ust
ty
rns

w
re
ay
of
].
ve
ing
run

by
are
rs.

data
w
 In
 be
ent
cit
 to
nt
.

 to
n its
e

sary
he

y
nts.
 be
r

e
-in
 is
s to

ded
ns
s
or

bit
e

ted
ble
loss
in
time
Gorlick et al. [13, 14] present a data flow based approach to
runtime change called Weaves. A weave is an arbitrary
network of tool fragments connected together by transport
services. Tool fragments communicate asynchronously by
passing object references (i.e., pointers). A tool fragment is a
small software component, on the order of a procedure, that
performs a single, well-defined function and may retain
state. Each tool fragment executes in its own thread of
control. Transport services buffer and synchronize data
communication between tool fragments. The Weave runtime
system guarantees the atomicity of data transfer between tool
fragments and queues; if any problem occurs during
communication, the tool fragment initiating the
communication is notified and may retry the operation at its
discretion. This enables the runtime reconfiguration of a
weave without disturbing the flow of objects. Designers use
an interactive, graphical editor to visualize and directly
reconfigure a weave during runtime. Weaves does not
currently provide a mechanism to check the consistency of
runtime changes and no explicit support is provided for
representing change policies. The designer is solely
responsible for change management.

Kramer and Magee [18] present a structural-based approach
to runtime change of a distributed system’s configuration. In
their approach, a configuration consists of processing nodes
interconnected using bidirectional communication links.
When a runtime change is required, a reconfiguration
manager orders processing nodes directly affected by the
change and nodes directly adjacent to them to enter into a
“quiescent” state. While in the quiescent state, a node is
expected not to initiate communication with peers. This
ensures that nodes directly affected by a change will not
receive service requests during the course of the change.
Changes, specified in a declarative language, are induced to
the running system by the reconfiguration manager. The
reconfiguration manager is responsible for making decisions
regarding the change application policy and its scope. It
must do so based on a limited model of the application
consisting of the system’s structural configuration and
whether or not its nodes are in quiescent states. As a result,
designers must consider the reconfiguration manager’s role
in runtime change, and structure the system to attain desired
effects.

4 RUNTIME ARCHITECTURAL CHANGE
We advocate an approach that operates at the architectural
level. Four immediate benefits result from managing change
at the architectural level. First, software engineers use a
system’s architecture as a tool to describe, understand, and
reason about overall system behavior [26, 34]. Leveraging
the engineer’s knowledge at this level of system design holds
promise in helping manage runtime change. Second, if no
restrictions are placed on component internals it becomes
feasible to accommodate off-the-shelf (OTS) components.
Third, decisions regarding change application policy and
scope are naturally encapsulated within connectors and
separated from application-specific behavior. This facilitates
the task of changing policies independent of functional
behavior. Fourth, control over change application policy and
scope is placed in the hands of the architect, where decisions

can be made based on an understanding of applica
requirements and semantics. Previous approaches to run
change either dictate a single policy that all systems m
adopt or fail to separate application-specific functionali
from runtime change considerations. As a result, conce
over runtime change permeate system design.

In the following subsections, we demonstrate ho
architectures can support different types of softwa
evolution, and the circumstances under which changes m
be performed. We refer to three characteristic types
evolution: corrective, perfective, and adaptive [12
Corrective evolution removes software faults. Perfecti
evolution enhances product functionality to meet chang
user needs. Adaptive evolution changes the software to
in a new environment.

4.1 Runtime Component Addition
Component addition supports perfective evolution
augmenting system functionality. Some design styles
more readily amenable to component addition than othe
For example, the observer design pattern [9] separates
providers from its observers, facilitating the addition of ne
observers with minimal impact on the rest of the system.
the mediator design approach [35], new mediators may
introduced to maintain relationships between independ
components. Design approaches that utilize impli
invocation mechanisms [11] are generally more amenable
runtime component addition since the invoking compone
is unaware of the number of components actually invoked

In order for a component to function properly when added
a running system, it must not assume that the system is i
initial state. Typically, a component added during runtim
must discover the state of the system and perform neces
actions to synchronize its internal state with that of t
system.

Architectural change specifications typically specif
structural changes necessary to incorporate new compone
In some cases, the structural configuration changes may
implicit to the architectural style or application-domain, o
derivable from externally visible properties of th
component. For example, Adobe Photoshop plug
components export a “plug-in type” property, whose value
selected from a fixed list [1]. Photoshop uses these value
determine how to interact with the plug-in.

4.2 Runtime Component Removal
Component removal enables a designer to remove unnee
behavior, potentially as a result of recent additio
supplanting original behavior. Appropriate condition
governing component removal are application-specific. F
example, a system’s runtime environment may prohi
component removal if any of its functions are on th
execution stack. Some systems, especially distribu
systems communicating over inherently undependa
connections, are specifically designed to tolerate sudden
of functionality or state. As with component addition, certa
design approaches and styles are more amenable to run
removal than others.

ibe
 to

ion
. A
ry
ly
ed
ack
ng
be
in
t
ent
out

ly
 a
ent
n

out

of
To
 be
nt
s

ing
ey
nd

eir
lly

act
ee
ch

nd
een
nt’s
l
ent
ion
een
 a
];
of
 in
ent
nd
es

g a

ey
4.3 Runtime Component Replacement
We consider component replacement as a special case of
addition followed by removal when two additional
properties are required: (1) the state of the executing
component must be transferred to the new component, and
(2) both components must not be simultaneously active
during the change. Corrective and adaptive evolution are
characteristic of such changes.

Component replacement is simple when components lack
state or belong to systems specifically designed to tolerate
state loss. Such systems typically detect state loss and switch
to a degraded mode of operation while recovering. Another
approach, exemplified by the Simplex architectural style
[32], incorporates an “operational model” in the
implementation. The model rejects upgraded components
when they do not satisfy explicit performance and accuracy
requirements.

In systems not specifically designed to tolerate state loss,
component replacement requires additional considerations
beyond those discussed for component addition and
removal. Several approaches for preserving component state
and preventing communication loss during runtime change
have been proposed [5, 8, 17]. Hofmeister’s approach [17]
requires each component to provide two interface methods:
one for divulging state information, and the other for
performing initialization when replacing another component.
These approaches are applicable only when the new
component’s externally visible interface is a strict superset of
the component being replaced. Approaches not restricted in
such a manner are an open research topic.

4.4 Runtime Reconfiguration
Structural reconfiguration of the architecture supports
recombining existing functionality to modify overall system
behavior. Data-flow architectures, such as UNIX’s pipe and
filter style and Weaves [13], provide substantial flexibility
through static reconfiguration of existing behaviors. For
example, UNIX’s pipe-and-filter style enables construction
of a rich set of behaviors through the recombination of
existing behavior.

Runtime reconfiguration can be performed by altering
connector bindings since connectors mediate all component
communication. As with component replacement, if
components assume reliable communication, it is necessary
to prevent communication loss.

4.5 Summary
It is important to note that with any type of architectural
change, concerns regarding the mechanics of change must be
separated from the semantic effects of change on the
particular application. The injudicious application of
architectural changes can compromise system integrity. As a
result, such changes must be verified before being applied to
a running system. The use of architectural modeling and
analysis tools is crucial in this regard.

5 ENABLING RUNTIME ARCHITECTURAL CHANGE
This section outlines the roles components and connectors
should play in supporting the architectural changes described

in the previous section. The following subsections descr
the specific roles components and connectors must fulfill
support runtime change.

5.1 Components
Components are responsible for implementing applicat
behavior. We treat their internal structure as a black box
component encapsulates functionality of arbitra
complexity, maintains internal state information, potential
utilizes multiple threads of control, and may be implement
in any programming language. Treating components as bl
boxes significantly increases the opportunity for reusi
OTS components. However, OTS component may not
able to participate in runtime change if it lacks certa
functionality. For example, the inability to extrac
component state from a component prevents compon
replacement. We cannot circumvent these problems with
modifying the component.

Components should not communicate by direct
referencing one another. Instead, they should utilize
connector, which localizes and encapsulates compon
interfacing decisions. This minimizes coupling betwee
components, enabling binding decisions to change with
requiring component modification [29].

Each component must provide a minimal amount
functional behavior to participate in runtime change.
support runtime addition and removal, components must
packaged in a form that the underlying runtime environme
can dynamically load. Most popular operating system
provide a dynamic linking capability. Dynamic linking
provides a language-independent mechanism for load
new modules during runtime and invoking the services th
export. Higher level mechanisms, such as CORBA [24] a
COM [6], provide similar functionality. To support runtime
reconfiguration, components must be able to alter th
connector bindings. These additional behaviors can typica
be provided in the form of reusable code libraries which
as a wrapper or proxy to the actual component (s
Section 7). This alleviates the burden of implementing su
functionality for every component.

5.2 Connectors
Connectors are explicit architectural entities that bi
components together and act as mediators betw
them [34]. In this way, connectors separate a compone
interfacing requirements from its functiona
requirements [29]. Connectors encapsulate compon
interactions and localize decisions regarding communicat
policy and mechanism. As a result, connectors have b
used for a wide variety of purposes, including: ensuring
particular interaction protocol between components [3
specifying communication mechanism independent
functional behavior, thereby enabling components written
different programming languages and executing on differ
processors to transparently interoperate [29]; visualizing a
debugging system behavior by monitoring messag
between components [28]; and integrating tools by usin
connector to broadcast messages between them [30].

Although connectors are explicit entities during design, th

re
d.

m
3,

 to
to
ing
nd

ress
ave
sed
ll
rs,
tly
lso
 a

rt
 of

2
r of
nts
r of
tors
ll
sly

on
ve
 to
has

e
ct

es
ng

at
me
ur
ms
tion
mple
nt

sed
d
ibed
se

ust
the
the
the
have traditionally been implemented as indiscrete entities in
the implementation. In UniCon, for example, procedure call
and data access connectors are reified as linker instructions
during system generation [33]. Similarly, component binding
decisions, while malleable during design, are typically fixed
during system generation. As a result, modifying binding
decisions during runtime becomes difficult.

Connectors, like components, must remain discrete entities
in the implementation to support their runtime addition and
removal. They must also provide a mechanism for adding
and modifying component bindings in order to support
reconfiguration.1 Supporting runtime rebinding can degrade
performance in primitive connectors, such as procedure
calls, since an additional level of indirection is introduced.
For more complex connectors, such as RPC and software
buses (e.g. Field [30]), the functionality we require can
usually be integrated without a significant runtime
performance penalty. Recent approaches to dynamic linking
attempt to reduce or eliminate the runtime overhead
associated with altering binding decisions during
runtime [7]. Ultimately, designers should determine which
connectors are used based on application requirements. If
runtime change is not required, connectors without rebinding
overhead may be used.

Connectors play a central role in supporting several aspects
of change management. They can implement different
change policies by altering the conditions under which
newly added components are invoked. For example, to
support immediate component replacement, a connector can
direct all communication after a certain point in time away
from the old component to the new one. To support a more
gradual component replacement policy, a connector can
direct new service requests to the new component, while
directing previously established requests to the original
component. To support a policy based on replication, service
requests can be directed to any member of a known set of
functionally redundant components. Connectors can also be
used as a means of localizing change. For example, if a
component becomes unavailable during the course of a
runtime change, the connectors mediating its communication
can queue service requests until the component becomes
available. As a result, other components are insulated from
the change. Using connectors to encapsulate change
application policy and scope decisions lets designers select
the most appropriate policy based on application
requirements.

6 APPLYING CONCEPTS TO A SPECIFIC ARCHI-
TECTURAL STYLE

We are developing general techniques for runtime
architecture evolution that are applicable across application
domains, architectural styles, and architecture modeling
notations. We are also investigating a general formal basis

1. Runtime rebinding can be supported without explicit connectors
by essentially replacing relevant machine language instructions
during runtime. This technique is highly dependent on the execu-
tion environment (memory protection, restrictions on self-modify-
ing code, etc.) and the programming language and compiler
optimizations (polymorphic functions, function inlining, etc.).

for architectural dynamism. However, the field of softwa
architectures is still relatively young and largely unexplore
This is particularly true of dynamism: we can learn fro
traditional approaches to dynamism, outlined in Section
but some of the issues they raise will be inapplicable
architectures; additionally, architectures are likely
introduce other, unique problems, such as support
heterogeneity, adhering to architectural styles, a
maintaining compatibility with OTS components.

For these reasons, our initial strategy has been to add
concrete problems and learn from experience. We h
focused on supporting architectures in a layered, event-ba
architectural style, called C2 [36]. In the C2-style, a
communication among components occurs via connecto
thus minimizing component interdependencies and stric
separating computation from communication. The style a
imposes topological constraints: every component has
“top” and a “bottom” side, with a single communication po
on each side. This restriction greatly simplifies the task
adding, removing, or reconnecting a component. A C
connector also has a top and a bottom, but the numbe
communication ports is determined by the compone
attached to it: a connector can accommodate any numbe
components or other connectors. This enables C2 connec
to accommodate runtime rebinding. Finally, a
communication among components is done asynchronou
by exchanging messages through connectors.

Although the C2-style places several restrictions
architectures and architectural building blocks, we belie
these restrictions to be permissive enough to allow us
model a broad class of applications. Narrowing our focus
enabled us to construct tools for supporting runtim
architectural change. As a result, we’ve gained dire
practical experience with runtime evolution of architectur
and uncovered important issues in effectively supporti
them.

7 TOOLS SUPPORTING ARCHITECTURE-BASED
EVOLUTION OF SOFTWARE SYSTEMS

This section describes ArchStudio, our tool suite th
implements our architecture-based approach to runti
software evolution. The following subsections describe o
general approach to enabling evolution of software syste
at the architectural level. We then present an implementa
based on this approach and demonstrate its use on a si
application. We conclude by discussing the curre
limitations of our implementation.

7.1 Approach
Our general approach to supporting architecture-ba
software evolution consists of several interrelate
mechanisms (see Figure 1). The mechanisms are descr
below. Section 7.2 describes our implementation of the
mechanisms.

Explicit Architectural Model. In order to effectively
modify a system, an accurate model of its architecture m
be available during runtime. To achieve this, a subset of
system’s architecture is deployed as an integral part of
system. The deployed architectural model describes

e
nd
s

on,
g
ure
n,
for
re
ion
to

te,
 in
re

can
ss
set
uch
reate
om
fic
he
set
nd
he

io

t
 an
or
el.
interconnections between components and connectors, and
their mappings to implementation modules. The mapping
enables changes specified in terms of the architectural model
to effect corresponding changes in the implementation. The
runtime architecture infrastructure maintains the
correspondence between the model and the implementation.

Describing Runtime Change. Modifications are expressed
in terms of the architectural model. A modification
description uses operations for adding and removing
components and connectors, replacing components and
connectors, and changing the architectural topology.

This approach supports a flexible model of system evolution
in which modifications are provided by multiple
organizations (e.g., the application vendor, system
integrators, site managers) and selectively applied by end-
users based on their particular needs. By applying different
sets of modifications, an end-user can effectively create a
different member of the system family at her site. As a result,
the modifications should be robust to variations in those
systems. Facilities for querying the architectural model and
using the results of the query to guide modifications should
be provided as an integral part of supporting architectural
change. Using the model to inform and guide modifications
eliminates many accidental difficulties inherent in evolving
systems.

Governing Runtime Change: Our approach to runtime
system evolution supports a mechanism for restricting
changes that compromise system integrity. Constraints play a
natural role in governing change, and several approaches to
applying them at the architectural level have been developed
(see Section 8). In addition, mechanisms governing runtime
change should also constrain when particular changes may
occur.

During the course of a complex modification, the system’s
architecture may “move” through several invalid states
before reaching a final valid state. Although constraints may
legitimately restrict certain modification “paths”, doing so
solely based on intermediate invalid states will prevent some
classes of valid runtime changes. As a result, a mechanism
that supports transactional modifications should be provided.

Reusable Runtime Architecture Infrastructure: The
runtime architecture infrastructure (a) maintains th
consistency between the architectural model a
implementation as modifications are applied, (b) reifie
changes in the architectural model to the implementati
and (c) prevents runtime changes from violatin
architectural constraints. As a result, the runtime architect
infrastructure can support different component additio
removal, and replacement policies and can be tailored
particular application domains. The runtime architectu
infrastructure uses the architectural model’s implementat
mapping and the facilities of the underlying environment
implement changes.

7.2 Archstudio: A Tool Suite For Runtime Modification
Of C2-style Architectures

This section describes our initial prototype of a tool sui
ArchStudio, which implements the mechanisms described
the preceding section. The tools comprising ArchStudio a
implemented in the Java programming language, and
modify C2-style applications written using the Java-C2 cla
framework [22]. The Java-C2 class framework provides a
of extensible Java classes for fundamental C2 concepts s
as components, connectors, and messages. Developers c
new components and connectors by subclassing fr
framework classes and providing application-speci
behavior. Connectors remain discrete entities in t
implementation, and support runtime rebinding through a
of functions they export. Connectors that utilize intra- a
inter-process communication facilities are provided with t
framework.

Figure 2 depicts a conceptual view of the ArchStud
architecture. The Architectural Model represents an
application’s current architecture. Our curren
implementation encapsulates the architectural model in
abstract data type (ADT). This ADT exports operations f
querying and changing the application’s architectural mod

changes
applied to
model

changes
implicitly affect
implementation

Architectural
Model

Implementation

Architectural
Changes

Reusable
Runtime Architecture
Infrastructure governs

consistency

Figure 1. Architectural changes applied to the model
are reified into implementation by the runtime
architecture infrastructure.

changes
applied to
model

changes
implicitly affect
implementation

Architectural
Model

Implementation

Sources of
Architectural Change

Script
ArchShell

Argo

External
Analysis
ToolsArchitecture

Evolution Manager

Environment
Infrastructure

ADL
Infrastructure

Figure 2. A conceptual architecture diagram for the
ArchStudio tool suite.

the
the
tly
he
t or
om
ing

te
ide
e

re
ral
d a

s a
ns
The
on
ers
em
eb
g a
n
wser
to
file,
. A
 by

ple
of
ace.
ing
 a

ded
ch

ting
The model is stored in a structured ASCII format and
maintained by the runtime architecture infrastructure. The
model consists of the interconnections between components
and connectors, and their mapping to Java classes. Runtime
modifications consist of a series of query and change
requests to the architectural model and may generally arrive
from several different sources.

The Architecture Evolution Manager (AEM) maintains the
correspondence between the Architectural Model and the
Implementation. Attempts to modify the architectural model
invoke the AEM, which determines if the modification is
valid. The ADL and Environment infrastructure insulate the
AEM from changes to the ADL and runtime environment.
The AEM may utilize an architectural constraint mechanism
or external analysis tools to determine if a change is
acceptable. The current implementation of the AEM uses
implicit knowledge of C2-style rules to constrain changes;
the addition of an architectural constraint mechanism and the
ability to utilize external analysis tools is planned for the
future. If a change violates the C2-style rules, the AEM
rejects the change. Otherwise, the architectural model is
altered and its implementation mapping is used to make the
corresponding modification to the Implementation.

ArchStudio currently includes three tools which act as
Sources of Architectural Modification: Argo, ArchShell, and
the Extension Wizard. In addition to these tools, an
application can obtain access to its own architectural model
and manipulate itself using the same set of mechanisms.

Argo [31] provides a graphical depiction of the architectural
model that the architect may manipulate directly. New
components and connectors are selected from a palette and
added to the architecture by dragging them onto the design
canvas. Components and connectors are removed by
selecting them, and issuing a delete command. The
configuration is altered by directly manipulating the links
between components and connectors.

ArchShell [25] is an alternative to Argo that provides a
textual, command-driven interface for specifying runtime
modifications. Commands are provided for adding and

removing components and connectors, reconfiguring
architecture, and displaying a textual representation of
architecture. ArchShell provides two commands curren
not available in Argo. The first command enables t
architect to send arbitrary messages to any componen
connector in the same manner as if they were sent fr
another component or connector. This facilitates debugg
and exploration of architectural behavior.

As design tools for architects, Argo and ArchShell facilita
rapid exploration of architectural designs. They also prov
valuable feedback in exploring proposed runtim
architectural changes.

Argo and ArchShell are interactive tools used by softwa
architects to describe architectures and architectu
modifications. Once an architect has specified and verifie
modification, she uses the Extension Wizard to deploy the
modification to end-users. The Extension Wizard provide
simple end-user interface for enacting runtime modificatio
and is deployed as a part of the end-user system.
Extension Wizard is responsible for executing a modificati
script on the end-user’s installation of the system. End-us
use a Web browser to display a list of downloadable syst
update files, e.g., provided on the application vendor’s W
site. A system update file is a compressed file containin
runtime modification script and any new implementatio
modules. Selecting a system update causes the Web bro
to download the file and invoke the Extension Wizard
process it. The Extension Wizard uncompresses the
locates the modification script it contains, and executes it
similar approach for deploying system updates is used
Hall et al. [16].

7.3 The Cargo Routing System Example
We demonstrate the use of our tool suite using a sim
logistics system for routing incoming cargo to a set
warehouses. Figure 3(a) shows the system’s user interf
The three list boxes on the top represent three incom
cargo delivery ports, in this case two airport runways and
train station. When cargo arrives at a port, an item is ad
to the port’s list box. The system keeps track of ea

Figure 3. (a) On the left, the cargo routing system’s user interface. (b) On the right, the architecture of the cargo rou
system in the C2-style.

ent
e of
the
n
ript
go
the
ent
tion
y

ies
ral

ture

of
d,
ral
e

va
el

tem
he

l
tly,
the
es

and
d us
’s
se
 by

ng
gh

ms
age
n the
se

shipment’s content, weight, and the amount of time it has
been sitting idle at the port. The text box in the center
displays available vehicles for transporting cargo to
destination warehouses. The system displays the vehicle’s
name, maximum speed, and maximum load. The bottom
most text box displays a list of destination warehouses. The
system displays each warehouse’s name, maximum capacity,
and currently used capacity. End-users route cargo by
selecting an item from a delivery port, an available vehicle,
and a destination warehouse, and then clicking the “Route”
button.

Figure 3(b) depicts the architecture of the cargo routing
system in the C2 architectural style. The Ports, Vehicles, and
Warehouses components are ADTs which keep track of the
state of ports, the transportation vehicles, and the
warehouses, respectively. The Telemetry component
determines when cargo arrives at a port, and tracks the cargo
from the time it is routed until it is delivered to the
warehouse. The Port Artist, Vehicle Artist, and Warehouse
Artist components are responsible for graphically depicting
the state of their respective ADTs to the end-user. The Router
component sends a message to the telemetry component
when the end-user presses the “Route” button and provides
the end-user’s last selected port, vehicle, and warehouse. The
Graphics component renders the drawing requests sent from
the artists using the Java AWT graphics package.

We now describe the use of ArchShell and Extension Wizard
in adding new functionality to the system. ArchShell is used
to add a new graphical visualization of cargo routing, and an
Extension Wizard script is used to add an automated
planning component that assists users in making optimal
routing decisions. Both changes are made during execution
of the cargo routing system.

Adding the new visualization requires adding a Router Artist
component to the architecture. We add the new router artist
between Connector 1 and Connector 4 because it uses
notification messages provided by the Port, Warehouse, and
Vehicle ADTs and utilizes the Graphics component for
drawing graphics. The architect uses ArchShell to add the
component using the “add component” command, connect it
to buses using the “weld” command, and signal that the
component should receive execution cycles using the “start”
command (see Figure 4).

Adding the automated planner involves adding a Planner

component to the architecture. The new planner compon
is added below Connector 1 because it monitors the stat
the ADTs to determine optimal routes. Figure 5 shows
critical portion of the modification script the Extensio
Wizard executes when installing the change. The sc
determines if the architectural model is that of the car
routing system, then queries the model to determine
names of the connectors to which the planner compon
must be attached. If any of these operations fail, an excep
is thrown which aborts the installation. An operation ma
fail if the architectural elements on which the change rel
have been previously altered by other architectu
modifications.

Figure 6 depicts the updated user interface and architec
after both modifications have been made.

Supporting runtime modification requires the deployment
the Architecture Evolution Manager, the Extension Wizar
and a portion of the cargo routing system’s architectu
model. The Architecture Evolution Manager and th
Extension Wizard consist of 38 kilobytes of compiled Ja
code. The cargo routing system’s architectural mod
consumes 2 kilobytes of disk space. The Planner sys
update, which consists of the modification script and t
compiled Planner component, is 6 kilobytes.

7.4 Limitations and Future Work
Our prototype facilitates exploration of architectura
dynamism, but has several practical limitations. Curren
all components and connectors must be written using
Java-C2 class framework. The framework, however, do
not make any assumptions about execution threads
processes or message passing protocols. This has allowe
to implement runtime component addition using Java
dynamic class loading facilities. In the future, we plan to u
language independent facilities, such as those provided
CORBA and COM.

Currently, C2 components communicate by passi
asynchronous message through connectors. Althou
techniques for emulating other communication mechanis
(e.g., method invocation, shared memory) atop a mess
passing substrate have been developed by researchers i
parallel algorithms domain, we are investigating how the
different communication mechanisms impact dynamism.

> add component
ClassName: c2.planner.RouterArtist
Name? RouterArtist
> weld
Top entity: Connector1
Bottom entity: RouterArtist
> weld
Top entity: RouterArtist
Bottom entity: Connector4
> start
Entity: RouterArtist

Figure 4. The ArchShell commands used to add the
Router Artist component. Commands are denoted using
bold text and command arguments are denoted using
italicized text.

try {
if (model.architectureName().equals(“CargoSystem”)) {

Connector above = model.connectorBelow(“Ports”);
Connector below = model.connectorAbove(“PortArtist”);
model.addComponent("Planner", "planner");
model.weld(above, "planner");
model.weld("planner", below);
model.startEntity("planner");
return true;

} else return false;
} catch (ArchitectureModificationException e) {

return false;
}

Figure 5. A portion of the Extension Wizard script used
to add the Planner component into the running system.
The “model” represents the ADT interface to the
system’s architectural model.

atic
an
c
ch

he
 on
h
s to
ls.

s
es

ed.
tem
0]
on
te

ing

a
as
e
osts
ce
time
ver

on
ging
m
ion

ith
d a
 of
ral

er
For simplicity, we assume a one-to-one mapping between
components in the architectural model and Java
implementation classes. This enables us to focus on
dynamism independently of issues concerning mappings
between architectures and their implementations, which is an
open research area of significant complexity [10, 23].

The runtime architecture infrastructure currently supports
the addition and removal of components and connectors, and
the reconfiguration and querying of the architectural model.
There is currently no support for component replacement,
though the implementation allows currently available
approaches to be adopted.

Finally, our current implementation is limited to checking
invariants derived from the C2-style rules. The addition of a
general purpose architectural-constraint mechanism that
supports application-specific invariants is the focus of future
work. Our positive experience with incorporating the C2-
style invariants suggests that our approach will support a
more general mechanism.

8 RELATED ISSUES
This section briefly outlines a number of cross cutting
research issues that are pertinent to runtime architectural
modification.

Architecture Description Languages (ADLs): ADLs
provide a formal basis for describing software architectures
by specifying the syntax and semantics for modeling
components, connectors, and configurations. Since a
majority of existing ADLs have focused on design issues,
their use has been limited to static analysis and system
generation. As such, existing ADLs support static
description of a system, but provide no facilities for
specifying runtime architectural changes. Although a few
ADLs, such as Darwin [20], Rapide [19], and
LILEANNA [37], can express runtime modification to
architectures, they require that the modifications be specified
during design and “compiled into” the application. Our
approach, in contrast, can accommodate unplanned
modifications of an architecture and incorporate behavior
not anticipated by the original developers. It is important to

note that our approach does not attempt to replace st
architecture description languages. In fact, our tools c
utilize existing ADLs, instead of our own, for the stati
portion of the architectural model. In this way, our approa
augments current ADLs with runtime change support.

Architectural modification languages (AMLs): While
ADLs focus on describing software architectures for t
purposes of analysis and system generation, AMLs focus
describing changes to architecture descriptions. Suc
languages are useful for introducing unplanned change
deployed systems by changing their architectural mode
The Extension Wizard’s modification scripts, C2’
AML [21], and Clipper [2] are examples of such languag
and share many similarities.

Architectural constraint languages: Several approaches
for specifying architectural constraints have been propos
Constraint languages have been used to restrict sys
structure using imperative [4] as well as declarative [2
specifications. Others advocate behavioral constraints
components and their interactions [19]. Finding appropria
mechanisms for governing architectural change us
constraints is an active topic of ongoing research.

9 CONCLUSIONS
Software architectures have the potential to provide
foundation for systematic runtime software modification,
opposed to brittle, “one-of-a-kind” patches. An effectiv
approach to runtime change can reduce the risks and c
typically associated with such change. Our experien
demonstrates that an architecture-based approach to run
software evolution provides several unique benefits o
previous approaches. These benefits include a comm
representation for describing software systems and mana
runtime change, separation of computation fro
communication, and encapsulation of change applicat
policies and scope within connectors.

Our work has benefited from hands-on experience w
architectural dynamism. In the process, we have produce
set of results that are generally applicable to the problem
runtime software evolution. We have confirmed the cent

Figure 6. (a) On the left, the cargo routing system user interface after the addition of the new router artist and plann
components. (b) On the right, the updated cargo system architecture highlighting new components.

-

m:

ni-
-

hi-
ns

s.
p

-

ct

t

re

r-

t-

de
/
e

-
-
ic

 the

g

ce

le
-

,
nd

-

-
 A

UI

.
ing
role of connectors in supporting runtime change and
identified the desired characteristics of connectors that
facilitate that change. We have also demonstrated the role of
connectors in supporting different change policies. We have
recognized the need for both architecture-specific
(structural) and application-specific (behavioral) constraints
in making runtime changes, as well as the need for
transaction support during those changes. Finally, a simple
imperative modification language has proven to be adequate
for specifying a broad class of runtime changes.1

REFERENCES
1. Adobe Systems Incorporated. Adobe Photoshop Plug-In

SDK. http://www.adobe.com/supportservice/devrelations/
sdks.html. 1997.

2. B. Agnew, C. R. Hofmeister, J. Purtilo. Planning for
change: A reconfiguration language for distributed sys-
tems. Proceedings of CDS'94, 1994.

3. R. Allen, D. Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and
Methodology, July 1997.

4. R. Balzer. Enforcing architectural constraints. Second
International Software Architecture Workshop (ISAW-2),
San Francisco, October 1996.

5. T. Bloom, M. Day. Reconfiguration and module replace-
ment in Argus: Theory and practice. IEE Software Engi-
neering Journal, vol 8, no 2, March 1993.

6. K. Brockschmidt. Inside OLE 2. Microsoft Press, 1994.
7. M. Franz. Dynamic linking of software components. IEEE

Computer, vol 30, no 3, pp 74-81, March 1997.
8. O. Frieder, M. Segal. On dynamically updating a computer

program: From concept to prototype. Journal of Systems
and Software, vol 14, pp 111-128. 1991.

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

10. D. Garlan. Style-based refinement for software architec-
ture. Second International Software Architecture Workshop
(ISAW-2). San Francisco, CA, October 1996.

11. D. Garlan, G. E. Kaiser, D. Notkin. Using tool abstraction
to compose systems. IEEE Computer. vol 25,no 6, pp 30-
38, June 1992.

12. C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals of
Software Engineering. Prentice-Hall, 1991.

13. M. M. Gorlick, R. R. Razouk. Using weaves for software
construction and analysis. Proceedings of the 13th Interna-
tional Conference on Software Engineering. IEEE Com-
puter Society Press, May 1991.

14. M. M. Gorlick, A. Quilici. Visual programming-in-the-
large versus programming-in-the-small. Proceedings of the
IEEE Symposium on Visual Languages. IEEE Computer
Society Press, October 1994.

15. D. Gupta, P. Jalote, G. Barua. A formal framework for on-
line software version change. IEEE Transactions on Soft-
ware Engineering, vol 22, no 2, February 1996.

16. R. S. Hall, D. Heimbigner, A. van der Hoek, A. L. Wolf.
An architecture for post-development configuration man-
agement in a wide-area network. 17th International Con-
ference on Distributed Computing Systems, Baltimore,
Maryland, May 1997.

1. The material is based on work sponsored by the Defense
Advanced Research Projects Agency, and Rome Laboratory, Air
Force Materiel Command, USAF, under agreement number
F30602-97-2-0021. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects Agency,
Rome Laboratory or the U.S. Government. Approved for Public
Release - Distribution Unlimited.

17. C. R. Hofmeister. Dynamic Reconfiguration of Distributed
Applications. Ph.D. Thesis. University of Maryland, Com
puter Science Department, 1993.

18. J. Kramer, J. Magee. The evolving philosophers proble
Dynamic change management. IEEE Transactions on Soft-
ware Engineering, vol 16, no 11, Nov. 1990.

19. D. Luckham, J. Vera. An event-based architectural defi
tion language. IEEE Transactions on Software Engineer
ing, pp 717-734, September 1995.

20. J. Magee, J. Kramer. Dynamic structure in software arc
tectures. Fourth SIGSOFT Symposium on the Foundatio
of Software Engineering, San Francisco, October 1996.

21. N. Medvidovic. ADLs and dynamic architecture change
Second International Software Architecture Worksho
(ISAW-2), San Francisco, October 1996.

22. N. Medvidovic, P. Oreizy, R. N. Taylor. Reuse of off-the
shelf components in C2-style architectures. Symposium on
Software Reusability, Boston, May 1997.

23. M. Moriconi, X. Qian, R. A. Riemenschneider. Corre
architecture refinement. IEEE Transactions on Software
Engineering. pp 356-372, April 1995.

24. Object Management Group. The Common Object Reques
Broker: Architecture and Specification, Revision 2.0, July
1996. http://www.omg.org/corba/corbiiop.htm

25. P. Oreizy. Issues in the runtime modification of softwa
architectures. UC Irvine Technical Report UCI-ICS-96-35.
Department of Information and Computer Science, Unive
sity of California, Irvine, August 1996.

26. D. E. Perry, A. L. Wolf, Foundations for the study of sof
ware architecture. Software Engineering Notes, vol 17,
no 4, October 1992.

27. J. Peterson, P. Hudak, G. S. Ling. Principled dynamic co
improvement. Yale University Research Report YALEU
DCS/RR-1135. Department of Computer Science, Yal
University, July 1997.

28. J. Purtilo. MINION: An environment to organize mathe
matical problem solving. Proceedings of the 1989 Interna
tional Symposium on Symbolic and Algebra
Computation, July 1989.

29. J. Purtilo. The Polylith software bus. ACM Transactions on
Programming Languages and Systems. vol 16, no 1, Jan.
1994.

30. S. P. Reiss. Connecting tools using message passing in
FIELD environment. IEEE Software. vol 7, no 4, pp 57-67,
July 1990.

31. J. E. Robbins, D. F. Redmiles, D. M. Hilbert. Extendin
design environments to software architecture design. 11th
Knowledge-Based Software Engineering Conferen
(KBSE'96). Syracruse, New York. Sept. 1996.

32. L. Sha, R. Rajkumar, M. Gagliardi. Evolving dependab
real-time systems. IEEE Aerospace Applications Confer
ence. New York, NY, pp 335-346, 1996.

33. M. Shaw, R. DeLine, D. V. Klien, T. L. Ross, D. M. Young
and G. Zelesnik. Abstractions for software architecture a
tools to support them. IEEE Transactions on Software
Engineering, pp 314-335, April 1995.

34. M. Shaw, D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline, Prentice-Hall, 1996.

35. K. Sullivan, D. Notkin. Reconciling environment integra
tion and software evolution. ACM Transactions on Soft-
ware Engineering and Methodology. vol 1, no 3, pp 229-
268, July 1992.

36. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. White
head, J. E. Robbins, K. A. Nies, P. Oreizy, D. L. Dubrow.
Component- and message-based architectural style for G
software. IEEE Transactions on Software Engineering, pp
390-406, June 1996.

37. W. Tracz. Parameterized programming in LILEANNA
Proceedings of ACM Symposium on Applied Comput
SAC’93, February 1993.

	ABSTRACT
	1 INTRODUCTION
	2 MANAGING RUNTIME CHANGE
	3 PREVIOUS APPROACHES TO RUNTIME CHANGE
	4 RUNTIME ARCHITECTURAL CHANGE
	4.1 Runtime Component Addition
	4.2 Runtime Component Removal
	4.3 Runtime Component Replacement
	4.4 Runtime Reconfiguration
	4.5 Summary

	5 ENABLING RUNTIME ARCHITECTURAL CHANGE
	5.1 Components
	5.2 Connectors

	6 APPLYING CONCEPTS TO A SPECIFIC ARCHITECTURAL ST...
	7 TOOLS SUPPORTING ARCHITECTURE-BASED EVOLUTION OF...
	7.1 Approach
	Figure 1. Architectural changes applied to the mod...

	7.2 Archstudio: A Tool Suite For Runtime Modificat...
	Figure 2. A conceptual architecture diagram for th...

	7.3 The Cargo Routing System Example
	Figure 3. (a) On the left, the cargo routing syste...
	Figure 4. The ArchShell commands used to add the R...
	Figure 5. A portion of the Extension Wizard script...
	Figure 6. (a) On the left, the cargo routing syste...

	7.4 Limitations and Future Work

	8 RELATED ISSUES
	9 CONCLUSIONS
	REFERENCES
	1. Adobe Systems Incorporated. Adobe Photoshop Plu...
	2. B. Agnew, C. R. Hofmeister, J. Purtilo. Plannin...
	3. R. Allen, D. Garlan. A formal basis for archite...
	4. R. Balzer. Enforcing architectural constraints....
	5. T. Bloom, M. Day. Reconfiguration and module re...
	6. K. Brockschmidt. Inside OLE 2. Microsoft Press,...
	7. M. Franz. Dynamic linking of software component...
	8. O. Frieder, M. Segal. On dynamically updating a...
	9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. De...
	10. D. Garlan. Style-based refinement for software...
	11. D. Garlan, G. E. Kaiser, D. Notkin. Using tool...
	12. C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamen...
	13. M. M. Gorlick, R. R. Razouk. Using weaves for ...
	14. M. M. Gorlick, A. Quilici. Visual programming-...
	15. D. Gupta, P. Jalote, G. Barua. A formal framew...
	16. R. S. Hall, D. Heimbigner, A. van der Hoek, A....
	17. C. R. Hofmeister. Dynamic Reconfiguration of D...
	18. J. Kramer, J. Magee. The evolving philosophers...
	19. D. Luckham, J. Vera. An event-based architectu...
	20. J. Magee, J. Kramer. Dynamic structure in soft...
	21. N. Medvidovic. ADLs and dynamic architecture c...
	22. N. Medvidovic, P. Oreizy, R. N. Taylor. Reuse ...
	23. M. Moriconi, X. Qian, R. A. Riemenschneider. C...
	24. Object Management Group. The Common Object Req...
	25. P. Oreizy. Issues in the runtime modification ...
	26. D. E. Perry, A. L. Wolf, Foundations for the s...
	27. J. Peterson, P. Hudak, G. S. Ling. Principled ...
	28. J. Purtilo. MINION: An environment to organize...
	29. J. Purtilo. The Polylith software bus. ACM Tra...
	30. S. P. Reiss. Connecting tools using message pa...
	31. J. E. Robbins, D. F. Redmiles, D. M. Hilbert. ...
	32. L. Sha, R. Rajkumar, M. Gagliardi. Evolving de...
	33. M. Shaw, R. DeLine, D. V. Klien, T. L. Ross, D...
	34. M. Shaw, D. Garlan. Software Architecture: Per...
	35. K. Sullivan, D. Notkin. Reconciling environmen...
	36. R. N. Taylor, N. Medvidovic, K. M. Anderson, E...
	37. W. Tracz. Parameterized programming in LILEANN...

	Architecture-Based Runtime Software Evolution
	Peyman Oreizy
	Nenad Medvidovic
	Richard N. Taylor
	Information and Computer Science
	University of California, Irvine
	Irvine, CA 92697-3425 USA
	+1 714 824 8438
	{peymano, neno, taylor}@ics.uci.edu

