
Architecture-Based Self-Protecting Software Systems

Eric Yuan, Sam Malek
George Mason University

4400 University Drive
Fairfax, VA, 22030

{eyuan, smalek}@gmu.edu

Bradley Schmerl, David Garlan, Jeff Gennari
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

{schmerl, garlan, jgennari}@cs.cmu.edu

ABSTRACT

Since conventional software security approaches are often
manually developed and statically deployed, they are no
longer sufficient against today’s sophisticated and evolving
cyber security threats. This has motivated the development
of self-protecting software that is capable of detecting secu-
rity threats and mitigating them through runtime adapta-
tion techniques. In this paper, we argue for an architecture-
based self- protection (ABSP) approach to address this chal-
lenge. In ABSP, detection and mitigation of security threats
are informed by an architectural representation of the run-
ning system, maintained at runtime. With this approach, it
is possible to reason about the impact of a potential secu-
rity breach on the system, assess the overall security posture
of the system, and achieve defense in depth. To illustrate
the effectiveness of this approach, we present several archi-
tecture adaptation patterns that provide reusable detection
and mitigation strategies against well-known web applica-
tion security threats. Finally, we describe our ongoing work
in realizing these patterns on top of Rainbow, an existing
architecture-based adaptation framework.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures

Keywords

Self-Protection; Software Architecture; Software Security

1. INTRODUCTION
Security is increasingly the principal concern that drives

the design and construction of modern software systems.
Conventional, often manually developed and statically em-
ployed, techniques for securing software systems are no longer
sufficient. As adversaries become more agile in devising
new threats, so should the mechanisms for securing the soft-
ware systems. This has motivated the development of self-
protecting software—a new kind of software, capable of de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSA’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2126-6/13/06 ...$15.00.

tecting security threats and mitigating them through run-
time adaptation techniques.

Most self-protection research to-date has focused on spe-
cific line(s) of defense (e.g., network, host, or middleware)
within a software system. Specifically, such approaches tend
to focus on a specific type or category of threats, implement
a single strategy or technique, and/or protect a particular
component or layer of the system [31]. As a result, the
“big picture” understanding of overall security posture and
globally coordinated defense strategies appear to be lack-
ing. In addition, growing threats of insider attack call for
new mechanisms to complement traditional perimeter-based
security (i.e., securing the system at its boundaries) that has
been the main focus of prior research. Finally, due to the
added complexity of dynamically detecting and mitigating
security threats, the construction of self-protecting software
systems has shown to be significantly more challenging than
traditional software [7]. Lack of engineering principles and
repeatable methods for the construction of such software
systems has been a major hindrance to their realization and
adoption by industry.

In this paper, we argue for an architecture-based self-
protection (ABSP) approach to address the aforementioned
challenges. In ABSP, detection and mitigation of security
threats are informed by an architectural representation of
the software that is kept in synch with the running system.
An architectural focus enables the approach to assess the
overall security posture of the system and to achieve de-
fense in depth, as opposed to point solutions that operate
at the perimeters. By representing the internal dependen-
cies among the system’s constituents, ABSP provides the
means to tackle issues such as insider attack. The architec-
tural representation also allows the system to reason about
the impact of a security breach on the system, which would
inform the recovery process.

As concrete evidence of how ABSP promotes a disciplined
and repeatable process for engineering self-protecting soft-
ware systems, we will present several architecture-level self-
protection patterns. These patterns provide reusable detec-
tion and adaptation strategies for solving well-known secu-
rity threats. We illustrate their application in dealing with
commonly encountered security threats in the realm of web-
based applications.

Finally, we describe our work in realizing some of these
patterns on top of an existing architecture-based adapta-
tion framework, namely Rainbow [9]. The resulting frame-
work holds promise for increasing reuse across application-
s/domains and reducing the effort required in realizing self-

protection capabilities. In the process of extending Rain-
bow, we have faced several challenging research questions
that will frame future research in this area.

The remainder of paper is organized as follows: in Sec-
tion 2 we set the stage with a simple web application as a
motivating example, so that we can illustrate in a concrete
setting how ABSP can help thwart security attacks. In Sec-
tion 3 we briefly outline related self-protection research and
point out their limitations, before making the case for the
architecture-based approach in Section 4. In section 5 we
proceed to elaborate the details of ABSP using a number
of repeatable architecture adaptation patterns. In Section 6
we provide an overview of our ongoing work in implementing
the security adaptation patterns in the Rainbow framework.
Finally, we conclude the paper with a summary of our key
contributions, a discussion of remaining challenges, and ar-
eas of future research.

2. MOTIVATING EXAMPLE
Based on real sites like cnn.com, Znn [6] is a news service

that serves multimedia news content to its customers. Ar-
chitecturally, Znn is a web-based client-server system that
conforms to an N-tier style. As illustrated in Figure 1, the
service provides web browser-based access to a set of clients.
To manage a high number of client requests, the site uses a
load balancer to balance requests across a pool of replicated
servers (two shown), the size of which can be configured to
balance server utilization against service response time. For
simplicity sake we assume news content is retrieved from
a database and we are not concerned with how they are
populated. We further assume all user requests are state-
less HTTP requests and there are no transactions that span
across multiple HTTP requests. This base system does not
yet have any architectural adaptation features, but serves as
a good starting point for our later discussions.

To illustrate the ABSP approach as well as self-adaptation
concepts, we augment Znn’s basic web application architec-
ture with a “meta component” called ARchitecture Manager
(ARM), shown in Figure 1, which is responsible for mon-
itoring the components and connectors in the system and
adapting them in accordance with self-protection goals. To
achieve this, the ARM implements the Monitor, Analyze,
Plan, Execute (MAPE) loop [14], and is connected to “sen-
sors” throughout the system to monitor their current sta-
tus and “effectors” that can receive adaptation commands
to make architecture changes to the base system at runtime.
As described later in the paper, the Rainbow platform [9]
serves as a good implementation of the ARM component
using architecture-based techniques combined with control
and utility theories.

In the real world, a public website like Znn faces a wide
variety of security threats. Malicious attacks, both external
and internal, grow more complex and sophisticated by the
day. The Open Web Application Security Project (OWASP)
maintains a Top Ten list [22] that provides a concise sum-
mary of what was considered to be the ten most critical
security risks at the application level. They are listed in Ta-
ble 1. Another list published by the MITRE Corporation,
the Top 25 Common Weakness Enumeration (CWE) [26],
covers many similar threats with more details.

We will use Znn throughout the paper as a running ex-
ample to illustrate how architecture-based approaches may
be utilized to help counter such threats in an autonomous

Event Bus

Web Server 1

L
o

ad
 B

al
an

ce
r

Web Server 2

User

DB

W
eb

 B
ro

w
se

r

…!

D
B

 C
o

n
n

ec
to

r

Legend
Component

Connector

Web App
Traffic

Monitoring Event

Adaptation Event

Architecture

Manager M A P E

Figure 1: Znn Self-Adaptive Architecture

Table 1: OWASP Top 10, 2010 Edition

A1 Injection
A2 Cross-Site Scripting (XSS)
A3 Broken Authentication and Session Management
A4 Insecure Direct Object References
A5 Cross-Site Request Forgery (CSRF)
A6 Security Misconfiguration
A7 Insecure Cryptographic Storage
A8 Failure to Restrict URL Access
A9 Insufficient Transport Layer Protection
A10 Unvalidated Redirects and Forwards

and self-managed fashion. Note that we focus our attention
on the OWASP Top 10 and CWE Top 25 threats due to
their prevalence on the Internet and their relevance to the
Znn web application. However the same general approach
can be applied to counter other security threats not covered
in the two lists, such as Denial of Service attacks, buffer
overflows, privilege escalation, etc.

3. STATE OF THE ART
In SEAMS 2012 the authors presented a preliminary study

of self-protecting software systems [31]. We have since ex-
panded that study following a systematic literature review
process proposed by [15]. This has broadened the scope of
our study from 32 to 107 papers and strengthened the va-
lidity of our conclusions. To the best of our knowledge, this
study [32] is the most comprehensive investigation of the
literature in this area of research.

One of the most evident findings in our survey is that most
self-protection research to-date focuses on specific layers or
“lines of defense” in a software system, namely:

• Network, involving security of communication links,
networking protocols, and data packets.

• Host, involving the host environment on a machine, in-
cluding hardware/firmware, OS, and in some occasions
hypervisors that support virtual machines.

• Middleware such as application servers, object brokers,
messaging hubs and service buses.

• Application level, concerning programming language
security and application-specific measures.

Such research, no matter how effective, tends to be point
solutions that lack the overall picture of the system’s se-
curity posture. For example, the business context in which
the system is deployed and inter-component collaboration to
help defend against security breaches are not considered by
these solutions. On the other hand, self-adaptive approaches
that focus on software architecture as a whole (and as such
can be applied to any/all component layers in a coordinated
and consistent fashion), can provide a context for reasoning
about these business- and application-specific concerns.

A related finding in our survey also showed that self-
protection research has been predominantly perimeter- fo-
cused, aiming to protect the system at its boundary. The
historical emphasis of the computer security community
on network intrusion detection and intrusion prevention
(ID/IP) helps to explain this. Even though we observed en-
couraging trends from intrusion detection systems to intru-
sion tolerant systems (ITS) [18] and automated intrusion re-
sponse systems (IRS) [25] in the past decade, the continued
influence of the intrusion-centric mindset is evident. Sys-
tems relying solely on perimeter security, however, are often
rendered helpless when the perimeter is breached; nor can
they effectively deal with threats that originate from inside
of the system. With growing threats of insider attacks [23],
we see a pressing need for architectural approaches that
monitor and adapt overall system behavior.

Of equal relevance to this paper are the recurring self-
protection patterns revealed in the same survey. Archi-
tecture and design patterns in general have been well-
researched and documented, but we observed a number of
interesting patterns have emerged as being especially effec-
tive in establishing self-protecting behavior. We identified
a number of structural patterns and behavioral patterns, a
subset of which will be applied to ABSP in Section 5.

4. THE CASE FOR ARCHITECTURE-

BASED SELF-PROTECTION
Mature and effective defense mechanisms are readily avail-

able to make the Znn news site more secure. At the network
and host levels, for example, one can:

• Place a traffic-filtering firewall at the WAN edge before
the load balancer to filter all incoming TCP/IP traf-
fic. Illegal access to certain ports and protocols from
certain source IP addresses can be easily blocked.

• Install a network-based intrusion detection device on
the local LAN that examines network traffic to de-
tect abnormal patterns. Repeated requests to a single
server that exceed a threshold, for example, may trig-
ger an alarm for Denial of Service (DoS) attack.

• Install a host-based intrusion detection system in the
form of software agents on all servers, which monitors
system calls, application logs, and other resources. Ac-
cess to a system password file without administrator
permissions, for instance, may indicate the server has
been compromised.

At the web application level, OWASP has also recom-
mended a rich set of detection techniques and prevention
countermeasures aimed at mitigating the aforementioned
Top 10 risks. Some key practices include [22]:

• Conduct code reviews and blackbox penetration test-
ing to find security flaws proactively;

• Employ static and dynamic program analysis tools to
identify application vulnerabilities. For SQL injection
risks, for instance, one can conduct static code analy-
sis to find all occurrence of the use of SQL statement
interpreters;

• Use whitelist input validation to ensure all special
characters in form inputs are properly escaped to pre-
vent Cross-Site Scripting (XSS) attacks;

• Follow good coding practices and use well-tested API
libraries.

The traditional approaches, however, are not without lim-
itations. First, most are labor-intensive and require signif-
icant manual effort during development and/or at runtime.
Second, the testing tools and preventive countermeasures do
not provide complete and accurate defense against rapidly
changing attack vectors, as admitted in the OWASP Top
10 report. Many approaches find it difficult to balance the
competing goals of maximizing detection coverage (reduc-
ing false negatives) and maintaining detection accuracy (re-
ducing false positives). Furthermore, for web attacks such
as XSS and CSRF, they are partly caused by careless and
unwitting user behavior, which is impossible to completely
eliminate. Last but not the least, a large percentage of the
web applications today are so-called“legacy”applications for
which development had ended some time ago. Even when
vulnerabilities are found, the fixes are going to be difficult
and costly to implement.

The Architecture-based Self-Protection (ABSP) approach
does not seek to replace the mainstream security approaches
but rather to complement them. ABSP focuses on securing
the architecture as a whole, as opposed to specific compo-
nents such as networks or servers. Working primarily with
constructs such as components, connectors and architecture
styles, the ABSP approach protects the system against se-
curity threats by (a) modeling the system using machine-
understandable representations, (b) incorporating security
objectives as part of the system’s architectural properties
that can be monitored and reasoned with, and (c) mak-
ing use of autonomous computing principles and techniques
to dynamically adapt the system at runtime in response to
security threats, without necessarily modifying any of the
individual components.

The Benefits of ABSP are as follows:

• Defense in depth. Most self-protection approaches that
have originated in the systems community are perime-
ter based. By modeling the internal structure of a soft-
ware system in ABSP, it provides an effective mecha-
nism to deal with threats in multiple stages and at
different levels.

• Impact Analysis. ABSP allows us to reason about
threat impacts as well as the trustworthiness of a soft-
ware system at the granularity of its elements (compo-
nents, connectors). The dependencies among the sys-
tem’s constituents would help us track the impact of a
compromised element on the other parts of the system
and formulate globally coordinated defense strategies.

• Insider attack. Modeling and monitoring the soft-
ware system in terms of its architectural constituents
make it possible to detect abnormal behavior inside
the software system. This allows us to mitigate secu-
rity threats that originate from within the system.

• Reuse. By implementing self-protection patterns as
orthogonal concerns, separate from application logic,
the former may be easily reused in other applications.

• Dynamism. Separation of concerns also allows the self-
protection mechanisms to evolve independent of the
application logic, to quickly adapt to emerging threats.

5. ARCHITECTURE PATTERNS FOR

SELF-PROTECTION
In this section, we use patterns as a convenient way to

illustrate how ABSP may be used to bring self-securing ca-
pabilities to a system such as Znn. For each pattern, we
briefly describe the security threat(s) it can be effective for,
how the threat could be detected, and finally how it could
be dealt with through adaptation. It is worth noting that
the self-protection patterns described here represent archi-
tectural level adaptation strategies, and are therefore differ-
ent from previously identified reusable security patterns [12,
30], which constitute for the most part implementation tac-
tics such as authentication, authorization, password syn-
chronization, etc.

5.1 Protective Wrapper Pattern
This simple pattern involves placing a security enforce-

ment proxy, wrapper, or container around the protected re-
source, so that request to / response from the resource may
be monitored and sanitized in a manner transparent to the
resource. Protective wrappers are not uncommon in past
self-protection research. The SITAR system [29] protects
COTS servers by deploying an adaptive proxy server in the
front, which detects and reacts to intrusions. Invalid re-
quests/responses trigger reconfiguration of the COTS server.
Virtualization techniques are increasingly being used as an
effective protective wrapper platform. VASP [33], for exam-
ple, is a hypervisor-based monitor that provides a trusted
execution environment to monitor various malicious behav-
iors in the OS.

5.1.1 Architectural Adaptation

One straightforward way to employ this pattern for Znn
is to place a new connector called “Application Guard” in
front of the load balancer, as shown in Figure 2. To sup-
port this change, the ARM not only needs to connect to the
application guard via the event bus, but also needs to up-
date its architecture model to define additional monitoring
events for this new element (e.g. suspicious content alerts)
and additional effector mechanisms for its adaptation (e.g.
blocking a user).

5.1.2 Threat Detection

The application guard serves as a protective wrapper for
the Znn web servers by performing two key functions: at-
tack detection and policy enforcement. By inspecting and
if necessary sanitizing the incoming HTTP requests, the
application guard can detect and sometimes eliminate the
threats before they reach the web servers. Injection attacks
(OWASP A1), for example, often contain special characters
such as single quotes which will cause erroneous behavior in
the backend database when the assembled SQL statement
is executed. By performing input validation (e.g. using a
“white list” of allowed characters) or using proper escape
routines, the wrapper can thwart many injection attempts.

Attack

Detection

L
o

ad
 B

al
an

ce
r

Policy

Enforcement

HTTP
Request

HTTP
Response

Event Bus

Web Server 1

L
o

ad
 B

al
an

ce
r

Web Server 2

DB

…!

D
B

 C
o

n
n

ec
to

r

Architecture

Manager
M A P E

A
p

p
li

ca
ti

o
n

 G
u

a
rd

User

W
eb

 B
ro

w
se

r

Figure 2: Znn Protective Wrapper Architecture

As its name suggests, this protective wrapper works at
the application level, in contrast to conventional network
firewalls that focus on TCP/IP traffic. It communicates with
and is controlled by the model-driven ARM “brain”, and as
such can help detect more sophisticated attack sequences
that are multi-step and cross-component. For example, the
ARM can signal the application guard to flag and stop all
access requests to the web server document root, because a
sensor detected a buffer overflow event from the system log
of the web server host. The latter may have compromised
the web server and placed illegitimate information at the
document root (e.g., a defaced homepage, or confidential
user information). The detection may be achieved through
incorporating an attack graph in the ARM’s architecture
model, as described in [8].

5.1.3 Threat Mitigation

A second function performed by the application guard is
policy enforcement as directed by the ARM. Take Broken
Authentication and Session Management (OWASP A3) for
example; web sites often use URL rewriting which puts ses-
sion IDs in the URL: http://znn.com/premium/newsitem;
sessionid=SIRU3847YN9W38475N?newsid=43538 When this
URL is either shared or stolen, others will be able to hijack
the session ID to access this user’s content or even his/her
personal information. The application guard can easily pre-
vent this by applying encryption / obfuscation techniques
so session IDs cannot be identified from the URL, or by
tying session IDs with user’s MAC addresses so that ses-
sion IDs cannot be reused even if they are stolen. Similar
mechanisms at the application guard may also help patch
up other vulnerabilities such as Insecure Direct Object Ref-
erences (OWASP A4) and Failure to Restrict URL Access
(OWASP A8).

More adaptive enforcement actions are possible thanks
to the ARM component that is aware of the overall sys-
tem security posture. After the ARM senses the system is
under attack, it can instruct the application guard to dy-
namically cut off access to a compromised server, switch to
a stronger encryption method, or adjust trustworthiness of

certain users. Adaptation strategies may be based on heuris-
tic metrics indicating the overall system’s security posture,
which are computed in real time. As a concrete example, in
section 6 we will show how this pattern is employed against
denial of service (DoS) attacks.

5.2 Software Rejuvenation Pattern
As defined by [13], the Software Rejuvenation pattern in-

volves gracefully terminating an application instance and
restarting it at a clean internal state. This pattern is part
of a growing trend of proactive security strategies that have
gained ground in recent years. By proactively “reviving” the
system to its “known good” state, one can limit the dam-
age of undetected attacks, though at the cost of extra hard-
ware resources. The TALENT system [20], for example,
addresses software security and survivability using a “cyber
moving target” approach, which proactively migrates run-
ning applications across different platforms on a periodic
basis while preserving application state. The Self-Cleansing
Intrusion Tolerance (SCIT) architecture [17] uses redundant
and diverse servers to periodically “self-cleanse” the system
to pristine state. the Proactive Resilience Wormhole (PRW)
effort [24] also employs proactive rejuvenation for intrusion
tolerance and high availability.

5.2.1 Architectural Adaptation

When applying this pattern to the Znn application, we
will update the ARM’s system representation to establish
two logical pools of web servers: in addition to the active
server pool connected to the load balancer, there will also
be an idle web server pool containing running web servers
in their pristine state, as shown in Figure 3. These server
instances could be either separate software processes or vir-
tual machine instances. In the simplest case, the ARM will
issue rejuvenation commands at regular intervals (e.g., every
5 minutes, triggered by a timer event), which activate a new
web server instance from the idle pool and connects it to
the load-balancer. At the same time, an instance from the
active pool will stop receiving new user requests and termi-
nate gracefully after all its current user sessions log out or
time out. The instance will then be restarted and returned
to the idle pool.

The ARM “brain” may also pursue more complex rejuve-
nation strategies, such as:

• Use threat levels or other architectural properties to
determine and adjust rejuvenation intervals at runtime

• Perform dynamic reconfigurations and optimizations
(e.g. restart a server instance with more memory based
on recent server load metrics)

• Mix diverse web server implementations (e.g. Apache
and Microsoft IIS) to thwart attacks exploiting
platform-specific vulnerabilities

Note that, the rejuvenation process, short as it may be, tem-
porarily reduces system reliability. Extra care is needed to
preserve application state and transition applications to a
rejuvenated replica.

5.2.2 Threat Detection

A unique characteristic about the rejuvenation pattern is
that it neither helps nor is dependent upon threat detection,
but for the most part used as a mitigation technique.

Idle Server Pool

Web Server 2’

Web Server 1’

…!

activate

Event Bus

Web Server 1

L
o

ad
 B

al
an

ce
r

Web Server 2

User

DB

W
eb

 B
ro

w
se

r

D
B

 C
o

n
n

ec
to

r

Architecture

Manager
M A P E

Active Server Pool

deactivate

Figure 3: Znn Software Rejuvenation Architecture

5.2.3 Threat Mitigation

Although the rejuvenation pattern doesn’t eradicate the
underlying vulnerability, it can effectively limit poten-
tial damage and restore system integrity under injection
(OWASP A1), reflective XSS (OWASP A2), and to some
extent CSRF (OWASP A5) attacks, detected or undetected.
These are considered among the most vicious and rampant
of web application threats, in part because the attack vector
is often assisted by careless or unsuspecting users. Clicking
on a phishing URL is just one of the many examples. When
a fragment of malicious code is sent to the server, such as
the following that steals user cookies [21]:

<SCRIPT type="text/javascript">

var adr = ’example.com/evil.php?cakemonster=’

+ escape (document.cookie);

</SCRIPT>

This piece of injected code may be stored in server mem-
ory or (in a worse case) in the database, and then used
for malicious intents such as stealing confidential user infor-
mation, hijacking the server to serve up malware, or even
defacing the website - and continue doing so as long as the
server is running.

With a rejuvenation pattern in place, a server may only be
compromised for up to the rejuvenation interval. In mission-
critical operations, the interval can be as short as a few
seconds, drastically reducing the probability and potential
damage from these attacks even when detection sensors fail.

Our pattern implementation as depicted in Figure 3 does
have some limitations. First, for persistent attacks such as
DoS, rejuvenating the web server will not be effective be-
cause the DoS traffic will simply be directed to the new web
server instance and overwhelm it. In such cases rejuvenation
must be carried out in conjunction with other countermea-
sures such as blocking the attacking source. Secondly, cau-
tion must be taken so that corrupted state is not migrated
to the new instances. For example, when malicious code
is stored in the database, simply recycling the web server
will not eradicate the root of the threat because restarting
a database server instance will only clean up transient, in-

Event Bus

Web Server 1

…!
Agreement
Protocol

L
o
ad

 B
al

an
ce

r

Web Server 2

User

W
eb

 B
ro

w
se

r

D
B

 G
u

a
rd

Architecture

Manager
M A P E

DB

Replica 0

DB

Replica 1

DB

Replica 2

D
B

C
o

n
.

D
B

C
o

n
.

D
B

C
o

n
.

Figure 4: Znn Agreement-Based Redundancy Ar-

chitecture

memory storage but has no effect on data changes already
committed to permanent storage. This pattern, therefore,
is not an effective mechanism against stored XSS attacks.

5.3 Agreement-based Redundancy
As pointed out in the previous subsection, proactively“hot

swapping” active and possibly tainted web servers with new
pristine instances can effectively limit the damage of script-
ing attacks that seek to inject malicious code in the web
server, but the technique can offer little relief to attacks that
have succeeded in permanently altering the system state,
particularly in the database. To address the latter challenge,
we consider another architecture pattern, Agreement-based
Redundancy, which maintains multiple replica of a software
component at runtime in order to tolerate Byzantine faults
and ensure correctness of results. A prime example of this
pattern comes from the seminal work by [4] described a
Byzantine Fault Tolerance (BFT) algorithm that can effec-
tively tolerate f faulty nodes with 3f+1 replicas within a
short window of vulnerability. Similar agreement-based vot-
ing protocols have been used in many other systems such as
SITAR and [28]. The strengths of this pattern is many-fold -
it is easy to implement, performs well, helps meet both sys-
tem security and availability goals, and is effective against
unknown attacks.

5.3.1 Architectural Adaptation

In the Znn example we choose to apply this pattern to
the database layer, as shown in Figure 4. First, we up-
date the ARM’s architecture representation to maintain a
number of identical database instances (along with their re-
spective database connectors), all active and running con-
currently. Secondly, a new connector called DB Guard is in-
troduced to handle database requests from web servers using
an agreement-based protocol. The ARM communicates the
agreement-based protocol specifics to the DB Guard, such
as the number of replicas and quorum thresholds. The ARM
can dynamically adapt the protocol as needed at runtime.

5.3.2 Threat Detection

Given the heavy reliance on databases in today’s software
applications, it is no surprise SQL injection is ranked as
the number one threat in both OWASP Top 10 and CWE
Top 25. The ABR pattern can effectively detect and stop

the SQL variants of the injection attack (OWASP A1) and
stored XSS (OWASP A2) attack when they contain illegal
writes to the Znn database. Consider a simplified scenario
where the Znn web server attempts to retrieve news articles
from a database table based on keyword:

...

string kw = request.getParameter("keyword");

string query = "SELECT * FROM my_news

WHERE keyword = ’" + kw + "’";

...

Note that many database servers allow multiple SQL
statements separated by semicolons to be executed together.
If the attacker enters the following string:

xyz’; DELETE FROM news; --

Then two valid SQL statements will be created (note the
training pair of hyphens will result in the trailing single
quote being treated as a comment thus avoiding generating
a syntax error, see [27] for details):

SELECT * FROM my_news WHERE keyword=’xyz’;

DELETE FROM news;

As a result, a seemingly harmless database query could
be used to corrupt the database and result in loss of data.
Good design and coding techniques, along with static analy-
sis tools can help identify vulnerabilities. As mentioned ear-
lier in the paper, however, such efforts are labor-intensive
and not bullet-proof. Using the Agreement-based Redun-
dancy pattern, we take an non-intrusive approach that does
not require code changes to the web application nor the
database. Instead. we execute the following algorithm in
the DB Guard connector:

1. Treat each database request R as a potential fault-
inducing operation, and execute it first on the primary
node (replica 0). The selection of the primary node is
arbitrary.

2. Use a voting algorithm to check predefined properties
of the database. For example, one property may be the
number of news articles. The ARM is responsible for
defining and monitoring these properties and making
them available to the database connector. When quo-
rums can be reached on all properties and the primary
node is part of the quorum, proceed to next step; oth-
erwise flag R as invalid and revert the primary node
to its state before R, either by rolling back the trans-
action or by making a copy of another replica.

3. Execute R on all other replicas 1 to n, bringing all
replicas to the same state.

4. Adjudicate the results from all replicas using the vot-
ing algorithm. If a quorum is reached, return the result
to client; otherwise consider the system in a compro-
mised state and raise flag for human administrator at-
tention.

It is easy to see that when the above attack string gets
sent to the DB Guard and executed in the primary node, the
number of news articles is reduced to zero after the delete
command, therefore different from the quorum. The request
will be aborted and the system reverted to its valid state.
Our implementation, however, comes with a caveat: it is not
effective when the SQL injection seeks only to read data (i.e.
the compromise is in system confidentiality, not integrity).
In the latter case, the protective wrapper pattern can still
help inspect and detect the anomaly.

System

Layer

Architecture Layer

Translation

Infrastructure

Adaptation

Manager

Model Manager

Strategy

Executor

System API

5

Probes
Resource
Discovery Effectors

Gauges

3

2

1

4

Architecture

Evaluator

Target System

Figure 5: The Rainbow Architecture.

5.3.3 Threat Mitigation

As we have seen from the above scenario, the SQL injec-
tion attack is effectively stopped after it is detected in the
algorithm. To complete the full sequence for threat mitiga-
tion, we only need to furbish a few more details:

• Once an invalid and potentially malicious request is
detected, the DB Guard will notify the ARM that can
deploy countermeasures such as nullifying the associ-
ated user session, notifying the system administrator,
or even disabling the user account in question.

• When the adjudication of the results (step 4 of the
algorithm) is not unanimous, raise a flag about the
minority server instance. If further diagnostics con-
firm the instance is not in a valid state, destroy and
regenerate this instance.

6. REALIZING SELF-PROTECTION PAT-

TERNS IN RAINBOW
In the previous sections, we have argued that architecture-

based self-protection can provide a principled and repeatable
approach to constructing self-protecting systems, and given
some examples of patterns for ABSP. In this section, we
outline how to implement this approach in an architecture-
based self-adaptive framework called Rainbow. We begin
by providing an overview of Rainbow, and then continue
by discussing how the Protective Wrapper pattern can be
realized by the framework.

6.1 Rainbow Framework Overview
The Rainbow framework has demonstrated how architec-

ture models of the system, updated at runtime, can form the
basis for effective and scalable problem detection and correc-
tion. Architecture models represent a system in terms of its
high level components and their interactions (e.g., clients,
servers, data stores, etc.), thereby reducing the complex-
ity of those models, and providing systemic views on their
structure and behavior (e.g., performance, availability, pro-
tocols of interaction, etc.). In the context of this paper, the
Rainbow framework can be viewed as Architecture Manager
capable of evaluating and adapting the underlying system to
defend against threats.

The Rainbow framework uses software architectures and
a reusable infrastructure to support self-adaptation of soft-
ware systems. Figure 5 shows the adaptation control loop
of Rainbow. Probes are used to extract information from
the target system that update the architecture model via
Gauges, which abstract and aggregate low-level informa-
tion to detect architecture-relevant events and properties.
The architecture evaluator checks for satisfaction of con-
straints in the model and triggers adaptation if any violation
is found, i.e., an adaptation condition is satisfied. The adap-
tation manager, on receiving the adaptation trigger, chooses
the “best” strategy to execute, and passes it on to the strat-
egy executor, which executes the strategy on the target sys-
tem via effectors.

The best strategy is chosen on the basis of stakeholder
utility preferences and the current state of the system, as
reflected in the architecture model. The underlying decision
making model is based on decision theory and utility [19];
varying the utility preferences allows the adaptation engi-
neer to affect which strategy is selected. Each strategy,
which is written using the Stitch adaptation language [5],
is a multi-step pattern of adaptations in which each step
evaluates a set of condition-action pairs and executes an ac-
tion, namely a tactic, on the target system with variable
execution time. A tactic defines an action, packaged as a
sequence of commands (operators). It specifies conditions
of applicability, expected effect and cost-benefit attributes
to relate its impact on the quality dimensions. Operators
are basic commands provided by the target system.

As a framework, Rainbow can be customized to support
self-adaptation for a wide variety of system types. Cus-
tomization points are indicated by the cut-outs on the side
of the architecture layer in Figure 5. Different architectures
(and architecture styles), strategies, utilities, operators, and
constraints on the system may all be changed to make Rain-
bow reusable in a variety of situations. In addition to provid-
ing an engineering basis for creating self-adapting systems,
Rainbow also provides a basis for their analysis. By separat-
ing concerns, and formalizing the basis for adaptive actions,
it is possible to reason about fault detection, diagnosis, and
repair. For example, many of the standard metrics asso-
ciated with classical control systems can, in principle, be
carried over: settling time, convergence, overshoot, etc. In
addition, the focus on utility as a basis for repair selection
provides a formal platform for principled understanding of
the effects of repair strategies.

In summary, Rainbow uses architectural models of a soft-
ware system as the basis for reasoning about whether the
system is operating within an acceptable envelope. If this
is not the case, Rainbow chooses appropriate adaptation
strategies to return the system to an acceptable operating
range. The key concepts of the approach are thus: (a) the
use of abstract architectural models representing the run-
time structures of a system, that make reasoning about
system-wide properties tractable, (b) detection mechanisms
that identify the existence and source of problems at an ar-
chitectural level, (c) a strategy definition language called
Stitch that allows architects to define adaptations that can
be applied to a system at runtime, and (d) a means to choose
appropriate strategies to fix problems, taking into considera-
tion multiple quality concerns to achieve an optimal balance
among all desired properties.

6.2 Realizing the Protective Wrapper Pattern
In this section, we describe how the Protective Wrapper

Pattern in Section 5.1 is implemented in Rainbow to protect
Znn against a denial of service (DoS) attack. DoS has been
extensively researched in the past, including recent efforts
using adaptive approaches [1, 16]. Our focus in this paper is
not so much on advancing the state of the art for DoS attack
mitigation, but on illustrating how the problem may be ad-
dressed at the architectural level using repeatable patterns
and a runtime self-adaptive framework.

6.2.1 Architecture Adaptation

At the system level, the protective wrapper is placed in
front of the load balancer of Znn to achieve two levels of
protection: 1) it maintains a list of black-listed IPs that are
considered to be malicious, and ignores all requests from
them; and 2) it maintains a list of suspicious clients that
are generating an unusually large amount of traffic and lim-
its the requests that get forwarded to the load balancer.
Each of these are manipulated via effectors in Znn (in real-
ity, scripts that can run on the load balancer) that introduce
and configure the wrapper. Each script is associated with an
architectural operator that can be used by tactics in Stitch
to implement the mitigation.

The architecture model of Znn is annotated with proper-
ties to determine the request rates of clients, and the proba-
bility that a client is engaging a DoS (i.e., being malicious).
Gauges report values for these properties (described below),
and constraints check that clients have reasonable request
rates and low probabilities of maliciousness, and if not, are
throttled or on the blacklist. If these constraints fail, then
the mitigation strategy above is applied.

In terms of customization of Rainbow, the model and its
annotation with the above properties corresponds to cus-
tomization point 1 in Figure 5, and the constraints that
check the correctness of the model to point 2.

6.2.2 Threat Detection

The DoS attack is detected by probes that monitor the
traffic in the system, and correspond partially to customiza-
tion point 5 in Figure 5. Rainbow aggregates this data into
actionable information within gauges, and then uses this in-
formation to update the architectural model to reflect op-
erating conditions. To determine the probability of a client
participating in a DoS, we follow the approach described
in [3, 2]. We define transactions representing request be-
haviors in the architectures that are derived from low level
system events, and an Oracle that analyzes the transactions
from each client and, using a method called Spectrum-based
Fault Multiple Fault Localization, reports the probability of
each client acting suspiciously as a maliciousness property
on each component in the model.

Furthermore, probes and gauges keep track of which
clients are in the blacklist or being throttled, allowing the
constraints in the model to fail only on clients that haven’t
been dealt with yet.

6.2.3 Threat Mitigation

When a threat is detected and reported in the architec-
tural model, causing a constraint to fail, the Rainbow Adap-
tation Manager is invoked. It selects and executes adapta-
tions to maximize the utility of the system. In the case of
a DoS attack, maximizing utility means stopping the attack

with minimal client service disruption. That is, the DoS
response must take care not deny access to clients without
cause.

Consider the scenario where attackers may be dealt with
differently depending on the frequency with which they at-
tack (i.e. repeat offenders) and the duration of the attack.
Rules to determine how these factors influence response
could be encoded into a security policy with the following
logic:

• The traffic for previously unknown attackers is throt-
tled (i.e., some requests are ignored) to limit the im-
pact of the attack without totally cutting off service.
This approach minimizes the chances of disrupting the
service of possibly legitimate clients.

• Repeat offenders are blackholed meaning all that
client’s traffic is filtered at the load balancer. Known
malicious clients are given less mercy than those who
have not previously attacked Znn.

• Long-running attacks are not tolerated under any cir-
cumstances.

These rules are encoded as the Rainbow strategy shown
in Listing 1. The applicability of the FixDosAttack strategy
depends on the state of the system as it is represented in
the architectural model. The strategy is only applicable if
the cUnderAttack condition is true in the model.1 Conditions
such as cLongAttack (line 3) and cFreqAttacker (line 9) reflect the
state of architectural properties, such as whether an attack
is ongoing, and act as guards in the strategy’s decision tree.
This strategy captures the scenarios where infrequent and
frequent attackers are dealt with by throttling or blackholing
the attack respectively, unless the attack is long running.
This is consistent with the logic described above.

Listing 1: An example strategy for implementing

the DoS Wrapper.
1 s t r a t e g y FixDoSAttack [cUnderAttack] {
2 t0 : (c I n f r e qA t t a c k e r) −> t h r o t t l e () @[2000(/∗ms∗/]

{
3 t0a : (cLongAttack) −> b l a c k h o l e () @[2 000] {
4 t 0 a i : (d e f a u l t) −> done ;
5 }
6 // No more s t e p s to take
7 t0a : (d e f a u l t) −> TNULL ;
8 }
9 t1 : (cF r eqAt t a cke r) −> b l a c k h o l e () @[2000 /∗ms∗/] {

10 t1a : (cLongAttack) −> b l a c k h o l e () @[2 000] {
11 t 1 a i : (d e f a u l t) −> done ;
12 }
13 }
14 }

While strategies determine which action to take, tactics
are responsible for taking the action. If a condition is true
in the strategy, then the subsequent tactic is applicable. For
example, an infrequent attacker would cause the cInfreqAt-

tacker condition to be true invoking the throttle() tactic (line
2). Tactics are the specific actions to take to transform the
architecture into a desired state. The tactics used in the
FixDoSAttack strategy are: throttle and blackhole.

Consider the blackhole tactic shown in Listing 2. When ex-
ecuted, this tactic will change the ZNN system to discard
traffic from specified clients (i.e., put them in a blackhole).

1The details of this condition are elided for space, but are
written in the first-order predicate langauge of Acme [10]

The tactic has three main parts: the applicability condition
that determines whether the tactic is valid for the situa-
tion, the tactics action on the architecture, and the tactic’s
anticipated affect on the model of the system.

Listing 2: Tactic to black hole an attacker.
1 t a c t i c b l a c k h o l eA t t a c k e r () {
2 cond i t i o n {
3 // check any ma l i c i o u s c l i e n t s
4 cUnb l a c k h o l e dMa l i c i o u sC l i e n t s
5 }
6 ac t i on {
7 // C o l l e c t a l l a t t a c k e r s
8 s e t e v i l C l i e n t s =
9 { s e l e c t c : T . C l i e n tT i n M. components |

10 c . m a l i c i o u s n e s s > M.MAX MALICIOUS} ;
11 f o r (T. C l i e n tT t a r g e t : e v i l C l i e n t s) {
12 // b l a ck ho l e the ma l i c i o u s a t t a c k e r
13 Sys . b l a c k h o l e (M. l bp roxy , t a r g e t) ;
14 }
15 }
16 e f f e c t {
17 // a l l the ma l i c i o u s c l i e n t s b l a c k ho l e d .
18 ! cUnb l a c k h o l e dMa l i c i o u sC l i e n t s
19 }
20 }

The tactic’s applicability condition relies on whether or
not a client is currently attacking, indicated by a malicious-
ness threshold property in the architecture. If a gauge sets
the maliciousness property of the suspected attacker above
the maliciousness threshold, then blackholing is a viable ac-
tion to take. In this sense, the tactic provides an additional
checkpoint that more closely aligns with the architecture.

The action part of the tactic places clients that are
identified as attackers in the blackhole by invoking the
Sys.blackhole(. . .) operation. This operation is bound to an
effector that actually modifies the Znn system to drop at-
tacker packets, by adding the client to the blacklist, adding
the filter, and restarting the load balancer.

Finally, the effect section verifies that the action had the
intended impact on the system. In terms of acting as a
protective wrapper, this tactic adapts Rainbow that it can
intercept and discard malicious traffic before it reaches the
Znn infrastructure.

7. CONCLUDING REMARKS
This paper has illustrated the benefits of evaluating the

security properties of a software system using architectural
models, and in particular at runtime. In support of our ar-
gument, we illustrated (1) how existing ad hoc techniques to
self-protection can be formulated as architecture-level pat-
terns, thus paving the way for a systematic engineering ap-
proach to construction of such systems, and (2) how those
patterns could be realized in Rainbow. Our experiences with
extending Rainbow to protect web applications have cor-
roborated some of the hypothesized benefits of architecture-
based self-protection (recall section 4). For instance, by ex-
plicitly separating the DoS detection and mitigation capa-
bility from the application logic, our solution can be easily
reused in any other web application managed by Rainbow.
In addition, by representing the self-protection capabilities
as architectural elements (e.g., a protective wrapper connec-
tor), our solution allows us to reason about the security pos-
ture of a system in terms of its architectural configuration.
This also enables adaptation of self-protection mechanism
itself, e.g., addition and removal of new wrapper connectors.

While our experiences have been very positive so far, a
number of research challenges remain:

Quantifying security. One of the difficulties in automati-
cally making adaptation decisions is the lack of established
and commonly accepted metrics for the quantification of se-
curity. Good security metrics are needed to enable compari-
son of candidate adaptations, evaluate the effect adaptations
have on security properties, and quantify overall system se-
curity posture. However, there are few security metrics that
can be applied at an architectural level.

Architectural-level metrics are preferred because they re-
flect the system security properties affected by adaptations.
Such metrics could include measures to classify security
based on applied adaptations and evaluate the impact of
adaptations on certain security properties (e.g., attack sur-
face, number least privilege violations). We have done some
preliminary work in quantifying the attack surface with re-
spect to an architecture in [11]. With the aid of such metrics,
in our future work we plan to develop better mechanisms to
better select adaptations that promote desired properties
and quantify the impact on system security.

Quality attribute tradeoffs. In fielded systems security
must be considered with other, possibly conflicting, qual-
ity attributes. Rainbow makes tradeoffs between quality at-
tributes with each adaptation, selecting an adaptation that
maximizes the overall utility of the system. Principled mech-
anisms are needed to evaluate the impacts of these trade-
offs as the system changes. Consider that almost all self-
protection patterns described in Section 5 come at the ex-
pense of other quality attributes (e.g. response time, avail-
ability). Mechanisms to automatically evaluate competing
quality attributes is critical for effective self adaptation.

Software architecture is the appropriate medium for eval-
uating such tradeoffs automatically because it provides a
holistic view of the system. Rainbow reasons about a multi-
dimensional utility function, where each dimension repre-
sents the user’s preferences with respect to a particular qual-
ity attribute, to select an appropriate strategy. We plan to
evaluate this approach with respect to security, which re-
quires quantifying security as above.

Protecting the self-protection logic. Most of the research
to date has assumed the self-protection logic itself is immune
from security attacks. One of the reasons for this simplify-
ing assumption is that prior techniques have not achieved a
disciplined split between the protected subsystem and the
protecting subsystem. In our approach, the inversion of
dependency and clear separation of application logic from
Rainbow present us with an opportunity to address this
problem. The inversion of dependency allows us to layer
the self-protection logic recursively, and thus have one in-
stance of Rainbow protect another instance of it. The fact
that the two subsystems are separated allows us to leverage
techniques such as virtualization, such that Rainbow would
execute on a separate virtual machine, thereby reducing the
likelihood of it being compromised by the same threats tar-
geted at the application logic.

As we explore the avenues of future research outlined
above, we hope the paper provides an impetus for others
to do the same.

8. ACKNOWLEDGMENTS
This work is supported in part by awards W911NF-09-1-

0273 from Army Research Office, D11AP00282 from Defense

Advanced Research Projects Agency, and CCF-1217503 and
CCF-1252644 from National Science Foundation.

9. REFERENCES

[1] Barna, C. et al. Model-based adaptive dos attack
mitigation. In International Symposium on Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS) (2012), pp. 119–128.

[2] Casanova, P. et al. Diagnosing architectural run-time
failures. To appear in SEAMS, 2013.

[3] Casanova, P. et al. Architecture-based run-time fault
diagnosis. In Proceedings of the 5th European
Conference on Software Architecture (2011).

[4] Castro, M., and Liskov, B. Practical byzantine fault
tolerance and proactive recovery. ACM Trans.
Comput. Syst. 20, 4 (Nov. 2002), 398–461.

[5] Cheng, S.-W., and Garlan, D. Stitch: A language for
architecture-based self-adaptation. Journal of Systems
and Software, Special Issue on State of the Art in
Self-Adaptive Systems 85, 12 (December 2012).

[6] Cheng, S.-W. et al. Evaluating the effectiveness of the
rainbow self-adaptive system. In ICSE Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, 2009. SEAMS ’09 (May 2009), pp. 132 –141.

[7] Chess, D. M. et al. Security in an autonomic
computing environment. IBM Systems Journal 42, 1
(2003), 107–118.

[8] Foo, B. et al. ADEPTS: adaptive intrusion response
using attack graphs in an e-commerce environment. In
International Conference on Dependable Systems and
Networks, 2005. DSN 2005. Proceedings (July 2005),
pp. 508–517.

[9] Garlan, D. et al. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE
Computer 37, 10 (Oct. 2004), 46–54.

[10] Garlan, D. et al. Acme: Architectural Description of
Component-Based Systems. In Foundations of
Component-Based Systems, G. Leavens and
M. Sitaraman, Eds. Cambridge University Press, 2000,
pp. 47–68.

[11] Gennari, J., and Garlan, D. Measuring attack surface
in software architecture. Tech. Rep. CMU-ISR-11-121,
Institute for Software Research, School of Computer
Science, Carnegie Mellon University, 2011.

[12] Hafiz, M. et al. Organizing security patterns. IEEE
Software 24, 4 (Aug. 2007), 52–60.

[13] Huang, Y. et al. Software rejuvenation: analysis,
module and applications. In , Twenty-Fifth
International Symposium on Fault-Tolerant
Computing, 1995. FTCS-25. Digest of Papers (June
1995), pp. 381–390.

[14] Kephart, J., and Chess, D. The vision of autonomic
computing. Computer 36, 1 (Jan. 2003), 41–50.

[15] Kitchenham, B. Procedures for performing systematic
reviews. Keele, UK, Keele University 33 (2004).

[16] Li, M., and Li, M. An adaptive approach for defending
against ddos attacks. Mathematical Problems in
Engineering (2010).

[17] Nagarajan, A. et al. Combining intrusion detection
and recovery for enhancing system dependability. In
2011 IEEE/IFIP 41st International Conference on

Dependable Systems and Networks Workshops
(DSN-W) (June 2011), pp. 25 –30.

[18] Nguyen, Q., and Sood, A. A comparison of
intrusion-tolerant system architectures. IEEE Security
Privacy 9, 4 (Aug. 2011), 24–31.

[19] North, D. A tutorial introduction to decision theory.
IEEE Transactions on Systems Science and
Cybernetics 4, 3 (1968), 200–210.

[20] Okhravi, H. et al. Creating a cyber moving target for
critical infrastructure applications using platform
diversity. International Journal of Critical
Infrastructure Protection 5, 1 (Mar. 2012), 30–39.

[21] OWASP.org. Cross-site scripting (XSS) - OWASP.
https://www.owasp.org/index.php/Cross-
site Scripting (XSS).

[22] OWASP.org. Owasp top ten project.
https://www.owasp.org/index.php/Category:
OWASP Top Ten Project.

[23] Sibai, F., and Menasce, D. Defeating the insider
threat via autonomic network capabilities. In 2011
Third International Conference on Communication
Systems and Networks (COMSNETS) (Jan. 2011).

[24] Sousa, P. et al. Highly available intrusion-tolerant
services with proactive-reactive recovery. IEEE
Transactions on Parallel and Distributed Systems 21,
4 (Apr. 2010), 452–465.

[25] Stakhanova, N. et al. A taxonomy of intrusion
response systems. International Journal of
Information and Computer Security 1, 1 (Jan. 2007),
169–184.

[26] The MITRE Corporation. CWE - 2011 CWE/SANS
top 25 most dangerous software errors.
http://cwe.mitre.org/top25/.

[27] The MITRE Corporation. CWE-89: improper
neutralization of special elements used in an SQL
command (’SQL injection’).
http://cwe.mitre.org/data/definitions/89.html.

[28] Valdes, A. et al. An architecture for an adaptive
intrusion-tolerant server. In Security Protocols,
B. Christianson, B. Crispo, J. Malcolm, and M. Roe,
Eds., vol. 2845 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2004, pp. 569–574.

[29] Wang, F. et al. SITAR: a scalable intrusion-tolerant
architecture for distributed services. In Foundations of
Intrusion Tolerant Systems, 2003 (2003), pp. 359–367.

[30] Yoshioka, N. et al. A survey on security patterns.
Progress in Informatics 5, 5 (2008), 35–47.

[31] Yuan, E., and Malek, S. A taxonomy and survey of
self-protecting software systems. In International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS) (2012).

[32] Yuan, E. et al. A survey of self-protecting software
systems. In ACM Transactions on Autonomous and
Adaptive Systems (TAAS) (June 2013).

[33] Zhu, M. et al. VASP: virtualization assisted security
monitor for cross-platform protection. In Proceedings
of the 2011 ACM Symposium on Applied Computing
(2011), pp. 554–559.

