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Abstract—Power-based side-channel leakage is a known problem
in the design of security-centric electronic systems. As the
complexity of modern systems rapidly increases through the
use of System-on-Chip (SoC) integration, it becomes difficult
to determine the precise source of the side-channel leakage.
Designers of secure SoC must therefore proactively apply ex-
pensive countermeasures to protect entire subsystems such as
encryption modules, and this increases the design cost of the
chip. We propose a methodology to determine, at design time,
the source of side-channel leakage with much greater accuracy, at
the granularity of a single cell. Our methodology, Architecture
Correlation Analysis, uses a leakage model, well known from
differential side-channel analysis techniques, to rank the cells
within a netlist according to their contribution to the side-
channel leakage. With this analysis result, the designer can
selectively apply countermeasures where they are most effective.
We demonstrate Architecture Correlation Analysis (ACA) on
an AES coprocessor in an SoC design, and we determine the
sources of side-channel leakage at the gate-level within the AES
module as well as within the overall SoC. We validate ACA by
demonstrating its use in an optimized hiding countermeasure.

Index Terms—Side-channel Leakage, Netlist Analysis, Side-
Channel Leakage Source, Design-time Analysis;

I. INTRODUCTION

Power-based side-channel leakage occurs when a secure chip

performs operations that depend on an internal secret value

such as a cryptographic key. An adversary who observes

the chip power consumption can derive the internal secret

value through differential analysis techniques that correlate a

power model of the secret activity with the observed power

consumption. Power-based side-channel leakage is prevented

using countermeasures such as power-randomization, hiding,

or masking. However, these techniques are expensive, and their

cost is proportional to the size of the secure chip that must be

protected. To reduce the cost of these countermeasures, they

could be limited to a small section of the chip, but then the

designer must identify the precise gates which contribute to

the side-channel leakage. To our knowledge, there are no tools

to identify the source of side-channel leakage in a netlist at

the granularity of a cell.

ACA is motivated by the following scenario, common in

industry, where two teams collaborate to create a leakage-free

design. A design team develops the product, while a security

verification team independently checks for security problems

Fig. 1: Difference between Differential Power Analysis and

Architecture Correlation Analysis(ACA): (a) DPA reveals an

unknown key by matching a power model to a netlist (b) ACA

ranks gate in a netlist according to their contribution to side-

channel leakage.

with the design. When the security verification team finds side-

channel leakage, it is up to the design team to fix it. The

guidance of the testing team consists of a demonstrate side-

channel leak. However, based on a leakge model alone, it is

very hard for the design team to identify the precise source of

the leakage, especially in complex hardware designs.

In this work, we describe a methodology that is used to

analyze a gate-level netlist for side-channel leakage. The

methodology analyzes the netlist using a power model of

the secure-sensitive operations in the chip. Power models

are commonly used in the traditional differential side-channel

analysis, and they are used to predict the power of internal

secret-dependent operations in the chip. Hence, secure-SoC

designers are familiar with such power models. The outcome

of the methodology is a ranking of all the cells in the netlist

with respect to their similarity to the power model. A cell’s

behavior is considered similar to the power model if its output

transitions are matched to those predicted by the power model.

The rationale is that while the power consumption of the

entire chip includes the power contributions of every cell, only

those cells that reflect the predictions of the power model will



contribute to side-channel leakage.

The ranking is numerically expressed using the Leakage Im-

pact Factor (LIF), a gate-level metric to express side-channel

leakage. The higher the LIF, the more a cell contributes to

power-side-channel leakage. With the LIF, the designer can

then decide what cells to protect using a countermeasure.

While ACA in itself is not a countermeasure, it enables a

critical step in applying countermeasures more efficiently.

Figure 1 clarifies the difference between Architecture Cor-

relation Analysis (ACA) and traditional side-channel anal-

ysis. Traditional (differential) side-channel analysis (Figure

1a) aims to reveal a secret, such as a cryptographic key. A

power model, dependent on a secret key, is compared with

the measured (or simulated) power trace obtained from a chip.

The best-matching power model reveals the most likely key.

On the other hand, our proposed ACA (Figure 1b) ranks cells

in a netlist according to their contribution to side-channel

leakage. The ranking is determined by comparing the power

consumption from individual gates with a power model that

uses a known key, and a closer similarity between cell power

and power model leads to a higher ranking. The gate-level

power consumption is obtained using power simulation. Thus,

ACA is not a side-channel analysis technique, but rather a

netlist analysis technique.

In this contribution, we introduce the ACA methodology

and we apply it to a System-on-Chip Design. We analyze

individual modules (such as an AES coprocessor) as well as

system-level interconnect. ACA has two different use-modes.

First, when a known source of side-channel leakage such

as an unprotected hardware cipher is analyzed, ACA will

confirm the source of side-channel leakage at the granularity

of a single cell. Second, with a known side-channel leakage

power model, such as the transfer of a secret value, ACA will

identify every cell that contributes to the side-channel leakage

predicted by the power model. In both cases, our experiments

on practical SoC design show that only a small number of

cells are significantly contributing to side-channel leakage.

The outline of the paper is as follows. In the next section, we

discuss related work. Section III describes the ACA method-

ology. We demonstrate two practical case studies. Section IV

introduces the experimental setup. Section V applies ACA to

the analysis of a coprocessor. Section VI applies ACA to the

analysis of an SoC bus transfer. Section VII illustrates the

effectiveness of ACA by using it to implement an optimized

hiding countermeasure. In Section VIII, we provide several

discussions about the relevant issues of ACA. By selectively

protecting the cells flagged by ACA as sources of side-channel

leakage, we show that the side-channel leakage in the overall

system can be reduced significantly. We then conclude the

paper.

II. RELATED WORK

Many authors have investigated the problem of predicting side-

channel leakage using circuit simulation techniques, including

simulation of EM-leakage [1], transistor (SPICE-level) power

consumption [2], gate-level (PrimeTime Px-level) power con-

sumption [3], or profiled modeling [4]. These efforts aim at

reproducing side-channel leakage at design time, so that a

side-channel attack can be simulated and countermeasures can

be tested. Simulation-based side-channel leakage assessment

methods make a trade-off between simulation speed and

accuracy. Such simulations result in noiseless power estimates,

thereby significantly reducing the number of traces required

for a side-channel attack. Nevertheless, none of these methods

investigates the ranking of design components according to

side-channel leakage, which is the main contribution of ACA.

A second related work topic is on how designers can use

design data, at any level of abstraction, to identify the source

of side-channel leakage. Information flow tracking techniques

automatically identify causal dependencies between the dif-

ferent parts of a design, and therefore these techniques can

analyze the dependencies between a sensitive or secret input

and an observable design output. At the register-transfer level,

SecVerilog [5] analyzes hardware information flow to detect

timing-based channels. At the gate-level, GLIFT [6] simi-

larly detects timing-dependent information leaks. However,

information-flow based mechanisms cannot express power-

based side-channel leakage. RTL-PSC [7] describes a design-

time side-channel leakage assessment methodology at the

Register-Transfer level. The authors identify side-channel leak-

age at the module-level, when a design is still at RTL.

However, RTL-PSC ignores low level effects such as glitches,

a known source of side-channel leakage [8], as well as the

effects of physical placement and routing. Other authors have

proposed empirical methods for locating side-channel leakage

in a prototype implementation. By systematically scanning a

chip and establishing a cartography of EM-based side-channel

leakage [9], the areas of the chip with the most side-channel

leakage can be found. However, the accuracy of these methods

is very coarse and they are unable to identify side-channel

leakage at the cell level.

Karna [10] is another approach to design-time side-channel

leakage assessment which operates at the layout level. The

authors partition a chip spatially in small cells, and determine

a TVLA leakage metric for each area. This reveals the leakage

specific to local area of the chip. TVLA is a generic leakage

metric with known caveats, the most important being that it

does not confirm that a side-channel attack exists. Second,

the resolution of Karna is limited by the layout area over

which TVLA is computed, which typically will still contain

many gates. As previous authors have repeatedly shown, side-

channel leaks can often be attributed to a single gate [11],

which may trigger the use of specific gate-level countermea-

sures. For this reason, we think it remains imperative to

identify the side-channel leakage contributed by a single gate.

III. ACA METHODOLOGY

In this section, we describe the ACA methodology. We mo-

tivate principal design choices, recall preliminaries on side-

channel leakage models, and introduce the ACA method to

compute the leakage impact factor of a gate.

We motivate two of our principal design choices. First, to

detect leakage, ACA relies on a leakage model, and it is up

to the designer to select the right leakage model. However,

these models are commonly known. Internal and external

security testing labs estimate the strength of an implementation



using state of the art side-channel attacks either on silicon or

through simulations. Such attacks typically use leakage models

and therefore the designer can obtain the knowledge of the

‘right’ leakage model as a result of the testing effort. We

acknowledge that statistical detection methods, such as TVLA,

can demonstrate the presence of sensitive variables in a power

trace and that they avoid the difficulty of choosing a leakage

model. However, TVLA comes with its own risks such as false

positives [12]. This means that a positive leakage test result for

TVLA does not imply that an attack exists. Second, ACA uses

gate-level power modeling on post-synthesis or post-layout

netlists. Power modeling at the gate-level abstraction level

strikes a balance between simulation efficiency and accuracy. It

is applicable to the complete chip, while still correctly charac-

terizing sub-cycle-level power effects. In contrast, RTL power

modeling or toggle-counting misses many of the important

electrical effects in side-channel leakage, and transistor-level

power modeling is too complex to achieve at chip-level over

extended periods of time.

A. Leakage model

The leakage model, in the context of power-based side-channel

analysis, is an estimate for the information leakage incurred

through power consumption variations. The leakage model L

is a function computed over a secret intermediate variable

V . The objective of side-channel analysis is to reveal the

value of V through many observations of the measured power

consumption and correlating those observations with L(V ).
Popular choices for L(V ) are the Hamming Weight or the

Hamming Distance on V ; the Hamming Weight reflects value-

based power leakage in CMOS, while the Hamming Distance

reflects distance-based power leakage in CMOS.

The objective of ACA is to identify, within a gate-level

netlist, those cells that realize L(V ). Naturally, there are

many possible choices for the leakage function, and ACA

makes the assumption that the designer is able to provide

L(V ). If the algorithm and implementation are known, such a

leakage function can always be found. For example, a common

choice for L(V ) for AES hardware implementations is the

Hamming Distance between the state of different rounds. For

AES software implementations, the Hamming Weight of one

or a few bytes of the AES state is typically used.

However, V does not have to be related to a cryptographic

key, and any sensitive value processed in a design could be

analyzed. For example, ACA can be used to study bus transfer

operations in an SoC. In that case, V is a sensitive value

transferred over the bus, and L(V ) is the Hamming weight

of the value. The Hamming weight reflects the pre-charged

nature of a shared bus [13].

B. Computing the Leakage Impact Factor

The purpose of ACA is to define the Leakage Impact Factor

(LIF) for every cell in a design. The LIF is a dimensionless

number that expresses the contribution of the cell’s power

consumption to the side-channel leakage of a design, and a

higher LIF indicates a higher contribution. We summarize the

steps of LIF computation. The input of ACA consists of a

netlist to be analyzed, a secure asset V , a leakage model L(V ),

TABLE I: Pearson Correlation Threshold Levels as a function

Confidence

Confidence Interval n=600 n=1000 n=2000

99% ±0.105 ±0.081 ±0.058
95% ±0.080 ±0.062 ±0.044
90% ±0.067 ±0.052 ±0.037

and a set of stimuli that exercise the netlist and the secure asset.

We first identify the Leakage Time Interval (LTI), the time

interval over which we want to obtain LIF. Next, we compute

for every cell i in the design an architecture correlation factor

Ci as well as the average normalized power consumption Pi

PT

.

Finally, we obtain the gate LIF as the product of these two.

We discuss each of these steps in detail.

a) Selecting the Leakage Time Interval:

The first step of ACA is to narrow down the time window over

which the Leakage Impact Factors are computed. The rationale

is that we want to determine the LIF over an interval during

which the leakage model L(V ) is valid and during which side-

channel leakage may occur. We therefore narrow the search

window to the Leakage Time Interval using power correlation.

We use simulated system-level power traces P and correlate

them with the traces from the leakage model L(V ). We then

compute the correlation ρ as

ρL(V ),t =
cov(L(V ), P (t))

σL(V )σP

(1)

where:

cov = the covariance

σL(V ) = the standard deviation of L(V )
σP = the standard deviation of P

The Leakage Time Interval is defined as the time window(s)

for which

ρL(V ),t > ρthreshold (2)

The threshold level ρthreshold is based on the designer’s

definition of a distinguishable correlation peak. We can use

the Pearson Correlation Confidence Interval to define bounds

for ρthreshold. Table I illustrates several choices for ρthreshold.

Under the hypothesis that the true ρ is zero, the table shows

confidence intervals in function of the number of traces (n)

and the confidence level. Hence, if the observed ρ falls outside

of the confidence interval then we reject the hypothesis and

conclude that the design shows leakage.

Because we are computing ρ in a noiseless, controlled envi-

ronment with full knowledge of the secure asset, we can find

sharp correlation peaks with a limited number of traces.

b) Architecture Correlation:

Within the Leakage Time Interval, we next perform the archi-

tecture correlation as follows. First, we obtain a toggle trace

from a gate-level simulation of the design. A toggle trace Ki

records the activity of each net i (driven by cell i) using the

discrete values −1 and +1. If a cell has multiple outputs, then

we compute the architecture correlation and leakage impact

factor for each output separately. For each time stamp t in

the simulation, a toggle trace for net i has the value −1 if

the net does not change value, and it has the value +1 if the



TABLE II: Example of Architecture Correlation

Stimuli S0 S1 S2 S3 Cij

Leakage Model Toggle Activity (Hj ) 1 -1 -1 1

net0 (K0 ) 1 -1 -1 1 4
net1 (K1 ) 1 1 1 1 0
net2 (K2) -1 1 -1 -1 -2

net does change value. We also obtain a toggle trace H that

represents the toggle activities of the leakage model L(V ).
Next, we perform Architecture Correlation. For each net (or

gate driver), we compute the dot product of the toggle trace

of the leakage model H with the toggle trace of net i.

Ci = Ki ·H (3)

A high value in Ci has a different meaning compared to a

high value in ρ. A high value in ρ reflects a strong dependency

between the overall power dissipation and the leakage model.

Therefore, a high ρ indicates side-channel leakage. On the

other hand, a high value in Ci reflects a strong dependency

between activity of net i and the leakage model. A high Ci

therefore means that the assumed leakage model is realized

by net i. Table II describes an example computation for the

architecture correlation factor Ci. The second row records the

toggle activities of the leakage model for different stimuli. The

leakage model value toggles for the first stimuli S0, it does not

toggle for stimuli S1 and S2, and toggles for S3. At the same

time, net0 also only toggles on S0 and S3 which matches

the leakage model in all the four stimuli, therefore, the net0’s

correlation score is 4. On the other hand, net1 and net2 have

a weaker correlations as 0 and -2 respectively. Overall, a more

positive and larger architecture correlation indicates that a net

approximates the leakage model more closely.

c) Compute Leakage Impact Factors:

The final step of ACA computes the Leakage Impact Factor Fi

of the driver of each net i, as the Architecture Correlation of

net i, weighted with the average power consumption Pi of the

driver of net i normalize by the average power consumption

of the whole design PT , during the leakage time interval

averaged over all stimuli.

Fi = Ci

Pi

PT

(4)

This additional weighing factor Pi

PT

is needed because the

architecture correlation factor by itself ignores the relative

contribution of a cell in the side-channel leakage power

footprint. Once the LIF Fi of all cells are determined, they are

ranked from highest to lowest. The cells with the highest LIF

make the greatest contribution to side-channel leakage. This

list can then be used by a designer to efficiently optimize the

netlist with countermeasures.

IV. DEMONSTRATING ARCHITECTURE CORRELATION

ANALYSIS

To demonstrate ACA, we apply it to define the leakage impact

factors in an SoC built around a LEON3 core, an in-order 32-

bit RISC processor. As shown in the Figure 2, the SoC includes

a two-level AMBA bus with on-chip memory and several

coprocessors. One coprocessor, an AES encryption engine, is

a single-round per cycle AES-128 design with on-line key

Fig. 2: SoC block diagram

Fig. 3: Simulation Procedure

expansion. A single hardware AES encryption completes in 11

clock cycles. The AES design contains no countermeasures.

To perform a hardware-accelerated encryption, the LEON3

writes secure assets (128 bits of plaintext and 128 bits of

key material) to the AES coprocessor, triggers the encryption,

and waits for a completion flag. The LEON3 then retrieves

the ciphertext. We have access to the gate-level netlist of the

design, which is implemented in 180nm CMOS technology.

Figure 3 illustrates the power simulation procedure. Logic

synthesis converts the high-level RTL description into a gate-

level netlist, which is the stimulated in a ModelSim simulation

with a set of varying and random plaintext stimuli using

a software testbench. For each plaintext input, we perform

functional simulation using Modelsim at the logic level to

obtain toggle traces (Value Change Dump). These traces are

used for Architecture Correlation (III.B.b). Next, we perform

gate-level power simulation using Primetime PX to produce a

simulated power trace per plaintext input, which is used for the

Leakage Time Interval (III.B.a) and to compute the Leakage

Impact Factors (III.B.c).

In the following, we demonstrate ACA for two different use

cases. First, we use it to identify cells that cause side-channel

leakage in the AES hardware engine. Next, we study the

transfer of secure assets in the SoC, and we use ACA to mark

cells within the LEON3 core as side-channel leakage sources.



Fig. 4: Leakage Time Interval for the AES Hardware Engine

Leakage Model: HD(AES state bit)

V. ACA OF AN AES HARDWARE ENGINE

In this case study, we apply ACA to a stripped down version

of the AES coprocessor, modified to run as a stand-alone

hardware design. The leakage power model used by ACA is

the Hamming distance on the previous and current values of

the AES state register.

We analyze the output of the first round to find the leakage

time interval. Figure 4 reveals a sharp correlation peak when

the SBOX output is computed, and we use these correlation

peaks to determine ρthreshold at 99% confidence level with

600 power traces. This gives a leakage time interval of 1.57ns

(for an AES running at 41.67ns clock period).

Next, we perform architecture correlation. Since there are

128 bits of state, there are 128 different leakage models to

consider using architecture correlation. In the following, we

present the results for a single leaking bit. Our conclusions

remain valid for the entire AES state by repeating ACA for

each state bit. ACA yields a list of cells in the descending

order of their Leakage Impact Factor (LIF) value, which

signifies the individual contribution of these cells to side

channel leakage.

TABLE III: LIF Distribution Data for the AES Hardware

Engine using HD(AES state bit) as the leakage model

LIF Range No. of Cells

1.9 ∼ 2.5 1
1.3 ∼ 1.9 1
0.7 ∼ 1.3 0
0.1 ∼ 0.7 58
-0.5 ∼ 0.1 9525

Fig. 5: LIF Distribution for the AES Hardware Engine

Leakage Model: HD(AES state bit); Logarithmic Y scale

Result Analysis: We analyzed on the cell ranking list from

ACA output, Figure 5 illustrates the LIF distribution for all

the cells in the AES design based on the ACA output and

Table III lists the corresponding data. The distribution is

highly skewed with only a small amount of cells have high

LIF. This indicates that only a small number of cells actively

contribute to the side-channel leakage produced following

the selected leakage model. The most leaky cell, as identified

by the LIF ranking, is a flip-flop of the state-register. As the

128bit state register holds the state of the AES process and

is updated after every round, it is reasonable that it is the

most leaky cell in the coprocessor. Furthermore, the cells

ranked just below this register is a cell in the SBOX that is

directly driven by this register. After these cells, there is a

sharp drop-off in LIF factors, indicating that the remaining

cells only contribute marginally to the leakage.

Runtime Evaluation: Table IV shows the runtime overhead

of the analysis. We use a 2.3GHz Intel Xeon E5-2699 design

server with 128GB of main memory. The complexity of this

AES design is 9585 cells. The runtime is broken down into

gate-level power simulation (per stimuli), and ACA (per AES

state bit). Hence, a full AES design can be analyzed with 600

traces in about 2 hours.

TABLE IV: Runtime Evaluation for AES Hardware Engine

(9,585 cells)

Procedure Runtime

s/stimuli

Power Simulation 12.28
Architecture Correlation Analysis (per AES bit) 0.268

VI. ACA OF AN SOC BUS TRANSFER

ACA applies to any activity for which one can find a leakage

model. In this case study, we demonstrate how to analyze the

bus interface logic of an SoC for side-channel leakage with

ACA.

To initiate an encryption operation, the LEON3 writes a key

and a plaintext to the memory-mapped hardware of the AES

coprocessor. This affects a large number of components in

the SoC, including the caches, the write buffers, the AMBA

AHB and APB bus bridges, and finally the memory-mapped

interface in the coprocessor. Any of these can potentially

contribute to side-channel leakage, and ACA helps to identify

which components leak most.

For this case study, we consider the hamming weight of

plaintext inputs of encryption as the leakage model for

ACA analysis target. The input data (secure asset) is 128-bit

wide, and therefore there are 128 different leakage models

to consider. The transfer to the AES coprocessor consists

of four 32-bit transfers. Using correlation analysis of the

leakage model with the simulated power trace over an interval

of these four transfers, we obtain a sharp correlation peak

shown in Figure 6. We use these peaks to fix ρthreshold at

99.0% confidence level for 600 power traces. The leakage

time interval is 1.082µs, roughly 26 simulated clock cycles.

As before, we present the analysis for a single bit. Since the

leakage time interval at the level of SoC covers many different

components, we limit the discussion to cells included within



Fig. 6: Leakage Time Interval for the SoC Bus Transfer

Leakage Model: HW(transferred bit)

the LEON3 core.

TABLE V: LIF Distribution Data for the SoC Bus Transfer

Leakage Model: HW(transferred bit)

LIF Range No. of Cells

1.9 ∼ 2.5 1
1.3 ∼ 1.9 0
0.7 ∼ 1.3 8
0.1 ∼ 0.7 332
-0.5 ∼ 0.1 99563

Fig. 7: LIF Distribution for the SoC Bus Transfer

Leakage Model: HW(transferred bit); Logarithmic Y scale

Result Analysis: From the ACA output, we obtained the cell

ranking based on LIF. Figure 7 illustrates the LIF distribution

for all cells in the SoC and Table V shows corresponding

distribution data. Investigating the results of ACA reveals both

expected and unexpected sources of leakage. Top-LIF cells

include the flip-flops from the register file, flip-flops from the

pipeline operand register of the execution stage, and flip-flops

from the pipeline result register of the memory access stage.

We notice that cells in the data cache of LEON3 are pointed

out by ACA as sources of side channel leakage. This is

unexpected because the data cache is disabled by our testbench

during the experiment. With the cache disabled, stores of the

secure data asset should be directly passed to the memory

controller. However, ACA reveals cell activity in the data

cache correlating with the secure data asset. Investigation of

the specific cells reveals that the leakage is due to a Write

Buffer which is integrated in the data cache. The Write Buffer

remains active even if the data cache is disabled and is used

by LEON3 to ensure that stores do not impede the progress

of the execution pipeline by putting pending stores in the

Write Buffer. We concluded that identifying such cells would

be extremely hard without the systematic analysis offered by

ACA.

The cells inside the Instruction Trace Buffer (ITB), integrated

in the LEON3 core, are another unanticipated source of

leakage exposed by ACA on this time window. In our case,

LEON3 contains 1 KiloByte of memory as ITB for storing

executed instructions. The ITB is implemented as a circular

buffer and can hold upto 64 executed instructions. The source

of side channel leakage revealed here are the memory cells in

the ITB. The ITB is a source of side-channel leakage due to

our test mechanism where the plaintext data is a part of the

operands in a few of the instructions. These retired instructions

end up in the ITB after execution. The existence of the ITB

further means that the instructions carrying the secure data

asset can persist in the LEON3 core for much later than

intended.

Runtime Evaluation: Table VI shows the runtime overhead

of this analysis. The complexity of the SoC is 99,904 cells,

10 times the size of the AES hardware engine. Thus, a full

design can be analyzed with 600 traces in about 60 hours.

TABLE VI: Runtime Evaluation for SoC Bus Transfer (99,904

cells)

Procedure Runtime

s/stimuli

Power Simulation 329.00
Architecture Correlation Analysis (per AES bit) 32.27

VII. ACA VALIDATION

In the previous section, we demonstrate that ACA precisely

identifies the cells in the netlist which are responsible for the

side-channel leakage and output a ranking list of the cells

based on the Leakage Impact Factor(LIF) which quantify each

cell’s contribution to the side-channel leakage. In this section,

we elaborate on the validation of the ACA methodology. We

emphasize that here we are not proposing a counter-

measure, rather we are verifying the correctness of the

proposed ACA methodology insofar as the cells we detected

are actually the leakage source.

We demonstrate that the high-LIF cells identified by ACA have

a significant impact on side-channel leakage as follows. We

emphasis that here we are not proposing a countermeasure, We

replace these high-LIF cells with equivalent cells that are pro-

tected using a hiding countermeasure. The protected cells are

based on Wave Dynamic Differential Logic (WDDL), adapted

such that a per-cell replacement can be achieved. WDDL is

a well-known dual-rail logic style which was proposed as a

circuit-level countermeasure against side-channel leakage [14].

WDDL logic ensures that each cell makes a single 0 → 1
transition per evaluation, regardless of the computed value.

WDDL cells require a dynamic clocking style with a pre-

charge phase and an evaluation phase. Although the feasibility

of WDDL has been demonstrated in ASIC, it is expensive. In

comparison to unprotected single-rail logic, WDDL occupies

3 times more area and consumes 4 times more power. WDDL
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is therefore a costly technique to apply chip-wide. When

we replace only the high-LIF cells with WDDL versions,

the impact on area will be much smaller, while still having

a significant impact on the side-channel leakage. We will

first explain our countermeasure methodology to implement

WDDL on a cell-replacement basis. Next, we evaluate the

cost and impact of this countermeasure on the side-channel

leakage of the AES hardware.

A. Selective-replacement WDDL

The WDDL version of a logic cell is created by adding a

complementary version of that cell. For example, the AND

gate becomes an AND-OR tuple, and a single-rail circuit

becomes a dual-rail circuit with complementary outputs. At

the start of every WDDL-evaluation, both rails are precharged

to logic-0. Then, the WDDL cell evaluates and a single net

in every rail pair switches 0 → 1. To integrate a WDDL

cell or a cluster of connected WDDL cells in a single-ended

netlist, we add single-to-dual and dual-to-single conversions at

the inputs and outputs, respectively, of the protected WDDL

region. Every internal net in the WDDL region is protected.

Figure 8a shows a two-gate circuit with one internal net. Figure

8b is the protected version of the same two-gate circuit. As

shown in the Figure, the conversion of a single-rail flip-flop

to WDDL requires special attention since a flip-flop does not

support precharge. We use a master-slave dynamic differential

logic [14], which stores the precharge value in a redundant

layer of flip-flops. To insert the precharge value, we convert a

flip-flop together with its (data-input) driving cell into WDDL.

Figure 8c illustrates the timing signals of the original circuit

and the transformed circuit. A disadvantage of the master-slave

method is that it doubles the clock frequency and quadruples

every flip-flop. There are many variations and circuit-level

improvements of WDDL but these are out of scope for our

experiments, which focus on validating ACA.

B. Validation results

Within our AES experiment, we selected top-ranking LIF cells

and converted them to WDDL versions while leaving the bulk

of the design unprotected. Then, we reran the power simulation

and re-evaluated the Pearson correlation under the same power

model to detect the impact on the resulting correlation peak.

Since the top-ranking cell gate was a flip-flop, we converted

the entire state register (128 bits) as well as an output register

Fig. 9: Impact on the Pearson Correlation Peak before and

after replacing the two top-LIF cells by WDDL

TABLE VII: Impact on the Pearson Correlation Peak under

various levels of replacement

Top-LIF cells ρmax Cells +Area
Added (+ %)

reference 0.1789 0 0
2 0.0847 282 +8.44

20 0.0586 422 +9.43
40 0.0480 577 +10.54

WDDL[14] NA NA +300

(128 bits) to a dual master-slave flip-flop, so that we could

use a single clock for the entire design. Figure 9 shows the

effect of replacing just 2 top-ranking LIF cells to WDDL.

The correlation is now well below the ρthreshold selected for

this confidence level. We also evaluated the effect of replacing

additional top-LIF cells. Table VII demonstrates the impact of

replacing 2, 20 and 40 top-LIF cell in the design on the peak

correlation over the leakage time interval. Although the impact

is far less dramatic than the first substitution, a consistent drop

can be noticed. The table also indicates the area overhead for

this ad-hoc countermeasure, as well as the number of cells

we added to the overall design (9,985 cells in total). At only

10% area increase, we are able to obtain a drop of almost four

times in the correlation peak. We conclude that ACA helps to

identify the cells of a design that cause side-channel leakage.

VIII. DISCUSSION

In this section, we elaborate on several topics relevant to ACA

including leakage model, method for side-channel leakage

detection and power simulation vs ASIC measurement.

Selection of Leakage Model: The ACA methodology heavily

depends on the choice of a leakage model. By targeting

different leakage models, ACA will reveal the leakage sources

corresponding to the choice of the leakage model. In this

paper, we assume that the designer knows a vulnerable

leakage model for the design. Applications such as AES

have well-known leakage models. For example, the Hamming

distance of the adjacent rounds outputs in hardware AES

implementation which reveals the side channel leakage during

the update of the state register, is a typical leakage model

used by attackers to attack AES. Hence, it is a crucial

ACA target for the designer. For analyzing the bus transfer

procedure of a microprocessor, the Hamming weight model



Fig. 10: Overview of Leakage Peaks for the AES Hardware

Engine Leakage Model: HD(AES state bit) obtained from

(a)Simulated Traces (b)ASIC Measurement Traces

is chosen because during bus transfer the power consumption

dependent on the Hamming weight of the secret data [13].

Even if the designer has no knowledge of what leakage

models to use beforehand, exploring vulnerable leakage

models for the design is not complex. In our setup, we iterate

through all leakage models (all combinations of input data

and intermediate values) of the AES application and choose

the leakage model which gives us significant correlation peaks

which can then be used for analysis using ACA. Moreover,

there are methodologies like GLIFT [15] which reveal how a

secret asset propagates in architecture and can help designers

identify an appropriate leakage model.

Power Correlation vs TVLA: Statistical based side-channel

detection method, such as TVLA, can demonstrate the

presence of sensitive variables in a power trace. TVLA avoids

the selection of power models. However, TVLA indeed has its

own short-commings. The most notorious one being the lack

of an obvious relationship between the leakage peaks detected

by the TVLA and the exploitability and efficiency of it in

attack. Another problem of TVLA is the false negatives/false

positives, i.e. TVLA fails to detect the leakage while the

leakage exist/detects the leakage while the leakage does not

actually exist. Power correlation based on the leakage model

is always used as a distinguisher for attack. Therefore, power

correlation peaks reflects actual difficulty of key recovery.

Furthermore, unlike TVLA, power correlation has a precise

interpretation in terms of the gates in the netlist of a design.

Therefore, we use power correlation rather than TVLA as the

side channel leakage evaluation tool.

Power simulation vs ASIC measurements: ACA relies on

power simulation. It enables the designers, at early design-

time before chip tape-out, to the identify side channel leakage

source and efficiently fix the vulnerability. However, questions

may arise that how close the simulated traces to practical

measurement traces in terms of side-channel leakage? In

order to evaluate the accuracy of the design-time power

Fig. 11: Overview of Leakage Peaks for the SoC Bus

Transfer Leakage Model: HW(transferred bit) obtained from

(a)Simulated Traces (b)ASIC Measurement Traces

estimation, we take the measurement of the corresponding

ASIC prototype and make comparison with our simulated

trace.In ASIC measurement trace, 500k traces are needed

until a distinguishable leakage peak can be observed. By

comparison in simulations, only 500 traces are needed. The

presnet of noise in the ASIC measurement traces makes side

channel leakage assessment difficult, while highlighting the

advantages of simulated trace.

Figure 10 shows the overview of leakage peaks for AES

hardware engine leakage model mentioned in the first case

study. We can observe that both in the ASIC measurement

and simulated trace leakage peaks can be detected. The

time interval during which correlation peaks appear in the

simulated trace is aligned with the time interval in the ASIC

prototype measurement. These observations demonstrate the

accuracy of the power estimation of the simulated traces.

Similar to the first case study, Figure 11 shows the leakage

peaks for the SoC bus transfer leakage model in the second

case study. Correlation peaks of power traces with input data

can be observed in both the ASIC measurement traces and the

simulated traces starting at the same period of time. However,

as compared to the simulated traces, the ASIC traces are

noisy which leads to fewer and smaller correlation peaks.

An increased number of measured traces might enhance the

correlation peaks by cancelling out the effect of noise, which

again highlights the advantages of using design-time side

channel assessment.

IX. CONCLUSION

We demonstrated that it is possible, at design time, to rank

the cells in a netlist according to their contribution to side-

channel leakage. The proposed ACA methodology supports

chip-wide analysis of side-channel leakage. Using ACA, a

designer can investigate the sources of side-channel leakage

that result from the integration of cryptographic modules in

system-on-chip. We have experimentally verified that a side-

channel correlation peak can be directly attributed to only a



minority of the cells in a netlist. A potential use of ACA is

therefore to fix side-channel leakage by selective replacement

of cells in the netlist. This can be done iteratively, and it opens

up a new perspective for the development of side-channel

countermeasures. Indeed, traditional countermeasures work in

an all-or-nothing approach, treating a cryptographic module

as a black box and protecting all of its cells. This is not

only expensive, it also ignores residual side-channel leakage

that stems from the integration of the module in a system-

on-chip. The ACA methodology fits in a design flow that

comprehensively optimizes the security, timing, and area of

a design.
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