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Abstract
In recent years, neural architecture search (NAS) has achieved unprecedented development because of its ability to auto-
matically achieve high-performance neural networks in various tasks. Among these, the evolutionary neural architecture
search (ENAS) has impressed the researchers due to the excellent heuristic exploration capability. However, the evolutionary
algorithm-based NAS are prone to the loss of population diversity in the search process, causing that the structure of the
surviving individuals is exceedingly similar, which will lead to premature convergence and fail to explore the search space
comprehensively and effectively. To address this issue, we propose a novel indicator, named architecture entropy, which is
used to measure the architecture diversity of population. Based on this indicator, an effective sampling strategy is proposed to
select the candidate individuals with the potential to maintain the population diversity for environmental selection. In addition,
an unified encoding scheme of topological structure and computing operation is designed to efficiently express the search
space, and the corresponding population update strategies are suggested to promote the convergence. The experimental results
on several image classification benchmark datasets CIFAR-10 and CIFAR-100 demonstrate the superiority of our proposed
method over the state-of-the-art comparison ones. To further validate the effectiveness of our method in real applications,
our proposed NAS method is applied in the identification of lumbar spine X-ray images for osteoporosis diagnosis, and
can achieve a better performance than the commonly used methods. Our source codes are available at https://github.com/
LabyrinthineLeo/AEMONAS.
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Introduction

Deep convolutional neural networks (CNNs) have made
unprecedented progress in solving various computer vision
tasks, such as image classification [24], semantic segmenta-
tion [18], object detection [28], and so on. Contributing to
this success is the emergence of a large number of excellent
CNN architectures, which include DenseNet [11], ResNet
[8], GoogLe-Net [35], ShuffleNet [47], among many oth-
ers. These efficient network models were manually designed
by human experts with extensive expertise and experience,
and these processes were labor-intensive and error-prone.
Hence, it is very difficult for beginners to manually design
their own network architecture according to their actual
needs. To address this problem, automated neural architec-
ture design, i.e., neural architecture search (NAS) has been
proposed and rapidly developed. NAS aims to design neural
architectures with excellent performance using constrained
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computing resources in an automatic manner without much
human interaction. The work of NAS [52] andMetaQNN [2]
is considered to be the pioneering work of neural architec-
ture search, in which the reinforcement learning [34] method
was adopted as an optimizer to search convolutional neu-
ral networks, and the architectures they obtained achieve
remarkably competitive performance on the image classi-
fication tasks compared to the excellent manually designed
models.

In general, NAS can be viewed as a complex opti-
mization problem involving various aspects, such as the
design of search space, resource constraints, and the objec-
tives to be optimized. Existing NAS works can be divided
into three categories according to the optimization algo-
rithm employed, i.e., reinforcement learning (RL) based
NAS [3,25], gradient-based NAS [17,21], and evolutionary
algorithm (EA)-based NAS [19,32,33]. RL-based NAS algo-
rithms mainly use recurrent neural network (RNN) [44] as a
controller to sample the representation of neural architecture,
and then adopt reinforcement learning as the corresponding
searchmethod to constantly adjust the network architectures.
For the gradient-based NAS algorithms, they continuously
relax the previously discrete search space, allowing effi-
cient search of neural architectures using the gradient descent
strategy, which significantly improves the search efficiency
compared with RL-based NAS algorithms. Different from
the former two approaches, the evolutionary algorithm-based
NASapproach (ENAS) is a population-based heuristic search
algorithm, where the network architecture is expressed as an
individual by adopting a coding scheme, and the best neural
architecture is obtained using evolutionary algorithms.

In recent years, ENAS has attracted increasing attention
due to its powerful capability to achieve globally opti-
mal solutions. Genetic CNN [40] proposed a new encoding
mechanism, which encodes the topological information of
neural network architectures into a fixed-length binary string.
Afterward, hierarchical encoding [16] and variable-length
encoding [32] were presented to improve the expressing abil-
ity.Considering that except for the classification accuracy, the
complexity (parameter numbers) is another importance fac-
tor which should be taken into account, the multi-objective
optimization methods were introduced into ENAS, and var-
ious optimal solutions can be achieved to adapt to different
application situations. As for convolutional neural network,
the minor difference between two individuals usually brings
little change in fitness values. Thus, if population diversity
is not maintained well during evolution, premature conver-
gence will occur, and individuals collapse into copies of the
same genotype before the search space is properly explored.
Besides, due to the strong correlation between individual
encoding and network architecture, inappropriate genetic
operators (e.g., crossover, mutation, etc.) will make ENAS
get trapped in local search space during the search process,

and this is another reason for premature convergence caused
by the lack of population diversity.

In this paper, we propose an architecture entropy-based
multi-objectiveNAS, termedAEMONAS, to solve the afore-
mentioned challenges, which can obtain more competitive
neural networks. Meanwhile, to enlarge the search space
and deeply explore the relationship between the topological
structure of connections and the computing operations, the
unified encoding scheme of topological structure and com-
puting operation is suggested, and the corresponding genetic
operators tailored for this encoding scheme are adopted to
speedup the convergence. The main contributions of the pro-
posed AEMONAS are summarized as follows:

• An indicator named architecture entropy is defined to
measure the architecture diversity of the population.
Specifically, the density value of each individual is cal-
culated by parsing the encoding information, and the
probability of each individual is derived through count-
ing the number of individuals located at the same range
of interval. Then, the entropy of the interval distribution
of all individuals is calculated to measure the diversity of
the population. Furthermore, a sampling strategy based
on this indicator is proposed, and adopted at the stage of
offspring generation in the evolutionary process to obtain
individuals with the potential to maintain the diversity of
offspring population.

• An unified encoding strategy of combining structural
topology and computing operation of the neural archi-
tecture is proposed, and the novel encoding scheme can
accommodate various basic computing units including
the attention module, and the integration of connec-
tion structure and computing operation can enrich the
search space to avoid the reduction of population diver-
sity. Meanwhile, the genetic operators tailored for the
novel encoding scheme are designed to improve the opti-
mization efficiency of the evolutionary algorithm.

• The experimental results on several image classification
benchmark datasets CIFAR-10 and CIFAR-100 demon-
strate the superiority of our proposed method over the
state-of-the-art comparison ones. In addition, to further
validate the effectiveness of our method in real appli-
cations, our proposed NAS method is applied in the
identification of lumbar spine X-ray images for osteo-
porosis diagnosis, and can achieve a better performance
than the commonly used methods.

The rest of this article is organized as follows. We first
describe the related works and then describe the searching
space of our proposed method. Next, we depict the details
of the proposed AEMONAS. Subsequently, we present and
analyze the experimental results, and then report the appli-
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cation of AEMONAS in osteoporosis diagnosis. Finally, we
conclude this paper and looks into the future work.

Related work

In this section, we will first introduce the problem definition
of evolutionary neural architecture search (ENAS), and then
briefly introduce the classical ENAS algorithms which are
closely related to our work. Finally, we summarize the exist-
ing works of ENAS, especially the works on maintaining the
population diversity.

In general, the task of neural architecture search for a given
dataset D = {Dtrain, Dvalid , Dtest } and the corresponding
search space A can be formulated as [17]

min F(α, ω∗)
s.t. ω∗ ∈ argmin

ω
Ltrain(α, ω),

(1)

where α ∈ A represents the network architecture to be opti-
mized, and ω and ω∗ denote the corresponding weights of
α and the optimal weights after training on the correspond-
ing dataset Dtrain , respectively, and Ltrain denotes the loss
function on Dtrain . Early NASworks usually define a single-
objective optimization problem for searching the network
architecture with emphasis on accuracy, i.e., F(α, ω∗) =
Errorvalid(α, ω∗), where Errorvalid denotes the error rate
on the validation dataset. However, with the rise of various
terminal devices with resource constraints, the complexity of
the architecture has become an important issue to be consid-
ered, and then, the NAS problem becomes a multi-objective
optimization problem [6,19,20]

F(α, ω∗) =
{
Errorvalid(α, ω∗)
Complexi ty(α),

(2)

where Complexi ty(α) represents the complexity of archi-
tecture α. In this paper, we use the size of model parameters
to quantify this metric of complexity. For this problem,
many methods can be applied to solve it, such as analyti-
cal methods, gradient-based methods, etc. The evolutionary
algorithms have the powerful capability to approximate the
globally optimal solutions, and can be utilized to conduct the
NAS task.

Evolutionary neural architecture search algorithms
(ENAS) refer to adopting evolutionary algorithms [4] as
the search strategy to optimize the NAS problem. Due to
the excellent ability to tackle complex combinatorial opti-
mization problems of evolutionary algorithms,many creative
ENAS algorithms have emerged in recent years. Large-scale

evolution [26] employed an evolutionary strategy at enor-
mous scales to explore network architectures for CIFAR-10
andCIFAR-100, resulting in classification error rates of 5.4%
and 23.0%, respectively. Due to the unprecedented scale of
evolution, the search process of this algorithm took about
2750 GPU days. Genetic-CNN [40] proposed a new encod-
ing mechanism, which encoded the topological information
of neural network architectures into a fixed-length binary
string, greatly improving the expression ability of search
space, and then adopted the genetic algorithm to evolve
offspring population to generate competitive architecture
individuals. Hierarchical evolution algorithm [16] designed a
novel hierarchical genetic expressionmechanism through the
combination of modularized design, which greatly enriched
the search space and supported more complex topologies.
EvoCNN [32] proposed variable-length encoding strategy
and used an improved EA to automatically evolve the
architecture of neural networks. Regularized evolution [27]
introduced an evolutionary strategy based on age proper-
ties to enhance environmental selection, and finally reached
83.9% top-1 accuracy for ImageNet. NSGA-Net [19] used
a multi-objective evolutionary algorithm to evolve the popu-
lation to discover various trade-off network architectures in
terms of performance and complexity.

Population diversity [30] is one of the most important
factors for achieving global and efficient search in evo-
lutionary algorithms. In the long history of evolutionary
computation, many methods have been proposed to maintain
or promote population diversity [22,23,38]. In recent years,
some researches have preliminarily explored some mecha-
nisms to maintain the population diversity in ENAS. Hoa et
al. [9] adopted well-tested moderate mutation rate to ensure
population diversity. In [51], a hierarchical training strat-
egy was proposed, and in this work, the mutated network
architectures were allocated to different population sets, and
sampling was taken from the population sets with different
probabilities to realize the diversity of populations. Awad et
al. [1] presented a modified canonical differential evolution
(DE) for NAS and the DE is enabled to work on individuals
from a uniform and continuous space, to prevent a dramatic
drop of population diversity. Wei et al. [39] adopted an envi-
ronmental selection mechanism that considered both elitism
and diversity of population to improve search efficiency and
simultaneously prevent premature convergence.

To sum up, ENAS has the potential to reach the best neural
architecture. Due to the problem in maintaining population
diversity, current ENAS algorithms usually suffer from the
premature convergence. In the following,wewill address this
problem from the perspective of search space and offspring
sampling to improve the performance of ENAS.
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Architecture search space

The goal of neural architecture search algorithm is to obtain
the optimal network architecture in the huge predefined
search space, and so, the design and selection of architec-
ture search space has a great impact on the results of NAS.
In this section, we will describe the details about the adopted
neural architecture search space and the proposed encoding
scheme in our AEMONAS.

Search space

Referring to the previous works [15,41,53], we build the
complete neural network architecture based on a hierarchi-
cal approach, where the basic cell structures are learned,
and then, the basic cells are stacked together with a desired
number of times to produce the final convolutional neural
network, as shown in Fig. 1a. In this paper, the basic cells
consist of normal cell and reduction cell. The stacking pattern
of normal cell and reduction cell is fixed, and the purpose of
NAS is to search the inner structure of normal cell and reduc-
tion cell.

Cell structure

The cell structure is essentially a neural blockwhich could be
represented by a directed acyclic graph consisting of nodes
and edges. The node means the layer, and the edge indicates
the connection. As illustrated in Fig. 1b, the circles represent
nodes, and for each node, there is a specific computing oper-
ation, such as convolution, pooling, etc. The edges among
nodes represent the layer connection in network. Each cell
has two input nodes h[−1] and h[0], which represent the
feature map output by the two precursor cells, respectively.
Some nodes in cells are leaf nodes with no successor nodes,
and their output will be concatenated as the output of the
entire cell. Note that the difference between the normal cell
and the reduction cell lies on the spatial resolution of the
input and output feature map. The stride of all convolution
operations in normal cell kept to 1, and the channel number
of the input and output feature map is consistent. In contrast,
the stride of reduction cell is set to 2, meaning that down-
sampling is conducted at the same time, and the number of
the output feature map channels is doubled relative to that of
the input.

Fig. 1 The architecture search space and encoding scheme of the
proposedAEMONAS. a The complete neural network architecture con-
sisting of alternating stacks normal cell (NC) and reduction cell (RC),
in which output layer is the classifier and Normal Cell repeat S times.

b The two example basic cells represented by directed acyclic graphs
(DAG) contain six and four nodes, respectively (i.e., normal cell and
reduction cell), and the corresponding architecture encoding
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Table 1 The operation space
and corresponding interpretation

Operation Explain Index

Identity Identity mapping 0

Conv 3*3 3*3 Vanilla Convolution 1

Conv 5*5 5*5 Vanilla Convolution 2

DSConv 3*3 3*3 Depthwise Separable Convolution 3

DSConv 5*5 5*5 Depthwise Separable Convolution 4

Conv 1*7+7*1 1*7 follow by 7*1 Convolution 5

MaxPool 3*3 3*3 Max Pooling 6

MaxPool 5*5 5*5 Max Pooling 7

AvgPool 3*3 3*3 Avg Pooling 8

AvgPool 5*5 5*5 Avg Pooling 9

BPAttLayer Bilinear Pooling Attention Module 10

Once the basic cells are determined, we can stack them
with a specified number of times to construct the entire net-
work architecture. As shown in Fig. 1a, the entire network
architecture is stacked by the normal cell and the reduction
cell alternately. The interleaving pattern is the basic structure
in the experiments, while the normal cell can be repeated S
times. Note that the reduction cell is only responsible for
downsampling to ensure that feature map can be spatially
scaled down and the channel size is doubled, and so only
one reduction cell is deployed at one time. Finally, the output
layer of the entire neural network architecture is composed of
the global average pooling layer and softmax layer,which can
be adapted to different classification tasks. This approach is
a common paradigm for successful hand-designed networks.

Node structure

The node is the basic unit which is used to construct the cell.
The number of nodes contained in each cell is denoted by
k and pre-set (e.g., k1=6 (normal cell) and k2=4 (reduction
cell) in Fig. 1b). For current node, all the inputs are added
together to form the ultimate input, and then, the computing
operation bound to current node is applied to generate the
output.

The computing operation of each node in the cells is
all selected from the pre-configured operation collection of
various classic and effective operations (e.g., depthwise sepa-
rable convolution, average pooling, etc).As shown inTable 1,
there are 11 operations in our operation collection. In the pre-
vious works [7,14], bilinear pooling operation was proposed
to enhance the nonlinear modeling ability of convolutional
neural network and learn higher dimensional information in
feature maps. Inspired by them, we carefully design a bilin-
ear pooling attention module named BPAttLayer to enrich
the expression ability of the search space by combining bilin-
ear pooling operation with channel attention mechanism. As
shown in Fig. 2, the proposed operation first uses a point con-

Fig. 2 The proposed bilinear pooling attention module (BPAttLayer)

volution to scale channels of the input feature map, and then,
the output featuremap is flattened according to the dimension
size. Note that the bilinear pooling operation is performed on
the same pixel location of the channel. The extracted feature
map is used for multi-layer scaling to obtain the weight vec-
tor with the same dimension to the original feature map, and
the weight vector reflects the interaction among all channels.
Finally, the input feature will be multiplied with the weight
vector to form the feature weighted by the attention.

Encoding scheme

The encoding scheme of neural architecture is an important
issue concerned in ENAS, directly reflecting the search space
in evolutionary process. Previous works [16,27,32,36] pro-
posed various encoding strategies on network architectures,
such as fixed-length topological encoding, variable length
hyperparameter coding, etc. In this paper, we propose an
unified encoding scheme combining the topological structure
and computing operation together. Therefore, the dimension
of decision vector is increased by a large amount and the
search space is enlarged greatly in the evolutionary process.
In the meanwhile, this unified encoding scheme can also
help explore the relationship between topological structure
and computing operation, relieving the drawback of separate
encoding.

As mentioned above, the neural network architecture is
composedof twobasic cells: the normal cell and the reduction
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cell. Accordingly, we represent the individual as a quadru-
ple E = (k1, NC, k2, RC), where NC and RC denote the
encoding expression of the two cell structures, respectively,
and k1 and k2 represent their nodes number. The directed
acyclic graph is utilized to represent the cell structure. Tak-
ing Fig. 1b as an illustrative example, the normal cell and
the reduction cell both have two inputs (denoted as h[−1]
and h[0]), and 6 nodes and 4 nodes, respectively.

Furthermore, a tuple composed of twovectors is utilized to
encode the directed acyclic graph,which includes topological
structure and node operation types. For example, the encod-
ing of normal cell structure NC = (Link, Ops), where Link
denotes a vector mapping the connection relationship among
nodes, and its length is (k1+3)×k1

2 , andOps represents a vector
of length k1 that denotes the operation index corresponding
to each node. Therefore, each node could be divided into two
parts

nodei = (Linki , Opsi ), i ∈ {1, 2, ..., k1}, (3)

where Linki is a binary vector of length i + 1, denoting
the connection relationship between nodei and all precursor
nodes, and Opsi is the operator index of nodei . It has been
mentioned in Table 1, and the proposed search space con-
tains 11 operators, so Opsi ∈ {0, 1, . . . , 10}. The encoding
of reduction cell RC is similar to NC . For a better under-
standing, we take the fourth node of normal cell in Fig. 1b
as a example

node4 = (Link4, Ops4) = (1, 0, 1, 0, 0, 5), (4)

where the binary vector Link4 = (1, 0, 1, 0, 0) indicates that
node4 only links to the first input node h[−1] and node1, and
the sub-vector Ops4 = 5 means that node4 adopts the con-
volution with kernel size 3x3 (i.e., operator Conv 1*7+7*1).
Different colors are utilized to distinguish node operations
in Fig. 1.

The proposed AEMONAS

Overall framework

In this section, the implementation details of the proposed
AEMONAS will be described. First, we will outline the the
framework of our proposed AEMONAS. Afterward, we will
elaborate on the two crucial components in AEMONAS: (1)
The architecture entropy-based sampling strategy, which can
make the distribution of population more uniform. (2) The
genetic operators, which are tailored for the unified encoding
of topological structure and computing operation.

Overall framework

For NAS algorithms, not only the recognition performance,
but also the deployment convenience should be taken into
account. Different applications have different requirements
on the performance and complexity of the neural network,
and it is necessary to trade off these two factors according to
the deployment scenarios. In this work, to ensure a balance
between performance and resource constraints, the accuracy
and the complexity are regarded as two objectives to be opti-
mized simultaneously, while NSGA-II algorithm [5] is taken
as the optimizer due to its excellent stability and competitive-
ness in solvingmulti-objective optimization problems. Com-
pared with the existing method of multi-objective ENAS, the
proposed AEMONAS adopts the sampling strategy based on
architecture entropy in the process of population evolution
to maintain the even diversity of the architectures, and the
novel genetic operators are designed to tailor for the uni-
fied encoding scheme and accelerate the convergence. The
overall framework of AEMONAS is shown in Fig. 3.

Algorithm 1: Framework of AEMONAS
Input: Generation number G, Population size N , Node number o-

f normal cell k1, Node number of reduction cell k2, Training
data Dtrn , Validation data Dvld , The number of candidate
architectures K , Epoch number Ep;

Output: Top-K candidate neural architectures Arcs;
1: P0 ← Initialize a population {(k1, NC, k2, RC)}N
2: Evaluate individuals in P0 by training the decoded architectu-

res for Ep epochs on Dtrn and validate the accuracy on Dvld
3: for t ← 0 to G-1 do
4: // mating pool selection
5: P ′

t ← Select N parents from Pt
6: Qt ← Sampling offspring population by Algorithm 2
7: Evaluate individuals in Pt ∪ Qt by training the decoded

architectures for Ep epochs on Dtrn and validate the accur-
acy on Dvld

8: // environment selection
9: Pt+1 ← Select N individuals by non-dominated sort
10: end for
11: Arcs ← Select top-K individuals by non-dominated sort from

PG
12: return Arcs

First, an initial population P0 containing N randomly
produced individuals is generated. Then, all individuals in
the initial population are evaluated according to their per-
formance, which refers to decoding each individual into
corresponding convolutional neural architectures and train-
ing them via stochastic gradient descent method for a certain
number of epochs (the purple part in Fig. 3. Afterward,
competitive parent individuals are selected from current
population Pt to form the mating pool P ′

t through binary
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Fig. 3 The overall framework of the proposed AEMONAS

tournament selection strategy. An alternative population Q′
t

consisting of M new individuals is immediately produced
by performing the novel crossover and mutation operations
(depicted in the next section) on thematingpool P ′

t ,where the
value of M is much greater than N . Then, for each individual
Qi in Q′

t , the architecture entropy of Pt before and after Qi is
inserted into Pt is calculated, and the change which is taken
as the sampling metric is assigned to Qi . Subsequently, the
proposed sampling strategy based on architecture entropy
is utilized select top N offspring individuals with a wide
range of diversity to produce offspring population Qt . In
environment selection, Pt and Qt aremerged into a combined
population with the size of 2N , and all individuals are trained
to update the fitness values. Followingly, N individuals are
selected as the parent population of the next generation Pt+1

according to the non-dominated ranking criteria. The above
steps will repeat until the termination condition is satisfied.
Finally,AEMONASoutputs top K excellent architectures, so
that different high-performance neural networks are selected
for different resource constraints. Algorithm 1 presents more
details of the proposed AEMONAS.

Architecture entropy based sampling strategy

In traditionalmulti-objective evolutionaryoptimizationprob-
lems, population diversity is significant to avoid premature
convergence. Premature convergence refers to that the pop-
ulation decays into a collection of individuals with highly
similar genotypes before the search space is fully explored,
and it is an obvious problem in ENAS. To address this
issue, we define an indicator inspired by population entropy
[37,48], named architecture entropy, to evaluate the archi-

tecture diversity in the population and design a corresponding
sampling strategy to retain the architectures with the poten-
tial to enhance population diversity in the stage of offspring
generation.

Architecture entropy indicator

To quantify the architecture diversity of a population, we first
carefully design themetric of architecture entropy. First, each
individual i in the population Pt is assigned with a density
value Di , which represents the density of connections among
all the nodes of the cell⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Di = k1|NL| + k2|RL|
k1 + k2

,

NL = {e|e ∈ NC .Link ∩ e = 1},
RL = {e|e ∈ RC .Link ∩ e = 1},

(5)

where | · | means the cardinality of a set, and NL and RL
denote the sets of binary code with the value of 1 in link
encoding in normal cell and reduction cell, respectively.
Then, the distribution of D value is evenly divided into Q
intervals according to its scope:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S1, S2, ..., SQ, Q ≤ N

Q = Dmax−Dmin
θ

,

Dmax = k21(k1+3)+k22(k2+3)
k1+k2

Dmin = k21+k22
k1+k2

.

(6)

In this equation, Sq(1 ≤ q ≤ Q) denotes the q-th interval,
and Q is the number of intervals, with θ indicating the granu-
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Fig. 4 Example of two cell structures with extreme density values. The
former indicates the most sparse structure, while the latter represents
the most densely connected structure

larity (the range of D values of each interval), and Dmax and
Dmin denote the maximum and minimum D values of the
individual. Note that, as shown in Fig. 4, the minimum cor-
responds to the cell structure where each node has only one
precursor node, while the maximum corresponds to the cell
structure where each node connects to all precursor nodes.
Subsequently, the architecture entropy of Pt is calculated
according to the D values of N individuals by counting the
number of individuals in each interval ( |Sq |)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AE = −
Q∑

q=1

pqlog(pq),

pq = |Sq |
N

, q ∈ {1, 2, ..., Q}.
(7)

where pq denotes the ratio of the number (Sq ) of the indi-
viduals populated in the interval where current individual
is located in to the population size N , and AE denotes the
architecture entropy of the population.

Sampling strategy

According to the definition in Eq. 7, when the density values
of all individuals in the population are the same, they will
all be distributed in an interval, and the architecture entropy
value of Pt reaches theminimum, AE = 0.When the density
values of all individuals in a population are more evenly dis-
tributed, the architecture entropy value will be much higher.
Based on this observation, we propose a sampling strategy
to select individuals with the potential to enhance popula-
tion diversity during offspring generation so as to explore
the search space more effectively.

The proposed architecture entropy-based sampling strat-
egy mainly consists of four steps: First, the crossover

Algorithm 2: Architecture Entropy Based Sampling
Strategy
Input: Parent population Pt , Mating pool P ′

t , Sampling number
M , Interval granularity θ , Probability of crossover α,
Probability of mutation β;

Output: Offspring population Qt ;
1: Q′

t ← ∅ // initialize a offspring sample set.
2: Qt ← ∅ // initialize the offspring population.
3: while |Q′

t | < M do
4: p1, p1 ← Randomly select two individuals from P ′

t
5: // performing crossover operation
6: ρ ← Randomly generate a number from (0,1]
7: if ρ < α then
8: if rand() < 0.5 then
9: q1, q2 ← HolisticCrossover(p1, p2)
10: else
11: q1, q2 ← HybridCrossover(p1, p2)
12: end if
13: else
14: q1, q2 ← p1, p2
15: end if
16: // performing mutation operation
17: ρ ← Randomly generate a number from (0,1]
18: if ρ < β then
19: // based on probability-level
20: q1, q2 ← Mutation(q1, q2)
21: end if
22: Q′

t ← Q′
t ∪ q1 ∪ q2

23: end while
24: Eori , EArr ← AE(Pt , θ),∅
25: for i ← 1 to M do
26: E ← AE(Pt ∪ Q′

t [i], θ) − Eori
27: EArr [i] ← {E, i}
28: end for
29: for i ← 1 to M do
30: t ← Choose the item with max AE value from EArr
31: E, idx ← t[0], t[1]
32: Qt ← Qt ∪ Q′

t [idx]
33: EArr ← EArr − t
34: end for
35: Qt ← Qt [: |Pt |]
36: return Qt

operation and mutation operation are performed on the indi-
viduals in the mating pool to generate M new offspring
individuals. Note that M is much larger than the popula-
tion size N , and it is necessary to filter out some individuals
for environmental selection. Then, as illustrated in Fig. 5,
the candidate offspring population and the parent popula-
tion Pt interact. Assuming the architecture entropy of Pt is
equal to AE1, for each candidate offspring, it is successively
added to the parent population Pt , causing the the architec-
ture entropy of Pt become AE2. The change (AE2 − AE1)
is calculated as the selection metric of current offspring. The
larger the metric is, the greater the contribution potential of
this individual to maintain the population diversity will be
expected. Subsequently, the selection metrics of all candi-
date offsprings are ranked in the descending order. Finally,
according to the sorted individual index, the first N individ-
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Fig. 5 Example of the proposed architecture entropy-based sampling
strategy

uals are selected from the candidate offspring population,
which has the same population size with the parent pop-
ulation, and hence, the final offspring population and the
parent population are merged together for further environ-
mental selection. The architecture entropy-based sampling
process is shown in Fig. 5.

The computational complexity of this process is O(M ∗
logM), which does not require additional training for indi-
viduals. Compared with the training cost of the model, the
time-consuming of this strategy isminimal. The details of the
proposed sampling strategy are described in Algorithm 2.

Genetic operator

To promote the convergence of the proposed AEMONAS
algorithm,we design an effective genetic operator for the off-
spring generation tailored for the unified encoding scheme of
topological structure and computing operation. Two different
crossover modes are suggested to balance the coupling and

interdependency between topological structure and comput-
ing operation.

Crossover

As our architecture encoding strategy considers both topo-
logical information and computing operation, based on this
characteristic, the proposed crossover operator includes two
modes: holistic crossover and hybrid crossover. Holistic
crossover refers to regarding connection information and
computing operation of each node as a whole in the process
of crossover. An intuition of this approach lies on the fact
that the excellent genes of the parents may be the operation
and the corresponding topological relationship simultane-
ously, and so we could preserve their overall information.
On the contrary, hybrid crossover attempts to break the cou-
pling of operation type and connection relation, and makes
the connection encoding and operation encoding in the par-
ent individuals crossover separately, and so, the excellent
topological gene and operation gene of the parents could
be intuitively inherited at the same time. To maintain a bal-
ance between the two crossover operation, the same selection
probability for both crossover types is adopted.

Figure 6 shows the details of the proposed crossover oper-
ator, including holistic crossover and hybrid crossover. For
convenience, we use the operations of normal cells as exam-
ples. In fact, reduction cells will also perform the same
operations to ensure uniformity. N1 and N2 represent nor-
mal cells in two parent individuals, respectively, which are
both composed of topology encoding Link and the operator
encoding Ops. In holistic crossover, a randomly generated
breakpoint is positioned at the junction of node4 and node5,
so that node5 and node6 in N1 and N2 are swapped as
a whole. In hybrid crossover, the topology encoding Link

Fig. 6 The proposed crossover operator. Illustrative example of holistic crossover and hybrid crossover between normal cells N1 and N2 in two
parent individuals
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and the operator encoding Ops are listed together and both
perform the single-point crossover at randomly generated
breakpoints.

Mutation

The mutation operator plays a crucial role for escaping
locally optimal space in traditional evolutionary algorithms.
In this paper, a single-point mutation operator is adopted.
The connections and operations are mutated separately with
different probability. Note that the target operation type to
be mutated to is not completely random, but based on the
probability calculated through counting occurrence of each
operation in the parent population

P(Opi ) = exp(N (Opi ))∑
o∈O exp(N (o)) , i ∈ {1, 2, ..., |O|}, (8)

where P(Opi ) denotes the probability that operator Opi is
selected as the target operation for current node, and N (Opi )
denotes the number of occurrences of operator Opi in parent
population; |O| is the number of predefined operators in the
search space (|O| = 11 in this paper).

As shown in Fig. 7, the single-point mutation is performed
in the topology encoding Link and the operator encoding
Ops of the normal cell N1, respectively. In the Link, the
first bit in node3 is randomly selected and the corresponding
code 0 is mutated to 1. Similarly, in the Ops, the operation
code of node4 is randomly selected, and the original code 5
mutates to 3 (i.e., fromConv 1*7+7*1 toDSConv 3*3),while
the target code 3 is not randomly generated, but is obtained
by calculating the frequency of occurrence of each operation
in the parent population.

Fig. 7 Illustrative example of the proposed probability-level-based
mutation operator of N1

Empirical studies

Experimental settings

Benchmark datasets

In the experiments, the benchmark datasets CIFAR10 and
CIFAR100 [12] are adopted to evaluate the performance of
the proposed AEMONAS and the comparison methods, and
these benchmark datasets are widely used in the state-of-the-
art NAS algorithms.

CIFAR-10 is a 10-category RGB color images dataset,
which contains 60000 imageswith the size of 32*32. The cat-
egories include cars, aircraft, cats and dogs, etc. CIFAR-100
[12] is an advanced version of CIFAR-10 and has the same
format with CIFAR-10. CIFAR-100 also includes 60000
32x32 images, but the category number is 100. Note that
each dataset is divided into training set and testing set, which
consist of 50000 images and 10000 images, respectively.

To address the lack of training data, we adopt the standard-
ized augmentation strategy: cut-out operation and random
horizontal flip operation. All the methods in the experiments
are trained and tested on the same datasets.

Comparison methods

In the experiments, we investigate the competitiveness of
the proposed AEMONAS by comparing it with the state-
of-the-art NAS algorithms. According to the reviews in the
literature, the peer competitors selected could be divided
into three categories according to search strategies: manually
designed methods, non-EA-based methods (e.g., reinforce-
ment learning-based, gradient-based, etc.) and EA-based
methods. The manually designed architectures include the
classic models: ResNet [8], Wide ResNet [43], DenseNet
[11], SENet [10] with attention mechanism, as well as
lightweight networks such as MobileNetV2 [29] and Shuf-
fleNet [47]. Non-EA-based NAS algorithms mainly include
the reinforcement learning-based and gradient strategy-
based approaches: PNAS [15], NASNet [53], MetaQNN [2],
DARTS [17], Block-QNN-S [49], ENAS [25], and NAO
[21]. EA-based NAS approaches include Genetic-CNN [40],
NSGANet [19], AmoebaNet [27], AE-CNN [31], Hierarchi-
cal Evolution [16], SI-EvoNet [46], and CARS-E [42].

Parameter settings

The determination process for ultimate neural networkmodel
includes two stages: the model search stage and the top K
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optimal model retraining stage. The parameter settings of the
proposed AEMONAS in these two stages are set as follows:

Search stage: In the search stage, the population size N
and the number of evolutionary iterations G are set to 20
and 25, respectively, and all the generated architectures have
5 cells (S = 1) and the number of channels of nodes in
each cell is set to 16. To ensure the learning ability of the
overall network, all architectures are kept the same with nor-
mal cell containing 8 nodes, and reduction cell containing
6 nodes (k1 = 8, k2 = 6). The individual evaluation pro-
cess is completed by training 25 epochs (Ep = 25) using
the SGD optimizer. In the training of neural network of the
search stage, the initial learning rate and momentum rate of
the optimizer are set to 0.1 and 0.9, respectively. The cosine
annealing learning strategy is adopted to update the learn-
ing rate with the iterative training. To avoid overfitting, L2
weight decay strategy with a value of 1 × 10−4 is adopted.
The batch size of training set and validation set is configured
to 128 and 512, respectively. For the architecture entropy-
based sampling, M is set to 100 (much larger than N ), and
the interval granularity θ is fixed to 4. For all the compari-
son NAS algorithms, the parameters for training the neural
networks are kept the same. For EA-based methods, the pop-
ulation size and evaluation times are set the same.

Retraining stage: After the search stage, only the basic
network architecture is determined. To fully exploit the
potential of the network architecture, the adjustment on the
network architecture and retraining should be undertaken.
Among the pareto optimal individuals obtained after the
search stage, the top 2 architectures of different complex-
ity are selected as the final neural networks for retraining.

During the retraining stage, the stacking time S of the
normal cell is extended to 6, the number of channels in the
initial cell is set to 32, and the channel will be doubled as
the spatial resolution of the reduction cell decreases. The

architecture is trained with 600 epochs by the SGD optimizer
with momentum. The corresponding parameters are set the
same with those in the search stage. Distinct from the search
stage, a cosine annealing learning rate mechanism with an
initial learning rate of 0.025 is utilized. The L2 weight decay
rate is set to 5× 10−4. In addition, to regularize the network
training, the dropout strategy is adopted, while each path will
be dropped with a proportion of 0.2.

Note that for both search stage and retraining stage, train-
ing set is divided into training set and validation set with
the ratio of 9:1. The performance of each network architec-
ture is evaluated on the validation set. Testing set is utilized
for the final performance evaluation of the architecture, and
is not allowed to be used to guide search and training. All
experiments including search phase and retraining phase are
performed on two Nvidia GeForce GTX 1080Ti. The source
code of the proposed AEMONAS is available at https://
github.com/LabyrinthineLeo/AEMONAS.

Competitiveness of the proposed AEMONAS

The ultimate performances of different NAS methods are
evaluated under the metrics of top-1 accuracy on the test-
ing set, the parameter volume of the output neural network,
and the search cost (GPU days). Top-1 accuracy denotes the
test classification accuracy, and parameter volume can reflect
the complexity of the output neural network. Obviously, the
search cost denotes the computational complexity of theNAS
algorithms.

The detailed experimental results of the proposed
AEMONAS and the comparison methods on CIFAR-10 are
illustrated in Table 2. At the end of the search process on the
CIFAR-10 dataset, two architectures are selected from the
pareto solution set searched by the proposedAEMONAS and
adjusted in the retraining stage, and are named asAEMONet-

Table 2 The comparison of the proposed AEMONAS and existing peer competitors in terms of Top-1 accuracy and consumed computational cost
on the CIFAR-10 datasets

Architecture Top-1 Acc (%) Params (M) Search cost (GPU days) Search method

Wide ResNet (k = 2) [43] 94.67 2.2 – Manual

Wide ResNet (k = 4) [43] 95.03 8.9 – Manual

DenseNet (k = 12) [11] 95.90 7.0 – Manual

DenseNet (k = 24) [11] 96.26 27.2 – Manual

SENet [10] 95.95 11.2 – Manual

MobileNetV2 [29] 94.56 2.1 - Manual

ShuffleNet [47] 90.87 1.06 - Manual

PNAS [15] 96.59 3.2 225 SMBO

NASNet-A [53] 97.35 3.3 2000 RL
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Table 2 continued

Architecture Top-1 Acc (%) Params (M) Search cost (GPU days) Search method

Block-QNN-S [49] 95.62 6.1 90 RL

MetaQNN [2] 93.08 11.2 80 RL

ENAS+Cutout [25] 97.11 4.6 0.5 RL

DARTS(first order) [17] 97.00 3.3 1.5 Gradient based

DARTS(second order) [17] 97.24 3.3 4.0 Gradient based

NAO [21] 96.82 10.6 200 Gradient based

Genetic-CNN [40] 92.90 −− 17 Evolution

NSGANet [19] 97.25 3.3 4 Evolution

AmoebaNet-A [27] 96.66 3.2 3150 Evolution

AE-CNN [31] 95.70 2.0 27 Evolution

Hierarchical Evolution [16] 96.37 15.7 300 Evolution

SI-EvoNet [46] 96.02 0.51 0.458 Evolution

CARS-E [42] 97.14 3.0 0.4 Evolution

AEMONet-A 96.88 1.20 3.4 Evolution

AEMONet-B 97.30 2.23 3.4 Evolution

† – means that the corresponding result was not published
Bold highlights the performance effects of our algorithm and the corresponding improvement ratio

A and AEMONet-B (as shown in Fig. 8), while the amount
of their parameters is equal to 1.20M and 2.23M, respec-
tively. From Table 2, it could be seen that our AEMONet-A

Fig. 8 Details of normal cell and reduction cell of theAEMONet-A and
AEMONet-B achieved by the proposedAEMONAS onCIFAR datasets

and AEMONet-B achieved 96.88% and 97.30% classifica-
tion accuracy, respectively. Compared with the manually
designed models, both of AEMONet-A and AEMONet-
B have higher accuracy and fewer parameters. Especially,
in comparison with the commonly used DenseNet(k=24),
our network architectures have ten times fewer parame-
ters without any loss of accuracy. Compared with the 8
non-EA based NAS algorithms, our AEMONet-B outper-
forms PNAS, Block-QNN-S, MetaQNN, ENAS, DARTS,
andNAO, and only a littleworse thanNASNet-Aby (0.05%),
but the number of parameters and the search cost are dra-
matically decreased. Compared with the 7 EA-based NAS
algorithms, AEMONet-B achieves better performance than
all of them. Especially, in comparison with AE-CNN, the
parameter volumes are almost identical, but AEMONet-B
can achieve a 1.6% improvement in terms of classification
accuracy. In the meanwhile, AEMONet-B can demonstrate
an obvious superiority over the classical NSGANet with a
parameter reduction by two-thirds. AEMONet-A with lower
model complexity is also very competitive with architectures
with similar lightweight architectures (such as ShuffleNet,
SI-EvoNet, etc.).

To further investigate the competitiveness of the proposed
AEMONAS, we transfer AEMONet-A and AEMONet-B
searched on CIFAR-10 to CIFAR-100. The detailed exper-
imental results are presented in Table 3. From Table 3, it
could be observed that the transferred AEMONet-B achieves
a 83.01% test classification accuracy on CIFAR-100. This
accuracy is better than 14 comparison algorithms but worse
than 3 comparison algorithms (NASNet, NAO, and Amoe-
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Table 3 The comparison of the proposed AEMONAS and existing peer competitors in terms of Top-1 accuracy and consumed computational cost
on the CIFAR-100 datasets

Architecture Top-1 Acc (%) Params (M) Search cost (GPU days) Search method

Wide ResNet (k = 10) [43] 79.50 36.5 – Manual

DenseNet-BC (k = 40) [11] 82.82 25.6 – Manual

SENet (k = 4) [10] 76.15 −− – Manual

MobileNetV2 [29] 77.09 2.1 – Manual

ShuffleNet [47] 77.13 1.06 – Manual

PNAS [15] 80.47 3.2 225 SMBO

NASNet-A [53] 83.42 3.3 2000 RL

Block-QNN-S [49] 82.95 6.1 90 RL

MetaQNN [2] 72.86 11.2 80 RL

ENAS [25] 82.73 4.6 0.5 RL

DARTS [17] 82.46 3.3 4 Gradient based

NAO [21] 84.33 10.8 200 Gradient based

Genetic-CNN [40] 70.97 −− 17 Evolution

NSGANet [19] 79.26 3.3 8 Evolution

AmoebaNet [27] 84.20 3.2 3150 Evolution

AE-CNN [31] 79.15 5.4 36 Evolution

SI-EvoNet [46] 79.16 0.99 0.813 Evolution

AEMONet-A 79.90 1.21 3.4 Evolution

AEMONet-B 83.01 2.24 3.4 Evolution

† - means that the corresponding result was not published
Bold highlights the performance effects of our algorithm and the corresponding improvement ratio

baNet). However, their search cost is much higher than
that of our AEMONAS, and especially, AmoebaNet even
reaches 3150 GPU days, which cannot be afford by common
users. Moreover, the architectures achieved by the compar-
ison methods usually have a larger number of parameters
(e.g., NAO even reaches 10.8M). Meanwhile, the trans-
ferred AEMONet-A also achieves a classification accuracy
of 79.90%. Therefore, the proposed AEMONAS performs
better or equivalent comparedwith state-of-the-artNASalgo-
rithms on the CIFAR-100 dataset.

In summary, under eachmetric, our proposedAEMONAS
can achieve the best or sub-optimal performance. If all
the metrics are considered by the whole, our proposed
AEMONAS obviously outperforms the comparison
methods.

Effectiveness of the architecture entropy-based
sampling strategy

In this section, we will verify the effectiveness of the archi-
tecture entropy-based sampling strategy in the proposed
AEMONAS. For a fair comparison, we first build a base-
line ENAS framework called naiveMO-ENAS,which differs
from the proposedAEMONASonly in that it uses the original
NSGAII algorithm directly, and the architecture entropy-

based sampling is removed from theAEMONAS framework.
We then perform naive MO-ENAS to complete the search
process on CIFAR-10 with the same parameter settings as
described earlier.

To measure the diversity of the population, we investi-
gate the range of density values and the variational tendency
of architecture entropy during the search stage of naïve
MO-ENAS and AEMONAS on CIFAR-10, respectively. As
shown in Fig. 9, the X-axis represents the index of the iter-
ation generation, while Y-axis denotes the density values
(left) and the architecture entropy (right), and the popula-
tion is sampled at the interval of six generations to execute a
evaluation. It could be obviously observed that in the search
process, the range of individual density values of the popula-
tion will gradually decrease, but the magnitude of reduction
ofAEMONAS is significantly smaller than that of naiveMO-
ENAS. Meanwhile, in terms of architecture entropy values,
the declining trend ofAEMONAS is slower than that of naive
MO-ENAS.
At the same time, we record the performance of all architec-
tures in each generation population during the search stage.
As shown in Fig. 10, the green and purple curves repre-
sent the changes in average accuracy of all architectures
of AEMONAS and naive MO-ENAS in each generation,
respectively, and the light-colored part represents the upper
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Fig. 9 Boxplot of the range of
density values of all
architectures in each generation
population and curve change of
architecture entropy values,
where six generations of equal
intervals are taken as an
example. a and b are the
diversity results of naive
MO-ENAS and AEMONAS,
respectively

Fig. 10 Curve change of validation average accuracy of all architec-
tures in each generation of population during the search process of
AEMONAS and naiveMO-ENAS, and the light-colored part represents
the upper and lower limits of the validation accuracy

and lower limits. It can be clearly found that AEMONAS
has better exploration ability than naive MO-ENAS. Finally,
to intuitively compare the results explored by both of them,
Fig. 11 shows the number of parameters and validation accu-
racy of the final architectures obtained by AEMONAS and
naiveMO-ENAS. It can be seen from the figure that the archi-
tectures searched by the proposed AEMONAS are better.

To summarize, the proposed sampling strategy based on
architecture entropy can effectively maintain the diversity of
the population, alleviate the problem of premature conver-
gence, and significantly improve the exploration ability of
evolutionary neural architecture search algorithms.

Ablation studies

In this section, we construct two ablation experiments to
further verify the effectiveness of the proposed architecture
search method and the designed attention mechanism oper-
ator, respectively.

First, considering that someNASmethods in the peer com-
petitors do not use the attention mechanism, we attempt to
add our proposed BPAttLayer operator to their search space,

Fig. 11 Example of the number of parameters and validation accuracy
of the final architectures searched by AEMONAS and naiveMO-ENAS

and then compare the corresponding search results to further
verify the comprehensive availability of our AEMONAS.
Due to the constraints of computing resources and repro-
ducibility of code, we select three neural architecture search
algorithms including DARTS [17], NSGANet [19], and SI-
EvoNAS [46] as experimental comparison methods. The
designed BPAttLayer module has significant flexibility and
adaptability, which can be easily embedded into the search
space of the three NAS methods. In addition, the experimen-
tal parameters set in the search stage and retraining stage
are consistent with those described in the corresponding
papers.

Table 4 shows the performance on CIFAR10 and
CIFAR100 of the optimal neural networks finally searched
by the three NAS methods after the addition of BPAttLayer
in the search space. The values in brackets represent the
classification accuracy changes compared with the original
algorithm. It can be found that in addition to the slight perfor-
mance decline of NSGANet on CIFAR-10, the performances
of other algorithms are improved to some extent. However,
our search algorithm still has a clear advantage, which also
proves the overall validity of the proposed AEMONAS.
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Table 4 The classification accuracy(%) of DARTS+BPAttLayer,
NSGANet+BPAttLayer, SI-EvoNAS+BPAttLayer, and our
AEMONAS on CIFAR-10 and CIFAR-100 datasets

Algorithms Test accuracy (%)

CIFAR-10 CIFAR-100

DARTS+BPAttLayer 97.16(+0.16) 82.57(+0.11)

NSGANet+BPAttLayer 97.21(–0.04) 80.97(+1.71)

SI-EvoNAS+BPAttLayer 96.65(+0.63) 80.59(+1.43)

AEMONAS 97.30 83.01

Bold highlights the performance effects of our algorithm and the cor-
responding improvement ratio

Table 5 The results of the ablation experiment on BPAttLayer. Each
row denotes the result of the same dataset, and each column represents
the result of replacing BPAttLayer in AEMONet-A and AEMONet-B

Dataset Test accuracy (%)

BPAttLayer Identity Conv 3*3 DSConv 3*3

CIFAR-10 96.88 94.89 95.37 95.95

97.30 95.08 95.87 96.22

CIFAR-100 79.90 77.35 77.83 78.18

83.01 80.14 81.31 81.09

† DSConv denotes the depth separable convolution
Bold highlights the performance effects of our algorithm and the cor-
responding improvement ratio

In addition, to investigate the adaptability of the designed
attention module (i.e., BPAttLayer operation) in the search
space and its contribution to improving the expression ability
of the neural architecture, we perform ablation experiments
by replacing the BPAttLayer in the complete architec-
ture with ordinary operations. First, identity operation, 3*3
normal convolution operation, and 3*3 depth separable
convolution are utilized to replace the BPAttLayer in the
two neural networks (i.e., AEMONet-A and AEMONet-B),
respectively, and then, the changed architectures are trained
on CIFAR-10 and CIFAR-100 datasets. For fair comparison,
all training parameters are consistent with those described
above.Table 5 represents the performance results and com-
parisons after replacingBPAttLayerwith different operations
on three datasets. It can be observed that the classifica-
tion accuracy of all the replaced architectures decreases to
varying degrees. In particular, the classification accuracy
of AEMONet-B (Identity) decreases by 2.22% and 2.77%,
respectively, on CIFAR-10 and CIFAR-100. In addition, the
performances of AEMONet-B (Conv 3*3) and AEMonet-B
(DSConv 3*3) onCIFARdatasets also decrease significantly.

Application to osteoporosis diagnosis

Osteoporosis is one of the most common chronic metabolic
bone diseases, characterized by reduced bone mass, destruc-
tion of bone tissue microstructure, and increased bone
fragility [45]. Due to the wide prevalence, the early diag-
nosis is quite essential to reduce the risk of osteoporotic
fractures, and the identification and diagnosis based on
X-ray image is one of the most convenient and effec-
tive methods to screen potentially susceptible population.
Recently, many studies focus on the diagnosis of osteo-
porosis through the recognition and classification of medical
X-ray images. The convolutional neural network (CNN) is
utilized to automatically extract features, which are more
effective for classification [13]. However, how to design an
appropriate network architecture is an challenging issue to
researchers. In this section, we will investigate the perfor-
mance of AEMONAS in solving this problem.

We construct a lumbar spine X-ray image dataset from
real medical scenarios for osteoporosis diagnosis. The lum-
bar spine dataset is a three-category lumbar X-ray images
dataset, and includes 1531 high-resolution images which
containing the first to the fourth lumbar vertebrae (L1–L4).
Each image is labeled as one of the three categories: normal,
slight, and serious, indicating normal bone mass, osteopenia
and osteoporosis, respectively. This dataset contains two sub-
sets, the anteroposterior view (PA) and the lateral view (LAT),
which consist of 747 and 784 images, respectively (as shown
in the Fig. 12). Due to the large difference of images from
these two perspectives, we divide them into two classification
tasks. The AEMONAS is utilized to search the best neural
architecture for this image classification problem. All images

Fig. 12 Example of two lumbar spine X-ray images; the dotted box
represents the first to the fourth lumbar vertebrae from top to bottom
(L1–L4): a anteroposterior view and b lateral view
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Table 6 The comparison among the proposed AEMONAS and selected peer competitors in terms of test accuracy (%) and Test AUC (%) on
Lumber Spine Dataset of Anteroposterior view (PA) and Lateral view (LAT)

Architecture Params (M) PA Test Acc (%) PA Test AUC (%) LAT Test Acc (%) LAT Test AUC (%) Type

ResNet-34 [8] 21.8 84.810 90.431 86.228 95.064 Manual

Wide ResNet (k = 4) [43] 8.9 86.709 92.693 85.629 95.318 Manual

DenseNet (k = 12) [11] 7.0 88.358 93.791 90.216 96.024 Manual

SENet (k = 4) [10] 11.2 86.076 92.501 87.452 93.284 Manual

NASNet-A [53] 3.3 88.241 93.449 89.419 92.342 RL

ENAS [24] 4.6 89.405 94.238 89.222 94.573 RL

DARTS [17] 3.3 86.709 92.534 90.401 96.671 Gradient based

NSGANet [19] 3.3 88.772 94.566 87.425 96.140 EA

AmoebaNet [27] 3.2 85.949 93.498 89.222 95.953 EA

SI-EvoNet [46] 0.51 86.637 91.128 89.103 91.021 EA

AEMONet 0.98 89.608 94.957 90.419 96.750 EA

†PA represents anteroposterior view; LAT represents Lateral view
Bold highlights the performance effects of our algorithm and the corresponding improvement ratio

are resized to a uniform size of 224×224, and whitened and
pixel normalized.

For the classification of lumbar spine X-ray images for
osteoporosis diagnosis, the experimental settings of AEMO-
NAS are kept the same as those of the above CIFAR datasets,
including population size, optimizer parameters, and so on.
The only difference is the hyperparameter of the architecture
due to the small number of images in the lumbar spine dataset.
In the search stage, the number of nodes in the two cells of
the network architecture is set to 6 and 4, respectively (i.e.,
k1 = 6 and k2 = 4), and at the end of the search stage, the
optimal network architecture AEMONet will be obtained
(i.e., the K is set as 1). Meanwhile, in the retraining stage,
the number of normal cells S is set to 3, the number of filters of
the initial cell is set to 16, and the channel number is doubled
as the spatial resolution of the reduction cell is decreased.

Since the lumbar spine dataset is not publicly benchmark
and the search process of most NAS algorithms are not
reproducible, the comparison algorithms we select mainly
include the classic manually designed network models and
the best neural architectures reported by multiple NAS algo-
rithms, including ResNet [8], Wide ResNet [43], DenseNet
[11], SENet [10], NASNet-A [53], ENAS [25], DARTS
[17], NSGANet [19], AmoebaNet [27], and SI-EvoNet [46].
Table 6 shows the number of architectural parameters, and
the test accuracy and AUC values on the anteroposterial view
and lateral view subsets of the lumbar spine dataset achieved
by the proposed AEMONAS and selected peer competitors.

As presented in Table 6, the best architecture AEMONet
(as illustrated in Fig. 14) searched by the proposed
AEMONAS in the lumbar spine dataset achieves 89.608%
and 90.419% test classification accuracy, 94.957% and
96.750% test AUC values, respectively. This is better than all
the comparison algorithms including the manually designed

models and the best architectures corresponding to the NAS
algorithms. As for the number of parameters of the architec-
ture, the number of our AEMONet parameters is smaller than
most of the comparison algorithms. Although SI-EvoNet has
a smaller number of parameters, its classification accuracy
is 2.971% and 1.316% lower than our AEMONet on the two
subsets, respectively. The classification accuracy of ENAS
and DARTS is very close to the AEMONet, but the num-
ber of parameters is more than two times larger than our
AEMONet.

As shown inFig. 13, the performance comparison between
AEMONet and all comparison algorithms is visually illus-
trated (LAT subset results are taken as an example). The
left figure shows the corresponding relationship between the
number of all model parameters and the accuracy on test set;
the architecture closer to the upper left is more outstanding.
The figure on the right shows the receiver-operating charac-
teristic curve (ROC) information of all architectures, and our
proposed AEMONAS has the best ROC curve.

To further understand the mechanism behind the classifi-
cation decision of the neural network, we visualize the class
activation map (CAM) [50], which is widely used in image
classification tasks to show the discriminative regions learned
by convolutional neural architecture. As shown in Fig. 15,
the examples are the class activation map on the lumbar
spine dataset, where the discriminative regions learned by the
model are covered by warmer colors. It can be observed that
AEMONets can adaptively learn salient features of different
categories of images from different perspective. For exam-
ple, AEMONet can learn lesions from the overall structure
of lumbar spine (Fig. 15a) and local features (Fig. 15b, c).
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Fig. 13 left: the corresponding relationship between the number of parameters and the accuracy on LAT test set of all architectures; right: the
receiver-operating characteristic curve (ROC) information of all architectures

Fig. 14 Details of normal cells
and reduction cells of the
AEMONet achieved by the
proposed AEMONAS on lambar
spine dataset

Fig. 15 Examples of the CAM of AEMONet on the lumbar spine
dataset, and the red areas represent the discriminative regions learned
by the neural network with BPAttLayer: a slight, b serious, and c slight

Conclusion

In this paper, we have proposed an effective ENAS algorithm
named AEMONAS, which adopts a sampling strategy based
on architecture entropy to maintain population diversity.

Meanwhile, to efficiently express the search space and deeply
explore the relationship between the topological structure of
connections and the computing operations, the unified encod-
ing scheme of topological structure and computing operation
is suggested, and the correspondinggenetic operators tailored
for this encoding scheme is adopted to speedup the conver-
gence. Experimental results on the common CIFAR-10 and
CIFAR-100 datasets demonstrate the superiority of our pro-
posed AEMONAS, and the effectiveness of the suggested
strategies. Furthermore, on the practical classification prob-
lem in osteoporosis diagnosis, our proposedAEMONASalso
has a good performance.

Although the proposed AEMONAS can avoid premature
convergence and automatically search task-related convo-
lutional neural architectures with excellent performance,
search costs could be further reduced under tighter con-
straints on computing resources. Thus, we intend to improve
the evaluation strategy in the future to get higher search effi-
ciency while maintaining exploration ability. Furthermore,
search space containingmore elements can be designed, such
as channel number, image resolution, etc.

123



230 Complex & Intelligent Systems (2023) 9:213–231

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
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